平面向量的应用——三角形四心的性质

合集下载

三角形四心的向量性质及应用 学生版

三角形四心的向量性质及应用 学生版

---1---
五.欧拉线: △ABC 的外心 O ,重心 G ,垂心 H 三点共线(欧拉线),且 OG 1 GH . 2
测试题
一.选择题
1. O 是 ABC 所在平面上一定点,动点 P 满足 OP OA ( AB AC) , 0, ,
则点 P 的轨迹一定通过 ABC 的( )
A.外心
B.内心
8.在 △ABC 中,动点
P
2
满足: CA
2
CB
2 AB
CP
,则
P
点轨迹一定通过△ABC
的(
)
A.外心 B.内心 C.重心 D.垂心
9.已知 ABC 三个顶点 A、B、C 及平面内一点 P ,满足 PA PB PC 0 ,若实数 满足: AB AC AP ,
则 的值为(
A.2
)
B. 3 2
,若
2
AB
AB
AC
AB CB
BC CA ,则 ABC 为(
)
A.等腰三角形 二.填空题
C.重心
D.垂心
2.(03 全国理 4) O 是 ABC 所在平面上一定点,动点 P 满足 OP OA ( AB AC ) , 0, ,
AB AC
则点 P 的轨迹一定通过 ABC 的(
)
A.外心
B.内心
C.重心
D.垂心
3. O 是 ABC 所在平面上一定点,动点 P 满足 OP OA ( AB AC ) , R , AB cosB AC cosC
变式:已知 D,E,F 分别为 △ABC 的边 BC,AC,AB 的中点.则 AD BE CF 0 .
二、三角形的外心的向量表示及应用
2
2

平面向量与三角形四心

平面向量与三角形四心

一、四心的概念介绍(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

二、四心与向量的结合(1)OA OB OC0++=⇔O 是∆ABC 的重心.证法1:设O x y A x y B x y C x y 112233(,),(,),(,),(,)OA OB OC 0++=⇔x x x x x x y y y y y y 123123()()()0()()()0-+-+-=-+-+-=⎧⎨⎩x x x x y y y y 12312333⇔=++=++⎧⎨⎪⎪⎩⎪⎪⇔O 是∆ABC的重心. 证法2:如图++OA OB OCOA OD =+=20∴=2AO OD∴、、A O D 三点共线,且O 分AD为2:1∴O 是∆ABC 的重心(2)OA OB OB OCOC OA ⋅=⋅=⋅⇔O 为∆ABC 的垂心.证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足.OA OB OB OCOB OA OC OB CA ⋅=⋅⇔-=⋅=()0⇔⊥OB AC同理⊥OA BC ,⊥OC AB⇔O 为∆ABC 的垂心(3)设a ,b ,c 是三角形的三条边长,O 是∆ABC 的内心0++=⇔aOA bOB cOC O 为∆ABC 的内心.证明:、AB c AC b分别为、AB AC 方向上的单位向量,∴+AB c AC b平分∠BAC,D CB 平面向量与三角形四心(λ=∴AO bACc AB +),令cb a bc++=λ∴cb a bcAO ++=(b AC c AB +) 化简得0)(=++++AC c AB b OA c b a∴0=++OC c OB b OA a(4==⇔O 为的外心。

平面向量与三角形“四心”

平面向量与三角形“四心”

解题技巧与方法JIETI JIQIAO YU FANGFA 121平面向量与三角形“四心”◎胡建勋刘健( 永吉实验高中132200)平面向量是高中数学的重要工具之一,它不仅可以把几何问题转化为代数问题求解,也可以把代数问题转化为几何问题求解. 它与高中数学的许多模块( 三角函数,平面解析几何,立体几何,数列,不等式等) 都有紧密联系. 借助平面向量研究三角形“四心”问题更会起到意想不到的效果. 本文仅从几个方面加以说明,以餐读者.一、“三角形四心”的向量表示1. 三角形重心的向量表示→ → →G 是△ABC 重心 GA + GB + GC = 0 若 D ,E ,F 分别为→ → → → → →AB ,BC ,CA 中点则CG = 2 GD ( 或AG = 2 GE ,BG = 2GF ) 2. 三角形外心的向量表示 →→ →O 是 △ABC 外 心,==OB OC ( → →→ → →→ → →→OA + OB )·AB = ( OB + OC )·BC = ( OA + OC ) ·AC = 0.3. 三角形内心的向量表示 (→ → )→ →I 是 △ABC 内 心IA ·= IB ·( → → ( →→= IC·= 0.4. 三角形垂心的向量表示H 是 △ABC→→ → → → →垂心 HA ·BC = HB ·AC = HC ·AB→ → → → → →HA·HB = HB·HC = HC·HA .二、“三角形四心”相关问题 1.“三角形四心”的判定解题策略 利用向量运算化简题干中的向量等式,再据“三角形四心”的向量表示判定. 例,(→→)1 点 O 为 △ABC 所在平面内一点OA + OB ·→ ( → →) → ( → →) →AB = OB + OC ·BC = OA + OC ·OB = 0,则 O 是△ABC() .A . 重心B . 外心C . 内心D . 垂心→解析 设 D 为 AB→ →边中点,( OA + OB ) = 2 OD ,由→ →→ → →( OA + OB )·AB = 0,∴ OD·AB = 0,O 在 AB 垂直平分线上,同理 O 应在 BC ,AC 垂直平分线上.∴ O 是△ABC 外心. 应选 B .例 2 点 O 为△ABC 所在平面内一点,且满足→2 +OA BC → 2 = OB → 2 + AC → 2 = OC → 2 +AB →2 ,则 O 是 △ABC的( ) . A . 重心 B . 外心 C . 内心 D . 垂心解析由→2 +→2 = → 2 +→ 2得,OABC OB AC → → → →→ → →→→ ( AC - BC ) ( AC + BC ) + ( OB - OA ) ( OB + OA ) =0, AB( → →) →( → →)AC + BC + AB OB + OA = 0.→ →2 AB·OC = 0,则 O 是△ABC 中 AB 边的高上,同理 O 应在△ABC 中 AC ,BC 边的高上, ∴O 是△ABC 垂心. 应选 D .2.“三角形四心”与动点轨迹解题策略: 探究动点经过特殊点问题,首先据题干给出的向量等式,利用向量运算化简后,结合向量运算的几何意义,判定动点轨迹特征. 例 3 点 O 是△ABC 所在平面内一定点,P 是△ABC 所→ →( → → ),则 P 点轨在平面内一动点,若OP = OA + λ 迹一定通过△ABC 的() .A . 重心B . 外心C . 内心D . 垂心( → → )解析由若+ →OP = OA + λ→→AP =→→→→分别为→,→同向的单位向λ量,AP 与∠A 平分线所在直线共线, ∴ P 过△ABC 内心,应选 C .例 4 点 O 是△ABC 所在平面内一定点,P 是△ABC 所( → →) ( → →)在平面内一动点,若 OP - OA · AB - AC = 0,则 P 点轨迹一定通过△ABC 的A . 重心B . 外心C . 内心D . 垂心解析→ → → → → →→ →AB - AC = CB ,OP - OA = AP ,又∵ ( OP - OA )·( → →)AB - AC= 0,→ →→ →∴ AP·CB = 0,AP ⊥BC . ∴ P 在过 A 点且垂直于 BC 的垂线上,点 P 轨迹过 △ABC 的垂心应选 D .例 5 点 O 是△ABC 所在平面内一定点,P 是△ABC 所→ →→→,则 P 点轨迹一定通过△ABC 的() . A . 重心 B . 外心C . 内心 D.垂心→ → →→得:解析由OA = OP + λ+→→,→ →= λ= 0.→ →∴ PA ⊥BC .∴ P 在过 A 点且垂直于 BC 的直线上,( 转下页)数学学习与研究 2016. 9解题技巧与方法122 JIETI JIQIAO YU FANGFA数列{ n2 }和 S n 的新求法◎郑晶晶 ( 永嘉县东瓯街道办事处消防办,浙江温州 325100) 【摘要】介绍数列{ n2}和 S n的新求法.【关键词】数列; 初等数学= 4 + 4 + 4 + 4笔者在文中介绍了数列{ n2}和 S n的新求法.其很好的= 3 + 3 + 3 = 2 + 2展现了数学之美且易懂.= 1.即: T n + S n =[1 + 2 + 3 + 4 + … + ( n - 1) + n]一式: n2 = 1 + 3 + 5 + 7 + … + ( 2n - 3) + ( 2n - 1) +[1 + 2 + 3 + 4 + … + ( n - 1) + n]= 2 + 4 + 6 + 8 + … + ( 2n - 2) + 2n - n=[1 + 2 + 3 + 4 + … + ( n - 1) + n]·2 - n.+[1 + 2 + 3 + 4 + … + ( n - 1) + n]得到三式:( n2 + n) /2 = 1 + 2 + 3 + 4 + … + ( n - 1) + n +[1 + 2 + 3 + 4 + … + ( n - 1) + n](在这里我们把等号的右边部分看作数列{ n( n + 1) /2}其+[1 + 2 + 3 + 4 + … + ( n - 1) + n].和 T n.(上共有( n + 1)个[1 + 2 + 3 + 4 + … + ( n - 1) + n]相T n =[1 + 2 + 3 + 4 + … + ( n - 1) + n]+ 加)[1 + 2 + 3 + … + ( n - 1)]所以容易得出T n + S n =[1 + 2 + 3 + 4 + … + ( n - 1) + n]·( n + 1) + ( 1 + 2 + 3 + 4) = n·( n + 1) /2·( n + 1)+ ( 1 + 2 + 3) =[n·( n + 1)2]/2.+ ( 1 + 2) 又因为 T n为数列{ n( n + 1) /2}和,+ 1.因为 n( n + 1) /2 = ( n2 + n) /2,二式: n2 = n + n + n + … + n + n.(此处共有 n 个 n 相所以 Tn=[n( n + 1) /2 + S ]/2.加) 所以 T n + S n =[n( n + 1) /2 + S n]/2 + S n.所以所以[n( n + 1) /2 + S n]/2 + S n =[n·( n + 1)2]/2.S n = n + n + n + … + n + n.(此处共有 n 个 n 相加) 最后得出 S n = n( n + 1) ( 2n + 1) /6.= n + n + n + … + n(此处共有 n - 1 个 n - 1 相加)( 接上页)∴ P 在 BC 边高上,应过△ABC 的垂心,应选 D.→例 6 在△ABC 中,动点 M →2 -→2 →满足AC AB = 2 AM·BC,则点 M 一定通过△ABC 的( ) .A.重心B.外心C.内心→2-→2D.垂心→ →→→解析由 AC AB = 2 AM · BC 得: ( AC - AB )→ →→→( AC + AB) = 2 AM·BC→→→→→→设 D 为 BC 中点,AC + AB = 2 AD,2 BC·AD = 2 AM·→ → →BC,BC·MD = 0.M 点应在 BC 的垂直平分线上.应选B.3.“三角形四心”的应用解题策略: 利用向量法解决有关“三角形四心”相关问题,首先确定一组基底,再根据“三角形四心”的向量表示,用向量线性运算,模的运算,向量数量积运算等简化( 经常利用正弦定理和余弦定理) 题干条件.例 7 G 是△ABC 的重心,AB,AC 的边长为 2 和 1,→→) .∠BAC = 60°,则AG·BG等于(A.8 B.-1099C.5 -槡3 D.-5 + 槡39 9→ 1 → →解析AG = ( AB + AC),3→ 1 →→ 1 →→BG = ( BC + BA) = ( AC - 2 AB).3 3→ → 1 →→ 1 →→AG·BG = ( AB + AC) ×( AC - 2 AB)3 31 →2 →→→2)8= ( AC - AB·AC - 2 AB = -.9 9→例 8 O 是外接圆半径为 1 的△ABC 外心,且满足了 3 →→→→OA + 4 OB + 5 OC = 0,则OA·BC =→→→→→→解法 1 →→→OA·BC = OA ( OC - OB) = ,OA ·OC - OA ·→= →= →,OB又∵OA OB OC→→→3 OA +4 OB +5 OC = 0,∴ 9 → 2 →→→= 25 → 2OA + 12 OA·OB + 16 OB OC→→→→→→ 2 →→OA·OB = 0,3 OA + 5 OC = - 4 OB,9 OA + 30 OA·→ 2 = 16 → 2OC + 25 OC OB→ → 3 → → 3∴ OA·OC = -,∴ OA·BC = -.5 5→→解法 2 →→→→由 3 OA + 4 OB + 5 OC = 0,则以 3 OA,4 OB,5 →→OC为边可构成一个边长为3,4,5 的三角形,OA ·BC =→·→cos ∠AOC -→·→cos ∠AOB = cos OA OC OA OB∠AOC - cos∠AOB.∵ cos∠AOB = ,cos∠AOC = -3 →→ 3,∴ OA·BC = -.5 5数学学习与研究2016. 9。

专题:平面向量与三角形四心问题

专题:平面向量与三角形四心问题

专题:平面向量与三角形四心问题三角形四心指的是三角形的垂心、重心、内心和外心,在高考中常常结合平面向量的知识进行考察,是高中数学的一个难点.很多学生对三角形四心总是产生混淆,面对与四心有关的问题也常常束手无策,为了解决广大学子的困扰,本文以四心的常见结论出发,借助几道经典的例题,对三角形四心问题进行系统梳理,希望能够为读者提供帮助.如果读者是在校高中生,则标注了星号的内容可作为拓展知识. 一、三角形的内心(1)定义:三角形内切圆的圆心,即三角形三条角平分线的交点(如图1). (2)向量表示:若O 为△ABC 的内心→→→→=⋅+⋅+⋅⇔0OC c OB b OA a . (注:本文中的边a ,b ,c 分别表示BC ,AC ,AB .角A ,B ,C 分别表示BAC ∠,ABC ∠,ACB ∠.)证明:→→→→→→→→→→=+⋅++⋅+⋅⇔=⋅+⋅+⋅0)()(0AC OA c AB OA b OA a OC c OB b OA a→→→→=⋅+⋅+⋅++⇔0)(AC c AB b OA c b a →→→⋅+⋅=⋅++⇔AC c AB b AO c b a )(||||||||)(→→→→→→→⋅⋅+⋅⋅=⋅++⇔AC AC AC c AB AB AB b AO c b a)||||()(→→→→→+⋅=⋅++⇔AC ACAB ABbc AO c b a)||||(→→→→→+⋅++=⇔AC ACAB AB c b a bc AO (图1)⇔点O 在角A 的角平分线上,同理点O 也在角B 、C 的角平分线上. ⇔O 为△ABC 的内心.(3)常用性质性质1:))(||||(R AC ACAB AB∈+⋅→→→→λλ所在的直线与A ∠的角平分线重合(经过内心).证明:如图所示,||→→AB AB 表示→AB 上的单位向量,不妨记作→AD ,||→→AC AC 表示→AC 上的单位向量,不妨记作→AE .设→→→+=AE AD AP ,由平行四边形法则知,四边形ADPE 为菱形, 故直线AP 为A ∠的角平分线.))(||||(RAC ACAB AB∈+⋅∴→→→→λλ所在的直线与A ∠的角平分线重合(经过内心).性质2:r c b a S ABC ⋅++=∆)(21(r △ABC 内切圆的半径). 证明:由等面积法易证.性质3:O 为△ABC 的内心c b a S S S OAB OAC OBC ::::=⇔∆∆∆. 证明:由面积公式易证. (4)典例剖析例1-1:在△ABC 中,O 为平面内一个定点,动点P 满足)||||(→→→→→→++=AC ACAB ABOA OP λ,),0(+∞∈λ.则动点P 的轨迹经过△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由性质1知,答案为A .例1-2:已知O 是△ABC 所在平面上的一点,若cb a PCc PB b PA a PO ++++=→→→→(其中P 是△ABC 所在平面内任意一点),则O 是△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由题意知→→→→→→++=++PC c PB b PA a PO c PO b aPO ,即+-→→)(PO PA a→→→→→=-+-0)()(PO PC c PO PB b ,化简得→→→→=⋅+⋅+⋅0OC c OB b OA a .根据内心的向量表示知,O 是△ABC 的内心,答案为A .例1-3:已知O 是△ABC 内的一点,且满足0)||||(=-⋅→→→→→AC ACAB ABOA ,则OA 所在的直线一定经过三角形的( )A .内心B .外心C .垂心D .重心解析:||→→AB AB 表示→AB 上的单位向量,不妨记作→1e ,||→→AC AC 表示→AC 上的单位向量,不妨记作→2e .故0)(21=-⋅→→→e e OA ,即→→→→⋅=⋅21e OA e OA ,即>>=<<→→→→21,,e OA e OA .∴直线OA 与A ∠的角平分线重合,故OA 所在的直线一定经过三角形的内心,答案A .二、三角形的外心(1)定义:三角形外接圆的圆心,即三角形三边中垂线的交点(如图2). (2)向量表示:若O 为△ABC 的外心||||||→→→==⇔OC OB OA . (3)常用性质:奔驰定理*:已知O 为△ABC 内的一点(不一定为外心), 则→→∆→∆→∆=⋅+⋅+⋅0OC S OB S OA S OAB OAC OBC .(该定理反之也成立)证明:不妨延长AO 到D (如下图),则 (图2)=++===∆∆∆∆∆∆∆∆ACD ABD OAC OAB ACD OAC ABD OAB S S S S S S S S AD AO ABC OACOAB S S S ∆∆∆+, 即→∆∆∆→+=AD S S S AO ABCOAC OAB .且根据B ,D ,C 三点共线知,→∆∆∆→∆∆∆→+++=AB S S S AC S S S AD OAC OAB OACOAC OAB OAB ,故→∆∆→∆∆→+=AB S S AC S S AO ABC OAC ABC OAB ,即)()(→→∆∆→→∆∆→-+-=-OA OB S S OA OC S S OA ABCOAC ABC OAB . →→∆→∆→∆=⋅+⋅+⋅∴0OC S OB S OA S OAB OAC OBC (反之易证)性质1*:O 为△ABC 的外心C B A S S S OAB OAC OBC 2sin :2sin :2sin ::=⇔∆.证明:如图2所示,O 为△ABC 的外心A R BOC R S OBC 2sin 212sin 2122=∠=⇔∆,B R AOC R S OAC 2sin 212sin 2122=∠=∆,C R AOB R S OAB 2sin 212sin 2122=∠=∆ C B A S S S OAB OAC OBC 2sin :2sin :2sin ::=⇔∆(R 为△ABC 外接圆半径).性质2*:O 为△ABC 的外心→→→→=⋅+⋅+⋅⇔0)2(sin )2(sin )2(sin OC C OB B OA A . 证明:结合性质1与奔驰定理易证.(4)典例剖析例2-1:在△ABC 中,O 为平面内一个定点,动点P 满足++=→→→2OCOB OP )cos ||cos ||(CAC AC BAB AB →→→→+λ,),0(+∞∈λ.则动点P 的轨迹一定经过△ABC 的( )A .内心B .外心C .垂心D .重心 解析:设线段BC 的中点为D ,故)cos ||cos ||(C AC AC BAB AB OD OP →→→→→→++=λ,即)cos ||cos ||(CAC AC BAB AB DP →→→→→+=λ,而)cos ||cos ||(CAC BC AC BAB BC AB BC DP →→→→→→→→⋅+⋅=⋅λ,即)cos ||cos ||||cos ||)cos(||||(CAC CBC AC B AB B BC AB BC DP →→→→→→→→⋅+-⋅=⋅πλ0|)|||(=+-=→→BC BC λ 即→→⊥BC DP ,故点P 在线段BC 的垂直平分线上. ∴动点P 的轨迹一定经过△ABC 的外心,答案B .例2-2:在△ABC 中,动点O 满足→→→→⋅=-BC AO AB AC 222,则点O 一定经过△ABC 的( )A .内心B .外心C .垂心D .重心解析:由题知→→→→→→⋅=+-BC AO AB AC AB AC 2))((,设D 为BC 的中点,则=⋅→→AD BC 2→→⋅BC AO 2,故0=⋅→→OD BC ,即→→⊥OD BC ,O ∴在BC 的垂直平分线上,故点O 一定经过△ABC 的外心,答案B .例2-3:已知O 为△ABC 所在平面内的一点,满足→→→→⋅=⋅BA OB AB OA ,=⋅→→BC OB→→⋅CB OC ,则O 为△ABC 的( )A .内心B .外心C .垂心D .重心解析:由→→→→⋅=⋅BA OB AB OA 知0)(=+⋅→→→OA OB AB ,即0)()(=+⋅-→→→→OA OB OA OB ,即||||→→=OA OB ,同理可得:||||→→=OC OB ,O ∴为△ABC 的外心,答案B .三、三角形的垂心(1)定义:三角形三条高的交点(如图3).(2)向量表示:若O 为△ABC 的垂心→→→→→→⋅=⋅=⋅⇔OC OB OC OA OB OA . 证明:→→→→→→→→→→→⊥⇔=⋅=-⋅⇔⋅=⋅BC OA BC OA OB OC OA OC OA OB OA 0)(.同理→→⊥AC OB ,O AB OC ⇔⊥→→为△ABC 的垂心.(3)常用性质性质1*:O 为锐角△ABC 的垂心⇔=∆∆∆OAB OAC OBC S S S ::C B A tan :tan :tan . (图3)证明:ACDOC b BCDOC a OF b OE a S S OAC OBC ∠⋅⋅∠⋅⋅=⋅⋅=∆∆sin sin ,且在直角△BCD 和直角△ACD 中有 B BCD cos sin =∠,A ACD cos sin =∠.故BAA B B A A b B a S S OAC OBC tan tan cos sin cos sin cos cos =⋅⋅=⋅⋅=∆∆. 同理,CBS S OAB OAC tan tan =∆∆. C B A S S S OAB OAC OBC tan :tan :tan ::=∴∆∆∆,反之易证.性质2*:当O 为锐角△ABC 的垂心→→→→=⋅+⋅+⋅⇔0tan tan tan C OC B OB A OA .证明:利用性质1和“奔驰定理”易证. (4)典例剖析例3-1:在△ABC 中,O 为平面内一个定点,动点P 满足)cos ||cos ||(CAC AC BAB AB OA OP →→→→→→++=λ,),0(+∞∈λ,则动点P 的轨迹一定经过△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由题知)cos ||cos ||(CAC AC BAB AB AP →→→→→+=λ,得=⋅+-⋅=⋅+⋅=⋅→→→→→→→→→→→→→→)cos ||cos ||||cos ||)cos(||||()cos ||cos ||(CAC CBC AC B AB B BC AB CAC BC AC BAB BC AB BC AP πλλ0|)|||(=+-→→BC BC λ,即→→⊥BC AP .P ∴在BC 边上的高上,过垂心,答案C .例3-2:已知O 为△ABC 所在平面内的一点,且满足=+=+→→→→2222||||||||AC OB BC OA22||||→→+AB OC ,则O 是△ABC 的( )A .内心B .外心C .垂心D .重心 解析:由题知2222||||||||→→→→-=-BC AC OB OA ,即=+⋅-→→→→)()(OB OA OB OA)()(→→→→+⋅-BC AC BC AC ,即0)()(=+⋅++⋅→→→→→→OB OA AB BC AC AB ,即02=⋅→→OC AB ,故→→⊥OC AB ,同理→→⊥OB AC ,→→⊥OA BC∴O 是△ABC 的垂心,答案C .例3-3:设O 是△ABC 的外心,点P 满足→→→→=++OP OC OB OA ,则P 是△ABC 的( )A .内心B .任意一点C .垂心D .重心 解析:由题知→→→→→=-=+CP OC OP OB OA ,由于O 是△ABC 的外心,故→→→=+OD OB OA 2(D 为线段AB 的中点)且→→⊥AB OD ,即→→=OD CP 2,→→⊥∴AB CP ,同理→→⊥AC BP ,→→⊥BC AP ,故P 是△ABC 的垂心,答案C .四、三角形的重心(1)定义:三角形三条中线的交点(如图4).(2)向量表示:若O 为△ABC 的重心→→→→=++⇔0OC OB OA . (3)常用性质 ( 图4 )性质1:若O 为△ABC 的重心ABC OBC OAC OAB S S S S ∆∆∆∆===⇔31性质2:若O 为△ABC 的重心→→=⇔AF AO 32,→→=BD BO 32,→→=CF CO 32性质3:已知),(11y x A ,),(22y x B ,),(33y x C .若O 为△ABC 的重心)3,3(321321y y y x x x O ++++⇔.(4)典例剖析例4-1:在△ABC 中,O 为平面内一个定点,动点P 满足)sin ||sin ||(CAC AC BAB AB OA OP →→→→→→++=λ,),0(+∞∈λ,则动点P 的轨迹一定经过△ABC的( )A .内心B .外心C .垂心D .重心 解析:由题知)sin ||sin ||(CAC AC BAB AB AP →→→→→+=λ,其中hC AC B AB ==→→sin ||sin ||(h 表示BC 边上的高),故)(hACh AB AP →→→+=λ→=AF h λ2(F 为线段BC 的中点). P ∴在BC 边上的中线上,故动点P 的轨迹一定经过△ABC 的重心,答案D .例4-2:在△ABC 中,O 为平面内一个定点,动点P 满足])21()1()1[(31→→→→++-+-=OC OB OA OP λλλ,R ∈λ,则动点P 的轨迹一定经过△ABC 的( )A .内心B .外心C .垂心D .重心解析:设AB 的中点为D ,故])21()1(2[31→→→++-=OC OD OP λλ,由于+-3)1(2λ1321=+λ,即点P ,C ,D 三点共线. P ∴在AB 边上的中线上,故动点P 的轨迹一定经过△ABC 的重心,答案D .例4-3:已知O 在△ABC 内,且满足→→→→=++0432OC OB OA ,现在到△ABC 内随机取一点,次点取自△OAB ,△OAC ,△OBC 的概率分别记为1P 、2P 、3P ,则( )A .321P P P ==B .123P P P >>C .321P P P >>D .312P P P >> 解析:法一:如图,延长OA ,OB ,OC 使得OA OD 2=,OB OE 3=,OC OF 4=, 故→→→→=++0OF OE OD ,即O 是△DEF 的重心,即△OED 、△ODF 、 △OEF 的面积相等,不妨令它们的面积都为1. 61=∴∆OAB S ,81=∆OAC S ,121=∆OBC S ,故321P P P >>,答案C . 法二:由“奔驰定理”知,k S OBC 2=∆,k S OAC 3=∆,kS OAB 4=∆(k 为比例系数),故321P P P >>,答案C .法三:根据三角形内心的向量表示,不妨设O 是以2k ,3k ,4k (k 为比例系数)为边长的三角形的内心,所以OBC OAC OAB S S S ∆∆∆>>,即321P P P >>,答案C .五、等腰(边)三角形的四心 (1)等腰三角形等腰三角形只有顶角的角平分线与中线、高三线重合,其余的线不重合.另外,等腰三角形的四心不重合. (2)等边三角形性质1:若△ABC 为等边三角形⇔△ABC 四心合一. 性质2:若△ABC 为等边三角形⇔△ABC 三线合一. 六、欧拉线*瑞士数学家欧拉(1707~1783)于1765年在他的著作《三角形 的几何学》中首次提出:(如图5)任意△ABC (非等边三角形)的垂心D 、重心E 、外心F 三点共线,即欧拉线. (图5)特别地,(如图6)当△ABC 为直角三角形时(A 为直角),垂心D 与A 重合,外心F 在BC 的中点上,欧拉线为直角△ABC 的外接圆半径(或BC 边上的中线).(图6)性质1:在任意三角形中,垂心与重心的距离是重心与外心距离的2倍,即EF DE 2=.。

高考专题:平面向量中的三角形“四心”问题题型总结

高考专题:平面向量中的三角形“四心”问题题型总结

专题:平面对量中三角形“四心”问题题型总结在三角形中,“四心”是一组特别的点,它们的向量表达形式具有很多重要的性质,在近年高考试题中,总会出现一些新奇新颖的问题,不仅考查了向量等学问点,而且培育了考生分析问题、解决问题的实力.现就“四心”作如下介绍:1.“四心”的概念与性质(1)重心:三角形三条中线的交点叫重心.它到三角形顶点距离与该点到对边中点距离之比为2∶1.在向量表达形式中,设点G 是△ABC 所在平面内的一点,则当点G 是△ABC 的重心时,有GA+GB +GC =0或PG =13(PA +PB +PC )(其中P 为平面内随意一点).反之,若GA +GB +GC =0,则点G 是△ABC 的重心.在向量的坐标表示中,若G ,A ,B ,C 分别是三角形的重心和三个顶点,且分别为G (x ,y ),A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则有x =x 1+x 2+x 33,y =y 1+y 2+y 33.(2)垂心:三角形三条高线的交点叫垂心.它与顶点的连线垂直于对边.在向量表达形式中,若H 是△ABC 的垂心,则HA ·HB =HB ·HC =HC ·HA 或HA 2+BC 2=HB 2+CA 2=HC 2+AB 2.反之,若HA ·HB =HB ·HC =HC ·HA ,则H 是△ABC 的垂心. (3)内心:三角形三条内角平分线的交点叫内心.内心就是三角形内切圆的圆心,它到三角形三边的距离相等.在向量表达形式中,若点I 是△ABC 的内心,则有|BC |·IA +|CA |·IB +|AB |·IC =0.反之,若|BC |·IA +|CA |·IB +|AB |·IC =0,则点I 是△ABC 的内心.(4)外心:三角形三条边的中垂线的交点叫外心.外心就是三角形外接圆的圆心,它到三角形的三个顶点的距离相等.在向量表达形式中,若点O 是△ABC 的外心,则(OA +OB )·BA =(OB +OC )·CB =(OC +OA )·AC =0或|OA |=|OB |=|OC |.反之,若|OA |=|OB |=|OC |,则点O 是△ABC 的外心.2.关于“四心”的典型例题[例1] 已知O 是平面上的肯定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满意OP =OA +λ(AB +AC ),λ∈(0,+∞),则点P 的轨迹肯定通过△ABC 的________心.[解析] 由原等式,得OP -OA =λ(AB +AC ),即AP =λ(AB +AC ),依据平行四边形法则,知AB +AC 是△ABC 的中线所对应向量的2倍,所以点P 的轨迹必过△ABC 的重心.[答案] 重[点评] 探求动点轨迹经过某点,只要确定其轨迹与三角形中的哪些特别线段所在直线重合,这可从已知等式动身,利用向量的线性运算法则进行运算得之.[例2] 已知△ABC 内一点O 满意关系OA +2OB +3OC =0,试求S △BOC ∶S △COA ∶S △AOB 之值.[解] 延长OB 至B 1,使BB 1=OB ,延长OC 至C 1,使CC 1=2OC ,连接AB 1,AC 1,B 1C 1,如图所示,则1OB =2OB ,1OC =3OC ,由条件,得OA +1OB +1OC =0,所以点O 是△AB 1C 1的重心.从而S △B 1OC 1=S △C 1OA =S △AOB 1=13S ,其中S 表示△AB 1C 1的面积, 所以S △COA =19S ,S △AOB =16S ,S △BOC =12S △B 1OC =12×13S △B 1OC 1=118S . 于是S △BOC ∶S △COA ∶S △AOB =118∶19∶16=1∶2∶3. [点评] 本题条件OA +2OB +3OC =0与三角形的重心性质GA +GB +GC =0非常类似,因此我们通过添加协助线,构造一个三角形,使点O 成为协助三角形的重心,而三角形的重心与顶点的连线将三角形的面积三等分,从而可求三部分的面积比.[引申推广] 已知△ABC 内一点O 满意关系λ1OA +λ2OB +λ3OC =0,则S △BOC ∶S △COA ∶S △AOB =λ1∶λ2∶λ3.[例3] 求证:△ABC 的垂心H 、重心G 、外心O 三点共线,且|HG |=2|GO |.[证明] 对于△ABC 的重心G ,易知OG =OA +OB +OC 2,对于△ABC 的垂心H ,设OH =m (OA +OB +OC ),则 AH =AO +m (OA +OB +OC )=(m -1) OA +m OB +m OC .由AH ·BC =0,得[(m -1) OA +m OB +m OC ](OC -OB )=0,(m -1) OA ·(OC -OB )+m (OC 2-OB 2)=0, 因为|OC |=|OB |,所以(m -1) OA ·(OC -OB )=0.但OA 与BC 不肯定垂直,所以只有当m =1时,上式恒成立.所以OH =OA +OB +OC ,从而OG =13OH ,得垂心H 、重心G 、外心O 三点共线,且|HG |=2|GO |.[引申推广]重心G 与垂心H 的关系:HG =13(HA +HB +HC ). [点评] 这是闻名的欧拉线,提示了三角形的“四心”之间的关系.我们选择恰当的基底向量来表示它们,当然最佳的向量是含顶点A 、B 、C 的向量.[例4] 设A 1,A 2,A 3,A 4,A 5 是平面内给定的5个不同点,则使1MA +2MA +3MA +4MA +5MA =0成立的点M 的个数为( )A .0B .1C .5D .10[解析] 依据三角形中的“四心”学问,可知在△ABC 中满意MA +MB +MC =0的点只有重心一点,利用类比的数学思想,可知满意本题条件的点也只有1个.[答案] B[点评] 本题以向量为载体,考查了类比与化归,归纳与猜想等数学思想.本题的具体解答过程如下:对于空间两点A,B来说,满意MA+MB=0的点M是线段AB的中点;对于空间三点A,B,C来说,满意MA+MB+MC=0,可认为是先取AB的中点G,再连接CG,在CG上取点M,使MC=2MG,则M满意条件,且唯一;对于空间四点A,B,C,D来说,满意MA+MB+MC +MD=0,可先取△ABC的重心G,再连接GD,在GD上取点M,使DM=3MG,则M满意条件,且唯一,不妨也称为重心G;与此类似,对于空间五点A,B,C,D,E来说,满意MA+MB+MC +MD+ME=0,可先取空间四边形ABCD的重心G,再连接GE,在GE上取点M,使EM=4MG,则M满意条件,且唯一.。

平面向量 三角形四心应用

平面向量   三角形四心应用

平面向量 三角形“四心”应用一、三角形四心:重心:ABC ∆三边中线交点小结论:M 是三角形ABC ∆的重心(中线交点),则=++。

外心:ABC ∆外接圆的圆心(ABC ∆三边垂直平分线的交点)。

内心:ABC ∆的内角平分线交点。

垂心:ABC ∆三条高现的交点。

1、已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 . 90° 1()2AO AB AC =+,所以O 为线段BC 的中点,故BC 为圆O 的直径,090=∠∴BAC , 2、△ABC 外接圆的半径等于1,其圆心O 满足AO →=12(AB →+AC →),|AO →|=|AC →|,则向量BA →在BC →方向上的投影= 解析 由AO →=12(AB →+AC →)可知O 是BC 的中点,即BC 为外接圆的直径,所以|OA →|=|OB →|=|OC →|, 又因为|AO →|=|AC →|=1,故△OAC 为等边三角形,即∠AOC =60°,由圆周角定理可知∠ABC =30°,且|AB →|=3,所以BA →在BC →方向上的投影为|BA →|·cos ∠ABC =3×cos 30°=32,故选C.答案 C3、4、18、O 是平面上的一5、定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P的轨迹一定通过△ABC 的( )由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD(D为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心.6、(第五章第解课时作业16)解析 作∠BAC 的平分线AD .∵OP →=OA →+λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|,∴AP →=λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|=λ′·AD →|AD →|(λ′∈[0,+∞)), ∴AP →=λ′|AD →|·AD →,∴AP →∥AD →.∴P 的轨迹一定通过△ABC 的内心. 答案 B7、O 为ABC ∆外接圆的圆心,且=++,则A ∠= 0608、设O 是△ABC 的外心(三角形外接圆的圆心).若AO →=13AB →+13AC →,则∠BAC 的度数等于= 解析 取BC 的中点D ,连接AD ,则AB →+AC →=2 AD →.由题意得3AO →=2AD →,∴AD 为BC 的中线且O 为重心.又O 为外心,∴△ABC 为正三角形,∴∠BAC =60°9、在△ABC 中,若OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的( )解析 ∵OA →·OB →=OB →·OC →,∴OB →·(OA →-OC →)=0,∴OB →·CA →=0,∴OB ⊥CA ,即OB 为△ABC 底边CA 上的高所在直线.同理OA →·BC →=0,OC →·AB →=0,故O 为△ABC 的垂心.10、已知A ,B ,C 是圆O 上的三点,若)(31AC AB AO +=,则AB 与的夹角为二、三点共线向量:设向量,不共线 1、作业题(创新设计)2、平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3)平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C 满足=α+β,其中α,β∈R 且α+β=1,则点C 的轨迹方程为( ) A .(x-1)2+(y-2)2=5 B .3x+2y-11=0 C .2x-y=0 D .x+2y-5=0解:设C(x,y),则=(x,y),=(3,1),=(-1,3).由=α+β,得(x,y)=(3α,α)+(-β,3β)=(3α-β,α+3β).于是由③得β=1-α代入①②,消去β得,再消去α得x+2y=5,即x+2y-5=0. 1OP mOA nOB m n =++=,且三点P 、A 、B共线【一题多解】由平面向量共线定理,得当=α+β,α+β=1时,A,B,C 三点共线.因此,点C 的轨迹为直线AB,由两点式求直线方程得=,即x+2y-5=0.3、(第五章第解课时作业16)如图,在平行四边形ABCD 中,O 是对角线AC ,BD 的交点,N 是线段OD 的中点,AN 的延长线与CD 交于点E ,若AE →=mAB →+AD →,则实数m 的值为________.解析 由N 是OD 的中点得AN →=12AD →+12AO →=12AD →+14(AD →+AB →)=34AD →+14AB →,又因为A ,N ,E 三点共线,故AE →=λAN →,即mAB →+AD →=λ⎝ ⎛⎭⎪⎫34AD →+14AB →,又AB →与AD →不共线,所以⎩⎪⎨⎪⎧m =14λ,1=34λ,解得⎩⎪⎨⎪⎧m =13,λ=43,故实数m =13.答案 13。

平面向量与三角形“四心”(较全面)

平面向量与三角形“四心”(较全面)

平面向量与三角形“四心”(较全面)一、“四心”概念(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心1):外心到三角形各顶点的距离相等.二、“四心”的充要条件(1)⇔=++→→→→0OC OB OA 是△ABC 的重心.【证法1】:设()y x O ,,()11,y x A ,()22,y x B ,()33,y x C⇔=++→→→→0OC OB OA ()()()()()()⎩⎨⎧=-+-+-=-+-+-00321321y y y y y y x x x x x x ⎪⎩⎪⎨⎧++=++=⇔33321321y y y y x x x x ⇔是的重心.【证法2】:∵→→→→→→=+=++02ODOAOCOBOA,∴→→=ODAO2∴A,O,D三点共线,且O分AD为2:1,∴是△ABC的重心.(2)⇔⋅=⋅=⋅→→→→→→OA OC OC OB OB OA 为△ABC 的垂心.【证明】:如图,O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC ,D 、E 是垂足.→→→→→→→→→→→⊥⇔=⋅=-⇔⋅=⋅AC OB CA OB OC OA OB OC OB OB OA 0)(同理→→⊥OB OA ,⇔⊥→→AB OC O 为△ABC 的垂心. (3) ⇔=++→→→→0OC c OB b OA a O 为△ABC 的内心. 【证明】:∵bAC c AB →→,分别为→→AC AB ,方向上的单位向量,bACc AB →→+平分BAC ∠,(λ=→AO )bAC c AB →→+,令c b a bc ++=λ cb a bcAO ++=→)(bAC c AB →→+,化简得→→→→=++++0)(AC c AB b OA c b a ,→→→→=++0OC c OB b OA a .(4)⇔==→→→||||||OC OB OA 为△ABC 的外心.三、“四心”的向量表达1.⇒⎪⎩⎪⎨⎧+=+=→→→→→→)(31)(31BC BA BO AC AB AO O 为△ABC 的重心;【证】:由),0[,sin sin +∞∈⎪⎪⎪⎭⎫ ⎝⎛++=→→→→λλC b AC B c AB OA OP ,即)(sin →→→+=AC B A C b AP λ,故→AP 与→→+AC AB 共线,又→→+AC AB 过BC 中点D ,故P 点的轨迹也过中点D , 故点P 过三角形的重心.2. ⇒⎪⎩⎪⎨⎧=⋅=⋅→→→→00AC BO BC AO O 为△ABC 的垂心.(1)由C B A S S S AOB AOC BOC tan :tan :tan ::=∆∆∆⇒→→→→=++0tan tan tan OC C OB B OA A . (2)222222→→→→→→+=+=+B A OC CA OB BC OA .【证】:由⎪⎭⎫ ⎝⎛++=→→→→AC b B A c OA OP λ知,⎪⎭⎫ ⎝⎛+=→→→AC b B B A c C AP cos cos λ, =⋅→→BC AP )cos cos (→→→→⋅+⋅⋅BC AC bB C B AB c C λ 0)cos cos cos cos (=+-=C B C B a λ,故→AP 与向量→BC 垂直, 故点P 的轨迹过垂心.【证】:由),0[,2sin 2sin 22+∞∈⎪⎪⎪⎭⎫ ⎝⎛++=→→→→λλC b AC B c AB OA OP 知,,2sin 2sin 22⎪⎪⎪⎭⎫ ⎝⎛+=→→→C b AC B c AB AP λ故⎪⎪⎪⎭⎫ ⎝⎛⋅+⋅=⋅→→→→→→C b BC AC B c BC AB BC AP 2sin 2sin 22λ,则0)sin sin (2=+-=⋅→→C b a B c a BC AP λ, 故点P 轨迹过三角形的垂心.【解】:AD 垂直BC ,BE 垂直AC , D 、E 是垂足.→→→→→⋅⎪⎪⎪⎭⎫ ⎝⎛+BC C AC AC B AB AB cos ||cos ||C AC BC AC B AB BC AB cos ||cos ||→→→→→→⋅+⋅=C AC C BC AC B AB B BC AB cos ||cos ||||cos ||cos ||||→→→→→→⋅+⋅-=0=+-=→→BC BC ∴点的轨迹一定通过△ABC 的垂心.3. ⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧>+=>+=→→→→→→→→→→0),||||(0),||||(t BC BCBA BA t BO AC AC AB AB AO λλO 为△ABC 的内心;(1)c b a S S S AOB AOC BOC ::::=∆∆∆⇒→→→→=++0sin sin sin OC C OB B OA A(2)→→→→→→→→→→→→→→→→=⎪⎪⎪⎭⎫ ⎝⎛-⋅=⎪⎪⎪⎭⎫ ⎝⎛-⋅=⎪⎪⎪⎭⎫ ⎝⎛-⋅0||||||||||||CB CB CA CAOC BC BC BA BA OB AC AC AB AB OA【解】:由),0[,sin sin 22+∞∈⎪⎪⎪⎭⎫ ⎝⎛++=→→→→λλC b AC B c AB OA OP 知,)0)(||||(sin >+=→→→→→λλAC AC AB AB B c AP , 故动点P 的轨迹一定通过ABC ∆的内心.满足⎪⎪⎪⎭⎫ ⎝⎛++=→→→→→→||||AC AC AB AB OA OP λ,),0[+∞∈λ ,则点的轨迹一定通过△ABC 的____.【解】:∵如图,设||,||→→→→→→==AC AC AF AB ABAE 分别为→→AC AB ,方向上的单位向量, 易知四边形AETF 是菱形,∴||||→→→→+AC AC AB AB 平分BAC ∠,∴点的轨迹一定通过△ABC的内心.4.两点分别是△ABC的边上的中点,且⇒⎪⎩⎪⎨⎧⋅=⋅⋅=⋅→→→→→→→→OA EO OC EO OC DO OB DO O 为△ABC 的外心; (1)0=++→∆→∆→∆OC S OB S OA S AOB AOC BOC (外心向量定理) (2)由AOB AOC BOC S S S AOB AOC BOC ∠∠∠=∆∆∆sin :sin :sin ::C B A 2sin :2sin :2sin =⇒→→→→=⋅+⋅+⋅02sin 2sin 2sin OC C OB B OA A .四、欧拉线及其向量法证明三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线叫三角形的欧拉线. 在△ABC 中,已知Q 、G 、H 分别是三角形的外心、重心、垂心.求证:Q 、G 、H 三点共线,且QG:GH=1:2. 【证明】:以A 为原点,AB 所在的直线为x 轴,建立直角坐标系。

微专题 平面向量痛点问题之三角形“四心”问题(解析版)

微专题  平面向量痛点问题之三角形“四心”问题(解析版)

微专题平面向量痛点问题之三角形“四心”问题【题型归纳目录】题型一:重心定理题型二:内心定理题型三:外心定理题型四:垂心定理【知识点梳理】一、四心的概念介绍:(1)重心:中线的交点,重心将中线长度分成2:1.(2)内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等.(3)外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等.(4)垂心:高线的交点,高线与对应边垂直.二、三角形四心与推论:(1)O 是△ABC 的重心:S △BOC :S △COA :S △A 0B =1:1:1⇔OA +OB +OC =0 .(2)O 是△ABC 的内心:S △B 0C :S △COA :S △AOB =a :b :c ⇔aOA +bOB +cOC =0 .(3)O 是△ABC 的外心:S △B 0C :S △COA :S △AOB =sin2A :sin2B :sin2C ⇔sin2AOA +sin2BOB +sin2COC =0 .(4)O 是△ABC 的垂心:S △B 0C :S △COA :S △AOB =tan A :tan B :tan C ⇔tan AOA +tan BOB +tan COC =0 .【方法技巧与总结】(1)内心:三角形的内心在向量AB AB +AC AC 所在的直线上. AB ⋅PC +BC ⋅PC +CA ⋅PB =0 ⇔P 为△ABC 的内心.(2)外心:PA =PB =PC ⇔P 为△ABC 的外心.(3)垂心:PA ⋅PB =PB ⋅PC =PC ⋅PA ⇔P 为△ABC 的垂心.(4)重心:PA +PB +PC =0 ⇔P 为△ABC 的重心.【典型例题】题型一:重心定理例1.(2023春·山东聊城·高一山东聊城一中校考阶段练习)已知点G 是三角形ABC 所在平面内一点,满足GA +GB +GC =0 ,则G 点是三角形ABC 的( )A.垂心B.内心C.外心D.重心【答案】D【解析】因为GA +GB +GC =0 ,所以GA +GB =-GC =CG .以GA 、GB 为邻边作平行四边形GADB ,连接GD 交AB 于点O .如图所示:则CG =GD ,所以GO =13CO ,CO 是AB 边上的中线,所以G 点是△ABC 的重心.故选:D例2.(2023春·山东·高一阶段练习)已知G 是△ABC 的重心,点D 满足BD =DC ,若GD =xAB +yAC ,则x +y 为( )A.13B.12C.23D.1【答案】A【解析】因为BD =DC ,所以D 为BC 中点,又因为G 是△ABC 的重心,所以GD =13AD ,又因为D 为BC 中点,所以AD =12AB +12AC ,所以GD =1312AB +12AC =16AB +16AC ,所以x =y =16,所以x +y =13.故选:A例3.(2023春·上海金山·高一上海市金山中学校考期末)记△ABC 内角A ,B ,C 的对边分别为a ,b ,c ,点G 是△ABC 的重心,若BG ⊥CG ,5b =6c 则cos A 的取值是( )A.5975B.5775C.1115D.6175【答案】D【解析】依题意,作出图形,因为点G 是△ABC 的重心,所以M 是BC 的中点,故AM =12AB +AC ,由已知得BC =a ,AC =b ,AB =c ,因为BG ⊥CG ,所以GM =12BC =12a ,又因为点G 是△ABC 的重心,所以GM =12GA ,则AM =12a +a =32a ,又因为AM 2=14AB +AC 2,所以94a 2=14c 2+b 2+2bc cos A ,则9a 2=c 2+b 2+2bc cos A ,又由余弦定理得a 2=c 2+b 2-2bc cos A ,所以9c 2+b 2-2bc cos A =c 2+b 2+2bc cos A ,整理得2c 2+2b 2-5bc cos A =0,因为5b =6c ,令b =6k k >0 ,则c =5k ,所以2×5k 2+2×6k 2-5×6k ×5k cos A =0,则cos A =122150=6175.故选:D .题型二:内心定理例4.(2023春·江苏宿迁·高一沭阳县修远中学校考期末)已知点P 为△ABC 的内心,∠BAC =23π,AB =1,AC =2,若AP =λAB +μAC ,则λ+μ=______.【答案】9-372【解析】在△ABC ,由余弦定理得BC =AC 2+AB 2-2AC ⋅AB cos ∠BAC =7,设O ,Q ,N 分别是边AB ,BC ,AC 上的切点,设AN =AO =x ,则NC =QC =2-x ,BO =BQ =1-x ,所以BC =BQ +QC =1-x +2-x =7⇒x =3-72,由AP =λAB +μAC 得,AP ⋅AB =λAB +μAC ⋅AB ,即AO ⋅AB =λAB 2+μAC ⋅AB ⇒AO =λ-μ,①同理由AP ⋅AC =λAB +μAC ⋅AC ⇒2AN =-λ+4μ,②联立①②以及AN =AO =x 即可解得:λ+μ=3x =3×3-72=9-372,故答案为:9-372例5.(2023春·陕西西安·高一陕西师大附中校考期中)已知O 是平面上的一个定点,A 、B 、C 是平面上不共线的三点,动点P 满足OP =OA +λAB AB +AC ACλ∈R ,则点P 的轨迹一定经过△ABC 的( )A.重心B.外心C.内心D.垂心【答案】C 【解析】因为AB AB 为AB 方向上的单位向量,AC AC 为AC 方向上的单位向量,则AB |AB |+AC |AC |的方向与∠BAC 的角平分线一致,由OP =OA +λAB AB +AC AC ,可得OP -OA =λAB AB +AC AC,即AP =λAB AB +AC AC,所以点P 的轨迹为∠BAC 的角平分线所在直线,故点P 的轨迹一定经过△ABC 的内心.故选:C .例6.(2023·全国·高一假期作业)已知I 为△ABC 所在平面上的一点,且AB =c ,AC =b ,BC =a .若aIA+bIB +cIC =0 ,则I 是△ABC 的( )A.重心B.内心C.外心D.垂心【答案】B 【解析】因为IB =IA +AB ,IC =IA +AC ,所以aIA +bIB +cIC =aIA +b IA +AB +c IA +AC =a +b +c IA +bAB +cAC =0 ,所以(a +b +c )IA =-(b ⋅AB +c ⋅AC ),所以IA =-(b ⋅AB +c ⋅AC )a +b +c =-b a +b +c ⋅AB +c a +b +c AC =-1a +b +c b ⋅AB +c ⋅AC=-bc a +b +c AB c +AC b=-bc a +b +c AB AB +AC AC ,所以IA 在角A 的平分线上,故点I 在∠BAC 的平分线上,同理可得,点I 在∠BCA 的平分线上,故点I 在△ABC 的内心,故选:B .例7.(2023春·四川成都·高一树德中学校考竞赛)在△ABC 中,cos A =34,O 为△ABC 的内心,若AO =xAB +yAC x ,y ∈R ,则x +y 的最大值为( )A.23B.6-65C.7-76D.8-227【答案】D【解析】如图:圆O 在边AB ,BC 上的切点分别为E ,F ,连接OE ,OF ,延长AO 交BC 于点D设∠OAB =θ,则cos A =cos2θ=1-2sin 2θ=34,则sin θ=24设AD =λAO =λxAB +λyAC∵B ,D ,C 三点共线,则λx +λy =1,即x +y =1λ1λ=AO AD =AO AO +OD ≤AO AO +OF =11+OF AO =11+OE AO=11+sin θ=11+24=8-227即x +y ≤8-227故选:D .题型三:外心定理例8.(2023春·湖北武汉·高一校联考期末)在△ABC 中,AB =2,AC =3,N 是边BC 上的点,且BN =NC ,O 为△ABC 的外心,则AN ⋅AO =( )A.3B.134C.92D.94【答案】B【解析】因为BN =NC ,则N 是BC 的中点,所以AN =12AB +12AC ,设外接圆的半径为r ,所以AO ⋅AN =AO ⋅12AC +12AB =12AO ⋅AC +12AO ⋅AB =12r ×3×cos ∠OAC +12r ×2×cos ∠OAB =12×3×32+12×2×1=134.故选:B .例9.(2023春·河南许昌·高一统考期末)已知P 在△ABC 所在平面内,满足PA =PB =PC ,则P 是△ABC 的( )A.外心B.内心C.垂心D.重心【答案】A 【解析】PA =PB =PC 表示P 到A ,B ,C 三点距离相等,P 为外心.故选:A .例10.(2023春·四川自贡·高一统考期末)直角△ABC 中,∠C =90∘,AB =4,O 为△ABC 的外心,OA ⋅OB +OB ⋅OC +OC ⋅OA =( )A.4B.-4C.2D.-2【答案】B 【解析】∵直角△ABC 中,∠C =90°,AB =4,O 为△ABC 的外心,∴O 为AB 的中点,即OA =OB =2,∴OA +OB =0 且OA ⋅OB =|OA |⋅|OB |⋅cos180°=-4,∴OA ⋅OB +OB ⋅OC +OC ⋅OA =-4+OC ⋅(OA +OB )=-4+0=-4,故选:B .例11.(2023春·辽宁丹东·高一凤城市第一中学校考阶段练习)已知O 为△ABC 的外心,若AB =1,则AB ⋅AO =( )A.-12B.12C.-1D.23【答案】B【解析】因为点O 为△ABC 的外心,设AB 的中点为D ,连接OD ,则OD ⊥AB ,如图所以AB ⋅AO =AB ⋅(AD +DO )=AB ⋅AD +AB ⋅DO =12AB 2+0=12×12=12.故选:B .题型四:垂心定理例12.(2023春·河南南阳·高一统考期中)若H 为△ABC 所在平面内一点,且HA 2+BC 2=HB 2+CA 2=HC 2+AB 2则点H 是△ABC 的( )A.重心B.外心C.内心D.垂心【答案】D 【解析】HA 2+BC 2=HB 2+CA 2⇒HA 2+BH +HC 2=HB 2+CH +HA 2,得BH ⋅HC =CH ⋅HA ⇒HC ⋅BA =0,即HC ⊥BA ;HA 2+BC 2=HC 2+AB 2⇒HA 2+BH +HC 2=HC 2+AH +HB 2,得BH ⋅HC =AH ⋅HB ⇒BH ⋅AC =0,即BH ⊥AC ;HB 2+CA 2=HC 2+AB 2⇒HB 2+CH +HA 2=HC 2+AH +HB 2,CH ⋅HA =AH ⋅HB ⇒HA ⋅CB =0,即HA ⊥CB ,所以H 为△ABC 的垂心.故选:D .例13.(多选题)(2023春·湖南长沙·高一长沙市明德中学校考期中)已知O ,N ,P ,I 在△ABC 所在的平面内,则下列说法正确的是( )A.若OA =OB =OC ,则O 是△ABC 的外心B.若PA ⋅PB =PB ⋅PC =PC ⋅PA ,则P 是△ABC 的垂心C.若NA +NB +NC =0,则N 是△ABC 的重心D.若CB ⋅IA =AC ⋅IB =BA ⋅IC =0,则I 是△ABC 的垂心【答案】ABCD【解析】对A ,根据外心的定义,易知A 正确;对B ,PB ⋅PA -PC =PB ⋅CA =0⇒PB ⊥CA ,同理可得:PA ⊥CB ,PC ⊥AB ,所以P 是垂心,故B 正确;对C ,记AB 、BC 、CA 的中点为D 、E 、F ,由题意NA +NB =2ND =-NC ,则|NC |=2|ND |,同理可得:|NA |=2|NE |,|NB |=2|NF |,则N 是重心,故C 正确;对D ,由题意,CB ⊥IA ,AC ⊥IB ,BA ⊥IC ,则I 是垂心,故D 正确故选:ABCD .例14.(2023春·河南商丘·高一商丘市第一高级中学校考阶段练习)设H 是△ABC 的垂心,且4HA +5HB +6HC =0 ,则cos ∠AHB =_____.【答案】-2211【解析】∵H 是△ABC 的垂心,∴HA ⊥BC ,HA ⋅BC =HA ⋅HC -HB =0,∴HA ⋅HB =HC ⋅HA ,同理可得,HB ⋅HC =HC ⋅HA ,故HA ⋅HB =HB ⋅HC =HC ⋅HA ,∵4HA +5HB +6HC =0 ,∴4HA 2+5HA ⋅HB +6HA ⋅HC =0,∴HA ⋅HB =-411HA 2,同理可求得HA ⋅HB =-12HB 2,∴cos ∠AHB =HB ⋅HA HB HA =-411HA 2HB HA ,cos ∠AHB =HB ⋅HA HB HA =-12HB 2HB HA,∴cos 2∠AHB =211,即cos ∠AHB =-2211.故答案为:-2211.【同步练习】一、单选题1.(2023·四川泸州·泸县五中校考二模)已知△ABC 的重心为O ,则向量BO =( )A.23AB +13ACB.13AB +23ACC.-23AB +13ACD.-13AB +23AC 【答案】C【解析】设E ,F ,D 分别是AC ,AB ,BC 的中点,由于O 是三角形ABC 的重心,所以BO =23BE =23×AE -AB =23×12AC -AB =-23AB +13AC .故选:C .2.(2023·全国·高三专题练习)对于给定的△ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论不正确的是( )A.AO ⋅AB =12AB 2B.OA ⋅OB =OA ⋅OC =OB ⋅OCC.过点G 的直线l 交AB 、AC 于E 、F ,若AE =λAB ,AF =μAC ,则1λ+1μ=3D.AH 与ABAB cos B +AC ACcos C 共线【答案】B【解析】如图,设AB 中点为M ,则OM ⊥AB ,∴AO cos ∠OAM =AM ,∴AO ·AB =AO AB cos ∠OAB =AB AO cos ∠OAB =AB ⋅AB 2=12AB2,故A 正确;OA ·OB =OA ·OC 等价于OA ·OB -OC =0等价于OA ·CB =0,即OA ⊥BC ,对于一般三角形而言,O 是外心,OA 不一定与BC 垂直,比如直角三角形ABC 中,若B 为直角顶点,则O 为斜边AC 的中点,OA 与BC 不垂直,故B 错误;设BC 的中点为D ,则AG =23AD =13AB +AC =131λAE +1μAF =13λAE +13μAF ,∵E ,F ,G 三点共线,∴13λ+13μ=1,即1λ+1μ=3,故C 正确;AB AB cos B +AC AC cos C ⋅BC =AB ⋅BC AB cos B +AC ⋅BC AC cos C=AB BC cos π-B AB cos B +AC BC cos C AC cos C =-BC +BC =0,∴AB AB cos B +AC AC cos C与BC 垂直,又∵AH ⊥BC ,∴AB AB cos B +AC AC cos C与AH 共线,故D 正确.故选:B .3.(2023·四川·校联考模拟预测)在平行四边形ABCD 中,G 为△BCD 的重心,AG =xAB +yAD ,则3x +y =( )A.73B.2C.83D.3【答案】C【解析】如图,设AC 与BD 相交于点O ,由G 为△BCD 的重心,可得O 为BD 的中点,CG =2GO ,则AG =AO +OG =AO +13OC =43AO =43×12AB +AD =23AB +23AD ,可得x =y =23,故3x +y =83.故选:C .4.(2023秋·河南信阳·高三校考阶段练习)过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD =xAB ,AE =yAC ,且xy ≠0,则1x +1y=( )A.4B.3C.2D.1【答案】B【解析】设△ABC 的重心为点G ,延长AG 交BC 于点M ,则M 为线段BC 的中点,因为D 、G 、E 三点共线,设DG =λDE ,即AG -AD =λAE -AD ,所以,AG =1-λ AD +λAE =1-λ xAB +λyAC ,因为M 为BC 的中点,则AM =AB +BM =AB +12BC =AB +12AC -AB =12AB +12AC ,因为G 为△ABC 的重心,则AG =23AM =13AB +13AC ,所以,1-λ x =λy =13,所以,1x +1y=31-λ +3λ=3.故选:B .5.(2023秋·上海·高二专题练习)O 是平面上一定点,A 、B 、C 是该平面上不共线的3个点,一动点P 满足:OP =OA +λ(AB +AC ),λ>0,则直线AP 一定通过△ABC 的( )A.外心B.内心C.重心D.垂心【答案】C【解析】取线段BC 的中点E ,则AB +AC =2AE .动点P 满足:OP =OA +λ(AB +AC ),λ>0,则OP -OA =2λAE 则AP =2λAE .则直线AP 一定通过△ABC 的重心.故选:C .6.(2023秋·湖北·高二校联考期中)O 是△ABC 的外心,AB =6,AC =10,AO =xAB +yAC ,2x +10y=5,则cos ∠BAC =( )A.12B.13C.35D.13或35【答案】D【解析】当O 在AC 上,则O 为AC 的中点,x =0,y =12满足2x +10y =5,符合题意,∴AB ⊥BC ,则cos ∠BAC =AB AC =35;当O 不在AC 上,取AB ,AC 的中点D ,E ,连接OD ,OE ,则OD ⊥AB ,OE ⊥AC ,则AB ⋅AO =AB AO cos ∠OAD =AB ×AO ×AD AO =12AB 2=18,同理可得:AC ⋅AO =12AC 2=50∵AB ⋅AO =AB ⋅xAB +yAC =xAB 2+yAB ⋅AC =36x +60y cos ∠BAC =18,AC ⋅AO =AC ⋅xAB +yAC =xAC ⋅AB +yAC 2=60x cos ∠BAC +100y =50,联立可得36x +60y cos ∠BAC =1860x cos ∠BAC +100y =502x +10y =5,解得x =14y =920cos ∠BAC =13 ,故选:D .7.(2023·湖南·高考真题)P 是△ABC 所在平面上一点,若PA ⋅PB =PB ⋅PC =PC ⋅PA ,则P 是△ABC 的( )A.外心B.内心C.重心D.垂心【答案】D 【解析】因为PA ⋅PB=PB ⋅PC ,则PB ⋅PC -PA =PB ⋅AC =0,所以,PB ⊥AC ,同理可得PA ⊥BC ,PC ⊥AB ,故P 是△ABC 的垂心.故选:D .8.(2023·全国·高一专题练习)已知点O ,P 在△ABC 所在平面内,满OA +OB +OC =0 ,PA =PB=PC ,则点O ,P 依次是△ABC 的( )A.重心,外心B.内心,外心C.重心,内心D.垂心,外心【答案】A【解析】设AB 中点为D ,因为OA +OB +OC =0 ,所以OA +OB +OC =2OD +OC =0 ,即-2OD =OC ,因为OD ,OC有公共点O ,所以,O ,D ,C 三点共线,即O 在△ABC 的中线CD ,同理可得O 在△ABC 的三条中线上,即为△ABC 的重心;因为PA =PB=PC ,所以,点P 为△ABC 的外接圆圆心,即为△ABC 的外心综上,点O ,P 依次是△ABC 的重心,外心.故选:A9.(2023·全国·高一专题练习)已知O ,A ,B ,C 是平面上的4个定点,A ,B ,C 不共线,若点P 满足OP =OA +λAB +AC ,其中λ∈R ,则点P 的轨迹一定经过△ABC 的( )A.重心B.外心C.内心D.垂心【答案】A【解析】根据题意,设BC 边的中点为D ,则AB +AC =2AD ,因为点P 满足OP =OA+λAB +AC ,其中λ∈R所以,OP -OA=AP =λAB +AC =2λAD ,即AP =2λAD ,所以,点P 的轨迹为△ABC 的中线AD ,所以,点P 的轨迹一定经过△ABC 的重心.故选:A10.(2023春·安徽安庆·高一安庆一中校考阶段练习)在△ABC 中,设O 是△ABC 的外心,且AO =13AB +13AC,则∠BAC 等于( )A.30°B.45°C.60°D.90°【答案】C【解析】依题意,因为AO =13AB +13AC ,所以O 也是△ABC 的重心,又因为O 是△ABC 的外心,所以△ABC 是等边三角形,所以∠BAC =60°.11.(2023·全国·高三专题练习)在△ABC 中,AB =2,∠ACB =45°,O 是△ABC 的外心,则AC ⋅BC +OC ⋅AB的最大值为( )A.1B.32C.3D.72【答案】C【解析】解:由题知,记△ABC 的三边为a ,b ,c ,因为O 是△ABC 的外心,记AB 中点为D ,则有OD ⊥AB ,所以OD ⋅AB =0且CD =12CA +CB ,所以AC ⋅BC +OC ⋅AB =CA ⋅CB +OD +DC ⋅AB =CA ⋅CB +OD ⋅AB +DC ⋅AB =CA ⋅CB -12CA +CB ⋅AB=CA ⋅CB -12CA +CB ⋅CB -CA=CA ⋅CB +12CA 2-CB 2=b ⋅a ⋅cos ∠ACB +12b 2-a 2=122ab +b 2-a 2 ①,在△ABC 中,由余弦定理得:cos ∠ACB =a 2+b 2-c 22ab =22,即a 2+b 2-c 2=2ab ,即a 2+b 2-2=2ab ,代入①中可得:AC ⋅BC +OC ⋅AB=b 2-1,在△ABC 中,由正弦定理得:a sin A=b sin B =csin C =222=2,所以b =2sin B ≤2,所以AC ⋅BC +OC ⋅AB=b 2-1≤3,当b =2,a =c =2,A =C =45∘,B =90∘时取等,故AC ⋅BC +OC ⋅AB的最大值为3.12.(2023·全国·高三专题练习)在△ABC 中,AB =3,AC =4,BC =5,O 为△ABC 的内心,若AO=λAB +μBC ,则λ+μ=( )A.23B.34C.56D.35【答案】C【解析】由AO =λAB +μBC 得AO =λOB -OA +μOC -OB ,则1-λ OA +λ-μ OB +μOC =0,因为O 为△ABC 的内心,所以BC OA +AC OB +AB OC =0,从而1-λ :λ-μ :μ=5:4:3,解得λ=712,μ=14,所以λ+μ=56.故选:C .13.(2023秋·四川绵阳·高二四川省绵阳南山中学校考开学考试)若O ,M ,N 在△ABC 所在平面内,满足|OA |=|OB |=|OC |,MA ⋅MB =MB ⋅MC=MC ⋅MA ,且NA +NB +NC =0 ,则点O ,M ,N 依次为△ABC 的( )A.重心,外心,垂心B.重心,外心,内心C.外心,重心,垂心D.外心,垂心,重心【答案】D【解析】因为|OA |=|OB |=|OC |,所以OA =OB =OC ,所以O 为△ABC 的外心;因为MA ⋅MB =MB ⋅MC=MC ⋅MA ,所以MB ⋅(MA-MC )=0,即MB ⋅CA=0,所以MB ⊥AC ,同理可得:MA ⊥BC ,MC ⊥AB ,所以M 为△ABC 的垂心;因为NA +NB +NC =0 ,所以NA +NB =-NC ,设AB 的中点D ,则NA +NB =2ND,所以-NC =2ND,所以C ,N ,D 三点共线,即N 为△ABC 的中线CD 上的点,且NC =2ND ,所以N 为△ABC 的重心.故选:D .14.(2023春·浙江绍兴·高二校考学业考试)已知点O ,P 在△ABC 所在平面内,且OA =OB=OC ,PA ⋅PB =PB ⋅PC =PC ⋅PA ,则点O ,P 依次是△ABC 的( )A.重心,垂心B.重心,内心C.外心,垂心D.外心,内心【答案】C【解析】由于OA =OB =OC ,所以O 是三角形ABC 的外心.由于PA ⋅PB =PB ⋅PC ,所以PA -PC ⋅PB =0,CA ⋅PB=0⇒CA ⊥PB ,同理可证得AB ⊥PC ,BC ⊥PA ,所以P 是三角形ABC 的垂心.故选:C二、多选题15.(2023春·河南·高一校联考期中)已知△ABC 的重心为O ,边AB ,BC ,CA 的中点分别为D ,E ,F ,则下列说法不正确的是( )A.OA +OB =2ODB.若△ABC 为正三角形,则OA ⋅OB +OB ⋅OC +OC ⋅OA=0C.若AO ⋅AB -AC=0,则OA ⊥BCD.OD +OE +OF =0【答案】BD【解析】对于A ,在△OAB 中,因为D 为AB 的中点,所以OD =12(OA +OB ),所以OA +OB =2OD ,所以A 正确,对于B ,因为△ABC 为正三角形,O 为△ABC 的重心,所以OA =OB =OC ,∠AOB =∠BOC =∠AOC =120°,设OA =OB =OC =a ,则OA ⋅OB +OB ⋅OC +OC ⋅OA =OA ⋅OB cos ∠AOB +OB ⋅OC cos ∠BOC +OC ⋅OAcos ∠AOC=a 2cos120°+a 2cos120°+a 2cos120°=-32a 2≠0,所以B 错误,对于C ,因为AO ⋅AB -AC =0,所以AO ⋅CB =0,所以AO ⊥CB,所以OA ⊥BC ,所以C 正确,对于D ,因为边AB ,BC ,CA 的中点分别为D ,E ,F ,所以OD =12(OA +OB ),OE =12(OB +OC ),OF =12(OA +OC),因为O 为△ABC 的重心,所以CO =2OD ,所以2OD =-OC,所以OD +OE +OF =12(OA +OB )+12(OC +OB )+12(OA+OC )=OA +OB +OC=2OD +OC=-OC +OC =0 ,所以D 错误,故选:BD16.(2023·全国·高三专题练习)如图,M 是△ABC 所在平面内任意一点,O 是△ABC 的重心,则( )A.AD +BE =CFB.MA +MB +MC=3MOC.MA +MB +MC =MD +ME +MFD.BC ⋅AD+CA ⋅BE +AB ⋅CF =0【答案】BCD【解析】对于A 选项,由题意可知,D 、E 、F 分别为BC 、AC 、AB 的中点,所以,AD =AB +12BC =AB +12AC -AB =12AB +AC ,同理可得BE =12BA +BC ,CF =12CA +CB,所以,AD +BE =12AB +AC +12BA +BC =12AC +BC =-CF ,A 错;对于B 选项,由重心的性质可知AD =32AO ,BE =32BO ,CF =32CO,由A 选项可知,AD +BE +CF =32AO +BO +CO =0,所以,MA +MB +MC =MO +OA +MO +OB +MO +OC =3MO -AO +BO +CO =3MO ,B 对;对于C 选项,由重心的性质可知OD =12AO ,OE =12BO ,OF =12CO ,所以,MD +ME +MF=MO +OD +MO +OE +MO +OF =3MO +12AO +BO +CO=3MO ,C 对;对于D 选项,BC ⋅AD =12AC -AB ⋅AC +AB =12AC 2-AB 2,同理可得CA ⋅BE =12BA 2-BC 2 ,AB ⋅CF =12CB 2-CA 2,因此,BC ⋅AD+CA ⋅BE +AB ⋅CF =0,D 对.故选:BCD .17.(2023秋·重庆渝北·高二重庆市两江育才中学校校考阶段练习)设O 为△ABC 的外心,且满足2OA+3OB +4OC =0 ,OA=1,则下列结论中正确的是( )A.OB ⋅OC =-78B.AB =62C.∠A =2∠CD.sin ∠A =14【答案】ABC【解析】有题意可知:OA =OB =OC =1.对于A :2OA +3OB +4OC =0 ⇒2OA =-3OB -4OC.两边同时平方得到:4OA 2=9OB 2+16OC 2+24OB ⋅OC.解得OB ⋅OC =-78,故A 正确.对于B :2OA +3OB +4OC =0 ⇒2OA -2OB =-5OB -4OC ⇒2AB =5OB +4OC.两边再平方得到:4AB 2=25OB 2+16OC 2+40OB ⋅OC.结合A 可得:AB =62.所以B 正确.对于C :2OA +3OB +4OC =0 ⇒3BO =2OA +4OC.两边平方得到:9BO 2=4OA 2+16OC 2+16OA OCcos ∠AOC .解得cos ∠AOC =-1116.同理可得cos ∠AOB =14,cos ∠BOC =-78.∵∠AOB =2∠C ,∠COB =2∠A .∴cos2∠C =14<12,所以π3<2∠C <π2,则2π3<4∠C <π,cos2∠A =-78<-22,所以3π4<2∠A <π,∵cos4∠C =2cos 22∠C -1=2×142-1=-78=cos2∠A ,2∠A =4∠C .∴∠A =2∠C .故C 正确;由cos2∠A =2cos 2∠A -1=-78,所以cos 2∠A =116,所以sin 2∠A =1516,所以sin ∠A =±154,显然sin ∠A =154,故D 错误.故选:ABC .18.(2023春·安徽淮北·高一淮北师范大学附属实验中学校考阶段练习)生于瑞士的数学巨星欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上.”这就是著名的欧拉线定理.在△ABC 中,O ,H ,G 分别是外心、垂心和重心,D 为BC 边的中点,下列四个选项中正确的是( )A.GH =2OGB.GA +GB +GC =0C.AH =2ODD.S △ABG =S △BCG =S △ACG【答案】ABCD【解析】在△ABC 中,O ,H ,G 分别是外心、垂心和重心,画出图形,如图所示.对于B 选项,根据三角形的重心性质由重心的性质可得G 为AD 的三等分点,且GA =-2GD ,又D 为BC 的中点,所以GB +GC =2GD ,所以GA +GB +GC =-2GD+GD =0 ,故选项B 正确;对于A 与C 选项,因为O 为△ABC 的外心,D 为BC 的中点,所以OD ⊥BC ,所以AH ∥OD ,∴△AHG ∽△DOG ,∴GH OG =AH OD =AGDG=2,∴GH =2OG ,AH =2OD ,故选项A ,C 正确;对于D ,过点G 作GE ⊥BC ,垂足为E ,∴△DEG ∽△DNA ,则GE AN =DG DA=13,∴△BGC 的面积为S △BGC =12×BC ×GE =12×BC ×13×AN =13S △ABC ;同理,S △AGC =S △AGB =13S △ABC ,选项D 正确.故选:ABCD19.(2023·全国·模拟预测)在△ABC 中,点D ,E 分别是BC ,AC 的中点,点O 为△ABC 内的一点,则下列结论正确的是( )A.若AO =OD ,则AO =12OB +OCB.若AO =2OD ,则OB =2EOC.若AO =3OD ,则OB =58AB +38ACD.若点O 为△ABC 的外心,BC =4,则OB ⋅BC=-4【答案】AB【解析】选项A :因为AO =OD ,所以O 为AD 中点,由题易知AO =OD =12OB +OC ,故A 正确.选项B :若AO =2OD ,则点O 为△ABC 的重心,(三角形重心的性质)则OB =2EO,故B 正确.选项C :若AO =3OD ,则OB =OD +DB =14AD +12CB =14×12AB +AC +12AB -AC=58AB -38AC,故C 错误.选项D :若点O 为△ABC 的外心,BC =4,则OD ⊥BC ,(三角形外心的性质)故OB ⋅BC =OD +DB ⋅BC =-12BC 2=-8,故D 错误.故选:AB20.(2023春·河北石家庄·高一统考期末)著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理被称为欧拉线定理.已知△ABC 的外心为O ,垂心为H ,重心为G ,且AB =3,AC =4,下列说法正确的是( )A.AH ⋅BC =0B.AG ⋅BC =-73 C.AO ⋅BC =72D.OH =OA +OB +OC【答案】ACD【解析】对于A 选项,由垂心的性质可知AH ⊥BC ,则AH ⋅BC=0,A 对;对于B 选项,设D 为BC 的中点,则AG =23AD,AD =AB +BD =AB +12BC =AB +12AC -AB =12AB +AC ,所以,AG =23AD =13AB +AC ,所以,AG ⋅BC =13AC +AB ⋅AC -AB =13AC 2-AB 2 =73,B错;对于C 选项,由外心的性质可知OB =OC ,则OD ⊥BC ,∴AO ⋅BC =AD +DO ⋅BC =AD ⋅BC =12AB +AC ⋅AC -AB =12AC 2-AB 2 =72,C 对;对于D 选项,由AH ⎳OD 得AH OD =AGGD=2,所以AH =2OD ,因为OD =OB +BD =OB +12BC =OB +12OC -OB =12OB +OC,所以OH -OA =AH =2OD =OB +OC ,即OH =OA +OB +OC,D 对.故选:ACD .三、填空题21.(2023秋·上海长宁·高二上海市延安中学校考期中)已知△ABC 的顶点坐标A -6,2 、B 6,4 ,设G 2,0 是△ABC 的重心,则顶点C 的坐标为_________.【答案】6,-6 【解析】设点C a ,b ,∵G (2,0)是△ABC 的重心,所以,-6+6+a 3=22+4+b 3=0,解得a =6b =-6 ,故点C 的坐标为6,-6 .故答案为:6,-6 .22.(2023秋·山西吕梁·高三统考阶段练习)设O 为△ABC 的外心,且满足2OA +3OB +4OC =0,OA=1,下列结论中正确的序号为______.①OB ⋅OC =-78;②AB =2;③∠A =2∠C .【答案】①③【解析】由题意可知:OA =OB =OC =1.①2OA +3OB +4OC =0 ,则2OA =-3OB -4OC ,两边同时平方得到:4=9+24OB ⋅OC +16,解得:OB ⋅OC =-78,故①正确.②2OA +3OB +4OC =0 ,则2OA -2OB =-5OB -4OC ,2BA =-5OB -4OC ,两边再平方得到:4AB 2=25+16+40OB ⋅OC=6.所以|AB =62,所以②不正确.③2OA +3OB +4OC =0 ,4OC =-3OB -2OA ,两边平方得到:16=9+4+12OA ⋅OB =13+12OA OB cos ∠AOB ,cos ∠AOB =14,∠AOB ∈0,π2,同理可得:cos ∠BOC =-78,∠BOC ∈π2,π ,∠AOB =2∠C ,∠COB =2∠A .故cos2C =14,cos2A =-78,且∠C ∈0,π4 ,∠A ∈π4,π2,cos4C =2cos 22C -1=2×14 2-1=-78=cos2A ,即∠A =2∠C .故③正确.故答案为:①③23.(2023·河北·模拟预测)已知O 为△ABC 的外心,AC =3,BC =4,则OC ⋅AB=___________.【答案】-72【解析】如图:E ,F 分别为CB ,CA 的中点,则OE ⊥BC ,OF ⊥AC∴OC ⋅AB =OC ⋅CB -CA =OC ⋅CB -OC ⋅CA=OE +EC ⋅CB -OF +FC ⋅CA=OE ⋅CB +EC ⋅CB -OF ⋅CA -FC ⋅CA=-12|CB |2--12|CA |2 =12CA |2- CB |2 =12×9-16 =-72.故答案为:-72.24.(2023秋·上海嘉定·高二上海市嘉定区第一中学校考期中)已知A 、B 、C 为△ABC 的三个内角,有如下命题:①若△ABC 是钝角三角形,则tan A +tan B +tan C <0;②若△ABC 是锐角三角形,则cos A +cos B <sin A +sin B ;③若G 、H 分别为△ABC 的外心和垂心,且AB =1,AC =3,则HG ⋅BC =4;④在△ABC 中,若sin B =25,tan C =34,则A >C >B ,其中正确命题的序号是___________.【答案】①②③④【解析】对于①,若△ABC 是钝角三角形,由tan C =-tan (A +B )=-tan A +tan B1-tan A tan B得tan A +tan B +tan C =tan A tan B tan C <0,故①正确,对于②,若△ABC 是锐角三角形,则A +B >π2,有0<π2-B <A <π2且0<π2-A <B <π2,则cos B =sin π2-B<sin A ,同理得cos A <sin B ,故cos A +cos B <sin A +sin B ,故②正确,对于③,由HG ⋅BC =(AG -AH )⋅BC =AG ⋅(AC -AB )=12(AC 2-AB 2)=4,故③正确,对于④,若sin B =25,tan C =34,则sin C =35,sin B <sin C <22,则B <C <π4,故A >π2>C >B ,故④正确,故答案为:①②③④25.(2023秋·天津南开·高三南开大学附属中学校考开学考试)在△ABC 中,AB =3,AC =5,点N 满足BN =2NC ,点O 为△ABC 的外心,则AN ⋅AO 的值为__________.【答案】596【解析】分别取AB ,AC 的中点E ,F ,连接OE ,OF ,因为O 为△ABC 的外心,∴OE ⊥AB ,OF ⊥AC ,∴AB ⋅OE =0,AC ⋅OF =0,∵BN =2NC ,∴BN =23BC ,∴AN =AB +BN =AB +23BC =AB +23(AC -AB )=13AB +23AC ,∴AO ⋅AB =12AB +EO ⋅AB =12AB 2=92,AO ⋅AC =12AC +FO ⋅AC =12AC 2=252,∴AN ⋅AO =13AB +23AC ⋅AO =13AB ⋅AO +23AC ⋅AO =13×92+23×252=596故答案为:59626.(2023·全国·高三专题练习)已知G 为△ABC 的内心,且cos A ⋅GA +cos B ⋅GB +cos C ⋅GC =0 ,则∠A =___________.【答案】π3【解析】首先我们证明一个结论:已知O 是△ABC 所在平面上的一点,a ,b ,c 为△ABC 的三边长,若a ⋅OA +b ⋅OB +c ⋅OC =0 ,则O 是△ABC 的内心.证明:OB =OA +AB ,OC =OA +AC ,则a ⋅OA +b ⋅OB +c ⋅OC =0 ⇔(a +b +c )⋅OA +b ⋅AB +c ⋅AC =0 ,等式两边同时除以a +b +c 得,AO =bc a +b +c AB |AB |+AC |AC | ,AB |AB |表示AB 方向上的单位向量,同理AC |AC |表示AC 方向上的单位向量,则由平行四边形定则可知bc a +b +c AB |AB |+AC |AC |表示∠BAC 的角平分线方向上的向量,则AO 为∠BAC 的角平分线,同理BO 、CO 分别为∠ABC ,∠ACB 的角平分线,所以O 是△ABC 的内心.于是我们得到本题的一个结论aGA +bGB +cGC =0 .又∵cos A ⋅GA +cos B ⋅GB +cos C ⋅GC =0 ,∴由正弦定理与题目条件可知sin A :sin B :sin C =a :b :c =cos A :cos B :cos C .由sin A :sin B =cos A :cos B 可得sin A cos B -cos A sin B =sin (A -B )=0,可得A =B ,同理可得B =C ,C =A ,即A =B =C =π3.故答案为:π3.27.(2023·全国·高三专题练习)在△ABC 中,cos ∠BAC =13,若O 为内心,且满足AO =xAB +yAC ,则x +y 的最大值为______.【答案】3-32【解析】延长AO 交BC 于D ,设BC 与圆O 相切于点E ,AC 与圆O 相切于点F ,则OE =OF ,则OE ≤OD ,设AD =λAO =λxAB +λyAC ,因为B 、C 、D 三点共线,所以λx +λy =1,即x +y =1λ=AO AD =AO AO +OD ≤AO AO +OE =11+OE OA =11+OF OA=11+sin A 2,因为cos A =1-2sin 2A 2=13,0<A <π,0<A 2<π2,所以sin A 2=33,所以x +y ≤11+33=3-32.故答案是:3-3228.(2023·全国·高三专题练习)设I 为△ABC 的内心,若AB =2,BC =23,AC =4,则AI ⋅BC =___________【答案】6-23【解析】解法1:不难发现,△ABC 是以B 为直角顶点的直角三角形,如图,设圆I 与AB 、AC 、BC 分别相切于点D 、E 、F ,设圆I 的半径为r ,则ID =IE =IF =r ,显然四边形BDIF 是正方形,所以BD =BF =r ,从而AD =2-r ,CF =23-r ,易证AE =AD ,CE =CF ,所以AE =2-r ,CE =23-r ,故AE +CE =2+23-2r =AC =4,从而r =3-1,AD =2-r =3-3,AI ⋅BC =AI ⋅AC -AB =AI ⋅AC -AI ⋅AB =AI ⋅AC ⋅cos ∠IAC -AI ⋅AB ⋅cos ∠IAB=AE ⋅AC -AD ⋅AB =AD AC -AB =2AD =6-23.故答案为:6-23.解法2:按解法1求得△ABC 的内切圆半径r =3-1,由图可知AI在BC 上的投影即为3-1,所以AI ⋅BC =3-1 ×23=6-23.故答案为:6-23.。

三角形重心、垂心、内心、外心的向量性质及简单应用

三角形重心、垂心、内心、外心的向量性质及简单应用
2019 年第 3 期 (下)
中学数学研究
41
三角形重心、垂心、内心、外心的向量性质及简单应用
广东省珠海市斗门区第一中学 (519100) 陈水松
一、三角形四心的表述与性质
(一) 重心——三角形三条边上的中线的交点叫做三角
形的重心. 重心将中线长度分成 2: 1 的两部分. 1. −O→A + −O−→B + −O−→C = −→0 ⇔O 是 △ABC 的重心.
AC BC −→ + −−→
.
|AC| |BC|
|−B−B+−−→ →CCb| −B)−→C, 所
= 以
4.
−−→ PO
=
−→ aP A
−−→ + bP B + a+b+c
−−→ cP C

O

△ABC
的内心,
P 为平面上任意点.
(二) 垂心——三角形三条高线的交点叫做三角形的垂
证明
因为
O

△ABC
证 法 1 设 O(x, y), A(x1, y1), B(x2, y2), C(x3, y3),
−→ −−→ −−→ OA+OB+OC
=
−→0



x=
x1 + x2 + x3
(x1 − x) + (x2 − x) + (x3 − x) = 0 (y1 − y) + (y2 − y) + (y3 − y) = 0
=
−→0 ,
所以
−→ AO
=
2−O−→D,
所以
A、O、D
三点共线,

三角形四心的向量性质及应用(详细答案版)

三角形四心的向量性质及应用(详细答案版)

三角形“四心”的向量性质及其应用三角形“四心”的概念介绍(1)重心—三条中线的交点:重心将中线长度分成2:1;(2)外心—三边中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等;(3)垂心—三条高线的交点:高线与对应边垂直;(4)内心—三条内角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等.工具:O 为ABC △内一点,则有:0+⋅+⋅∆∆∆OC S OB S OA S O O CA O BC 证明:作:OA S OA OCB ⋅=∆',OB S OB OCA ⋅=∆',S OC OAB =∆'不难得知:AOB COA BOC OC B S S OC OC OB OB S S ∆∆∆∆⋅=⋅=''''即BO C AO B CO A O C B S S S S ∆∆∆∆⋅⋅='';同理==∆∆''''O B A O A C S S ''O C B BO C AO B CO A S S S S ∆∆∆∆=⋅⋅ 从而:O 为'''C B A ∆的重心,则+'OA +'OB 0'=OC , 得:0=⋅+⋅+⋅∆∆∆OC S OB S OA S O AB O CA O BC .一、三角形的重心的向量表示及应用知识:G 是ABC △的重心⇔)(31AC AB AG +=⇔0=++GC GB GA ⇔)(31OC OB OA OG ++= (O 为该平面上任意一点)变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则0=++CF BE AD . 二、三角形的外心的向量表示及应用知识:O 是ABC △的外心⇔222||||||OC OB OA OC OB OA ==⇔== 02sin 2sin 2sin =⋅+⋅+⋅⇔OC C OB B OA A略证:C B A S S S O AB O CA O BC 2sin :2sin :2sin ::=∆∆∆,得:02sin 2sin 2sin =⋅+⋅+⋅OC C OB B OA A ;常用结论:O 是ABC △的外心⇒.2|| ;2||22AC AO AC AB AO AB =⋅=⋅ 三、三角形的垂心的向量表示及应用知识:H 是ABC △的垂心⇔HA HC HC HB HB HA ⋅=⋅=⋅⇔222222||||||||||||AB HC CA HB BC HA +=+=+0tan tan tan =⋅+⋅+⋅⇔HC C HB B HA A略证:C B A S S S H AB H CA H BC tan :tan :tan ::=∆∆∆,得:0tan tan tan =⋅+⋅+⋅HC C HB B HA A ; 扩展:若O 是ABC △的外心,点H 满足:OC OB OA OH ++=,则H 是ABC △的垂心. 证明:如图:BE 为直径,H 为垂心,O 为外心,D 为BC 中点;'有:为平行四边形AHCE EA CH AB EA AB CH EC AH BC EC BC AH ⇒⎪⎪⎭⎪⎪⎬⎫⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊥⊥////进而得到:,//EC AH 且EC AH =,即:EC AH =; 又易知:OC OB OD EC +==2;故:OA OH OC OB AH -=+=,即:OC OB OA OH ++=又:OG OC OB OA ⋅=++3(G 为重心),故:OG OH ⋅=3;故:得到欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.证毕. 四、三角形的内心的向量表示及应用知识:I 是ABC △的内心⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅0||||0||||0||||CB CB CA CA CI BC BC BA BA BI AC AC AB AB AI ⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅0||||0||||0||||CA CA BC BC CI BA BA CB CB BI AC AC BA BA AI 0=⋅+⋅+⋅⇔IC c IB b IA a c b a OCc OB b OA a OI ++⋅+⋅+⋅=⇔cb a ACc AB b AI ++⋅+⋅=⇔ 0sin sin sin =⋅+⋅+⋅⇔IC C IB B IA A 注:式子中|||,||,|AB c CA b BC a ===,O 为任一点.略证:C B A c b a S S S IAB ICA IBC sin :sin :sin ::::==∆∆∆,得之. 五.欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.(前已证) 测试题一.选择题1.O 是ABC ∆所在平面上一定点,动点P 满足)(AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:点P 的轨迹为BC 边的中线(射线),选C2.(03全国理4)O 是ABC ∆所在平面上一定点,动点P 满足AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:AC AB OA OP ++=λ⇔AC AB AP +=λAC AB +必平分BAC ∠,理由如下:ADACABACACABAB=+==1111,1==,故四边形11DCAB为菱形,对角线AD平分一组对角,ADACAB=+必定平分11ACB∠,即BAC∠,从而ACABAP+=λ也平分BAC∠.故知点P的轨迹为A∠的内角平分线(射线),选 B3.O是ABC∆所在平面上一定点,动点P满足ACABOAOP++=λ,R∈λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:ACABOAOP++=λ⇔ACABAP+=λ由BCACBCABBCACBCABBCAP+=+=⋅λλ得:0|)|||(=+-=⋅BCBCBCAPλ,得BCAP⊥点P的轨迹为BC边的高线所在直线. 选D4.O是ABC∆所在平面上一定点,动点P满足ACABOAOP+=λ,[)+∞∈,0λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:由于CACCbBcBAB sin||sinsinsin||=⋅=⋅=,知点P的轨迹为BC边的中线(射线),选C5.O是ABC∆所在平面上一定点,动点P满足2cos cosOB OC AB ACOPAB B AC Cλ⎛⎫+ ⎪=++⎪⎝⎭,R∈λ,则点P的轨迹一定通过ABC△的( ).A.外心B.内心C.重心D.垂心解析:0||||=+-=+=⋅+BCBCBCACBCABBCACAB知点P的轨迹为BC边的中垂线, 选A6.O是ABC∆所在平面上一定点,动点P满足])21()1()1[(31OCOBOAOPλλλ++-+-=,*R∈λ,则点P的轨迹一定通过ABC△的( ).A.内心B.垂心C.重心D.AB边的中点解析:])21()1()1[(31OCOBOAOPλλλ++-+-=OCOD3)21(3)22(λλ++-=(D为AB边的中点)知CDP,,三点共线(因1321322=++-λλ),故知点P 的轨迹为AB 边的中线所在直线,但是0≠λ,故除去重心. 选D 7.已知O 是ABC ∆的重心,动点P 满足)22121(31OC OB OA OP ++=,则点P 一定为ABC △的( ) A .AB 边中线的中点 B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点解析:)22121(31OC OB OA OP ++=OC OD 3231+=(D 为AB 边的中点) 进而有:PC DP 2=,故为AB 边中线的三等分点(非重心), 选B8.在ABC △中,动点P 满足:CP AB CB CA ⋅-=222,则P 点轨迹一定通过△ABC 的( )A.外心 B.内心 C .重心 D .垂心解析:CP AB CB CA ⋅-=222⇔02))((222=⋅-+-=⋅--CP AB CA CB CA CB CP AB CA CB 进而有:02=⋅PD AB (D 为AB 边的中点),故知点P 的轨迹为AB 边的中垂线, 选A9.已知ABC ∆三个顶点C B A 、、及平面内一点P ,满足0=++PC PB PA ,若实数λ满足:AP AC AB λ=+,则λ的值为( )A .2B .23C .3D .6 解析:P 为重心,得)(31AC AB AP +=,故AP AC AB ⋅=+3,选C10.设点P 是ABC ∆内一点,用ABC S ∆表示ABC ∆的面积,令ABC PBC S S ∆∆=1λ,ABCPCA S S∆∆=2λ,ABC PAB S S ∆∆=3λ.定义),,()(321λλλ=P f ,若)61,31,21()(),31,31,31()(==Q f G f 则( )A .点Q 在ABG ∆内B .点Q 在BCG ∆内C .点Q 在CAG ∆内D .以上皆不对 解析:G 为重心,画图得知, 选A11.若ABC ∆的外接圆的圆心为O ,半径为1,0=++OC OB OA ,则=⋅OB OA ( )A .21 B .0 C .1 D .21- 解析:由OC OB OA -=+,平方得知, 选D12.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222OB BC OA =+222AB OC CA +=+,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:由2222CA OB BC OA +=+⇔2222BC CA OB OA -=-BA BC CA OB OA BA BC CA BC CA OB OA OB OA ⋅-=+⋅⇔+-=+-⇔)()())(())(( 0)2()(=⋅=-++⋅⇔OC BA CA BC OB OA BA ,得AB OC ⊥;同理得:AC OB ⊥,BC OA ⊥,故为垂心, 选D 13.(06陕西)已知非零向量AB 与AC 满足0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB 21||||=AC AC AB AB , 则ABC ∆为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形解析:21||||=AC AC AB AB 0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB :表明A ∠的内平分线也垂直于BC (三线合一), 知ABC ∆等腰;21||||=AC AC AB AB :得到︒=∠60A ;两者结合得到ABC ∆为等边三角形. 选D 14.已知ABC ∆三个顶点C B A 、、,若CA BC CB AB AC AB AB ⋅+⋅+⋅=2,则ABC ∆为( )A .等腰三角形B .等腰直角三角形C .直角三角形D .既非等腰又非直角三角形 解析:CA BC CB AB AC AB AB ⋅+⋅+⋅=2CA BC AB CA BC CB AC AB ⋅+=⋅++⋅=2)( 得到:0=⋅CA BC ,得:︒=∠90C ,选C 二.填空题15.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m = 1 . 解析:直接用结论16.ABC ∆中,7,3,1===BC AC AB ,O 为重心,则=⋅AC AO27. 解析:)9(31)(31)(312+⋅=+⋅=+=⋅AC AB AC AC AB AC AC AB AC AO 利用:CB AC AB =-,两边平方得.23=⋅AC AB 故27)923(31=+=⋅AC AO17.点O 在ABC ∆内部且满足032=++OC OB OA ,则:ABC S ∆=∆AOC S 3 .解析:法1:利用工具结论易知:AOB COA BOC S S S ∆∆∆=::3:2:1,得:ABC S ∆=∆AOC S 32:6= 法2:0422232=+=+++=++OD OE OC OB OC OA OC OB OA (E 为AC 的中点,D 为BC 的中点)易得:D O E ,,三点共线,且OD EO 2=,从而得到:ABC ADC AOC S S S ∆∆∆==3132. 法3:作:OA OA =',OB OB 2'=,OC OC 3'=则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧======∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 236'''''' 从而得:331:13:)236(:==++=∆∆S S S S S S COA ABC . 18.点O 在ABC ∆内部且满足AC AB AO 5152+=,则:ABC S ∆=∆AOB S 5 . 解析:法1:AC AB AO 5152+=,用O 拆开得:022=+⋅+⋅OC OB OA , 'A 'B 'C O)(A BC利用工具结论易知:AO B CO A BO C S S S ∆∆∆=::1:2:2,则:ABC S ∆51:5==∆AO B S 法2:AC AD AC AB AO 51545152+=+=,(D 为AB 边的中点),得到:C O D ,,共线,且OD CO 4=, 则:ABC S ∆5:==∆OD CD S AO B . 法3:同上题中法3,此处略.19.已知ABC ∆中,6,5===BC AC AB ,I 为ABC ∆的内心,且BC AB AI μλ+=,则=+μλ1615. 解析:法1:由BC AB BC AB AB AC AB c b a AC c AB b AI ⋅+⋅=+⋅+⋅=++⋅+⋅=++⋅+⋅=165161016)(5555655法2:如图,线长易知,角平分线分线段成比例,得:3:5:=ID AI , 故)21(8585BC AB AD AI ⋅+⋅=⋅=AB +⋅=1658520.已知ABC ∆中,1,1,2-=⋅==AC AB AC AB ,O 为ABC ∆的外心,且BC y AB x AO +=,则=+y x 27. 解析:法1:由BC y AB x AO +=AC y AB y x +-=)(,由AC AB y AB y x ABBC y AB y x AB AO AB ⋅+-=⇒+-⋅=⋅22)(2))((,得:y y x --=)(42;同理22)(2))((AC y AC AB y x ACBC y AB y x AC AO AC +⋅-=⇒+-⋅=⋅,得:y y x +--=)(21;易得:34,613==y x ,得27=+y x . 法2:以},{AC AB 为基底,表示:CO BO AO ,,,利用222CO BO AO ==,得之BC y AB x AO +=AC y AB y x +-=)(,y y x y y x AO )(2)(4222--+-=; AC y AB y x AB AO BO +--=-=)1(,y y x y y x BO )1(2)1(4222---+--=; AC y AB y x AC AO CO )1()(-+-=-=,)1)((2)1()(4222----+-=y y x y y x CO ;由22BO AO =0254=--⇒⇒y x 移项做差; 由22CO AO =0142=+-⇒⇒y x 移项做差; 联立方程解得:34,613==y x ,得27=+y x .BCA MNG21.已知O 为锐角ABC ∆的外心,︒=∠30A ,若AO m B C AC C B AB 2sin cos sin cos =⋅+⋅,则=m 21. 解析:由AO m AB B CAC C B AB AB 2)sin cos sin cos (⋅=⋅+⋅⋅ 得:22||sin cos cos ||||sin cos ||AB m B CA AC ABC B AB =⋅⋅⋅+⋅得:C m C A B mc BCA b c CB c sin cos cos cos sin cos cos sin cos 22⋅=+⇒=⋅⋅⋅+⋅得到:C A C A C A C A B C m sin sin cos cos )cos(cos cos cos sin =++-=+=⋅ 得:.2130sin sin =︒==A m 22.在ABC∆中,1,==⊥AD BC AB AD ,则⋅AD AC解析:.33)(2===⋅=⋅+=⋅AD AD AD BC AD BC AB AD AC 三.解答题23. 如图,已知点G 是ABC ∆的重心,过G 作直线与AC AB ,两边分别交于N M ,两点,且AM xAB = ,AN yAC = ,求证:113x y+=.解:由N G M ,,三点共线, 得:AN t AM t AG ⋅+⋅-=)1(AC ty AB x t ⋅+⋅-=)1(--------①又G 是ABC ∆的重心得:AC AB AG ⋅+⋅=3131 ---------② 由①②得:⎪⎪⎩⎪⎪⎨⎧==-3131)1(ty x t ,消去t 得:113x y +=.24.设O 在ABC ∆的内部,若有正实数321,,λλλ满足:0321=⋅+⋅+⋅OC OB OA λλλ, 求证:AO B CO A BO C S S S ∆∆∆=::::321λλλ.证明:作:OA OA ⋅=1'λ,OB OB ⋅=2'λ,OC OC ⋅=3'λ 则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧=⋅==⋅==⋅=∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 2!''13''32''λλλλλλ 从而得:AOB COA BOC S S S SSS∆∆∆==::::::211332321λλλλλλλλλ25.已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1,求证:321P P P ∆为正三角形. 证明:由1OP +2OP +3OP =0⇒1OP +2OP =3OP -平方得:1212112121-=⋅⇒=⋅++OP OP OP OP'A 'B 'C OABC从而得:3||21====P P同理可得:3||||1332==P P P P ,即321P P P ∆为正三角形. 26.在ABC ∆中,︒===60,5,2A AC AB ,求从顶点B A ,出发的两条中线BE AD ,的夹角的余弦值.解:设b AB a AC ==,,则,560cos 25,4,2522=︒⨯⨯=⋅==b a b a且b a BE b a AD -=+=21),(21; 则,3)8525(41)2(41)21()(2122=--=-⋅-=-⋅+=⋅b b a a b a b a BE AD2394102521|)(|21||=++==+=b a AD22116202521|)2(|21||=+-==-=b a BE 故:.919149142212393||||,cos ==⋅=>=<BE AD BEAD BE AD27.已知H 是ABC △的垂心,且||||BC AH =,试求∠A 的度数.解:设ABC △的外接圆半径为R ,点O 是ABC △的外心。

三角形四心的向量性质及应用(教师用标准答案版)

三角形四心的向量性质及应用(教师用标准答案版)

三角形四心的向量性质及应用(教师用答案版)————————————————————————————————作者:————————————————————————————————日期:三角形“四心”的向量性质及其应用三角形“四心”的概念介绍(1)重心—三条中线的交点:重心将中线长度分成2:1;(2)外心—三边中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等; (3)垂心—三条高线的交点:高线与对应边垂直;(4)内心—三条内角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等.工具:O 为ABC △内一点,则有:0=⋅+⋅+⋅∆∆∆OC S OB S OA S OAB OCA OBC 证明:延长AO 交BC 于D ,如图必有:||||OA OD S S S OAB OCA OBC =+∆∆∆,||||BC BD S S S OAB OCA OAB =+∆∆∆,||||BC CD S S S OAB OCA OCA =+∆∆∆; ---(*)由D O A ,,共线,得:0||||=+OD ODOA OA进而得:0||||=+⋅OD OA OA OD ----------------① 由C D B ,,共线,得:OC BC BD OB BC CD OD ⋅+⋅=|||||||| ----------② 由①②得:OA OA OD ⋅||||0||||||||=⋅+⋅+OC BC BD OB BC CD 代入(*)结论 得+⋅+∆∆∆OA S S S OAB OCA OBC +⋅+∆∆∆OB S S S OAB OCA OCA 0=⋅+∆∆∆OC S S S OABOCA OAB消去分母得:0=⋅+⋅+⋅∆∆∆OC S OB S OA S OAB OCA OBC 证毕.另证:作AC OG AB OH //,//,如图:AGOH 为平行四边形;由OC S OB S OA S OAB OCA OBC ⋅+⋅+⋅∆∆∆)()(AC OA S AB OA S OA S OAB OCA OBC +⋅++⋅+⋅=∆∆∆ AC S AB S OA S OAB OCA ABC ⋅+⋅+⋅=∆∆∆)(AC S SAB S S OA S ABCOAB ABC OCA ABC ⋅+⋅+=∆∆∆∆∆ )(AC ACAHAB AB AG OA S ABC ⋅+⋅+=∆ )(AH AG OA S ABC ++=∆ 0)(=+=∆AO OA S ABC .AB CODAB CODHFEG反方向思考:设O 在ABC ∆的内部,若有正实数321,,λλλ满足:0321=⋅+⋅+⋅OC OB OA λλλ, 必有:AOB COA BOC S S S ∆∆∆=::::321λλλ.证明:作:OA OA ⋅=1'λ,OB OB ⋅=2'λ,OC OC ⋅=3'λ 则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''OB A OA C OC B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧=⋅==⋅==⋅=∆∆∆∆∆∆SS S S S S S S S AOB OB A COA OA C BOC OC B 2!''13''32''λλλλλλ 从而得:AOB COA BOC S S S S S S ∆∆∆==::::::211332321λλλλλλλλλ. 验证式思考:先证引理:若b a ,不共线,对p ,有0=⋅p a 且0=⋅p b ,必有.0=p证明:若.0≠p 必有p a ⊥且p b ⊥,得b a //,与题设矛盾,故必有.0=p 再证:设α=∠BOC ,β=∠COA ,则βαπ--=∠2AOB ; 由)(OC S OB S OA S OA OAB OCA OBC ⋅+⋅+⋅∆∆∆OC OA S OB OA S OA S OAB OCA OBC ⋅+⋅+⋅=∆∆∆2ββαπβαπβαcos )2sin(21)2cos(sin 21sin 212⋅⋅⋅--⋅⋅+--⋅⋅⋅⋅⋅+⋅⋅⋅=OC OA OB OA OB OA OA OC OA OC OB ]cos )sin()cos(sin [sin 212ββαβαβα+-++⋅⋅=OC OB OA )]}(sin[{sin 212βαβα+-+⋅⋅=OC OB OA 0)]sin([sin 212=-+⋅⋅=ααOC OB OA ; 有对称性知:0)(=⋅+⋅+⋅∆∆∆OC S OB S OA S OB OAB OCA OBC ,又OA ,OB 不共线, 故:必有0=⋅+⋅+⋅∆∆∆OC S OB S OA S OAB OCA OBC 成立. 一、三角形的重心的向量表示及应用知识:G 是ABC △的重心⇔)(31AC AB AG +=⇔0=++GC GB GA ⇔)(31OC OB OA OG ++= (O 为该平面上任意一点)略证:1:1:1::=∆∆∆GAB GCA GBC S S S ,得:0=++GC GB GA .变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则0=++CF BE AD . 二、三角形的外心的向量表示及应用知识:O 是ABC △的外心⇔222||||||OC OB OA OC OB OA ==⇔=='A 'B 'C OABCABCO02sin 2sin 2sin =⋅+⋅+⋅⇔OC C OB B OA A略证:C B A S S S OAB OCA OBC 2sin :2sin :2sin ::=∆∆∆,得:02sin 2sin 2sin =⋅+⋅+⋅OC C OB B OA A常用结论:O 是ABC △的外心⇒.2|| ;2||22AC AO AC AB AO AB =⋅=⋅ 三、三角形的垂心的向量表示及应用知识:H 是ABC △的垂心⇔HA HC HC HB HB HA ⋅=⋅=⋅⇔222222||||||||||||AB HC CA HB BC HA +=+=+0tan tan tan =⋅+⋅+⋅⇔HC C HB B HA A略证:C B A S S S HAB HCA HBC tan :tan :tan ::=∆∆∆,得:0tan tan tan =⋅+⋅+⋅HC C HB B HA A 扩展:若O 是ABC △的外心,点H 满足:OC OB OA OH ++=,则H 是ABC △的垂心. 证明:如图:BE 为直径,H 为垂心,O 为外心,D 为BC 中点;有:为平行四边形AHCE EA CH AB EA AB CH EC AH BC EC BC AH ⇒⎪⎪⎭⎪⎪⎬⎫⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊥⊥////进而得到:,//EC AH 且EC AH =,即:EC AH =; 又易知:OC OB OD EC +==2;故:OA OH OC OB AH -=+=,即:OC OB OA OH ++=. 又:OG OC OB OA ⋅=++3(G 为重心),故:OG OH ⋅=3;故:得到欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.证毕. 四、三角形的内心的向量表示及应用知识:I 是ABC △的内心⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛-⋅=⎪⎪⎭⎫ ⎝⎛-⋅=⎪⎪⎭⎫ ⎝⎛-⋅0||||0||||0||||CB CB CA CA CI BC BC BA BA BI AC AC AB AB AI ⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛+⋅=⎪⎪⎭⎫ ⎝⎛+⋅=⎪⎪⎭⎫ ⎝⎛+⋅0||||0||||0||||CA CA BC BC CI BA BA CB CB BI AC AC BA BA AI 0=⋅+⋅+⋅⇔IC c IB b IA a cb a OCc OB b OA a OI ++⋅+⋅+⋅=⇔0sin sin sin =⋅+⋅+⋅⇔IC C IB B IA A 注:式子中|||,||,|AB c CA b BC a ===,O 为任一点.ABDOHCE略证:C B A c b a S S S IAB ICA IBC sin :sin :sin ::::==∆∆∆,得之. 五.欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.(前已证) 测试题一.选择题1.O 是ABC ∆所在平面上一定点,动点P 满足)(AC AB OA OP ++=λ,[)+∞∈,0λ , 则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 2.(03全国理4)O 是ABC ∆所在平面上一定点,动点P 满足)(ACAC ABAB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 3.O 是ABC ∆所在平面上一定点,动点P 满足)cos cos (CAC AC BAB AB OA OP ++=λ,R ∈λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 4.O 是ABC ∆所在平面上一定点,动点P 满足)sin sin (CAC AC BAB AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心5.O 是ABC ∆所在平面上一定点,动点P 满足2cos cos OB OC AB AC OP AB B AC C λ⎛⎫+ ⎪=++ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r,R ∈λ, 则点P 的轨迹一定通过ABC △的( ).A .外心B .内心C .重心D .垂心6.O 是ABC ∆所在平面上一定点,动点P 满足])21()1()1[(31OC OB OA OP λλλ++-+-=,*R ∈λ , 则点P 的轨迹一定通过ABC △的( ).A .内心B .垂心C .重心D .AB 边的中点 7.已知O 是ABC ∆的重心,动点P 满足)22121(31OC OB OA OP ++=,则点P 一定为ABC △的( ) A .AB 边中线的中点 B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点8.在ABC △中,动点P 满足:CP AB CB CA ⋅-=222,则P 点轨迹一定通过△ABC 的( )A.外心 B.内心 C .重心 D .垂心9.已知ABC ∆三个顶点C B A 、、及平面内一点P ,满足0=++PC PB PA ,若实数λ满足:AP AC AB λ=+,则λ的值为( ) A .2 B .23C .3D .6 10.设点P 是ABC ∆内一点,用ABC S ∆表示ABC ∆的面积,令ABC PBC S S ∆∆=1λ,ABCPCA S S ∆∆=2λ,ABC PAB S S∆∆=3λ.BCA M N G定义),,()(321λλλ=P f ,若)61,31,21()(),31,31,31()(==Q f G f 则( )A .点Q 在ABG ∆内B .点Q 在BCG ∆内C .点Q 在CAG ∆内D .以上皆不对11.若ABC ∆的外接圆的圆心为O ,半径为1,0=++OC OB OA ,则=⋅OB OA ( )A .21 B .0 C .1 D .21- 12.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222OB BC OA =+222AB OC CA +=+,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心 13.(06陕西)已知非零向量AB 与AC 满足0||||=⋅⎪⎪⎭⎫⎝⎛+BC AC AC AB AB 且21||||=⋅AC AC AB AB , 则△ABC 为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形 14.已知ABC ∆三个顶点C B A 、、,若CA BC CB AB AC AB AB ⋅+⋅+⋅=2,则ABC ∆为( ) A .等腰三角形 B .等腰直角三角形 C .直角三角形 D .既非等腰又非直角三角形二.填空题15.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m = 1 . 16.ABC ∆中,7,3,1===BC AC AB ,O 为重心,则=⋅AC AO27. 17.点O 在ABC ∆内部且满足032=++OC OB OA ,则:ABC S ∆=∆AOC S 3 . 18.点O 在ABC ∆内部且满足AC AB AO 5152+=,则:ABC S ∆=∆AOB S 4 . 19.已知ABC ∆中,6,5===BC AC AB ,I 为ABC ∆的内心,且BC AB AI μλ+=,则=+μλ1615. 20.已知ABC ∆中,1,1,2-=⋅==AC AB AC AB ,O 为ABC ∆的外心,且BC y AB x AO +=,则=+y x 27. 21.已知O 为锐角ABC ∆的外心,︒=∠30A ,若AO m B C AC C B AB 2sin cos sin cos =⋅+⋅,则=m 21. 22.在ABC ∆中,1,3,==⊥AD BD BC AB AD ,则=⋅AD AC3 .三.解答题23. 如图,已知点G 是ABC ∆的重心,过G 作直线与AC AB ,两边分别交于N M ,两点,且AM xAB =u u u u v u u u v ,AN y AC =u u u v u u u v ,求证:113x y+=.解:由N G M ,,三点共线,得:AN t AM t AG ⋅+⋅-=)1(AC ty AB x t ⋅+⋅-=)1(--------①又G 是ABC ∆的重心得:AC AB AG ⋅+⋅=3131 ---------② 由①②得:⎪⎪⎩⎪⎪⎨⎧==-3131)1(ty x t ,消去t 得:113x y +=.24.设O 在ABC ∆的内部,若有正实数321,,λλλ满足:0321=⋅+⋅+⋅OC OB OA λλλ, 求证:AOB COA BOC S S S ∆∆∆=::::321λλλ.证明:作:OA OA ⋅=1'λ,OB OB ⋅=2'λ,OC OC ⋅=3'λ 则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''OB A OA C OC B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧=⋅==⋅==⋅=∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 2!''13''32''λλλλλλ 从而得:AOB COA BOC S S S SSS∆∆∆==::::::211332321λλλλλλλλλ25.已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1,求证:321P P P ∆为正三角形. 证明:由1OP +2OP +3OP =0⇒1OP +2OP =3OP -平方得:1212112121-=⋅⇒=⋅++OP OP OP OP从而得:3211)(||2121222121=⋅-+=-==OP OP OP OP P P P P 同理可得:3||||1332==P P P P ,即321P P P∆为正三角形. 26.在ABC ∆中,︒===60,5,2A AC AB ,求从顶点B A ,出发的两条中线BE AD ,的夹角的余弦值. 解:设b AB a AC ==,,则,560cos 25,4,2522=︒⨯⨯=⋅==b a b a且b a BE b a AD -=+=21),(21; 则,3)8525(41)2(41)21()(2122=--=-⋅-=-⋅+=⋅b b a a b a b a BE AD2394102521221|)(|21||22=++=+⋅+=+=b b a a b a AD221162025214421|)2(|21||22=+-=+⋅-=-=b b a a b a BE 故:.919149142212393||||,cos ==⋅=⋅>=<BE AD BEAD BE AD'A 'B 'C OABCA BED C27.已知H 是ABC △的垂心,且||||BC AH =,试求∠A 的度数.解:设ABC △的外接圆半径为R ,点O 是ABC △的外心。

平面向量的应用之三角形的四心

平面向量的应用之三角形的四心

△ABC 的
心.
第2页 共3页
8. 若 O# A» + O# B» + O# C» = #0»,则点 O 是 △ABC 的
心.
9.

#» PO
=
1 3
# (P
» A
+
# P
» B
+
# P
C»),则点
O

△ABC

心.
10.
已知
△ABC
的角
A,B,C
所对的边分别为
a,b,c,

#» PO
=
#» #» #» aP A + bP B + cP C ,则点
§1 平面向量与三角形的四心
一 知识梳理
1. 三角形的重心
(1) 定义
C
三角形三条中线的交点叫作重心,它到三角形顶点距离与该点到对
边中点距离之比为 2 : 1.
(2) 向量表达式

#» OA
+
#» OB
+
#» OC
=
#0»

#» PO
=
1 3
# (P
» A
+
#» PB
+
# P
C»).
E
F
O
A
D
B
2. 三角形的垂心
C (1) 定义
三角形三条高线的交点叫垂心.
(2) 向量表达式 O# A» · O# B» = O# B» · O# C» = O# A» · O# C» O# A»2 + B# C»2 = O# B»2 + A# C»2 = O# C»2 + A# B»2. A

平面向量三角形四心(有详解)

平面向量三角形四心(有详解)

平面向量三角形四心(有详解)平面向量三角形四心(有详解)平面向量是数学中的重要概念,可以用来表示空间中的点、线、面等几何对象。

在平面向量的运算和应用中,三角形是常见的几何形状之一。

本文将介绍平面向量与三角形四心的关系,并详细解析其性质和应用。

1. 三角形的四心概述三角形的四心是指三角形内部的四个特殊点,包括重心、外心、内心和垂心。

这四个点有着各自的特点和性质,对于研究三角形的形状和性质非常重要。

1.1 重心三角形的重心是三条中线的交点,即三角形三个顶点与对应中点的连线交于一点。

重心在三角形中心位置,对称性较强,具有重要的几何意义。

1.2 外心三角形的外心是外接圆的圆心,即三角形三个顶点的垂直平分线的交点。

外心离三角形各顶点的距离相等,是三角形的外接圆的圆心。

1.3 内心三角形的内心是内切圆的圆心,即三角形三条边的角平分线的交点。

内心到三角形三边的距离相等,是三角形的内切圆的圆心。

1.4 垂心三角形的垂心是三条高线的交点,即三角形三个顶点与对边垂线的交点。

垂心所在的直线被称为垂心线,与三角形的三条边垂直。

2. 平面向量与四心关系的性质平面向量与三角形的四心之间具有一些重要的几何性质和关系,下面将分别介绍。

2.1 重心与向量以三角形的重心为原点建立直角坐标系,三角形三个顶点的位置向量相对于重心的位置向量之和为零。

即,三角形三个顶点的位置向量和为零向量。

2.2 外心与向量三角形的三个顶点为A、B、C,以外心O为原点建立直角坐标系。

则三角形顶点A、B、C的位置向量之和等于三倍的外心O的位置向量。

即,OA + OB + OC = 3OO。

2.3 内心与向量设三角形的内心为I,以内心I为原点建立直角坐标系。

则三角形三个顶点的位置向量与对边的位置向量之和分别为倍数的内心I的位置向量。

即,AI + BI = CI = 2II。

2.4 垂心与向量以三角形的垂心为原点建立直角坐标系,三角形三个顶点的位置向量与对边垂线的位置向量之和为零。

平面向量与三角形的四心归纳总结

平面向量与三角形的四心归纳总结

三角形的四心与向量四心的概念介绍:(1) 重心:中线的交点,重心将中线长度分成2:1; (2) 垂心:高线的交点,高线与对应边垂直;(3) 内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等; (4) 外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等。

(一)三角形的内心 例题1O 是平面上一定点,,,A B C 是平面上不共线的三个点,动点P 满足:,[0,)||||AB AC OP OA AB AC λλ⎛⎫=++∈+∞ ⎪ ⎪⎝⎭,则P 的轨迹一定通过ABC ∆的( )A .内心B .垂心C .重心D .外心【解析】||ABAB 、AC AC 分别表示向量AB 、AC 方向上的单位向量∴AB AC ABAC+的方向与BAC ∠的角平分线一致,又()||||AB ACOP OA AB AC λ=++, ∴()||||AB ACOP OA AP AB AC λ-==+,∴向量AP 的方向与BAC ∠的角平分线一致 ∴一定通过ABC ∆的内心,选A .练习1. 已知ABC ∆满足()0AB AC BC ABAC+⋅=,12AB AC ABAC⋅=,则ABC ∆为( ) A .顶角为120︒的等腰三角形 B .等腰直角三角形 C .有一个内角为60︒的直角三角形 D .等边三角形【解析】设,AB AC AD AE ABAC==,则AD AE AF +=,而1AD AE ==,所以AF 是BAC ∠的角平分线,又0AF BC AF BC ⋅=⇒⊥,所以ABC ∆为等腰三角形,cos 11cos 21232AB AC ABACAB AC BA AB A C BAC C C BA π⋅⋅⋅=⇒=∠∠=⇒∠⋅=⇒,所以ABC ∆是等边三角形.练习2.O 是平面内的一定点,A ,B ,C 是平面内不共线的三个点,动点P 满足则P 点的轨迹一定通过三角形ABC 的( )A .内心B .外心C .重心D .垂心 【解析】∵、分别表示向量、方向上的单位向量∴的方向与∠BAC 的角平分线重合,又∵可得到 λ()∴向量的方向与∠BAC 的角平分线重合,∴一定通过△ABC 的内心,选A(二)三角形的重心例题2 已知ABC ∆中,向量()()AP AB AC R λλ=+∈,则点P 的轨迹通过ABC ∆的( ) A .垂心B .内心C .外心D .重心【解析】设D 为BC 中点,则2AB AC AD +=,2AP AD λ∴=,即P 点在中线AD 上 可知P 点轨迹必过ABC ∆的重心,选D 练习1.过的重心作直线,已知与、的交点分别为、,,若,则实数的值为( )A .或B . 或C .或D .或 【解析】设,因为G 为的重心,所以,即由于三点共线,所以,即因为,,所以即有,解之得或,选B练习2.已知O 是△ABC 所在平面上的一点,若= , 则O 点是△ABC 的( )A .外心B .内心C .重心D .垂心【解析】作BD ∥OC ,CD ∥OB ,连OD ,OD 与BC 相交于G ,则BG =CG ,(平行四边形对角线互相平分), ∴,又∵,可得:,∴,∴A ,O ,G 在一条直线上,可得AG 是BC 边上的中线,同理:BO,CO的延长线也为△ABC的中线.∴O为三角形ABC的重心.选C.练习3.已知是所在平面上的一定点,若动点满足,,则点的轨迹一定通过的( )A.内心B.外心C.重心D.垂心【解析】∵=设它们等于t,∴而表示与共线的向量,而点D是BC的中点,所以即P的轨迹一定通过三角形的重心,选C练习4.已知O是平面上一定点,A,B,C是平面上不共线的三点,动点P满足,,则点P的轨迹一定通过的__________心.【解析】设D为BC的中点,则,于是有,,P,D三点共线,又D是BC的中点,所以AD是边BC的中线,于是点P的轨迹一定通过的重心例题3 是平面上不共线的三点,为所在平面内一点,是的中点,动点满足,则点的轨迹一定过____心(内心、外心、垂心或重心).【解析】∵动点P满足[(2﹣2λ)(1+2λ)](λ∈R),且,∴P、C、D三点共线,又D是AB的中点,∴CD为中线,∴点P的轨迹一定过△ABC的重心.故答案为重心.(三)三角形的外心例题4 已知点为外接圆的圆心,且,则的内角等于() A.B.C.D.【解析】因为,所以点为的重心,延长交于,则为的中点,又为外接圆的圆心,所以,则,同理可得,为等边三角形,,故选B.练习1.已知,点,为所在平面内的点,且,,,则点为的( )A.内心B.外心C.重心D.垂心【解析】因为,所以,即又因为,所以,即所以,即所以,所以,同理,所以为的外心,选B练习2.在中,设,则动点M的轨迹必通过的()A.垂心B.内心C.重心D.外心【解析】设为中点,则为的垂直平分线轨迹必过的外心,选练习3.是锐角的外接圆圆心,是最大角,若,则的取值范围为_______ 【解析】设是中点,根据垂径定理可知,依题意,即,利用正弦定理化简得.由于,所以,即.由于是锐角三角形的最大角,故,故.练习4.已知O是△ABC外接圆的圆心,AB=6,AC=15,=+,2+3=1,则cos∠BAC=______.【解析】如图所示,过O点分别作OD⊥AB,OE⊥AC,垂足分别为D,E.则AD=DB,AE=EC.则,则因为=+,所以,即18=36x+90y cos A,=90x cos A+225y,又2x+3y=1,联立解得cos A=(四)三角形的垂心例题5 点P为所在平面内的动点,满足,,则点P的轨迹通过的A.外心B.重心C.垂心D.内心【解析】处理原式得到故所在的直线与三角形的高重合,故经过垂心,故选C。

高考数学专题平面向量与三角形的四心(含解析)

高考数学专题平面向量与三角形的四心(含解析)

2023届高考专题——平面向量与三角形的“四心”一、三角形的“四心”(1)重心:三角形的三条中线的交点;O 是△ABC 的重心⇔OA →+OB →+OC →=0;(2)垂心:三角形的三条高线的交点;O 是△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →;(3)外心:三角形的三条边的垂直平分线的交点(三角形外接圆的圆心).O 是△ABC 的外心⇔|OA →|=|OB →|=|OC →|(或OA →2=OB →2=OC →2);(4)内心:三角形的三个内角角平分线的交点(三角形内切圆的圆心);O 是△ABC 的内心⇔OA →·⎝ ⎛⎭⎪⎪⎫AB →|AB →|-AC →|AC →|=OB →·⎝ ⎛⎭⎪⎪⎫BA →|BA →|-BC →|BC →|=OC →·⎝ ⎛⎭⎪⎪⎫CA →|CA →|-CB →|CB →|=0. 注意:向量λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|(λ≠0)所在直线过△ABC 的内心(是∠BAC 的角平分线所在直线).类型一 平面向量与三角形的“重心”问题例1 已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过( C )A .△ABC 的内心B .△ABC 的垂心 C .△ABC 的重心D .AB 边的中点 [解析] 取AB 的中点D ,则2OD →=OA →+OB →,∵OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →], ∴OP →=13[2(1-λ)OD →+(1+2λ)OC →] =21-λ3OD →+1+2λ3OC →, 而21-λ3+1+2λ3=1,∴P ,C ,D 三点共线, ∴点P 的轨迹一定经过△ABC 的重心.类型二 平面向量与三角形的“外心”问题例2 设P 是△ABC 所在平面内一点,若AB →·(CB →+CA →)=2AB →·CP →,且AB →2=AC →2-2BC →·AP →,则点P 是△ABC 的( A )A .外心B .内心C .重心D .垂心[解析] 由AB →·(CB →+CA →)=2AB →·CP →,得AB →·(CB →+CA →-2CP →)=0,即AB →·[(CB →-CP →)+(CA →-CP →)]=0,所以AB →·(PB →+PA →)=0.设D 为AB 的中点,则AB →·2PD →=0,故AB →·PD →=0.由AB →2=AC →2-2BC →·AP →,得(AB →+AC →)·(AB →-AC →)=-2BC →·AP →,即(AB →+AC →-2AP →)·BC →=0.设E 为BC 的中点,则(2AE →-2AP →)·BC →=0,则2PE →·BC →=0,故BC →·PE →=0.所以P 为AB 与BC 的垂直平分线的交点,所以P 是△ABC 的外心.故选A .跟踪练习在△ABC 中,O 为其外心,OA ―→·OC ―→=3,且 3 OA ―→+7OB ―→+OC ―→=0,则边AC 的长是________.[解析] 设△ABC 外接圆的半径为R ,∵O 为△ABC 的外心,∴|OA ―→|=|OB ―→|=|OC ―→|=R ,又 3 OA ―→ +7 OB ―→+OC ―→=0,则 3 OA ―→+OC ―→=-7OB ―→,∴3OA ―→2+OC ―→2+2 3OA ―→·OC ―→=7OB ―→2,从而OA ―→·OC ―→=32R 2,又OA ―→·OC ―→=3,所以R 2=2,又OA ―→·OC ―→=|OA ―→||OC ―→|cos ∠AOC =R 2cos ∠AOC =3,∴cos ∠AOC =32,∴∠AOC =π6,在△AOC 中,由余弦定理得AC 2=OA 2+OC 2-2OA ·OC ·cos∠AOC =R 2+R 2-2R 2×32=(2-3)R 2=4-23.所以AC =3-1. 类型三 平面向量与三角形的“垂心”问题例3 (2022·济南质检)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,点P 满足OP ―→=OA ―→+λ⎝⎛⎭⎪⎪⎫AB―→|AB ―→|cos B +|AC ―→||AC ―→|cos C ,则动点P 的轨迹一定通过△ABC 的( )A .重心B .外心C .垂心D .内心 [解析] OP ―→-OA ―→=λ⎝ ⎛⎭⎪⎪⎫AB ―→|AB ―→|cos B +AC ―→|AC ―→|cos C ,AP ―→=λ⎝ ⎛⎭⎪⎪⎫AB ―→|AB ―→|cos B +AC ―→|AC ―→|cos C ,BC ―→·AP ―→=λ⎝ ⎛⎭⎪⎪⎫BC ―→·AB ―→|AB ―→|cos B +BC ―→·AC ―→|AC ―→|cos C =λ⎝⎛⎭⎪⎪⎫|BC ―→||AB ―→|cos π-B |AB ―→|cos B +|BC ―→||AC ―→|cos C |AC ―→|cos C =λ(-|BC ―→|+|BC ―→|)=0,所以BC ―→⊥AP ―→,动点P 在BC 的高线上,动点P 的轨迹一定通过△ABC 的垂心,故选C .类型四 平面向量与三角形的“内心”问题例4 在△ABC 中,|AB →|=3,|AC →|=2,AD →=12AB →+34AC →,则直线AD 通过△ABC 的( D ) A .重心B .外心C .垂心D .内心[解析] ∵|AB →|=3,|AC →|=2,∴12|AB →|=34|AC →|=32.设AE →=12AB →,AF →=34AC →,则|AE →|=|AF →|.∵AD →=12AB →+34AC →=AE →+AF →,∴AD 平分∠EAF , ∴AD 平分∠BAC ,∴直线AD 通过△ABC 的内心.跟踪练习(2022·海南模拟)在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP ―→=x OB ―→+y OC ―→,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( )A .1063B .1463C .4 3D .6 2 [解析] 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 的面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则12bc sin A =12(a +b +c )r ,解得r =263,所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463. 二、三角形形状的判断在△ABC 中,①若|AB →|=|AC →|,则△ABC 为等腰三角形;②若AB →·AC →=0,则△ABC 为直角三角形;③若AB →·AC →<0,则△ABC 为钝角三角形;④若AB →·AC →>0,BA →·BC →>0,且CA →·CB →>0,则△ABC 为锐角三角形;⑤若|AB →+AC →|=|AB →-AC →|,则△ABC 为直角三角形;⑥若(AB →+AC →)·BC →=0,则△ABC 为等腰三角形.例5 (2022·驻马店质检)若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( C )A .正三角形B .直角三角形C .等腰三角形D .等腰直角三角形 [解析] 由题意知CB →·(AB →+AC →)=0.所以(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|,所以△ABC 是等腰三角形,故选C .〔变式训练4〕(1)若P 为△ABC 所在平面内一点.①若(OP →-OA →)·(AB →-AC →)=0,则动点P 的轨迹必过△ABC 的垂心.②若OP →=OA →+λ(AB →+AC →)(λ≥0),则动点P 的轨迹必过△ABC 的重心.③若CA →2=CB →2-2AB →·CP →,则动点P 的轨迹必过△ABC 的外心.(2)已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0且AB →|AB →|·AC →|AC →|=12,则△ABC 为( D )A .三边均不相等的三角形B .直角三角形C .等腰非等边三角形D .等边三角形[解析] (1)①由题意知AP →·CB →=0,∴AP ⊥BC ,∴动点P 必过△ABC 的垂心;②由题意知AP →=λ(AB →+AC →)=2λAM →(M 为BC 中点)∴P 、A 、M 共线,∴P 必过△ABC 的重心;③2AB →·CP →=CB →2-CA →2=(CB →-CA →)·(CB →+CA →)=AB →·(CB →+CA →),即2AB →·CP →=AB →·(CB →+CA →),∴AB →·(2CP →-CB →-CA →)=AB →·(BP →+AP →)=0.∴以BP →,AP →为邻边的平行四边形的对角线互相垂直.∴点P 在线段AB 的中垂线上,∴P 必过△ABC 的外心.(2)因为非零向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC .又cos ∠BAC =AB →|AB →|·AC →|AC →|=12,所以∠BAC =π3.所以△ABC 为等边三角形.故选D .。

平面向量四心问题

平面向量四心问题

三角形“四心”向量形式的充要条件及其应用1.三角形的“四心”定理的平面几何证明①三角形三边的中垂线交于一点,这一点为三角形外接圆的圆心,称外心。

证明: 设AB 、BC 的中垂线交于点O , 则有OA=OB=OC , 故O 也在AC 的中垂线上,因为O 到三顶点的距离相等, 故点O 是ΔABC 外接圆的圆心. 因而称为外心.②三角形三边上的高交于一点,这一点叫三角形的垂心。

证明: AD 、BE 、CF 为ΔABC 三条高,过点A 、B 、C 分别作对边的平行线,相交成ΔA ′B ′C ′,AD 为B ′C ′的中垂线;同理BE 、CF 也分别为 A ′C ′、A ′B ′的中垂线, 由外心定理,它们交于一点, 命题得证.③三角形三边中线交于一点,这一点叫三角形的重心。

设中线BE,CF 交于点(G 证明,连同一法):结EF, 则EF//BC,且EF:BC=FG:GC=EG:GB=1:2.' 同理中线AD,BE 交于G ,连结DE,则:'''''DE//AB,且EG :G B=DG :G A=DE:AB=1:2,故G,G 重合.④三角形三内角平分线交于一点,这一点为三角形内切圆的圆心,称内心。

证明 : 设∠A 、∠C 的平分线相交于I,过I 作ID ⊥BC ,IE ⊥AC , IF ⊥AB ,则有IE=IF=ID .因此I 也在∠C 的平分线上,即三角形三内角平分线交于一点.2.三角形的“四心” 定理的平面向量表达式及其证明①O 是123PP P ∆的重心⇔1230OP OP OP ++=(其中,,a b c 是123PP P ∆三边) 证明:充分性1230OP OP OP ++=⇒O 是123PP P ∆的重心 若1230OP OP OP ++=,则123OP OP OP +=-,以1OP ,2OP为邻边作P 12PP 3OP平行四边形132'O P P P ,设/3OP 与12P P 交于点P ,则P 为12P P 的中点,有'123OP OP OP +=,得'33OP OP =-,即'33,,,O PP P 四点共线,故3P P 为123PP P ∆的中线,同理,12,PO P O 亦为123PP P ∆的中线,所以,O 为的重心。

妙用三角形“四心”的性质解答向量问题

妙用三角形“四心”的性质解答向量问题

四、妙用三角形垂心的性质
三角形的垂心是三角形三条边上的高的交点.其
性质有:(1)若 O、H 分别为 △ABC 的外心和垂心,则
O∠AB∙AOOB==∠OHB∙AOCC,=∠OACB∙OHA=.∠在O解BC答,向∠量BC问O题= ∠时H,C可A ;以(根2)
据三角形垂心的定义推断出垂心的位置,也可以通过 关 系 式 OA∙OB = OB∙OC = OC∙OA 来 判 定 三 角 形 的 垂
意确定三角形的外心,然后根据题意明确外心与三角
形三个顶点、三个角之间的关系,灵活运用三角形外
心的性质来解题.

例 2. 线的
已知 O 是平 三 点. 若 动
面内一点 点P满
,A,B,C 是平 足 OP = OB
面内不
+ 2
O C
+
| | | | æ
λçç è
ABAcBos B +
ACAcCos
C
ö ÷ ÷ ø
三角形边的AB距C离的相外等心,,则都等aO于A 内+ b切OB圆 +的cO半C径= 0;(;(3)4)若∠OBO为C三=
90°+

A 2
,∠BOA
=90°+

C 2
,∠AOC
=90°+

B 2
.在解
答向量问题时,需根据三角形内心的定义确定内心的
位置及其与三条角平分线之间的关系,便可根据三角
形内心的性质来解题.
,λμ A=P45=.m
AD


AD
=
λ m
AB
+
μ m
AC

平面向量与三角形的四心(解析版)

平面向量与三角形的四心(解析版)

专题十 平面向量与三角形的四心三角形四心的向量式三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为△ABC 的重心⇔OA →+OB →+OC →=0.(2)O 为△ABC 的外心⇔|OA →|=|OB →|=|OC →|=a 2sin A⇔sin 2A ·OA →+sin 2B ·OB →+sin 2C ·OC →=0. (3)O 为△ABC 的内心⇔aOA →+bOB →+cOC →=0⇔ sin A ·OA →+sin B ·OB →+sin C ·OC →=0.(4)O 为△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →⇔ tan A ·OA →+tan B ·OB →+tan C ·OC →=0.关于四心的概念及性质:(1)重心:三角形的重心是三角形三条中线的交点.性质:①重心到顶点的距离与重心到对边中点的距离之比为2∶1.②重心和三角形3个顶点组成的3个三角形面积相等.③在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数.即G 为△ABC 的重心,A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则G ⎝⎛⎭⎫x 1+x 2+x 33,y 1+y 2+y 33.④重心到三角形3个顶点距离的平方和最小.(2)垂心:三角形的垂心是三角形三边上的高的交点.性质:锐角三角形的垂心在三角形内,直角三角形的垂心在直角顶点上,钝角三角形的垂心在三角形外.(3)内心:三角形的内心是三角形三条内角平分线的交点(或内切圆的圆心).性质:①三角形的内心到三边的距离相等,都等于内切圆半径r . ②2=S r a b c ++,特别地,在Rt △ABC 中,∠C =90°,=2a b c r +-. (4)外心:三角形三边的垂直平分线的交点(或三角形外接圆的圆心).性质:外心到三角形各顶点的距离相等.考点一 三角形四心的判断【例题选讲】[例1] (1) 已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过( )A .△ABC 的内心B .△ABC 的垂心 C .△ABC 的重心D .AB 边的中点答案 C 解析 取AB 的中点D ,则2OD →=OA →+OB →,∵OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →],∴OP →=13[2(1-λ)OD →+(1+2λ)OC →]=2(1-λ)3OD →+1+2λ3OC →,而2(1-λ)3+1+2λ3=1,∴P ,C ,D 三点共线,∴点P 的轨迹一定经过△ABC 的重心.(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________.答案 内心 解析 由条件,得OP →-OA →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,即AP →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.(3)在△ABC 中,设AC →2-AB →2=2AM →·BC →,那么动点M 的轨迹必经过△ABC 的( )A .垂心B .内心C .外心D .重心答案 C 解析 设BC 边中点为D ,∵AC →2-AB →2=2 AM →·BC →,∴(AC →+AB →)·(AC →-AB →)=2 AM →·BC →,即AD →·BC →=AM →·BC →,∴MD →·BC →=0,则MD →⊥BC →,即MD ⊥BC ,∴MD 为BC 的垂直平分线,∴动点M 的轨迹必经过△ABC 的外心,故选C .(4)已知O 是平面上的一个定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|cos B+AC →|AC →|cos C),λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A .重心 B .垂心 C .外心 D .内心答案 B 解析 因为OP →=OA →+λ(AB →|AB →|cos B +AC →|AC →|cos C ),所以AP →=OP →-OA →=λ(AB →|AB →|cos B +AC →|AC →|cos C),所以BC →·AP →=BC →·λ(AB →|AB →|cos B +AC →|AC →|cos C)=λ(-|BC →|+|BC →|)=0,所以BC →⊥AP →,所以点P 在BC 的高线上,即动点P 的轨迹一定通过△ABC 的垂心.(5)已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,O 为ABC ∆内一点,若分别满足下列四个条件:①aOA bOB cOC ++=0,②tan tan tan A OA B OB C OC ⋅+⋅+⋅=0,③sin 2sin 2sin 2A OA B OB C OC ⋅+⋅+⋅=0,④OA OB OC ++=0则点O 分别为ABC ∆的( )A .外心、内心、垂心、重心B .内心、外心、垂心、重心C .垂心、内心、重心、外心D .内心、垂心、外心、重心答案 D(6)下列叙述正确的是________. ①1()3PG PA PB PC G =++⇔为ABC ∆的重心. ②PA PB PB PC PC PA P ⋅=⋅=⋅⇔为ABC ∆的垂心.③||||||0AB PC BC PA CA PB P ++=⇔为ABC ∆的外心.④()()()0OA OB AB OB OC BC OC OA CA O +⋅=+⋅=+⋅=⇔为ABC ∆的内心.答案 ①② 解析 ①G 为ABC ∆的重心⇔GA GB GC ++=0⇔PA PG PB PG PC PG -+-+-=0⇔1()3PG PA PB PC =++,①正确;②由PA PB PB PC ⋅=⋅⇔()0PA PC PB -⋅=⇔0CA PB AC ⋅=⇔⊥PB ,同理AB PC ⊥,BC PA ⊥,②正确;③||||||AB PC BC PA CA PB ++=0⇔||||()AB PC BC PC CA ++||()CA PC CB ++=0(||||||)||||AB BC CA PC BC CA CA CB ⇔++++=0.||||||||BC CA CA CB =,∴ ||BC CA ||CA CB +与角C 的平分线平行,P ∴必然落在角C 的角平分线上,③错误;④()OA OB AB +⋅=(OB 222)()0||||||OC BC OC OA CA OA OB OC OA OB OC O +⋅=+⋅=⇔==⇔==⇔为ABC ∆的外心,④错误.∴正确的叙述是①②.故答案为:①②.【对点训练】1.已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( )A .内心B .外心C .重心D .垂心1.答案 C 解析 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心.2.O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足2OB OC OP AP λ+=+,且1λ≠,则点P 的轨迹一定通过ABC ∆的( )A .内心B .外心C .重心D .垂心2.答案 C 解析 设BC 的中点为M .由已知原式可化为2PA OB OP OC OP λ=-+-.即2PA PB λ= 2PC PM +=,所以PM PA λ=,所以P ,A ,M 三点共线.所以P 点在边BC 的中线AM 上.故P 点 的轨迹一定过ABC ∆的重心.3.已知O 是△ABC 所在平面上的一定点,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB |sin B +AC →|AC |sin C ,λ∈(0,+∞), 则点P 的轨迹一定通过△ABC 的( )A .内心B .外心C .重心D .垂心3.答案 C 解析 ∵|AB |sin B =|AC |sin C ,设它们等于t ,∴OP →=OA →+λ·1t(AB →+AC →),设BC 的中点为D , 则AB →+AC →=2AD →,λ·1t(AB →+AC →)表示与AD →共线的向量AP →,而点D 是BC 的中点,即AD 是△ABC 的中线,∴点P 的轨迹一定通过三角形的重心.故选C .4.O 为ABC ∆所在平面内一点,A ,B ,C 为ABC ∆的角,若sin sin sin A OA B OB C OC O ⋅+⋅+⋅=,则点O 为ABC ∆的( )A .垂心B .外心C .内心D .重心4.答案 C 解析 由正弦定理得2sin 2sin 2sin 0R AOA R BOB R COC ++=,即0aOA bOB cOC ++=, 由上式可得()()cOC aOA bOB a OC CA b OC CB =--=-+-+,所以()a b c OC aCA bCB ++=--=ab - ()||||CA CB CA CB +,所以OC 与C ∠的平分线共线,即O 在C ∠的平分线上,同理可证,O 也在A ∠,B ∠的 平分线上,故O 是ABC ∆的内心.5.在ABC ∆中,3AB =,2AC =,1324AD AB AC =+,则直线AD 通过ABC ∆的( ) A .垂心 B .外心 C .内心 D .重心 5.答案 C 解析3AB =,2AC =,13||22AB ∴=,33||42AC =.即133||||242AB AC ==,设12AE AB =, 34AF AC =,则||||AE AF =,∴1324AD AB AC AE AF =+=+.由向量加法的平行四边形法则可知,四边形AEDF 为菱形.AD ∴为菱形的对角线,AD ∴平分EAF ∠.∴直线AD 通过ABC ∆的内心.故选C . 6.已知ABC ∆所在的平面上的动点M 满足||||AP AB AC AC AB =+,则直线AP 一定经过ABC ∆的( )A .重心B .外心C .内心D .垂心6.答案 C 解析||||AP AB AC AC AB =+∴11||||()||||AP AB AC AC AB AC AB =+,∴根据平行四边 形法则知11||||AC AB AC AB +表示的向量在三角形角A 的平分线上,而向量AP 与11||||AC AB AC AB +共线,P ∴点的轨迹过ABC ∆的内心,故选C .7.设ABC ∆的角A 、B 、C 的对边长分别为a ,b ,c ,P 是ABC ∆所在平面上的一点,c PA PB PA PC b⋅=⋅ +22b c c a c PA PB PC PB b a a--=⋅+,则点P 是ABC ∆的( ) A .重心 B .外心 C .内心 D .垂心7.答案 C 解析 因为22c b c c a c PA PB PA PC PA PB PC PB b b a a--⋅=⋅+=⋅+,所以2PA PB PA ⋅-= ()c PA PC PA b ⋅-,2()c PA PB PB PB PC PB a ⋅-=⋅-,所以c PA AB PA AC b ⋅=⋅,c BA PB PB BC a⋅=⋅,所以||cos ||cos c PA c PAB PA b PAC b ⋅∠=∠,||cos ||cos c PB c PBA PB a PBC a⋅∠=∠,所以PAB PAC ∠=∠,PBA PBC ∠=∠,所以AP 是BAC ∠的平分线,BP 是ABC ∠的平分线,所以点P 是ABC ∆的内心,故选C .8.已知O 是ABC △所在平面上一点,若222OA OB OC ==,则O 是ABC △的( ).A .重点B .外心C .内心D .垂心8.答案 B 解析9.P 是△ABC 所在平面内一点,若P A →·PB →=PB →·PC →=PC →·P A →,则P 是△ABC 的( )A .外心B .内心C .重心D .垂心9.答案 D 解析 由P A →·PB →=PB →·PC →,可得PB →·(P A →-PC →)=0,即PB →·CA →=0,∴PB →⊥CA →,同理可证PC →⊥AB →,P A →⊥BC →.∴P 是△ABC 的垂心.10.若H 为ABC △所在平面内一点,且222222HA BC HB CA HC AB +=+=+则点H 是ABC △的( )A .外心B .内心C .重心D .垂心10.答案 D 解析11.已知O 是ABC ∆所在平面内一点,且满足22||||BA OA BC AB OB AC ⋅+=⋅+,则点(O )A .在AB 边的高所在的直线上 B .在C ∠平分线所在的直线上C .在AB 边的中线所在的直线上D .是ABC ∆的外心11.答案 A 解析 取AB 的中点D ,则22||||BA OA BC AB OB AC ⋅+=⋅+,∴2()||BA OA OB BC ⋅+=-+2||AC ,∴2(2)BA OD AB CD ⋅=⋅-,∴20BA OC =,∴BA OC ⊥,∴点O 在AB 边的高所在的直线上,故选A .12.已知O 为ABC ∆所在平面内一点,且满足222222OA BC OB CA OC AB +=+=+,则O 点的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心12.答案 D 解析BC OC OB =-,CA OA OC =-、AB OB OA =-,∴由22222OA BC OB CA OC +=+=2AB +,得222222()()()OA OC OB OB OA OC OC OB OA +-=+-=+-,∴OB OC OA OC OA OB ⋅=⋅=⋅, 即()()()OC OB OA OA OC OB OB OC OA ⋅-=⋅-=⋅-,∴OC AB OA BC OB AC ⋅=⋅=⋅,则OC AB ⊥, OA BC ⊥,OB AC ⊥.O ∴是ABC ∆的垂心.故选D . 13.已知O ,N ,P 在所在ABC ∆的平面内,且||||||, OA OB OC NA NB NC ==++=0,且PA PB ⋅=PB PC ⋅=PA PC ⋅,则O ,N ,P 分别是ABC ∆的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心13.答案 C14.点O 是平面上一定点,A 、B 、C 是平面上ABC ∆的三个顶点,以下命题正确的是________.(把你认为正确的序号全部写上).①②③④⑤①动点P 满足OP OA PB PC =++,则ABC ∆的重心一定在满足条件的P 点集合中;②动点P 满足()(0)||||AB AC OP OA AB AC λλ=++>,则ABC ∆的内心一定在满足条件的P 点集合中; ③动点P 满足()(0)||sin ||sin AB AC OP OA AB B AC Cλλ=++>,则ABC ∆的重心一定在满足条件的P 点集合中;④动点P 满足()(0)||cos ||cos AB AC OP OA AB B AC C λλ=++>,则ABC ∆的垂心一定在满足条件的P 点集合中;⑤动点P 满足()(0)2||cos ||cos OB OC AB AC OP AB B AC C λλ+=++>,则ABC ∆的外心一定在满足条件的P 点集合中.14.答案 ①②③④⑤ 解析 对于①,动点P 满足OP OA PB PC =++,∴AP PB PC =+,则点P 是ABC ∆的心,故①正确;对于②,动点P 满足()(0)||||AB AC OP OA AB AC λλ=++>,∴(||AB AP AB λ=+ )||AC AC (0)λ>,又||||AB AC AB AC +在BAC ∠的平分线上,∴AP 与BAC ∠的平分线所在向量共线,ABC ∴∆的内心在满足条件的P 点集合中,②正确;对于③,动点P 满足()||sin ||sin AB AC OP OA AB B AC C λ=++ (0)λ>,∴()||sin ||sin AB AC AP AB B AC Cλ=+,(0)λ>,过点A 作AD BC ⊥,垂足为D ,则||sin AB B = ||sin AC C AD =,()AP AB AC AD λ=+,向量AB AC +与BC 边的中线共线,因此ABC ∆的重心一定在满足条件的P 点集合中,③正确;对于④,动点P 满足()(0)||cos ||cos AB AC OP OA AB B AC C λλ=++>, (AP λ=∴)(0)||cos ||cos AB AC AB B AC C λ+>,∴()(||||cos ||cos AB AC AP BC BC BC AB B AC Cλλ=+=- ||)0BC =,∴AP BC ⊥,ABC ∴∆的垂心一定在满足条件的P 点集合中,④正确;对于⑤,动点P 满 足OP =()(0)2||cos ||cos OB OC AB AC AB B AC C λλ+++>,设2OB OC OE +=,则(||cos AB EP AB Bλ=+ )||cos AC AC C,由④知()0||cos ||cos AB AC BC AB B AC C +=,∴0EP BC =,∴EP BC ⊥,P ∴点的轨迹为 过E 的BC 的垂线,即BC 的中垂线;ABC ∴∆的外心一定在满足条件的P 点集合,⑤正确.故正确的 命题是①②③④⑤.考点二 三角形四心的应用【例题选讲】[例2] (1)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,重心为G ,若aGA →+bGB →+33cGC →=0,则A =__________.答案 π6解析 由G 为△ABC 的重心知GA →+GB →+GC →=0,则GC →=-GA →-GB →,因此a GA →+b GB →+ 33c (-GA →-GB →)=⎝⎛⎭⎫a -33c GA →+⎝⎛⎭⎫b -33c GB →=0,又GA →,GB →不共线,所以a -33c =b -33c =0,即a =b =33c .由余弦定理得cos A =b 2+c 2-a 22bc =c 22×33c 2=32,又0<A <π,所以A =π6. (2)在△ABC 中,AB =BC =2,AC =3,设O 是△ABC 的内心.若AO →=pAB →+qAC →,则p q=________. 答案 32 解析 如图,O 为△ABC 的内心,D 为AC 中点,则O 在线段BD 上,cos ∠DAO =12||AC →||AO →=32|AO →|,根据余弦定理cos ∠BAC =4+9-42×2×3=34;由AO →=pAB →+qAC →得AO →·AB →=pAB →2+qAB →·AC →,所以||AO ,→||AB ,→cos ∠BAO =pAB →2+q ||AB →||AC →cos ∠BAC ,所以3=4p +92q ①;同理AO →·AC →=pAB →·AC →+qAC →2,所以可以得到92=92p +9q ②.①②联立可求得p =37,q =27,所以p q =32.(3)已知在△ABC 中,AB =1,BC =6,AC =2,点O 为△ABC 的外心,若AO →=xAB →+yAC →,则有序实数对(x ,y )为( )A .⎝⎛⎭⎫45,35B .⎝⎛⎭⎫35,45C .⎝⎛⎭⎫-45,35D .⎝⎛⎭⎫-35,45 答案 A 解析 取AB 的中点M 和AC 的中点N ,连接OM ,ON ,则OM →⊥AB →,ON →⊥AC →,OM →=AM→-AO →=12AB →-(xAB →+yAC →)=⎝⎛⎭⎫12-x AB →-yAC →,ON →=AN →-AO →=12AC →-(xAB →+yAC →)=⎝⎛⎭⎫12-y AC →-xAB →.由OM →⊥AB →,得⎝⎛⎭⎫12-x AB →2-yAC →·AB →=0,①,由ON →⊥AC →,得⎝⎛⎭⎫12-y AC →2-xAC →·AB →=0,②,又因为BC →2=(AC →-AB →)2=AC →2-2AC →·AB →+AB →2,所以AC →·AB →=AC →2+AB →2-BC →22=-12,③,把③代入①、②得⎩⎪⎨⎪⎧1-2x +y =0,4+x -8y =0,解得x =45,y =35.故实数对(x ,y )为⎝⎛⎭⎫45,35. (4)在△ABC 中,O 是△ABC 的垂心,点P 满足:3OP →=12OA →+12OB →+2OC →,则△ABP 的面积与△ABC 的面积之比是________.答案 23 解析 如图,设AB 的中点为M ,设12OA →+12OB →=ON →,则N 是AB 的中点,点N 与M 重合,故由3OP →=12OA →+12OB →+2OC →,可得2OP →=OM →-OP →+2OC →,即2OP →-2OC →=OM →-OP →,也即PM →=2CP →,由向量的共线定理可得C 、P 、M 共线,且MP =23MC ,所以结合图形可得△ABP 的面积与△ABC 的面积之比是23. (5)著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是ABC ∆的外心、垂心,且M 为BC 中点,则( )A .33AB AC HM MO +=+ B .33AB AC HM MO +=-C .24AB AC HM MO +=+D .24AB AC HM MO +=-答案 D 解析 如图所示的Rt ABC ∆,其中角B 为直角,则垂心H 与B 重合,O 为ABC ∆的外心,OA OC ∴=,即O 为斜边AC 的中点,又M 为BC 中点,∴2AH OM =,M 为BC 中点,∴ AB AC +22()2(2)4224AM AH HM OM HM OM HM HM MO ==+=+=+=-.故选D . A B (H )CM O【对点训练】1.在△ABC 中,O 为△ABC 的重心,AB =2,AC =3,A =60°,则AO →·AC →=________.1.答案 4 解析 设BC 边中点为D ,则AO →=23AD →,AD →=12(AB →+AC →),∴ AO →·AC →=13(AB →+AC →)·AC →=13(3×2×cos 60°+32)=4.2.设G 为△ABC 的重心,且sin A ·GA +sin B ·GB +sin C ·GC =0,则B 的大小为________.2.答案 60° 解析 ∵G 是△ABC 的重心,∴GA →+GB →+GC →=0,GA →=-(GB →+GC →),将其代入sin A ·GA →+sin B ·GB →+sin C ·GC →=0,得(sin B -sin A )GB →+(sin C -sin A )GC →=0.又GB →,GC →不共线,∴sin B -sin A =0,sin C -sin A =0,则sin B =sin A =sin C .根据正弦定理知b =a =c ,∴三角形ABC 是等边三角形,则角B =60°.秒杀 ∵G 为△ABC 的重心,∴OA →+OB →+OC →=0,又∵sin A ·GA +sin B ·GB +sin C ·GC =0,∴sin A =sin B =sin C ,∴三角形ABC 是等边三角形,则角B =60°.3.已知△ABC 的三个内角为A ,B ,C ,重心为G ,若2sin A ·GA →+3sin B ·GB →+3sin C ·GC →=0,则cos B =________.3.答案 112解析 设a ,b ,c 分别为角A ,B ,C 所对的边,由正弦定理得2a ·GA →+3b ·GB →+3c ·GC →=0, 则2a ·GA →+3b ·GB →=-3c ·GC →=-3c (-GA →-GB →),即(2a -3c ) GA →+(3b -3c ) GB →=0.又GA →,GB →不共线,所以⎩⎨⎧2a -3c =0,3b -3c =0,由此得2a =3b =3c ,所以a =32b ,c =33b ,于是由余弦定理得cos B =a 2+c 2-b 22ac =112. 秒杀 ∵G 为△ABC 的重心,∴OA →+OB →+OC →=0,又∵2sin A ·GA →+3sin B ·GB →+3sin C ·GC →=0,∴2sin A =3sin B =3sin C ,∴2a =3b =3c ,所以a =32b ,c =33b ,于是由余弦定理得cos B =a 2+c 2-b 22ac =112. 4.在△ABC 中,AB =1,∠ABC =60°,AC →·AB →=-1,若O 是△ABC 的重心,则BO →·AC →=________.4.答案 5 解析 如图所示,以B 为坐标原点,BC 所在直线为x 轴,建立平面直角坐标系.∵AB =1,∠ABC =60°,∴A ⎝⎛⎭⎫12,32.设C (a ,0).∵AC →·AB →=-1,∴⎝⎛⎭⎫a -12,-32·⎝⎛⎭⎫-12,-32= -12⎝⎛⎭⎫a -12+34=-1,解得a =4.∵O 是△ABC 的重心,延长BO 交AC 于点D ,∴BO →=23BD →=23×12(BA → +BC →)=13⎣⎡⎦⎤⎝⎛⎭⎫12,32+(4,0)=⎝⎛⎭⎫32,36.∴BO →·AC →=⎝⎛⎭⎫32,36·⎝⎛⎭⎫72,-32=5. 5.过△ABC 重心O 的直线PQ 交AC 于点P ,交BC 于点Q ,PC →=34AC →,QC →=nBC →,则n 的值为____. 5.答案 35 解析 因为O 是重心,所以OA →+OB →+OC →=0,即OA →=-OB →-OC →,PC →=34AC →⇒OC →-OP →=34(OC →-OA →)⇒OP →=34OA →+14OC →=-34OB →-12OC →,QC →=nBC →⇒OC →-OQ →=n (OC →-OB →)⇒OQ →=nOB →+(1-n ) OC →,因为P ,O ,Q 三点共线,所以OP →∥OQ →,所以-34(1-n )=-12n ,解得n =35.6.已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m ,使得AB →+AC →=mAM →成立,则m 等于( )A .2B .3C .4D .56.答案 B 解析 ∵MA →+MB →+MC →=0,∴M 为△ABC 的重心.连接AM 并延长交BC 于D ,则D 为BC 的中点.∴AM →=23AD →.又AD →=12(AB →+AC →),∴AM →=13(AB →+AC →),即AB →+AC →=3AM →,∴m =3,故选B .7.已知O 是△ABC 内一点,OA →+OB →+OC →=0,AB →·AC →=2且∠BAC =60˚,则△OBC 的面积为( )A .33B .3C .32D .237.答案 A 解析 ∵OA →+OB →+OC →=0,∴O 是△ABC 的重心,于是S △OBC =13S △ABC .∵AB →·AC →=2,∴ |AB →|·|AC →|·cos ∠BAC =2,∵∠BAC =60˚,∴|AB →|·|AC →|=4.又S △ABC =12|AB →|·|AC →|sin ∠BAC =3,∴△OBC 的面积为33,故选A . 8.已知在△ABC 中,点O 满足OA →+OB →+OC →=0,点P 是OC 上异于端点的任意一点,且OP →=mOA →+nOB →,则m +n 的取值范围是________.8.答案 (-2,0) 解析 依题意,设OP →=λOC → (0<λ<1),由OA →+OB →+OC →=0,知OC →=-(OA →+OB →),所以OP →=-λOA →-λOB →,由平面向量基本定理可知,m +n =-2λ,所以m +n ∈(-2,0).9.已知点O 为△ABC 外接圆的圆心,且OA +OB +OC =0,则△ABC 的内角A 等于( )A .30°B .60°C .90°D .120°9.答案 B 解析 由OA →+OB →+OC →=0,知点O 为△ABC 的重心,又O 为△ABC 外接圆的圆心,∴△ABC 为等边三角形,A =60°.10.已知O 是△ABC 的外心,|AB →|=4,|AC →|=2,则AO →·(AB →+AC →)=( )A .10B .9C .8D .610.答案 A 解析 作OS ⊥AB ,OT ⊥AC ∵O 为△ABC 的外接圆圆心.∴S 、T 为AB ,AC 的中点,且AS →·SO →=0,AT →·TO →=0,AO →=AS →+SO →,AO →=AT →+TO →,∴AO →·(AB →+AC →)=AO →·AB →+AO →·AC →=(AS →+SO →)·AB →+(AT→+TO →)·AC →=AS →·AB →+SO →·AB →+AT →·AC →+TO →·AC →=12AB →·AB →+12AC →·AC →=12|AB →|2+12|AC →|2=8+2=10.故选A . 优解:不妨设∠A =90°,建立如图所示平面直角坐标系.设B (4,0),C (0,2),则O 为BC 的中点O (2,1),∴AB →+AC →=2AO →,∴AO →·(AB →+AC →)=2|AO →|2=2(4+1)=10.故选A .11.若点P 是△ABC 的外心,且P A →+PB →+λPC →=0,∠ACB =120°,则实数λ的值为( )A .12B .-12C .-1D .1 11.答案 C 解析 设AB 的中点为D ,则P A →+PB →=2PD →.因为P A →+PB →+λPC →=0,所以2PD →+λPC →=0,所以向量PD →,PC →共线.又P 是△ABC 的外心,所以P A =PB ,所以PD ⊥AB ,所以CD ⊥AB .因为∠ACB =120°,所以∠APB =120°,所以四边形APBC 是菱形,从而P A →+PB →=2PD →=PC →,所以2PD →+λPC→=PC →+λPC →=0,所以λ=-1,故选C .12.△ABC 的外接圆的圆心为O ,半径为1,若OA →+AB →+OC →=0,且|OA →|=|AB →|,则CA →·CB →等于( )A .32B .3C .3D .23 12.答案 C 解析 ∵OA →+AB →+OC →=0,∴OB →=-OC →,故点O 是BC 的中点,且△ABC 为直角三角形,又△ABC 的外接圆的半径为1,|OA →|=|AB →|,∴BC =2,AB =1,CA =3,∠BCA =30°,∴CA →·CB →=|CA→||CB →|·cos 30°=3×2×32=3. 13.若△ABC 的面积为3,AB →·AC →=2,则△ABC 外接圆面积的最小值为( )A .πB .4π3C .2πD .8π313.答案 B 解析 设△ABC 内角A ,B ,C 所对的边分别为a ,b ,c .由题意可得12bc sin A =3,bc cos A =2,∴tan A =3.又A ∈(0,π),∴A =π3.∴bc cos π3=2,即bc =4.由余弦定理可得a 2=b 2+c 2-2bc cos A =b 2+c 2-bc ≥bc =4,即a ≥2.又由正弦定理得a sin A=2R (R 为△ABC 外接圆的半径),∴2R sin A =a ≥2,即3R ≥2,∴R 2≥43,∴三角形外接圆面积的最小值为4π3. 14.已知O 为锐角△ABC 的外心,|AB →|=3,|AC →|=23,若AO →=xAB →+yAC →,且9x +12y =8,记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OA →·OC →,则( )A .I 2<I 1<I 3B .I 3<I 2<I 1C .I 3<I 1<I 2D .I 2<I 3<I 114.解析:选D 如图,分别取AB ,AC 的中点,为D ,E ,并连接OD ,OE ,根据条件有OD ⊥AB ,OE⊥AC ,∴AO →·AB →=12|AB ―→|2=92,AO →·AC →=12|AC ―→|2=6,∴AO →·AB →=(xAB →+yAC →)·AB →=9x +63y ·cos ∠BAC =92,①,AO →·AC →=(xAB →+yAC →)·AC →=63x cos ∠BAC+12y =6,②,又9x +12y =8,③,∴由①②③解得cos ∠BAC =33-78.由余弦定理得,BC =9+12-2×3×23×33-78=15+3212.∴BC >AC >AB .在△ABC 中,由大边对大角得,∠BAC >∠ABC >∠ACB ,∴∠BOC >∠AOC >∠AOB ,∵|OA →|=|OB →|=|OC →|,且余弦函数在(0,π)上为减函数,∴OB →·OC →<OA →·OC →<OA →·OB →,即I 2<I 3<I 1.15.已知O 是△ABC 的外心,∠C =45°,则OC →=mOA →+nOB →(m ,n ∈R ),则m +n 的取值范围是( )A .[-2,2]B .[-2,1)C .[-2,-1]D .(1,2]15.答案 B 解析 由题意∠C =45°,所以∠AOB =90°,以OA ,OB 为x ,y 轴建立平面直角坐标系,如图,不妨设A (1,0),B (0,1),则C 在圆O 的优弧AB 上,设C (cos α,sin α),则α∈⎝⎛⎭⎫π2,2π,显然OC →=cos αOA →+sin αOB →,即m =cos α,n =sin α,m +n =cos α+sin α=2sin ⎝⎛⎭⎫α+π4,由于α∈⎝⎛⎭⎫π2,2π,所以α+π4∈⎝⎛⎭⎫3π4,9π4, sin ⎝⎛⎭⎫α+π4∈⎣⎡⎭⎫-1,22,所以m +n ∈[-2,1),故选B . 16.已知点G 是△ABC 的外心,GA →,GB →,GC →是三个单位向量,且2GA →+AB →+AC →=0,△ABC 的顶 点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,如图所示,点O 是坐标原点,则|OA →|的最大值为( )A .1B .2C .3D .416.答案 B 解析 因为点G 是△ABC 的外心,且2GA →+AB →+AC →=0,所以点G 是BC 的中点,△ABC是直角三角形,且∠BAC 是直角.又GA →,GB →,GC →是三个单位向量,所以BC =2,又△ABC 的顶点B ,C 分别在x 轴的非负半轴和y 轴的非负半轴上移动,在Rt △BOC 中,OG 是斜边BC 上的中线,则|OG |=12|BC |=1,所以点G 的轨迹是以原点为圆心、1为半径的圆弧.又|GA →|=1,所以当OA 经过BC 的中点G 时,|OA ―→|取得最大值,且最大值为2|GA →|=2.17.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点O 为△ABC 的外接圆的圆心,A =π3,且AO →=λAB →+μAC →,则λμ的最大值为________.17.答案 19解析 ∵△ABC 是锐角三角形,∴O 在△ABC 的内部,∴0<λ<1,0<μ<1.由AO →=λ(OB →-OA →)+μ(OC →-OA →),得(1-λ-μ)AO →=λOB →+μOC →,两边平方后得,(1-λ-μ)2AO →2=(λOB →+μOC →)2=λ2OB →2+μ2OC →2+2λμOB →·OC →,∵A =π3,∴∠BOC =2π3,又|AO →|=|BO →|=|CO →|.∴(1-λ-μ)2=λ2+μ2-λμ,∴1+3λμ=2(λ+μ),∵0<λ<1,0<μ<1,∴1+3λμ≥4λμ,设λμ=t ,∴3t 2-4t +1≥0,解得t ≥1(舍)或t ≤13,即λμ≤13⇒λμ≤19,∴λμ的最大值是19.18.已知P 是边长为3的等边三角形ABC 外接圆上的动点,则||P A →+PB →+2PC →的最大值为( )A .23B .33C .43D .53 18.答案 D 解析 设△ABC 的外接圆的圆心为O ,则圆的半径为332×12=3,OA →+OB →+OC →=0,故P A →+PB →+2PC →=4PO →+OC →.又||4PO →+OC →2=51+8PO →·OC →≤51+24=75,故||P A →+PB →+2PC →≤53,当PO →,OC →同向共线时取最大值.19.已知O 是锐角三角形ABC ∆的外接圆的圆心,且A θ∠=,若cos cos 2sin sin B CAB AC mAO C B+=,则m =( ) A .sin θ B .cos θ C .tan θ D .不能确定 19.答案 A 解析 设外接圆半径为R ,则:cos cos 2sin sin B C AB AC mAO C B +=可化为:cos ()sin BOB OA C⋅-+ cos ()2sin COC OA m AO B⋅-=⋅ (*).易知OA 与OB 的夹角为2C ∠,OC 与OA 的夹角为2B ∠,OA 与OA 的夹角为0,||||||OA OB OC R ===.则对(*)式左右分别与OA 作数量积,可得:cos sin B OA OB C ⋅⋅-cos sin BC 222cos cos 2sin sin C C OA OC OA OA mOA B B ⋅+⋅⋅-⋅=-.即cos sin B C⋅2R 22cos (cos21)(cos21)2sin C C R B mR B -+⋅-=-.2sin cos (2sin cos )2C B B C m ∴-+-=-,sin cos sin cos C B B C m ∴+=,即sin()B C m +=.因为sin A = sin[()]sin()B C B C π-+=+且A θ∠=,所以,sin sin m A θ==,故选A .20.在ABC ∆中,5BC =,G ,O 分别为ABC ∆的重心和外心,且5OG BC ⋅=,则ABC ∆的形状是( )A .锐角三角形B .钝角三角形C .直角三角形D .上述三种情况都有可能20.答案 B 解析 在ABC ∆中,G ,O 分别为ABC ∆的重心和外心,取BC 的中点为D ,连接AD 、OD 、GD ,如图:则OD BC ⊥,13GD AD =,OG OD DG =+,1()2AD AB AC =+,由5OG BC =,则()OD DG BC DG BC +=1()56AB AC BC =-+=,即1()()56AB AC AC AB -+-=,则2230AC AB -=-,又5BC =,则有222226||||||||||5AB AC BC AC BC =+>+,由余弦定理可得cos 0C <,即有C 为钝角.则三角形ABC 为钝角三角形.故选B .21.在ABC ∆中,3AB =,BC =2AC =,若点O 为ABC ∆的内心,则AO AC ⋅的值为( )A .2B .73C .3D .5-21.答案 D 解析3AB =,BC =2AC =由O 为ABC ∆的内心可知,AO 平分A ,设圆O 交AC与D ,由余弦定理可得4971cos 2322CAB +-∠==⨯⨯60CAB ∴∠=︒,sin CAB ∴∠=,1232ABC S ∆∴=⨯⨯=,内切圆的半径为r ,则根据内切圆的半径公式222s r a b c ===++,=,∴在三角形AOD 中,22AO r ==,∴622510AO AC ==-+, 故选D .22.设O 是△ABC 的内心,AB =c ,AC =b ,若AO →=λ1AB →+λ2AC →,则( )A .λ1λ2=b cB .λ21λ22=b cC .λ1λ2=c 2b 2D .λ21λ22=c b22.答案 A 解析 设AM →=λ1AB →,AN →=λ2AC →.因为O 是△ABC 的内心,所以AO 平分∠BAC ,所以平行四边形AMON 为菱形,且λ1>0,λ2>0,由|AM →|=|AN →|,得|λ1AB →|=|λ2AC →|,即λ1c =λ2b ,亦即λ1λ2=b c ,故选A .23.在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP →=xOB →+yOC →,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( )A .1063B .1463C .43D .6223.答案 B 解析 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 的面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则12bc sin A =12(a +b +c )r ,解得r =263,所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC=1463. 24.在△ABC 中,已知向量AB →与AC →满足⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( )A .等边三角形B .直角三角形C .等腰非等边三角形D .三边均不相等的三角形24.答案 A 解析 AB →|AB →|,AC →|AC →|分别为平行于AB →,AC →的单位向量,由平行四边形法则可知AB →|AB →|+AC →|AC →|为∠BAC 的平分线.因为⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC .又AB →|AB →|·AC→|AC →|=AB →|AB →|AC →|AC →|·cos ∠BAC =12,所以cos ∠BAC =12,又0<∠BAC <π,故∠BAC =π3,所以△ABC 为等边三角形.25.ABC ∆外接圆的圆心为O ,两条边上的高的交点为H ,()OH m OA OB OC =++,则实数m 的值( )A .12 B .2 C .1 D .3425.答案 C 解析 如图,OH AH AO =-,()OH m OA OB OC =++,∴()AH AO m OA OB OC -=++,∴(1)()AH m OA m OB OC =-++,取BC 边的中点D ,连接OD ,则OD BC ⊥,∴2OB OC OD +=,0OD BC ⋅=.又AH BC ⊥,∴0AH BC ⋅=.∴(1)2AH BC m OA BC mOD BC ⋅=-⋅+⋅,(1)m OA BC ∴-⋅ 0=,又OA BC ⋅不恒为0,∴必有10m -=,解得1m =.故选C .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量的应用——三角形四心的性质
一 知识点精讲
三角形四“心”向量形式的充要条件
设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则
(1)O 为ABC ∆的外心2
22O A O B O C ⇔== . (2)O 为ABC ∆的重心
0OA OB OC ⇔++= .
证明: 证明: (3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅
.
证明: (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=
. 证明:
二 典例解析
一、重心
1. 已知O 是平面上一定点,A
B C ,,是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++
,(0)λ∈+∞,
,则P 的轨迹一定通过ABC △的( ). A.外心 B.内心 C.重心 D.垂心
2. 已知O 是平面上一定点,A
B C ,,是平面上不共线的三个点,动点P 满足sin ||sin ||(
C
AC B
AB +
+=λ,(0)λ∈+∞,,则动点P 的轨迹一定通过
ABC △的( ).
A.外心 B.内心 C.重心 D.垂心
二、垂心
3. O 是ABC △所在平面上一点,222222||||||||||||+=+=+,O 是ABC △___
A.外心 B.内心 C.重心 D.垂心
4. 已知O 是平面上一定点,A
B C ,,是平面上不共线的三个点,动点P 满足
cos ||cos ||(
C
AC B
AB +
+=λ,(0)λ∈+∞,,则动点P 的轨迹一定通过
ABC △的( ).
A.外心 B.内心 C.重心 D.垂心
三、内心
4.(2003江苏) 已知O 是平面上一定点,A
B C ,,是平面上不共线的三个点,动点P 满足AB AC OP OA AB AC λ⎛⎫ ⎪
=++ ⎪⎝⎭
,(0)λ∈+∞,
,则动点P 的轨迹一定通过ABC △的( ). A.外心 B.内心 C.重心 D.垂心
四、外心
5. 已知O 是平面上的一定点,A
B C ,,是平面上不共线的三个点,动点P 满足2
cos cos OB OC AB AC OP AB B AC C λ⎛⎫+ ⎪=++ ⎪⎝⎭
,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的.
A.外心 B.内心 C.重心 D.垂

6. (2005湖南).设P 是△ABC 内任意一点,S △ABC 表示△ABC 的面积,λ1=
ABc
PBC
S S ∆∆, λ2=
ABC
PCA
S S ∆∆, λ3=
ABC
PAB S S ∆∆,定义),,()(321λλλ=p f ,若G 是△ABC 的重心,)61
,31,21()(=Q f ,则( )
A .点Q 在△GA
B 内 B .点Q 在△GB
C 内
C .点Q 在△GCA 内
D .点Q 与点G 重合
定理:设P 是△ABC 内任意一点,S △ABC 表示△ABC 的面积,则有
=++∆∆∆S S S PBC PAC PAB
五 判断三角形的形状及求最值 7.在△ABC 中,已知向量2
1
0(
=
=⋅+
BC AC AB 满足与,则△ABC 为( )
A .三边均不相等的三角形
B .直角三角形
C .等腰非等边三角形
D .等边三
角形
8. 在ΔABC 中,O 为中线AM 上的一个动点,若AM=2,则)(+⋅的最小值
为 .
六 轨迹问题
9.已知)0,1(),0,4(N M ,若动点(,)P x y 满足6||MN MP NP ⋅=
,求动点P 的轨迹方程.
三课堂检测:
1若O 为ABC ∆的内心,且满足()(2)0OB OC OB OC OA -⋅+-=
,则ABC ∆的形状为
( ) A.等腰三角形 B.正三角形 C.直角三角形 D.钝角三角形
2.已知ABC ∆的三个顶点,,A B C 及平面内一点P ,且PA PB PC AB ++=
,则点P 与
ABC ∆的位置关系是( ) A.P 在ABC ∆内部 B.P 在ABC ∆外部 C.P 在AB 边上或其延长线上 D.P 在AC 边上
3.平面直角坐标坐标系中,O 为坐标原点,已知两点A(3,1),B (-1,3),若点C 满足OC
=
αOA +βOB
,若中α、β∈R ,且α+β=1,则点C 的轨迹方程为( )
A 、(x -1)2
+(y -2)2
=5 B 、3x+2y -11=0 C 、2x -y=0 D 、x+2y -5=0
4.已积OB =(2,0),OC =(2,2),CA = (2cos α,2sin α),则OA 与OB 夹角的
范围是( )
A 、[0,π4]
B 、[π4,5π12]
C 、[π12,5π
12
] D

[
5π12,π
2
] 5.平面向量a =(x ,y ),b =(x 2,y 2
),c =(1,1),d =(2,2),若a ·c =b ·d =1,则这样的向量a
有A 、1个
B 、2个
C 、多于2个
D 、不存在
6.设O 为ABC ∆所在平面上一定点, P 为平面上的动点,且满足
()()0OP OA AB AC -⋅-=
,则P 点的轨迹一定通过ABC ∆的 心.
7. 已知ABC ∆的重心为G ,点O 为ABC ∆所在平面上任意一点,求证:
1()3
OG OA OB OC =++ .
8.,,a b c 为△ABC 的内角A 、B 、C 的对边,(cos ,sin )22C C m = ,(cos ,sin )22
C C
n =- ,
且m 与n 的夹角为3
π
,求C ;
9.已知A 、B 、C 是直线l 上的不同的三点,O 是外一点,向量,,OA OB OC
满足
23(1)[ln(23)]02
OA x OB x y OC -+∙-+-∙=
,记()y f x =.求函数()y f x =的解析式;。

相关文档
最新文档