直流电机转速闭环控制课程设计

合集下载

直流电机双闭环调速课程设计

直流电机双闭环调速课程设计

直流电机双闭环调速及其MATLAB仿真摘要:在工业现场,绝大数场合需要运动控制,而提供运动的部分主要是电机,因此,对电机的调速控制是十分必需而重要的。

在各种调速方法中,双闭环调速调速是最为常用,也是最为有效的方法,本文根据直流调速双闭环控制系统的工作原理,运用MATLAB进行直流电动机双闭环调速系统的数建模和系统仿真的研究,最后显示控制系统模型并对仿真结果并加以分析。

关键词:直流电机;双闭环调速;MATLAB仿真1引言由于直流电动机适宜于在广泛范围内调速,其调速控制系统历来在工业控制具有要的地位,直流调速控制系统中最典型一种就是转速、电流双闭环调速系统。

在当今,仿真技术已经成为分析、研究各种系统复杂系统的重要工具,为了解决工程设计设计中可能出现的问题,利用MATLAB数学仿真软件实用工具对直流电动机的双闭环统进行仿真和系统分析就成为我们今天探讨的课题。

2调速系统的设计及其仿真在此,我以教材《电力拖动自动控制系统》中的例题2-1(P79)为题目,设计一个控制系统,并对其进行MATLAB仿真。

例题2-1 某晶闸管供电的双闭环直流调速系统,整流装置采用三相桥式电路,基本数据如下:直流电机:220V,136A,1460r/min,Ce=0.132V.min/r,允许过载倍数λ=1.5;晶闸管装置放大系数Ks=40;电枢回路总电阻R=0.5Ω;时间常数Tl=0.03s,Tm=0.18s;电流反馈系数β=0.049V/A,转速反馈系数α= 0.00685 V.min/r。

设计要求:电流超调量σi≤5%,转速无静差,从空载到理想转速时的转速超调量σn≤10%。

解:一、电流环设计1.确定时间常数1)整流装置滞后时间常数Ts。

由表1-1可知,三相桥式电路的平均失控时间Ts=0.0017s。

表1-1 各种整流电路的失控时间2) 电流滤波时间常数Toi 。

三相桥式电路每个波头的时间是3.3ms ,为了基本滤平波 头,应有(1-2)Toi=3.33ms ,取Toi=2ms=0.002s 。

转速电流双闭环控制直流调速系统的课程设计

转速电流双闭环控制直流调速系统的课程设计

转速电流双闭环控制直流调速系统的课程设计流程介绍如下:
1.确定系统参数和控制策略:根据具体需求和电机特性,确定系
统参数和控制策略,如电机额定电压、额定电流、最大转速、控制器采样周期、PID控制器参数等。

2.搭建硬件平台:根据系统参数和控制策略,搭建硬件平台。


件平台包括电机、电源、传感器、控制器等。

3.编写程序:根据系统参数和控制策略,编写程序。

程序主要分
为两部分,一部分是转速闭环控制程序,另一部分是电流闭环控制程序。

程序需要实时读取电机转速和电流传感器的反馈信号,并根据PID控制器的输出值调节电机电压和电流。

4.调试和测试:在搭建好硬件平台和编写好程序后,进行调试和
测试。

测试可以分为两个部分,一部分是转速闭环控制测试,另一部分是电流闭环控制测试。

测试的主要目的是验证程序的正确性和系统的控制性能。

5.总结和分析:在测试完成后,对测试结果进行总结和分析。


析结果可以用于进一步改进控制策略和优化系统性能。

总之,转速电流双闭环控制直流调速系统的课程设计需要深入了解电机控制原理和PID控制器的设计方法,需要具备一定的电路设计和编程能力。

直流电机速度闭环控制系统设计报告

直流电机速度闭环控制系统设计报告

目录一、课题简介 (1)二、方案设计 (1)1. 系统整体设计 (1)2. 电机的传递函数 (2)3.集成H桥驱动器 (3)4. 发电机传递函数 (5)5. 信号整形电路 (5)6. 显示电路 (6)7. D/A转换电路 (7)8.51单片机最小系统 (8)三、电机实验模型的建立 (8)四、控制系统仿真分析 (11)1. 电机的开环特性仿真分析 (11)2. 闭环控制器的设计 (12)3. 离散域对控制系统的仿真分析 (14)3.1 PI调节器的离散化 (15)3.2零阶保持器与电机传函的离散化 (15)3.3离散域仿真分析 (15)五、系统实际效果与理论分析的比较 (16)1. 电机的开环特性 (16)2. 电机系统的闭环特性 (17)2.1 闭环系统消除稳态误差 (17)2.2 正阶跃响应特性 (18)2.3 正、负阶跃响应特性 (19)2.4 闭环系统抗扰动能力 (19)六、控制算法的实现 (20)七、总结 (21)1.实验过程中存在的问题 (21)1.1电机模型的测量不够精确 (21)1.2电机模型的降阶处理 (21)1.3电机转速的测量 (21)1.4微处理器的选择 (22)2.实验收获与体会 (22)附录一 (23)附录二 (23)附录三(离散域仿真补充) (33)直流电动机速度闭环控制系统设计报告(华中科技大学电气学院武汉430074)一、课题简介现代化生产和生活中,电动机的作用十分重要,无论是交通运输、国防、航空航天、医疗卫生、农业生产、商务与办公设备,还是日常生活中的家用电器,都大量地使用各种各样的电动机。

据有关资料介绍,现有90%以上的动力源来自于电动机,我国生产的电能大约有60%消耗于电动机。

因此,研究电动机的控制系统是有较大的现实意义的。

目前电动机的主流控制都是由微机完成的。

电机微机控制系统主要用于一下两个方面:(1)发电机励磁系统的控制用于保证正常工作时发电机电压稳定,发生故障后尽可能保持稳定运行,达到最优化控制的目的。

【设计】自动控制系统课程设计转速单闭环直流电机调速系统设计与仿真

【设计】自动控制系统课程设计转速单闭环直流电机调速系统设计与仿真

【关键字】设计东北大学秦皇岛分校控制工程学院《自动控制系统》课程设计设计题目:转速单闭环直流电机调速系统设计与仿真学生:张海松专业:自动化班级学号:指导教师:王立夫设计时间:2012年6月27日东北大学秦皇岛分校控制工程学院《自动控制系统》课程设计任务书专业:自动化班级:509 学生姓名:设计题目:转速单闭环直流电机调速系统设计与仿真一、设计实验条件实验设备:PC机二、设计任务直流电机额定电压,额定电枢电流,额定转速,电枢回路总电阻,电感,励磁电阻,励磁电感,互感,,允许过载倍数。

晶闸管装置放大系数:,时间常数:,设计要求:对转速环进行设计,并用Matlab仿真分析其设计结果。

目录绪论--------------------------------------------------------------------------------11.转速单闭环调速系统设计意义-----------------------------12.原系统的动态结构图及稳定性的分析-----------------------22.1 转速负反应单闭环控制系统组成-----------------------22.2 转速负反应单闭环控制系统的工作原理-----------------33.调节器的选择及设计-------------------------------------33.1调节器的选择- --------------------------------------33.2 PI调节器的设计--- ---------------------------------44.Mat lab仿真及结果分析----------------------------------74.1 simulink实现上述直流电机模型-----------------------74.2 参数设置并进行仿真---------------------------------74.3结果分析--------------------------------- ---------155.课设中遇到的问题--------------------------------------166.结束语- ---------------------------------------------17参考文献- ---------------------------------------------17转速单闭环直流电机调速系统设计与仿真绪论直流电动机由于调速性能好,启动、制动和过载转矩大,便于控制等特点,是许多高性能要求的生产机械的理想电动机。

直流电机闭环调速系统设计

直流电机闭环调速系统设计


直流电机驱动模块L298


1) L298 内部有两个完全相同的桥式驱动电路构成, 分别驱动两个直流电机的正反转; 2) 组成桥式驱动的是四个大功率的 NPN 三极管, 两路共 8 个; 3)控制每路四个功率管的则是四个门电路, 两路共 8 个; 4) 控制直流电动机正、 反转的是由 In1 和 In2, 另一路是 In3 和In4; 5) EnA 和 EnB 是禁止输出控制。
e(k),e(k-1)—第k次,第k-1次采样数字控制器的输入; kp—比例系数;
缺点:u(k)与过去状态有关,需对e(k)进行累加,计算量
大,易产生较大误差;
Td T ki—积分系数,ki k p ;kd — 微分系数,kd k p T Ti
二、增量式PID控制算法:
Δu(k) = u(k) - u(k-1) = kp[e(k)-e(k-1)]+kie(k)+kd[e(k)-2e(k-1)+e(k-2)]
+5V R1 200Ω R2 470Ω 接单片机
发光二极管 圆盘 光敏三极管
程序设计

PID : Proportional(比例)、Integral(积分)、 Derivative(微分)的缩写。PID控制规律是连续系统 中最成熟、应用最广泛的控制规律。PID分为模拟式 和数字式,数字式包含位置式和增量式两种形式。

积分(I)控制在积分控制中,控制器的输出与输入误差信 号的积分成正比关系。对一个自动控制系统,如果在进入 稳态后存在稳态误差,则称这个控制系统是有稳态误差的 或简称有差系统。为了消除稳态误差,在控制器中必须引 入“ 积分项” 。积分项对误差取决于时间的积分,随着 时间的增加,积分项会增大。这样,即便误差很小,积分 项也会随着时间的增加而加大,它推动控制器的输出增大 使稳态误差进一步减小,直到等于零。因此,比例+积分 (PI)控制器,可以使系统在进入稳态后无稳态误差。实质 就是对偏差累积进行控制,直至偏差为零。积分控制作用 始终施加指向给定值的作用力,有利于消除静差,其效果 不仅与偏差大小有关,而且还与偏差持续的时间有关。简 单来说就是把偏差积累起来,一起算总帐。

单闭环直流电机调速系统课程设计

单闭环直流电机调速系统课程设计

《计算机控制技术》课程设计(单闭环直流电机调速系统)摘要运动控制系统中应用最普遍的是自动调速系统。

在工程实践中,有许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求有良好的静、动态性能。

由于直流电动机具有极好的运行性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是长期以来,直流调速系统一直占据垄断地位。

当然,近年来,随着计算机技术、电力电子技术和控制技术的发展,交流调速系统发展很快,并有望在不太长的时间内取代直流调速系统,但是就目前来讲,直流调速系统仍然是自动调速系统的主要方式。

在我国许多工业部门,如轧钢、矿山采掘、海洋钻探、金属加工、纺织、造纸以及高层建筑等需要高性能可控电力拖动的场合,仍然广泛采用直流调速系统。

而且,直流调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础。

随着电子技术和计算机技术的高速发展,直流电动机调速逐步从模拟化走向数字化,特别是单片机技术的应用,使直流电动机调速技术进入一个新的发展阶段。

因此,本次课程设计就是针对直流电动机的起动和调速性能好,过载能力强等特点设计由单片机控制单闭环直流电动机的调速系统。

本设计利用AT89C52单片机设计了单片机最小系统构成直流电动机反馈控制的上位机。

该上位机具有对外部脉冲信号技术和定时功能,能够将脉冲计数用软件转换成转速,同时单片机最小系统中设计了键盘接口和液晶显示接口。

利用AT89C52单片机实现直流电机控制电路,即直流电动机反馈控制系统的下位机,该下位机具有直流电机的反馈控制功能,上位机和下位机之间采用并行总线的方式连接,使控制变得十分方便。

本系统能够用键盘实现对直流电机的起/停、正/反转控制,速度调节既可用键盘数字量设定也可用电位器连续调节并且有速度显示电路。

本系统操作简单、造价低、安全可靠性高、控制灵活方便,具有较高的实用性和再开发性。

关键词:直流电动机AT89C52 L298N 模数转换1课题来源1.1设计目的计算机控制技术课程是集微机原理、计算机技术、控制理论、电子电路、自动控制系统、工业控制过程等课程基础知识一体的应用性课程,具有很强的实践性,为了使学生进一步加深对计算机控制技术课程的理解,掌握计算机控制系统硬件和软件的设计思路,以及对相关课程理论知识的理解和融会贯通,提高学生运用已有的专业理论知识分析实际应用问题的能力和解决实际问题的技能,培养学生独立自主、综合分析与创新性应用的能力,特设立《计算机控制技术》课程设计教学环节。

直流电动机双闭环调速系统设计

直流电动机双闭环调速系统设计

1 设计方案论证电流环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。

方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。

转速环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。

方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。

2双闭环调速控制系统电路设计及其原理综述随着现代工业的开展,在调速领域中,双闭环控制的理念已经得到了越来越广泛的认同与应用。

相对于单闭环系统中不能随心所欲地控制电流和转矩的动态过程的弱点。

双闭环控制那么很好的弥补了他的这一缺陷。

双闭环控制可实现转速和电流两种负反应的分别作用,从而获得良好的静,动态性能。

其良好的动态性能主要表达在其抗负载扰动以及抗电网电压扰动之上。

正由于双闭环调速的众多优点,所以在此有必要对其最优化设计进展深入的探讨和研究。

本次课程设计目的就是旨在对双闭环进展最优化的设计。

整流电路本次课程设计的整流主电路采用的是三相桥式全控整流电路,它可看成是由一组共阴接法和另一组共阳接法的三相半波可控整流电路串联而成。

共阴极组VT1、VT3和VT5在正半周导电,流经变压器的电流为正向电流;共阳极组VT2、VT4和VT6在负半周导电,流经变压器的电流为反向电流。

变压器每相绕组在正负半周都有电流流过,因此,变压器绕组中没有直流磁通势,同时也提高了变压器绕组的利用率。

三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。

为使负载电流连续平滑,有利于直流电动机换向及减小火花,以改善电动机的机械特性,一般要串入电感量足够大的平波电抗器,这就等同于含有反电动势的大电感负载。

三相桥式全控整流电路的工作原理是当a=0°时的工作情况。

直流电机闭环调速控制系统设计和实现

直流电机闭环调速控制系统设计和实现

实验报告直流电机闭环调速控制系统设计和实现班级:姓名:学号:时间:指导老师:2012年6月一、实验目的1.了解闭环调速控制系统的构成。

2.熟悉PID 控制规律,并且用算法实现。

二、实验设备PC 机一台,TD-ACC+实验系统一套,i386EX 系统板一块三、实验原理根据上述系统方框图,硬件线路图可设计如下,图中画“○”的线需用户自行接好。

上图中,控制机算机的“DOUT0”表示386EX 的I/O 管脚P1.4,输出PWM 脉冲经驱动后控制直流电机,“IRQ7”表示386EX 内部主片8259 的7 号中断,用作测速中断。

实验中,用系统的数字量输出端口“DOUT0”来模拟产生 PMW 脉宽调制信号,构成系统的控制量,经驱动电路驱动后控制电机运转。

霍尔测速元件输出的脉冲信号记录电机转速构成反馈量。

在参数给定情况下,经PID 运算,电机可在控制量作用下,按给定转速闭环运转。

系统定时器定时1ms,作为系统采样基准时钟;测速中断用于测量电机转速。

直流电机闭环调速控制系统实验的参考程序流程图如下:四、实验步骤1.参照图 6.1-3 的流程图,编写实验程序,编译、链接。

2.按图6.1-2 接线,检查无误后开启设备电源,将编译链接好的程序装载到控制机中。

3.打开专用图形界面,运行程序,观察电机转速,分析其响应特性。

4.若不满意,改变参数:积分分离值Iband、比例系数KPP、积分系数KII、微分系数 KDD 的值后再观察其响应特性,选择一组较好的控制参数并记录下来。

5.注意:在程序调试过程中,有可能随时停止程序运行,此时DOUT0 的状态应保持上次的状态。

当DOUT0 为1 时,直流电机将停止转动;当DOUT0 为0 时,直流电机将全速转动,如果长时间让直流电机全速转动,可能会导致电机单元出现故障,所以在停止程序运行时,最好将连接DOUT0的排线拔掉或按系统复位键.五、心得体会此次实验是直流电机闭环调速控制系统的设计和实现,通过这次实验,让我了解了闭环调速控制系统的基本构成。

直流电机的转速电流双闭环控制

直流电机的转速电流双闭环控制

直流电机的转速电流双闭环控制The final edition was revised on December 14th, 2020.直流电机的转速电流双闭环控制摘要:本设计主要采用模拟电路实现直流电机控制的整流电源,转速调PI调节器,电流PI调节器的设计。

来实现对电机转速的控制,包括快速起动、恒速运行、堵转截止三大目标。

该设计的主要电路均采用模拟电路实现,电流环的PI 调节器用于保证快速起动,即保证电机起动时以最大负载电流起动,也即实现以最大加速度实现。

而转速调节器则用于在运行时实现转速恒定,保证带负载的能力。

两个PI调节器都采用集成运放实现。

其主要优点是克服传统意义上单环控制只能满足一方面的要求的缺陷。

关键词:电流环;转速环;PI调节器The Rotate Speed and Current Double Closed LoopFeedback Control for DC MotorAbstract: The major tasks of this design is utilizing simulating circuits to produce the rectifiering power source ,current PI regulator and rotate speed PI regulator for the DC major object of this desigen is making the DC motor started rapidly,rotating making the DC motor started rapidly with the largest load is the same to starting rapidly with the largest ,The rotate speed PI regulator make the DC mortor retated stably to any the change of the load .Both of the PI regulators use the integrated amplifier operator to accomplish the priority of this design are overcoming the defect of traditional single feedback loop.Key word: current feedback loop; rotate speed feedback loop;PI regulator目录摘要…………………………………………………………………………………错误!未定义书签。

直流电机的PWM电流速度双闭环调速系统课程设计

直流电机的PWM电流速度双闭环调速系统课程设计

直流电机的PWM电流速度双闭环调速系统课程设计LT一、设计目标与技术参数直流电机的PWM电流速度双闭环调速系统的设计目标如下:额定电压:U N=220V;额定电流:I N=136A;额定转速:n N:=1460r/min;电枢回路总电阻:R=0.45Ω;电磁时间常数:T l=0.076s;机电时间常数:T m=0.161s;电动势系数:C e=0.132V*min/r;转速过滤时间常数:T on=0.01s;转速反馈系数α=0.01 V*min/r;允许电流过载倍数:λ=1.5;电流反馈系数:β=0.07V/A;电流超调量:σi ≤5%;转速超调量:σi≤10%;运算放大器:R=4KΩ;晶体管PWM功率放大器:工作频率:2KHz;工作方式:H型双极性。

PWM变换器的放大系数:K S=20。

二、设计基本原理(一)调速系统的总体设计在电力拖动控制系统的理论课学习中已经知道,采用PI调节的单个转速闭环直流调速系统可以保证系统稳定的前提下实现转速无静差。

但是,如果对系统的动态性能要求较高,例如要求快速起制动,突加负载动态速降小等等,单闭环调速系统就难以满足需要。

这主要是因为在单闭环调速系统中不能随心所欲的控制电流和转矩的动态过程。

如图2-1所示。

图2-1 直流调速系统启动过程的电流和转速波形用双闭环转速电流调节方法,虽然相对成本较高,但保证了系统的可靠性能,保证了对生产工艺的要求的满足,既保证了稳态后速度的稳定,同时也兼顾了启动时启动电流的动态过程。

在启动过程的主要阶段,只有电流负反馈,没有转速负反馈,不让电流负反馈发挥主要作用,既能控制转速,实现转速无静差调节,又能控制电流使系统在充分利用电机过载能力的条件下获得最佳过渡过程,很好的满足了生产需求。

直流双闭环调速系统的结构图如图2-2所示,转速调节器与电流调节器串极联结,转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制PWM装置。

其中脉宽调制变换器的作用是:用脉冲宽度调制的方法,把恒定的直流电源电压调制成频率一定、宽度可变的脉冲电压序列,从而可以改变平均输出电压的大小,以调节电机转速,达到设计要求。

直流电机的闭环调速系统设计

直流电机的闭环调速系统设计

直流电机的闭环调速系统设计一、设计要求利用PID控制器、光电传感器及F/V转换器设计直流电机的闭环调速系统。

二、应用器材PCB板一块、LM331、ST151各一块、LM324两块,小型直流电机、电阻、电容若干、导线若干;实验箱,稳压电源,万用表,烙铁,PC机;三、辅助软件MATLAB系统仿真软件,EWB;四、设计方案分析为了提高直流调速系统的动静态性能指标,对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。

本次课程设计中我们采用单闭环调速系统。

原理框图如下:输出五、实验说明在本实验中,输入端加上一定范围的电压后,通过PID控制器以控制电机带动叶轮转动,光电传感器将电机叶轮的转速转变为频率信号输出,最后经F/V转换器将频率信号转变为反映电机转动的电压信号作为反馈。

给定不同的输入电压,电动机转速将有明显的变化。

六、硬件设计PID比例积分微分控制器一般用到的参数是:Kp,Ki, Kd,其转换关系如下:Kp=Kp, Ki=Kp/Ti, Kd=Td*KpPID调节器分析:1、PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。

PID调节器人们又常称为PID控制器,是比例P (Proportional)、积分I (Integral)、微分D (Differential《lm324引脚图》《lm324管脚图》《lm324原理图》LM324的分析:LM324为四运放集成电路,在PID调解器中得到了运用,它采用了14脚双列直插塑料进行封装。

内部有四个运算放大器,有相位补偿电路。

电路功耗很小,lm324工作电压范围宽,可用正电源3~30V,或正负双电源±1.5V~±15V工作。

它的输入电压可低到地电位,而输出电压范围为O~Vcc。

它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互单独。

每一组运算放大器可用如图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

转速电流双闭环直流调速系统设计

转速电流双闭环直流调速系统设计

转速电流双闭环直流调速系统设计一、引言直流调速系统是控制直流电机转速的一种常用方法。

在实际应用中,为了提高系统性能,通常采用双闭环控制结构,即转速环和电流环。

转速环用于控制电机转速,电流环用于控制电机电流。

本文将对转速、电流双闭环直流调速系统进行详细设计。

二、转速环设计转速环的主要功能是通过控制电机的转矩来实现对转速的精确控制。

转速环设计步骤如下:1.系统建模:根据电机的特性曲线和转矩方程,建立电机数学模型。

通常采用转速-电压模型,即Tm=Kt*Ua-Kv*w。

2.设计转速环控制器:选择适当的控制器类型和参数,比如PID控制器。

根据电机数学模型,可以使用根轨迹法、频域法等进行控制器参数设计。

确定控制器增益Kp、Ki和Kd。

3.闭环仿真:使用仿真软件,进行闭环仿真,验证控制器的性能。

4.实际系统调试:将设计好的转速环控制器实施到实际系统中,进行调试和优化。

根据实际情况对控制器参数进行微调。

三、电流环设计电流环的主要功能是控制电机的电流,以确保电机输出的转矩能够满足转速环的要求。

电流环设计步骤如下:1.系统建模:根据电机的特性曲线和电流方程,建立电机数学模型。

通常采用电流-电压模型,即Ia=(Ua-R*Ia-Ke*w)/L。

2.设计电流环控制器:选择适当的控制器类型和参数,比如PID控制器。

根据电机数学模型,可以使用根轨迹法、频域法等进行控制器参数设计。

确定控制器增益Kp、Ki和Kd。

3.闭环仿真:使用仿真软件,进行闭环仿真,验证控制器的性能。

4.实际系统调试:将设计好的电流环控制器实施到实际系统中,进行调试和优化。

根据实际情况对控制器参数进行微调。

四、双闭环控制系统设计在转速环和电流环都设计好的基础上,将两个闭环控制器连接起来,形成双闭环控制系统。

具体步骤如下:1.控制系统结构设计:将电流环置于转速环的前端,形成串级控制结构。

2.系统建模:将转速环和电流环的数学模型进行串联,建立双闭环控制系统的数学模型。

直流电动机双闭环调速系统课程设计

直流电动机双闭环调速系统课程设计

直流电动机双闭环调速系统课程设计一、引言直流电动机是一种常见的电动机,广泛应用于工业生产和日常生活中。

在实际应用中,为了满足不同的工作要求,需要对电动机进行调速。

传统的电动机调速方法是通过改变电源电压或者改变电动机的极数来实现,但这种方法存在调速范围小、调速精度低、调速响应慢等问题。

因此,现代工业中普遍采用电子调速技术,其中双闭环调速系统是一种常用的调速方案。

二、直流电动机双闭环调速系统的原理直流电动机双闭环调速系统由速度环和电流环组成。

速度环是通过测量电动机转速来控制电动机的转速,电流环是通过测量电动机电流来控制电动机的负载。

两个环路相互独立,但又相互联系,通过PID控制器对两个环路进行控制,实现电动机的精确调速。

三、直流电动机双闭环调速系统的设计1.硬件设计硬件设计包括电源模块、电机驱动模块、信号采集模块和控制模块。

其中电源模块提供电源,电机驱动模块将电源转换为电机驱动信号,信号采集模块采集电机转速和电流信号,控制模块根据采集到的信号进行PID控制。

2.软件设计软件设计包括PID控制器设计和程序编写。

PID控制器是直流电动机双闭环调速系统的核心,其作用是根据采集到的信号计算出控制量,控制电机的转速和负载。

程序编写是将PID控制器的计算结果转换为电机驱动信号,实现电机的精确调速。

四、直流电动机双闭环调速系统的实现1.电路连接将电源模块、电机驱动模块、信号采集模块和控制模块按照设计要求连接起来。

2.参数设置根据电机的参数和工作要求,设置PID控制器的参数,包括比例系数、积分系数和微分系数等。

3.程序编写根据PID控制器的计算结果,编写程序将其转换为电机驱动信号,实现电机的精确调速。

五、直流电动机双闭环调速系统的应用直流电动机双闭环调速系统广泛应用于工业生产和日常生活中,如机床、风机、水泵、电梯等。

其优点是调速范围广、调速精度高、调速响应快、负载能力强等。

六、总结直流电动机双闭环调速系统是一种常用的电子调速方案,其原理是通过速度环和电流环相互独立但相互联系的方式,通过PID控制器对两个环路进行控制,实现电动机的精确调速。

最新直流电机双闭环、运动控制系统课程设计

最新直流电机双闭环、运动控制系统课程设计

第1章绪论1.1运动控制系统研究背景电机自动控制系统广泛应用于机械模具,矿产冶金,石油化工,轻工纺织,军工等与军民企业密切相关的行业。

这些行业中绝大部分生产机械都采用电动机作原动机。

有效地控制电机,提高其运行性能,对国民经济,以及电能的合理运用都具有十分重要的现实意义。

自从电动机发明到上个世纪90年代,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。

尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。

因为它具有良好的线性特性,优异的控制性能,高效率等优点。

直流调速仍然是目前最可靠,精度最高的调速方法。

本次设计的主要任务就是应用自动控制理论和工程设计的方法对直流调速系统进行设计和控制,设计出能够达到性能指标要求的电力拖动系统的调节器,通过在DJDK-1型电力电子技术及电机控制试验装置上的调试,并应用MATLAB软件对设计的系统进行仿真和校正以达到满足控制指标的目的。

1.2课题目前的研究应用现状近几十年来,电力拖动系统得到了快速的发展。

随着新型电力电子器件的发明,为了进一步提高电动机自动控制系统的性能,有关研究工作正围绕以下几个方面展开:1.2.1常规调速系统介绍电力电子器件的不断进步,为电机控制系统的完善提供了物质保证,新的电力电子器件正向高压,大功率,高频化和智能化方向发展。

智能功率模块(IPM)的广泛应用,使得新型电动机自动控制系统的体积更小,可靠性更高。

传统直流电动机的整流装置采用晶闸管,虽然在经济性和可靠性上都有一定优势,但其控制复杂,对散热要求也较高。

电力电子器件的发展,使称为第二代电力电子器件之一的大功率晶体管(GTR)得到了越来越广泛的应用。

由于晶体管是既能控制导通又能控制关断的全控型器件,其性能优良,以大功率晶体管为基础组成的晶体管脉宽调制(PWM)直流调速系统在直流传动中使用呈现越来越普遍的趋势。

基于PID控制的直流电机转速闭环控制系统设计

基于PID控制的直流电机转速闭环控制系统设计

基于PID控制的直流电机转速闭环控制系统设计一、绪论直流电机广泛应用于工业自动化控制系统中,对其转速进行精确控制是提高系统性能和稳定性的关键。

PID控制技术是一种经典且常用的控制方法,被广泛应用于直流电机转速控制系统中。

本文旨在设计一个基于PID控制的直流电机转速闭环控制系统,实现对电机转速的精准控制。

二、直流电机转速控制系统结构直流电机转速闭环控制系统主要由以下几个部分组成:1. 直流电机:负责将电能转化为机械能,并提供给待控对象。

2. 传感器:用于测量电机转速,将测得的转速信号反馈给控制系统。

3. 控制器:根据测量的转速信号与设定值之间的差异,计算控制信号,并输出给执行器。

4. 执行器:根据控制信号控制电机的转速,通过调节电机输入电流实现转速控制。

三、PID控制器原理PID控制器是一种基本的比例-积分-微分控制器,通过调节这三种控制分量的权重,实现对系统的控制。

具体原理如下:1. 比例控制分量:根据测量值与设定值之间的差异,产生与差值成正比的控制信号,用于快速响应系统误差。

2. 积分控制分量:根据时间与误差的乘积进行积分,用于消除系统误差的稳态偏差。

3. 微分控制分量:根据误差的变化率进行微分,用于增强系统的稳定性,减小超调量。

四、基于PID控制的直流电机转速闭环控制系统设计步骤1. 系统建模:根据直流电机的特性以及系统的动力学方程,建立数学模型,描述电机的转速与输入电流之间的关系。

2. 参数调整:根据实际情况,通过试验或者经验,调整PID控制器的三个控制参数:比例系数(Kp),积分时间(Ti),微分时间(Td),以获得系统的最佳控制效果。

3. 信号采集与处理:利用传感器获取电机转速的测量值,然后经过滤波和放大等处理,得到合适的输入信号。

4. PID控制计算:根据测量值与设定值之间的差异,计算PID控制器的输出信号。

5. 信号放大与转换:将PID控制器输出的控制信号进行放大,并转换为合适的电压或电流信号,用于控制电机的转速。

直流电机转速闭环控制课程设计

直流电机转速闭环控制课程设计

计算机控制技术课程设计报告设计课题:直流电机转速闭环控制(采用单片机教学实验系统)班级:报告人:指导教师:完成日期:2011年9月22日重庆大学本科学生《计算机控制技术基础》课程设计任务书课程设计题目直流电机转速闭环控制(采用单片机教学实验系统)学院自动化学院专业自动化专业年级(1)已知参数和设计要求1)用单片机产生PWM方波调制直流电机以一定速率旋转,人为给一个速度漂移,霍尔元件测出速度并根据PID算法跟踪校正速度漂移。

2)要求用LED或LCD时实显示电机速度。

3)要求在10秒内PID算法纠正速率漂移。

(2)实现方法采用单片机教学实验系统实现(限≤4人选做)学生应完成的工作:1)硬件设计:要求完成控制系统框图;绘制完整的控制系统电原理图;说明各功能模块的具体功能和参数;结合实验室现有的单片机教学实验系统进行系统组成,对整个系统的工作原理进行全面分析,论述其结构特点、工作原理、优、缺点和使用场合。

分析和论述系统采用的主要单元的工作原理和特性。

2)软件设计:要求合理分配系统资源,完成直流电机转速闭环控制的程序设计(如:系统初始化;主程序;A/D转换;D/A转换;标度变换;显示与键盘管理;控制算法处理;输出等)。

3)对设计控制系统进行系统联调。

4)编写课程设计报告:按统一论文格式、统一报告纸和报告的各要素【封面、任务书、目录、摘要、序言、主要内容(包括设计总体思路、设计步骤、原理分析和相关知识的引用等)、总结、各组员心得体会、参考书及附录(包括系统框图、程序流程图、电原理图和程序原代码)】进行编写,字数要求不少于4000字,要求设计报告论理正确,逻辑性强,文理通顺,层次分明,表达确切。

目前资料收集情况(含指定参考资料):《计算机硬件技术基础实验教程》黄勤等编著重庆大学出版社《单片微型计算机机与接口技术》李群芳等编著电子工业出版社《计算机控制技术》王建华等编著高等教育出版社课程设计的工作计划:(1)2011年9月19日熟悉设计任务和要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机控制技术课程设计报告设计课题:直流电机转速闭环控制(采用单片机教学实验系统)班级:报告人:指导教师:完成日期:2011年9月22日重庆大学本科学生《计算机控制技术基础》课程设计任务书课程设计题目直流电机转速闭环控制(采用单片机教学实验系统)学院自动化学院专业自动化专业年级(1)已知参数和设计要求1)用单片机产生PWM方波调制直流电机以一定速率旋转,人为给一个速度漂移,霍尔元件测出速度并根据PID算法跟踪校正速度漂移。

2)要求用LED或LCD时实显示电机速度。

3)要求在10秒内PID算法纠正速率漂移。

(2)实现方法采用单片机教学实验系统实现(限≤4人选做)学生应完成的工作:1)硬件设计:要求完成控制系统框图;绘制完整的控制系统电原理图;说明各功能模块的具体功能和参数;结合实验室现有的单片机教学实验系统进行系统组成,对整个系统的工作原理进行全面分析,论述其结构特点、工作原理、优、缺点和使用场合。

分析和论述系统采用的主要单元的工作原理和特性。

2)软件设计:要求合理分配系统资源,完成直流电机转速闭环控制的程序设计(如:系统初始化;主程序;A/D转换;D/A转换;标度变换;显示与键盘管理;控制算法处理;输出等)。

3)对设计控制系统进行系统联调。

4)编写课程设计报告:按统一论文格式、统一报告纸和报告的各要素【封面、任务书、目录、摘要、序言、主要内容(包括设计总体思路、设计步骤、原理分析和相关知识的引用等)、总结、各组员心得体会、参考书及附录(包括系统框图、程序流程图、电原理图和程序原代码)】进行编写,字数要求不少于4000字,要求设计报告论理正确,逻辑性强,文理通顺,层次分明,表达确切。

目前资料收集情况(含指定参考资料):《计算机硬件技术基础实验教程》黄勤等编著重庆大学出版社《单片微型计算机机与接口技术》李群芳等编著电子工业出版社《计算机控制技术》王建华等编著高等教育出版社课程设计的工作计划:(1)2011年9月19日熟悉设计任务和要求。

(2)2011年9月20日确定设计方案。

(3)2011年9月21日硬件调试。

(4)2011年9月22日软件及系统调试。

(5)2011年9月23日设计答辩。

任务下达日期 2011年 9月 19 日完成日期 2011年 9 月 24日指导教师(签名)学生(签名)说明:1、学院、专业、年级均填全称,如:光电工程学院、测控技术、2003。

2、本表除签名外均可采用计算机打印。

本表不够,可另附页,但应在页脚添加页码。

摘要在运动控制系统中,电机转速控制占有至关重要的作用,其控制算法和手段有很多,模拟PID控制是最早发展起来的控制策略之一,长期以来形成了典型的结构,并且参数整定方便,能够满足一般控制的要求,但由于在模拟PID控制系统中,参数一旦整定好后,在整个控制过程中都是固定不变的,而在实际中,由于现场的系统参数、温度等条件发生变化,使系统很难达到最佳的控制效果,因此采用模拟PID控制器难以获得满意的控制效果。

随着计算机技术与智能控制理论的发展,数字PID技术渐渐发展起来,它不仅能够实现模拟PID所完成的控制任务,而且具备控制算法灵活、可靠性高等优点,应用面越来越广。

本设计以上面提到的数字PID为基本控制算法,以SST89EE554RC单片机为控制核心,产生占空比受数字PID算法控制的PWM脉冲实现对直流电机转速的控制。

同时利用霍尔传感器将电机速度转换成脉冲频率反馈到单片机中,实现转速闭环控制,达到转速无静差调节的目的。

在系统中采数码管和4×4键盘作为人机交互界面,启动后可以通过显示部件了解电机当前的转速。

该系统控制简单,反应灵敏,具有很强的抗干扰能力。

目录前言 ............................................................一.总体设计方案................................................二.硬件单元模块设计............................................ (1)单片机控制单元 .............................................. (2)直流电机驱动单元 ............................................ (3)基于霍尔传感器的测速模块 .................................... (4)LED显示模块.................................................三.软件功能调试................................................ (1)主程序设计.................................................. (2)PWM波软件软件设计........................................... (3)显示子程序.................................................. (4)键盘处理子程序 .............................................. (5)定时处理程序................................................ (6)测速软件设计...............................................四.设计总结 (17)五.参考文献 (17)附录 (17)前言在工业控制领域中,直流电机是常见的机电装置,以单片机为控制器对电机进行控制,运用串口通信技术实现电机的远程测控。

通过采用周期测量法测量电机的转速,运用PWM技术实现对电机的驱动控制,为直流电机的控制提供了一种低成本高精度的测控方案。

在工业自动控制系统和各种智能产品中常常会用用电动机进行驱动、传动和控制,而现代智能控制系统中,对电机的控制要求越来越精确和迅速,对环境的适应要求越来越高。

随着科技的发展,通过对电机的改造,出现了一些针对各种应用要求的电机,如伺服电机、步进电机、开关磁阻电机等非传统电机。

但是在一些对位置控制要求不高的电机控制系统如传动控制系统中,传统电机如直流电机乃有很大的优势,而要对其进行精确而又迅速的控制,就需要复杂的控制系统。

随着微电子和计算机的发展,数字控制系统应用越来越广泛,数字控制系统有控制精确,硬件实现简单,受环境影响小,功能复杂,系统修改简单,有很好的人机交换界面等特点。

总体设计概述单片机直流电机调速简介:单片机直流调速系统可实现对直流电动机的平滑调速。

PWM是通过控制固定电压的直流电源开关频率,从而改变负载两端的电压,进而达到控制要求的一种电压调整方法。

在PWM驱动控制的调整系统中,按一个固定的频率来接通和断开电源,并根据需要改变一个周期内“接通”和“断开”时间的长短。

通过改变直流电机电枢上电压的“占空比”来改变平均电压的大小,从而控制电动机的转速。

因此,PWM又被称为“开关驱动装置”。

本系统以SST89E554RC单片机为核心,通过单片机控制,C语言编程实现对直流电机的调速。

系统控制方案的分析:本直流电机调速系统以单片机系统为依托,根据PWM 调速的基本原理,通过PI控制以直流电机电枢上电压的占空比来改变平均电压的大小,从而控制电动机的转速为依据,实现对直流电动机的平滑调速,并通过单片机控制速度的变化。

本文所研究的直流电机调速系统主要是由硬件和软件两大部分组成。

硬件部分是前提,是整个系统执行的基础,它主要为软件提供程序运行的平台。

而软件部分,是对硬件端口所体现的信号,加以采集、分析、处理,最终实现控制器所要实现的各项功能,达到控制器自动对电机速度的有效控制。

硬件部分硬件部分由电源模块、单片机控制单元、电机驱动电路、LED 显示电路、霍尔传感器电路构成。

键盘向单片机输入相应控制指令,由单片机通过P2.0与P2.1其中一口输出与转速相应的PWM 脉冲,另一口输出方波,根据方波测出转速,比较给定转速与实际转速得到差值再通过P 控制来实现电动机转速的控制。

电动机的运转状态通过LED 显示出来。

电动机所处速度显示。

每次电动机启动后开始计时,停止时LED 显示出本次运转所用时间,时间精确到0.1s 。

总体设计方案的硬件部分详细框图如图一所示单片机本次实验采用的是SST89E554RC 单片机,单片机 小键盘数码管显示 直流电机及驱动键盘扫描及显示直流电机驱动电路基于霍尔传感器的测速电路工作原理:霍尔开关集成电路中的信号放大器将霍尔元件产生的幅值随磁场强度变化的霍尔电压UH放大后再经信号变换器、驱动器进行整形、放大后输出幅值相等、频率变化的方波信号。

信号输出端每输出一个周期的方波,代表转过了一个齿。

单位时间内输出的脉冲数N,因此可求出单位时间内的速度V=NT。

软件设计主程序设计主程序主程序是一个循环程序,其主要思路是,先设定好速度初始值,这个初始值与测速电路送来的值相比较得到一个误差值,然后用P算法输出控制系数给PWM发生电路改变波形的占空比,进而控制电机的转速。

主程序流程图如下:开始初始化开定时器0延时调用pwm波调制子程序调用转速显示子程序调用键盘处理子程序调用控制算法子程序结束PWM 波软件软件设计SST89E554RC 提供了一个特殊的16位定时器,该定时器具有5个16位捕捉/比较模块。

每个模块都可被编程工作于以下四种模式:上升和/或下降沿捕捉,软件定时器,高输出(HSO )和脉冲宽度调制(PWM )。

第五个模块除上述四种模块外还可以编程为看门狗定时器。

每个模块都有一个外部引脚,与P1口复用:模块0连接至P1.3(CEX0),模块1连接至P1.4(CEX1),模块0连接至P1.5(CEX2),模块1连接至P1.6(CEX3),模块1连接至P1.7(CEX4).其结构框图如下:在PWM 驱动控制的调整系统中,按一个固定的频率来接通和断开电源,并且根据需要改变一个周期内“接通”和“断开”时间的长短。

通过改变直流电机电枢上电压的“占空比”来达到改变平均电压大小的目的,从而来控制电动机的转速。

设电机始终接通电源时,电机转速最大为Vmax ,设占空比为D= t1 / T ,则电机的平均速度为Va = Vmax * D ,其中Va 指的是电机的平均速度;Vmax 是指电机在全通电时的最大速度;D = t1 / T 是指占空比。

由上面的公式可见,当我们改变占空比D = t1 / T 时,就可以得到不同的电机平均速度Vd ,从而达到调速的目的。

相关文档
最新文档