同步发电机试验方法

合集下载

同步发电机参数的测量

同步发电机参数的测量

同步发电机同步发电机参数第13章三相同步发电机的参数测定所属专题:同步发电机发布时间:2014/8/2 15:54:12第13章三相同步发电机的参数测定原理简述各种电抗是定量分析同步电机性能的有用参数。

同步电机的参数主要有;(1)同步电抗等。

本次实验介绍同步发电机中最基本和常用的几个参数的测量方法。

一、同步电抗的求取如前述实验,可通过空载、稳态短路实验求出。

而利用转差率实验可以同时测出凸极式同步电机的直轴、交轴同步电抗的不饱和值。

转差率实验的作法是:把被试同步电机的励磁绕组开路,即不加励磁;原动机拖动转子以接近同步速旋转,约有左右,以避免转子被拖入同步,但其相序须保证电枢旋转磁场的转向与转子转向一致。

此时定子旋转磁场便以转差率速度切割转子。

当定子磁场轴线与转子直轴重合时,电抗达最高值,电枢电流便有最小值。

当定子磁场轴线与转子的交轴重合时,电抗达最低值,而电枢电流便有最大值。

由于线路中电压降的影响,随着电枢电流的变化,定子绕组上测得的电压也有相应的、较小幅度的变动,显然电枢电流有最小值时电压为最大,电枢电流有最大值时电压为最小。

电枢电流和端电压波动的频率正比于转差率。

由于转差率很低,电流表和电压表的指针摆动位置可以被清楚地读取,即记录出各最大电流,电压和最小电流、电压值。

设读取的数据为每相值,则每相同步电抗为:二、负序电抗研究电机不对称运行最有效的方法是对称分量法。

即把不对称的三相电压或三相电流分解为正序、负序和零序分量。

然后对各个分量分别建立方程并求解,最后迭加起来得到最后结果。

对不同相序的电流来说,同步电机的电抗也就有不同数值。

若定子电流为一稳定的对称三相电流,这时定子电流仅有正序分量,所遇到的电抗就是前述的同步电抗,其电抗的测取方法前已介绍。

故正序电抗值等于同步电抗值。

定子三相电流若不对称时则存在负序电流,由于负序电流所产生的旋转磁场与转子转向相反,此反向旋转磁场以两倍同步速度切割转子绕组(包括励磁和阻尼绕组),在其中感应一个两倍频率的交变电势。

同步发电机准同期并列实验

同步发电机准同期并列实验
打开微机继电保护测试仪中的准同期模块用于测试同期装置的动作电压、动作频率、动作角度以及进行自动准同期调整试验。(如附录图2-6所示)
(1)使用本程序,测试仪只输出电压值,不输出电流值。一般系统侧选UA,待并侧选UB,开入量端子1—8任选一个。可选【手动试验】或【自动试验】。自动准同期调整只有【自动试验】方式。
“电力系统自动化及其安全规范”课程实验报告
实验项目同步发电机准同期并列实验
实验地点
实验小组
实验时间
专业电气工程及其自动化
班级2017级1班
姓名
学号
指导老师
指导教师评语:
成绩
指导教师签字
日期
项目名称
同步发电机准同期并列实验
项目要求
1.比较手动准同期和自动准同期的调整并列过程;
2.分析合闸冲击电流的大小与哪些因素有关;
自动准同期并列,通常采用恒定超前时间原理工作,这个超前时间可按短路器的合闸时间整定。准同期控制器根据给定的允许压差和允许频差,不断地检查准同期条件是否满足,在不满足要求时闭锁合闸并且发出均压均频控制脉冲。当所有条件均满足时,在整定的超前时刻送出合闸脉冲。
二、实验步骤
(一)按原理图及接线图进行接线。
(1)电压进线图(如附录图2-1所示):;电压由母线从上到下经隔离开关,电压互感器,送入TQMa,TQMb;电压由母线从上到下送入电压互感器,然后将电压通过TQMa、TQMb送入微机机电保护仪
(2)自动准同期调整并列过程
自动准同期调整并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闸时间整定。准同期控制器根据给定的允许压差和频差,不断检查准同期条件是否满足,在不满足要求时闭锁合闸,并且发出均匀均频控制脉冲。当所有条件满足时,在整定越前时刻送出合闸脉冲

同步发电机试验方法

同步发电机试验方法

同步发电机试验方法1 基本概念同步发电机指发电机发出的电压频率f 与发电机的转速n 与发电机的磁极对数有着如下固定的关系:pf60n转/分 同步发电机按其磁极的结构又可分为隐极式和凸极式;此外,还可按其冷却方式进行分类, 常见的有全空冷、双水内冷、半水内冷、水氢氢定子水内冷、转子氢内冷、铁心氢冷等;2 发电机的绝缘定子绝缘对于用户来说,主要关心其主绝缘即对地及相间绝缘;发电机的主绝缘又大致可分为槽绝缘、端部绝缘及引线绝缘;我国高压电机的主绝缘目前主要是环氧粉云母绝缘,按其含胶量又可分为多胶体系和少胶体系;定子线圈导线与定子铁芯以及槽绝缘在结构上类似一个电容器,在电气试验中完全可以把它当作一个电容器对待;为了防止定子线棒表面电位过高在槽中产生放电,环氧粉云母绝缘的定子线棒表面涂有一层低电阻的防晕漆,或在外层包一层半导体防晕带;端部绝缘表面从槽口开始依次涂有低阻、中阻、高阻绝缘漆,防止端部电位变化梯度过大而产生电晕; 转子绝缘转子绝缘包括对地绝缘和绕组的匝间绝缘;3 发电机的绝缘试验项目 发电机常规试验项目电气部分1定子绕组的绝缘电阻、吸收比或极化指数测量 2定子绕组的直流电阻测量3定子绕组泄漏电流测量和直流耐压试验 4定子绕组交流耐压试验 5转子绕组绝缘电阻测量 6转子绕组直流电阻测量 7转子绕组交流耐压试验8发电机和励磁机的励磁回路所连接的设备不包括发电机转子和励磁机电枢的绝缘电阻测量 9发电机和励磁机的励磁回路所连接的设备不包括发电机转子和励磁机电枢的交流耐压试验 10发电机组和励磁机轴承的绝缘电阻 11灭磁电阻器或自同期电阻器的直流电阻12转子绕组的交流阻抗和功率损耗测量发电机特殊试验项目电气部分1定子铁心试验2定子槽电位测量3定子绕组端部手包绝缘施加直流电压测量4轴电压测量5定子绕组绝缘老化鉴定6空载特性试验7三相稳定短路特性试验8检查相序9温升试验4 绝缘电阻测量试验目的检查发电机绝缘是否存在受潮、脏污、机械损伤等问题;定子绝缘电阻测量测量接线如图,电机额定电压在1000V以上者采用2500V兆欧表,测量15 s和60s的绝缘电阻,并计算吸收比,如果绝缘电阻或吸收比偏小,可以增加测量10分钟的绝缘电阻,计算极化指数,对于环氧粉云母绝缘,吸收比不应小于,极化指数不应小于2;图定子绝缘电阻测量吸收比= 1分钟绝缘电阻/15秒绝缘电阻极化指数= 10分钟绝缘电阻/1分钟绝缘电阻注意事项1 为了克服电容充电电流的影响,兆欧表的短路电流应足够大,表是选择兆欧表的参考数据;如果吸收比的测量结果比较大,往往是由于兆欧表的短路电流太小造成的;表对兆欧表短路电流的要求参考值试品电容/μF 1 2 3 5测量吸收比I D/mA≥ 1 2 4 5 10测量极化指数I D/mA≥ 12测量前后应将被测量的绕组三相短路对地放电5分钟以上;如果由于意外的原因造成测量中断,应该重新充分放电后再进行测量;如果放电不充分,对同一相重复测量的结果是绝缘电阻值偏大,而换相时,由于残余极化电势与兆欧表的电势方向一致,会出现一个极化电荷先释放再极化的过程,造成后面测量的两相绝缘电阻偏小的假像,如图所示;图绕组相间电容对绝缘电阻测量的影响3当测量结果不合格时,应首先排除穿墙套管、支柱瓷瓶的影响,如用干净的布进行擦拭,或在套管上用软铜线绕一个屏蔽电极,接于兆欧表的屏蔽端子上;如图所示;图对套管泄漏电流进行屏蔽的接线4如果绝缘电阻和吸收比都很小,说明绝缘有受潮的可能,应对绕组进行烘干处理;对大型电机可采用三相稳定短路的方式升流烘干或采用直流电流进行升温烘干,水内冷机组可通热水烘干,中小型电机可用电热元件、大功率白炽灯或机组自带的加热元件进行烘干;转子绝缘电阻测量1使用1000V兆欧表进行测量,转子水内冷的电机用500V兆欧表测量;2测量绕组滑环对转子本体大轴的绝缘电阻;3不测量吸收比;轴承座绝缘电阻测量测量目的:由于发电机磁通不对称会在大轴上产生轴电压,为了防止轴电压与轴承间的环流烧坏轴瓦,通常将励磁机侧的轴承与地绝缘;典型的汽轮发电机轴承绝缘结构如图所示,检查轴承绝缘时用1000V兆欧表测量金属垫片对地的绝缘电阻;有些汽轮发电机采用轴瓦绝缘的方式,每块轴瓦引出一个测点,应检查每个轴瓦的绝缘电阻,有些汽轮发电机没有引出轴瓦的测量点,只能在安装过程进行检查;水轮发电机的的推力轴承、导轴承在每块推力瓦下垫有绝缘垫,应在安装过程检查每块轴瓦的绝缘电阻,在轴承充油前每块轴瓦的绝缘电阻不应低于100MΩ;当轴承绝缘不合格时,除了检查绝缘垫,还应注意检查与轴承相连接的部件如温度、振动传感器、油管等的绝缘是否正常;图汽轮发电机典型的轴承绝缘结构励磁机的励磁回路所连接的设备不包括发电机转子和励磁机电枢的绝缘电阻测量1小修时用1000V兆欧表,大修时用2500V兆欧表;2如果励磁回路中有半导体电子元件时,测量前应退出这些元件或将这些元件短路,避免这些元件在测量中击穿;5 直流电阻测量测量目的:检查绕组导体是否存在断股、断裂、开焊或虚焊等问题;测量发电机定子或转子绕组的直流电阻、灭磁电阻不包括非线性灭磁电阻等可以采用双臂电桥、电压电流法直流、直流电阻测试仪等;目前多数是采用直流电阻测试仪进行测量;测量要点:1测量前应在定子绕组或转子绕组不同部位放置三支以上的温度计,取平均值作为绕组的温度;2如果仪器的电流端子和电压端子分开时,应将电压端子夹在电流端子的内侧,避免电流端子的接触压降影响测量的准确度,如图所示;图 直流电阻测量接线图3测量结果换算到75℃时的数值,并与历年试验数据进行比较;铜导体换算公式如下: tR R t++=2357523575 式中,R 75:换算至75℃时的电阻;R t :温度为t ℃时测量的电阻值;t :测量时的温度;6 直流耐压试验及泄漏电流测量 直流耐压试验的特点1对检出绕组端部绝缘缺陷有较高灵敏度在交流电压下和直流电压下电机端部绝缘的电压分布如图所示;在交流电压下电压的分布与电容有关,由于电机绝缘的介电系数比空气大,而且端部绕组距离铁心远,所以绝缘层的电容C i 比绝缘表面到铁心的电容C g 大得多,绝缘层的容抗比绝缘表面对地的容抗小得多,所以绕组端部绝缘层中的交流电压降U Ci 要比绝缘层表面对地的电压降U Cg 小得多,不容易检查出端部绝缘的缺陷;而直流电压的分布与绝缘电阻成正比,端部表面的绝缘在制造时从槽口向外依次喷涂低阻、中阻、高阻绝缘漆,所以端部绝缘层的绝缘电阻R i 比绝缘表面电阻R g 大得多,绝缘层上的电压降U Ri 很大,表面电位U Rg 较低,对检出端部绝缘层的缺陷有较高的灵敏度;由于交流耐压时绕组端部绝缘表面电压较高,所以交流耐压时端部电晕较大,而直流耐压时端部绝缘表面电压较低,一般不容易看到电晕;图 在交流电压和直流电压下绕组端部绝缘的电压分布2对绝缘的破坏性较小直流耐压试验设备输出的功率一般都很小,对试品的破坏性也很小,而且不会象交流耐压试验那样对绝缘的破坏存在累积效应;在进行耐压试验时首先进行直流耐压试验,还可以通过监测直流泄漏电流的大小和变化了解绝缘是否存在局部缺陷或受潮等可以处理的问题,减少在交流耐压时绝缘击穿的可能性;直流耐压试验电压的确定发电机绝缘在进行直流耐压和交流耐压试验时,它们的击穿电压值是不一样的;如果以U DB代表直流击穿电压,以U AB代表交流击穿电压,它们的比值K通常称为巩固系数,即:K = U DB/U AB大量的试验统计数据说明,对新绝缘来说K值在~的范围内,平均值为左右,绝缘无损伤时K值最大,随着绝缘损伤深度的增加K值成比例地减小;随着绝缘的运行小时增加,K值也会随着减小;也就是说,在大多数情况下要击穿同一个绝缘缺陷,所施加的直流电压要比交流电压高得多;根据我国的实际经验,K的取值为~,并据此制定出交流耐压与直流耐压的标准;以额定电压为6kV~24kV的电机为例,按我国现行的交接和预防性试验标准,在进行定子绕组直流耐压和交流耐压试验时,K值在~之间;如果交流耐压值为U N为发电机额定电压,直流耐压值应为:×~U N = ~U N平均值约为U N,现发现有些电厂在进行的交流耐压前随意将直流耐压的数值降为,显然对后续的交流耐压是比较危险的,是不可取的做法;试验方法一般电机可以使用直流发生器进行试验,试验接线见图图发电机直流耐压试验接线1 在正式试验前应进行一次空升试验,即甩开被试验绕组按每级分阶段升一次电压,记录各阶段的泄漏电流,一方面可以检查试验设备和接线是否正常,另一方面可以测量试验设备本身的泄漏电流,以便于在正式试验时将所测量的泄漏电流减去空升时的泄漏电流;2 正式试验;试验电压按每级分阶段升高,每阶段停留1分钟,记录1分钟时的泄漏电流;3 试验前应将绕组短路接地放电,试验后应首先将被试绕组通过放电棒放电,待电压降到一定数值后比如1000V以下才能将被试绕组直接接地放电;4 在试验中应注意观察泄漏电流的变化,如果发现泄漏电流摆动或急剧增加,应停止试验,待查明原因后方可继续试验;5 对于电压较高的电机,在试验中应采取必要的措施防止电晕过大造成泄漏电流不正常;一般的措施有增加高压端与地端的距离,如果距离不够可增加绝缘隔板,避免接线中存在尖端放电等等;6 对于氢冷发电机禁止在氢气置换过程中进行试验;7 高压试验应遵守相关的安全工作规定;7 交流耐压试验 常规试验方法由于发电机试验时电容电流通常都比较大,限流电阻和保护电阻的选择应根据实际情况选择,应保证被试品击穿时过流保护能可靠动作并有足够大的功率,通常是水电阻,可添加食盐调节水的电阻;图 常规交流耐压试验接线限流电阻:由于电流较大,阻值越大,压降越大,损耗也越大,阻值应小于试品的容抗,而且要有足够大的热容量,通常采用水电阻;铜球保护电阻:为了保证铜球击穿后过流保护装置能够动作,应满足U T / 阻值≥动作电流;CX C ω=1Ω T CTCU X U I ω==A 式中,C :绕组对地及相间电容F ;Xc :容抗Ω;ω:角频率,ω = 2πf,对于工频,f = 50 Hz,ω = 314 串联谐振交流耐压试验 7.2.1 试验接线图 变频式串联谐振法交流耐压试验接线7.2.2 谐振条件I L =I C =I X L =X C U L =-U C 式中:X L =ωL由于谐振的条件是X L =X C ,即:ωL=1/ωC,整理后可得谐振条件为:LCf π=21从上式可知,通过调整电感L 或电容C 或调整频率f,都可以使试验回路达到谐振的状态;目前电子调频技术已经相当成孰,而且调频试验装置小巧轻便,已经得到广泛的应用; 7.2.3 试验回路的Q 值品质因数电感线圈的品质因数Q L 等于线圈的感抗X L 与损耗电阻R L 的比值:LL L R X Q =但在发电机试验回路中,除了线圈的损耗电阻,还存在绕组的绝缘损耗,对水内冷发电机,还存在水电阻引起的损耗;考虑电机绕组损耗后回路的等效Q 值为:δ+=tan 11LQ Q国产空冷发电机整相绕组绝缘损耗通常为~左右,水内冷绕组充水时总损耗可达~,将这些数据以及Q L ≈30代入上式,可得试验回路的等效Q 值为:国产空冷发电机试验: Q≈10~16 国产水内冷发电机试验:Q≈6~10对于串联谐振,Q 值也等于试验电压与励磁变输出电压的比值,Q 值越大,励磁电压越小,所需要的试验电源功率越小; 7.2.4 串联谐振耐压的优点在谐振状态,回路阻抗为:()R X X R Z C L B ≈-+=222 R 代表试验回路的总损耗电阻;一旦试品击穿,X C 变为零,谐振条件被破坏,此时回路阻抗变为:()L L B X X R Z ≈-+=022由于X L 是R 的Q 倍,所以击穿后回路电流下降到击穿前的Q 分之一,不存在过电流的问题,所以试验比较安全;在进行发电机的交流耐压试验时,为了防止绝缘击穿时由于电流过大而将定子铁芯烧坏定子铁芯烧坏后极难修复,通常要求击穿后的短路电流不要大于5A,由于串联谐振法试验在试品击穿后回路电流会下降,而且试验电压波形较好电压中的高次谐波不满足谐振条件被抑制,所以发电机的交流耐压应优先采用串联谐振法;按照国标规定,工频试验电压的频率范围为45Hz ~65Hz,因此在选择电感时应满足频率的规定;串联谐振耐压的优点:1减小升压器输出电压为试验电压的Q 份之一,从而减小试验设备容量; 2试品击穿后电流下降为原来的Q 份之一,比较安全; 3不需要串接限流电阻串联谐振法不得串联限流电阻; 并联谐振交流耐压试验图 并联谐振法交流耐压并联谐振特点:U C =U L = U T X L =X C I L =-I C回路阻抗:Z≈QX L回路电流:QI Q IQX U Z U I C L L T T ===≈并联谐振耐压试验特点:1试验电流为试品电流的Q 份之一,从而减小试验设备容量; 2试品击穿时试验电流可能会增加,过流保护应可靠;3需要串接限流电阻; 谐振试验时电感或电容的选择前面已介绍通过调节电路的电感、电容或频率都可以使电路达到谐振状态;试验标准规定工频耐压时的频率范围为45Hz ~65Hz,在选择电路参数时应满足这一要求;当频率为50Hz 、电容的单位为μF 、电感的单位为H 时,可按下式估算电感或电容:L10C :C 10L ==或 对于调感或调容装置,可通过微调电感量或电容量使电路达到谐振状态;如果采用调频装置,估算电感或电容后,再按下式计算实际的谐振频率:LCf π=21如果频率落在45Hz ~65Hz 范围内,电感L 或电容C 就不用再调整,如果频率超过65Hz,应增加电感量或电容量;如果频率低于45Hz,应减小电感量或电容量;8 转子交流阻抗测量 试验目的检查转子绝缘是否存在匝间短路的问题; 隐极式转子交流阻抗测量试验经验说明,发电机的转子交流阻抗与试验电压的数值有很大的关系,因此规程中强调转子交流阻抗的测量必须在同一电压下进行,必须同时测量交流损耗,测量接线见图图 转子交流阻抗测量接线测量注意事项1 试验电压的峰值不宜超过额定励磁电压,最高试验电压为220伏;2 转子交流阻抗的测量分为膛内和膛外两种情况,膛内测量又分为静态测量和动态测量,膛内测量时,应拆开炭刷,防止灭磁电阻对测量的影响;3 膛外测量时,应注意消除转子支架对测量的影响,转子周围不宜放置铁架、铁板或其它铁磁材料;4为了消除剩磁对测量的影响,可以重复测量几次,利用交流电压进行消磁,取重复性较好的几次结果的平均值作为测量结果;5动态测量只要求测量超速试验前后额定转速下的数据,如果怀疑转子绕组有动态匝间短路,可以测量不同转速下的交流阻抗和损耗值;交流阻抗的计算记录试验中的电压U 、电流I 、损耗P 的读数以及电压表的量程、分度和CT 的变比等数据;电流值和功率损耗均应乘以CT 的变比;转子交流阻抗Z 、损耗电阻R 、感抗X 的计算: I U Z =Ω 2IP R = Ω 22R Z X -= Ω水轮发电机转子交流阻抗测量水轮发电机转子要求测量单个磁极的交流阻抗;按图接好线后,调节调压器使转子回路电流保持为恒定值,然后用电压表测量每个磁极的电压降;数据判断1 隐极转子:与历年数据比较,如果交流阻抗明显减小而损耗明显增加,可怀疑存在匝间短路的可能,但还要与空载特性、机组的振动情况等进行综合的分析,不宜轻易下结论;动态试验时,由于转子绕组在离心力的作用下被挤压高度有所减小而且线圈向外圆方向移动,会造成在一定的转速下阻抗值下降的情况,应视为正常情况;2 水轮发电机转子:当某个磁极中存在匝间短路时,该磁极的电压降就会偏小,而且该磁极左右两个相邻磁极由于磁路上的联系电压降也会比正常磁极的压降偏低,这种规律可以作为判断磁极是否存在匝间短路的依据;9 发电机短路特性试验试验目的检查励磁系统及发电机定子或发电机—变压器组一、二次电流回路是否正常;试验方法1将励磁电源改为他励电源用临时电缆将厂用电连接到励磁变高压侧;2在发电机出口接好短路排或在主变高压侧接好短路排;3按图接好试验线路;4励磁调节器改为手动调节,并置于输出最小位置;5退出发电机过流保护,退出强励装置;6按运行规程启动发电机并维持额定转速,合上励磁开关和灭磁开关;7调节励磁调节器的输出电流,使发电机定子电流逐渐增加,并同时检查盘表的指示值是否正确,一直达到倍额定定子电流值,录取定子电流、转子电流数据;8逐步减小励磁电流以减小定子电流,在定子电流分别为1、、、倍额定电流下记录定子电流和励磁电流值;图发电机短路特性试验原理图10 发电机空载特性试验试验目的检查励磁系统和发电机定子一、二次电压是否正常;试验方法1按图接好试验线路;2发电机出口开路或带主变时主变高压侧开路;3励磁调节器为手动调节,并置于输出最小位置;4投入发电机过流保护和差动保护,退出发电机过压保护;5按规程启动发电机并维持额定转速,合上励磁开关和灭磁开关;6单方向调节励磁调节器,使定子电压升高至倍额定电压值,录取定子电压、转子电流数据;7 单方向调节励磁调节器,使定子电压逐步降低,分别记录9~11组定子电压、转子电流数据,同时检查盘表;8跳开灭磁开关;图发电机空载特性试验原理图11 空载及不同负荷下发电机的轴电压测量测量方法1试验前分别检查轴承座与金属垫片、金属垫片与金属底座的绝缘电阻,应大于Ω;2试验接线见图;3在空载试验额定电压下,用高内阻的电压表先测量轴电压Ul,然后将转轴的汽机端与轴承座短接,测量励磁机端大轴对承座的电压U2以及轴承对地的轴电压U3;4在发电机不同负荷下分别测量发电机的轴电压;图轴电压测量原理图测量结果判断1 轴电压一般不大于10V;2正常情况下U1≈U3,U2≈0,如果测量结果是U3明显小于U1,U2数值较大正常情况下一般U3/U2大于10 以上,说明轴承绝缘不好,可能会产生轴电流;12 水内冷定子绕组充水或通水情况下直流电压试验水内冷发电机定子绕组结构对于水内冷的定子绕组,冷却水由端部进水总管经塑料王聚四氟乙烯水管引入各个线圈的鼻部,热水从另一端或另一个线圈的线圈鼻部经塑料王水管引入出水总管,发电机引出线的出水或进水也有一个总管;大型发电机的进、出总管分别位于定子的两端,小型发电机的进、出总管也有位于定子同一端的;定子汇水总管固定在定子端部,为圆形,通称为汇水环或汇水管;为了方便进行高压试验,三个汇水管与外部水管是绝缘的通过绝缘法兰对接;运行中必须将三个汇水管可靠接地,防止汇水环上产生高电压而击穿;图水内冷定子水路图图水内冷汽轮发电机定子概述在吹干水的情况下,试验方法与一般空冷电机相同,但将定子绕组中的水吹干在实际操作中比较困难,如果水吹不干在高电压下容易将绝缘水管损坏,很不安全;在定子绕组充水或通水的情况下,内冷定子绕组交流电压试验可按常规方法进行,因为水电阻电流与绝缘的电容电流相比小得多,而且是按相量的关系相加,可以勿略不计;而在直流电压试验中,水电阻电流比绝缘的泄漏电流大得多,必须采取特殊的试验接线将水电流排除掉;定子绝缘电阻测量12.3.1测量原理测量原理见图;图水内冷定子绕组绝缘电阻测量原理图图中RF、RU组成分压器,用于测量试验电压;RI为绝缘泄漏电流测量电阻;R1为绕组对汇水环的水电阻;R2为汇水环对地的水电阻;从测量原理上与普通的兆欧表相同,兆欧表的屏蔽端子必须接到汇水环上;所不同的是:1兆欧表需要提供流向水电阻的电流;假如水电阻为100kΩ,试验电压为2500V,那么流过水电阻的电流就是25mA,而一般的兆欧表短路电流只有几mA;所以测量水内冷绕组绝缘电阻的兆欧表必须能输出足够大的电流;2由于汇水环对地水电阻R2只有几kΩ~几十kΩ,为了保证绝缘的泄漏电流大部分流入测量电阻RI,就要求RI<<R2,但是,RI太小时,电流信号就会很小;假如RI为500Ω,发电机绝缘电阻为5000MΩ,则RI上的信号电压只有;R2的大小与水质有关,因而试验时对水质也有要求;3由于冷却水与金属导体之间会产生极化电势,虽然极化电势很小,但由于RI上的信号也很小,所以极化电势会影响测量结果;在专用的兆欧表中应有相应的极化电势补偿电路;12.3.2 测量方法1如果在充水的情况下测量,水质应达到运行要求,如果吹干水后做试验,必须将水彻底吹干;2如果充水试验,应首先测量并记录绕组对汇水环以及汇水环对地的绝缘电阻;3采用2500V兆欧表测量,分别测量15s和60s的数据,测量前后应将三相对地短路5min以上;4如果吸收比不合格或绝缘电阻不合格,可增加测量极化指数,即测量1min和10min的数据,根据测量结果作进一步的分析;12.3.3 水内冷定子绕组绝缘电阻测量中常见问题1汇水环对地短路:如果是金属性对地短路,此时RI上没有电流流过,这时所测数据是一个无穷大的假数据,而且没有吸收现象;如果是不完全接地,所测得的也是一个偏大的绝缘电阻,而且由于极化现象出现负的增长吸收比小于1;。

典型同步发电机进相试验方案

典型同步发电机进相试验方案

典型同步发电机进相试验方案一、试验目的:同步发电机进相试验是为了验证同步发电机的相序和相间的相位角是否正确,以保证同步发电机在网络中以正确的相序和相位角运行。

二、试验装置:1.电源系统:使用稳定可靠的电源系统,满足试验所需的电压和电流。

2.测量仪表:包括电压表、电流表、频率表、功率表等测量设备,确保对电压、电流、频率和功率的准确测量。

三、试验步骤:1.准备工作:a.检查发电机的接线,确保接线正确可靠。

b.确保电源系统的电压和频率稳定,符合试验要求。

c.根据试验要求,选择合适的负载并接入。

2.进行试验:a.启动发电机,并将电源输出接至发电机的端子,使其与电网连接。

b.分别使用电压表和电流表测量发电机的U相和I相的电压和电流值。

c.使用频率表测量发电机的频率值,确保其与电网的频率一致。

d.使用功率表测量发电机的有功功率、无功功率和视在功率的值,计算发电机的功率因数。

e.根据试验要求,调整发电机的励磁电流,观察电压和电流的变化,确保稳定在一定范围内。

f.观察发电机的运行情况,包括转速、温度、振动等参数,确保其在正常范围内工作。

四、试验注意事项:1.在进行试验之前,要对试验装置和测量仪表进行检查和校准,确保其正常工作,准确测量。

2.在试验过程中,要随时观察发电机的运行情况,如有异常要及时停机检修,以免造成事故。

3.在试验过程中,要根据试验要求进行操作,严禁随意调整发电机的参数。

4.在测量电压和电流时,要保持测量回路的准确接地,避免测量误差。

5.试验结束后,要将装置和仪表恢复到正常状态,对试验结果进行记录和分析。

五、试验结果评定:根据试验步骤中所得到的数据,对发电机的相序和相位角进行验证,判断其是否正确。

同步发电机的相序和相位角应与电网保持一致,且功率因数应在一定范围内,以保证发电机在网络中的正常运行。

六、试验记录和分析:根据试验过程中所得到的数据,对试验结果进行记录和分析,包括发电机的电压、电流、频率、功率等参数的变化情况,以及发电机的运行状态和性能表现。

同步发电机准同期并网实验

同步发电机准同期并网实验

第1讲实践教学目标1.加深理解同步发电机准同期并列原理,掌握准同期并列条件;2.掌握微机准同期控制器及模拟式综合整步表的使用方法;3.熟悉同步发电机准同期并列过程;4.观察、分析有关波形。

实践教学内容同步发电机准同期并列实验[实践项目1] 手动准同期实验1.按准同期并列条件合闸将“同期方式”转换开关置“手动”位置。

在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,手动操作合闸按钮进行合闸。

观察微机准同期控制器上显示的发电机频率和系统频率,相应操作微机调速器上的增速或减速按钮进行调速,直至“增速减速”灯熄灭。

此时表示压差、频差均满足条件,观察整步表上旋转灯位置,当旋转至0º位置前某一合适时刻时,即可合闸。

观察并记录合闸时的冲击电流。

2.偏离准同期并列条件合闸实验分别在单独一种并列条件不满足的情况下合闸,记录功率表冲击情况:(1)电压差相角差条件满足,频率差不满足,在fF>fX和fF<fX 时手动合闸,观察并记录实验台上有功功率表P和无功功率表Q指针偏转方向及偏转角度大小,分别填入表1;注意:频率差不要大于0.5HZ。

(2)频率差相角差条件满足,电压差不满足,VF>VX和VF<VX时手动合闸,观察并记录实验台上有功功率表P和无功功率表Q指针偏转方向及偏转角度大小,分别填入表1;注意:电压差不要大于额定电压的10%。

(3)频率差电压差条件满足,相角差不满足,顺时针旋转和逆时针旋转时手动合闸,观察并记录实验台上有功功率表P和无功功率表Q指针偏转方向及偏转角度大小,分别填入表1-1。

注意:相角差不要大于30度。

表1-1[实践项目2] 半自动准同期将“同期方式”转换开关置“半自动”位置,微机正常灯闪烁。

准同期控制器将给出相应操作指示信息,运行人员可以按这个指示进行相应操作。

调速调压方法同手动准同期。

当压差、频差条件满足时,整步表上旋转灯光旋转至接近0º位置时,整步表圆盘中心灯亮,表示全部条件满足,手动按下发电机开关,并网。

同步发电机准同期并网实验

同步发电机准同期并网实验

第1讲实践教学目标1.加深理解同步发电机准同期并列原理,掌握准同期并列条件;2.掌握微机准同期控制器及模拟式综合整步表的使用方法;3.熟悉同步发电机准同期并列过程;4.观察、分析有关波形。

实践教学内容同步发电机准同期并列实验[实践项目1] 手动准同期实验1.按准同期并列条件合闸将“同期方式”转换开关置“手动”位置。

在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,手动操作合闸按钮进行合闸。

观察微机准同期控制器上显示的发电机频率和系统频率,相应操作微机调速器上的增速或减速按钮进行调速,直至“增速减速”灯熄灭。

此时表示压差、频差均满足条件,观察整步表上旋转灯位置,当旋转至0º位置前某一合适时刻时,即可合闸。

观察并记录合闸时的冲击电流。

2.偏离准同期并列条件合闸实验分别在单独一种并列条件不满足的情况下合闸,记录功率表冲击情况:(1)电压差相角差条件满足,频率差不满足,在fF>fX和fF<fX 时手动合闸,观察并记录实验台上有功功率表P和无功功率表Q指针偏转方向及偏转角度大小,分别填入表1;注意:频率差不要大于0.5HZ。

(2)频率差相角差条件满足,电压差不满足,VF>VX和VF<VX时手动合闸,观察并记录实验台上有功功率表P和无功功率表Q指针偏转方向及偏转角度大小,分别填入表1;注意:电压差不要大于额定电压的10%。

(3)频率差电压差条件满足,相角差不满足,顺时针旋转和逆时针旋转时手动合闸,观察并记录实验台上有功功率表P和无功功率表Q指针偏转方向及偏转角度大小,分别填入表1-1。

注意:相角差不要大于30度。

表1-1[实践项目2] 半自动准同期将“同期方式”转换开关置“半自动”位置,微机正常灯闪烁。

准同期控制器将给出相应操作指示信息,运行人员可以按这个指示进行相应操作。

调速调压方法同手动准同期。

当压差、频差条件满足时,整步表上旋转灯光旋转至接近0º位置时,整步表圆盘中心灯亮,表示全部条件满足,手动按下发电机开关,并网。

同步发电机和调相机的试验

同步发电机和调相机的试验

同步发电机和调相机的试验同步发电机和调相机的常规试验项目{定子绕组的直流电阻{定子绕组的绝缘电阻、吸收比或极化指数{定子绕组的泄漏电流和直流耐压{定子绕组的交流耐压{转子绕组的绝缘电阻{转子绕组的直流电阻{转子绕组的交流阻抗和功率损耗{轴电压定子绕组的直流电阻{测量顺序问题(建议在绝缘试验前){绕组平均温度的测量z 温度计平均法(3~5只)z 使用发电机埋设的测温电阻011t 235t 235R R ++=定子绕组的绝缘电阻、吸收比或极化指数{定子水内冷发电机的绝缘测试z 正确将定子绕组进出水管和出线进出水管接入屏蔽回路z 检温元件绝缘不良{原理图{温度折算问题{绝缘绕组最低值的确定{吸收比和极化指数的规定tt t C R R )1(10−=α定子绕组的绝缘电阻、吸收比或极化指数{R1绝缘电阻{C1几何电容{R2 C2为吸收回路{R3汇水管电阻{R4汇水管法兰对地绝缘电阻定子绕组的泄漏电流和直流耐压{严禁在氢气置换过程中,进行耐压试验{正确将定子绕组进出水管和出线进出水管接入屏蔽回路{水质应合格,以降低电源容量,稳定读数{分段加压时,每段应在加压的1min内,仔细观察泄漏电流的变化情况定子绕组的泄漏电流和直流耐压{当发生读数急剧波动时,应仔细查找原因{读数不稳的情况时,应采用加大平波电容的电容量、提高水质、消除水的极化电势影响等方式,避免错误判断定子绕组的泄漏电流和直流耐压77437741150,22080,100060kV 64256427762750kV 51135115561540kV 39738841830kV 26325426420kV 131********kV 总电流(mA)泄漏电流(μA)总电流(mA)泄漏电流(μA)总电流(mA)泄漏电流(μA)C 相B 相A 相电压定子绕组的泄漏电流和直流耐压77437741784560kV 64256427702750kV 51135115561540kV 39738841830kV 26325426420kV 131********kV 总电流(mA)泄漏电流(μA)总电流(mA)泄漏电流(μA)总电流(mA)泄漏电流(μA)C 相B 相A 相电压定子绕组的泄漏电流和直流耐压定子绕组的交流耐压{耐压试验准备工作:转子绕组在滑环处接地;发电机出口CT二次绕组短路接地;埋置检温元件在接线端子处电气连接后接地;对绕组进行充分放电{并联谐振补偿电感的计算方法转子绕组的绝缘电阻{地线接于转子轴上,不要接在大地或机座上转子绕组的直流电阻{注意消除电桥的测量线与滑环的接触电阻转子绕组的交流阻抗和功率损耗{测量转子交流阻抗时,断开与励磁系统的联系{测量转子交流阻抗时,应先进行绝缘测量{应先进行退磁操作{应使用线电压,以避免相电压中的谐波分量{试验电压峰值不应大于转子绕组额定电压转子交流阻抗{在定子膛内测量时,定子绕组上有感应电压,因而应断开与外电路的连接轴电压{座式轴承轴电压{端盖式轴承轴电压{应同时记录发电机有功功率和无功功率(或空载、短路状态){使用高内阻电压表{轴电压不应超过10V{有条件时,可用录波仪测量。

6同步发电机励磁系统动态试验

6同步发电机励磁系统动态试验
1.4、发电机他励100%Ugn起励试验波形记录(采用通道1电流闭环手动模
式):(1)起励过程测量录波;(2)他励100%Ugn励磁温度测试;(3)他
励100%Ugn灭磁开关压降测试; (4)他励100%Ugn功率柜参数记录;(5)他励 100%Ugn功率柜阻容检查记录;(6)他励25%和100%逆变、跳闸试验录波等
2.1、空载升压和短路升流试验
机组大修后,需要进行发电机空载升压(100%Ug)和短路升流(100% Ig)试验,励磁设备需要提供可以调节的转子电流,可以采用它励备用 励磁,也可以将机组励磁系统由自励改为它励,此时励磁调节器ECR模 式运行,励磁设备零起升流。 在发电机他励升流升压试验之前, 建议进行一次励磁大电流试验,即
(1)10%Ifn电流闭环起励试验;(2)±5%Ifn电流闭环阶跃响应试验;(3) 100%Ugn下电流闭环逆变试验;(5)100%Ugn自动起励试验;(6)
±10%Ugn电压阶跃响应试验;(7)100%Ugn额定机端电压逆变试验;(8)
通道切换试验;(9)自动和手动运行方式转换试验;(10)电压给定值整定 范围及变化速度测试等。
注意:上述试验是励磁试验,除了进行常规试验和录波外,要有进行下列试验:
(1)100%Ugn功率柜参数记录;(2)自励100%Ugn转子电压波形;(3) 自励100%Ugn阳极电压波形;(4)100%Ugn功率柜阻容电阻温度等。
1.3、励磁现场动态试验大纲(3)
1.7、V/Hz特性试验和V/Hz限制试验, V/Hz未动作记录发电机电压稳定性, V/Hz动作,记录限制正确性。 1.8、故障模拟试验,包括模拟起励失败、100%机端电压模拟PT1断线、 100%机端电压模拟PT2断线、模拟交流输入电源分别消失、模拟直流输 入电源分别消失、模拟功率柜风机分别电源消失或切换、模拟励磁内部和

同步发电机准同期并网实验

同步发电机准同期并网实验

同步发电机准同期并网实验同步发电机准同期并网实验是电力系统中重要的实验项目之一。

其目的是检验同步发电机与电网是否能够进行准同期并网,并通过对实验结果的分析和处理,确定合适的并网方式和方案。

实验设备:同步发电机试验台、电力系统仿真综合实验平台实验流程:首先,将同步发电机接入电力系统仿真综合实验平台中,进行调试和参数设置。

然后,将同步发电机试验台与电力系统仿真综合实验平台连接,进行准同期并网实验。

实验步骤如下:1. 实验前,需检查实验设备的电气连接是否正确、断路开关是否关闭。

确认无误后,按照实验方案设置同步发电机的参数,包括发电机定子和转子参数、励磁电路参数等。

2. 针对电力系统仿真综合实验平台,需要进行适当的设置和调整,包括发电机和变电站的参数设置、电源和负载设置、变电站选择和配置等。

3. 开始实验。

启动同步发电机试验台,使其发电机定子输出电压为额定值,并加上一定的励磁电流,使同步发电机输出额定电流。

随后,启动电网仿真综合实验平台,将电源开关打开。

通常,在该实验中,电网仿真综合实验平台为测试电网。

4. 观察同步发电机试验台面板上的电压、电流、频率等参数,并通过电力系统仿真综合实验平台的监控系统,观察电网的电压和频率表现。

在进入并网状态后,需要持续观察和记录相关实验数据。

5. 对实验数据进行分析和处理。

在实验结束后,需要对实验数据进行详细的处理和分析,以确定同步发电机与电网的准同期并网是否正常、是否存在问题。

根据实验数据和分析结果,修改并网方案,并重新进行实验。

6. 实验后的总结与评估。

对实验结果进行总结与评估,分析并发现实验中出现的问题,并提出解决方案,最终确定并网方案。

总结:同步发电机准同期并网实验是检验发电机并网的性能、确定适当并网方案的一种重要手段,它可以帮助电力系统工程师在设计布局、故障排除等方面提供参考。

在实验中,需要仔细分析和处理数据,以确保实验结果的准确性和可靠性。

通过不断调整和改进,并网方案,可以实现电力系统的可靠运行和优化控制。

32.同步发电机的转差法及其他

32.同步发电机的转差法及其他

E
I
U
Z
jI ' xs
U I'
U'
I
U*
1.5
cos( + ) = 0.8
cos = 1
1.0 cos( − ) = 0.8
0.5
0
0.5
1.0
I*
0
jI ' xs U '
E0 '
U
E0 jIxs I'
I
0
E0
E0 '
jIxs U
jI ' xs U '
I'
I
0
电压调整率:额定负载,n=n1,if=ifN,卸去负载时端电压变化的标么值。
U = E0 −U N 100% U N
U
U U N E0
ifN , cos N
0
目前:凸极同步电机: ΔU=18~30% 隐极同步发电机:ΔU=30~48%
IN I
二、调整特性
调整特性:n=n1,U=常数,cosφ=常数, if =f(I)
i*f
cos(+) = 0.8 cos = 1
1.0
cos(−) = 0.8
2U max
Faq
aq
Eaq
Id=0,I=Iq=Imax,U=Umin
xq
=
U min I max
2 I min
q
uf0
d
2U min
2I max
§10-8 同步发电机的外特性和调整特性
一、外特性
外特性:n=n1,if=常数,cosφ=常数,U=f(I)
xa
x
ra
E0 ' E0

发电机同源核相方法浅析

发电机同源核相方法浅析

发电机同源核相方法浅析同步发电机并列运行是为了提高供电可靠性和供电质量,合理分配负荷,减少备用容量,实现经济运行的目标。

它要求发电厂内的同步发电机和电力系统中的各个发电厂同时进行运行,以确保发电系统的稳定运行。

发电机同期并列操作是发电厂中的一项关键操作。

这种操作方式要求发电机在一定的条件下同时进行发电,以保持电力系统的稳定性和平衡性。

同期操作能够确保发电厂内的发电机协调运行,避免因发电机之间的相互干扰而引发问题。

当发电机同期并列运行时,它们能够相互支持,稳定供电,并确保电力系统中的负荷得到适当分配。

相反,非同期并列是一种严重的事故情况,它指的是发电机在运行过程中失去同期运行状态。

非同期并列可能对相关设备,如发电机、变压器和开关等造成严重破坏。

严重的情况下,发电机线圈可能会烧毁、端部变形,甚至可能引发其他设备故障。

这种事故对整个电力系统的影响也是巨大的。

如果一台大型机组发生非同期并列,可能导致功率振荡,并严重干扰整个系统的正常运行,甚至可能导致系统崩溃。

因此,保持发电机的同期并列运行是确保电力系统稳定运行的重要措施。

运营人员需要严格遵循操作规程,确保发电机在运行过程中保持同期状态。

定期检查和维护设备,采取必要的预防措施,是预防非同期并列的关键。

此外,实施系统监控和自动化控制,及时发现并处理潜在的问题,也能有效防止非同期并列的发生。

总之,同步发电机并列运行是为了保障电力系统的可靠运行和供电质量的提升。

严格遵守操作规程,定期维护设备,采取预防措施以及实施系统监控和自动化控制,都是确保发电机同期并列运行的重要措施,以保证电力系统的稳定性和安全性。

为了防止非同期并列事故的发生,根据《防止电力生产事故的二十五项重点要求》,对于新投产、大修机组以及同期回路(包括交流电压回路、直流控制回路、整步表、自动准同期装置和同期把手等)发生改动或设备更换的机组,在首次并网前需要进行以下工作:(1)对装置和同期回路进行全面的校核和传动:这意味着对装置和同期回路进行全面的检查和验证,确保它们能够正常运行和传输信号。

同步发电机励磁实验

同步发电机励磁实验

同步发电机励磁控制实验一、实验目的1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;4.了解微机励磁调节器的基本控制方式;5.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响;6.了解几种常用励磁限制器的作用;7.掌握励磁调节器的基本使用方法。

二、原理与说明同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。

励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。

图1 励磁控制系统示意图实验用的励磁控制系统示意图如图 1 所示。

可供选择的励磁方式有两种:自并励和它励。

当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。

而当交流励磁电源取自 380V 市电时,构成它励励磁系统。

两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。

微机励磁调节器的控制方式有四种:恒UF(保持机端电压稳定)、恒IL(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。

其中,恒α方式是一种开环控制方式,只限于它励方式下使用。

同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。

当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。

发电机正常运行时,三相全控桥处于整流状态,控制角α小于 90°;当正常停机或事故停机时,调节器使控制角α大于 90°,实现逆变灭磁。

电力系统稳定器――PSS 是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁系统安全可靠运行的重要环节,常见的励磁限制器有过励限制器、欠励限制器等。

完整版同步发电机试验报告

完整版同步发电机试验报告

完整版同步发电机试验报告1.引言同步发电机是电力系统中的重要设备,其稳定运行对于保证电网的安全和稳定具有重要意义。

本次试验旨在对同步发电机进行全面测试,评估其性能和运行状态。

本报告将详细描述试验的目的、试验设备、试验原理、试验步骤、试验结果和结论。

2.试验设备本次试验使用的同步发电机主要包括发电机组、励磁系统和监测设备。

发电机组由发电机和发动机组成,励磁系统用于调节发电机的电磁激励。

监测设备包括电气参数监测仪、转子温度计和振动传感器等。

3.试验原理同步发电机将机械能转化为电能,其运行稳定性和发电效率直接影响电力系统的负荷平衡和能源利用。

发电机的输出电压和频率受多种因素影响,包括励磁电流、转子温度和负荷变化等。

试验原理主要包括发电机的励磁特性测试、转速控制测试和负荷调整测试。

4.试验步骤4.1励磁特性测试:通过改变励磁电流,记录发电机的输出电压和励磁电流之间的关系。

4.2转速控制测试:通过调整发电机组的转速,记录发电机的输出频率和转速之间的关系。

4.3负荷调整测试:改变发电机组的负荷,在不同负荷下记录发电机的输出电压和频率,评估其负荷适应性和稳定性。

5.试验结果5.1励磁特性测试结果表明,在适当的励磁电流范围内,发电机的输出电压基本稳定,满足电网的要求。

5.2转速控制测试结果显示,发电机的输出频率与转速呈线性关系,在额定速度附近频率稳定。

5.3负荷调整测试结果表明,发电机组能够在不同负荷下自动调整输出电压和频率,保持稳定运行。

6.结论本次同步发电机试验结果显示,发电机具有较好的励磁特性、转速控制和负荷调整能力。

发电机的输出电压、频率和稳定性满足电力系统的要求。

但仍需要定期进行运行状态监测和维护,确保其可靠稳定地工作。

7.建议在今后的同步发电机试验中,可以进一步优化试验操作和数据记录流程,提高试验效率和准确性。

同时,对试验设备进行定期维护,确保其正常运行。

此外,可参考相关标准和规范,进一步完善试验流程和数据分析方法,提高试验的科学性和可靠性。

(整理)同步发电机准同期并网实验.

(整理)同步发电机准同期并网实验.

第1讲实践教学目标1.加深理解同步发电机准同期并列原理,掌握准同期并列条件;2.掌握微机准同期控制器及模拟式综合整步表的使用方法;3.熟悉同步发电机准同期并列过程;4.观察、分析有关波形。

实践教学内容同步发电机准同期并列实验[实践项目1] 手动准同期实验1.按准同期并列条件合闸将“同期方式”转换开关置“手动”位置。

在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,手动操作合闸按钮进行合闸。

观察微机准同期控制器上显示的发电机频率和系统频率,相应操作微机调速器上的增速或减速按钮进行调速,直至“增速减速”灯熄灭。

此时表示压差、频差均满足条件,观察整步表上旋转灯位置,当旋转至0º位置前某一合适时刻时,即可合闸。

观察并记录合闸时的冲击电流。

2.偏离准同期并列条件合闸实验分别在单独一种并列条件不满足的情况下合闸,记录功率表冲击情况:(1)电压差相角差条件满足,频率差不满足,在fF>fX和fF<fX 时手动合闸,观察并记录实验台上有功功率表P和无功功率表Q指针偏转方向及偏转角度大小,分别填入表1;注意:频率差不要大于0.5HZ。

(2)频率差相角差条件满足,电压差不满足,VF>VX和VF<VX时手动合闸,观察并记录实验台上有功功率表P和无功功率表Q指针偏转方向及偏转角度大小,分别填入表1;注意:电压差不要大于额定电压的10%。

(3)频率差电压差条件满足,相角差不满足,顺时针旋转和逆时针旋转时手动合闸,观察并记录实验台上有功功率表P和无功功率表Q指针偏转方向及偏转角度大小,分别填入表1-1。

注意:相角差不要大于30度。

表1-1[实践项目2] 半自动准同期将“同期方式”转换开关置“半自动”位置,微机正常灯闪烁。

准同期控制器将给出相应操作指示信息,运行人员可以按这个指示进行相应操作。

调速调压方法同手动准同期。

当压差、频差条件满足时,整步表上旋转灯光旋转至接近0º位置时,整步表圆盘中心灯亮,表示全部条件满足,手动按下发电机开关,并网。

同步发电机的特性实验

同步发电机的特性实验

1. 1. 空载特性空载特性空载特性空载特性:指在发电机的转速保载电压(U 0=E 0)与励磁电流空载特性曲线实际上就是电机实验测定时,电枢绕组开路,录不同励磁电流下对应的电枢和I f 值,由于铁磁材料的磁滞图1(a )不同剩具体实验过程如下:注意负载端子处不接任何负载(1) 监控主站应该调整到2所示。

同步发电机特性试验转速保持为同步转速(n =n 1),电枢电路开路(I =0电流I f 之间的关系曲线U 0=f (I f )。

是电机的磁化曲线,它可用计算法得到,也可用实验法,用原动机把发电机拖到同步转速,然后逐渐增加的电枢端电压,直到U 0=1.3U N 左右,再逐步减少I 的磁滞现象,将得到上升和下降两条不同的曲线见下不同剩磁下的空载特性 (b )空载特性的校正何负载!整到“单机”运行模式,合闸监控主站空开,按下启图2 “单机”运行模式=0)的情况下。

空实验法测出。

渐增加励磁电流并记f ,记录对应的U 0线见下图1所示。

校正按下启动按钮,如图(2) 合闸发电机运行实验台上空开和按下启动按钮,并按下发电机实验区中的负载特性实验按钮,如图3所示。

图3 按下“负载特性”按钮(3) 设定微机励磁调节装置中“起励PT电压”为45V。

进入设定菜单 调节参数 常规参数中,如图4所示。

[注意:管理员密码为1111]图4 修改微机励磁调节装置中“起励PT电压”为45V返回主页后,应该显示如下图5所示。

图5 微机励磁调节装置为45V时状态显示图(4) 按下微机调速装置(恒压模式,设定电压默认为200V )中的启动键2-3秒,启动直流电机以带动发电机运转,如图6所示。

当转速到显示转速为1400r/min 左右,机端电压显示18V 左右,按下起励按钮(如图7所示),励磁电压为12V 左右,机端电压升至170V 左右。

图6 微机调速装置图7 起励按钮(5) 调节微机调速装置中的“开大”按钮将电压升高,同时注意转速调整到1500 r/min左右。

同步发电机进相试验导则

同步发电机进相试验导则
DW XXX-2012
a)由调度安排试验所需的运行工况。 b)同厂陪试机组AVC应退出。 c)涉网安全稳定措施已按调度批复方案执行。 5.5 试验仪器 a) 试验仪器应能实时显示发电机组运行状态。 b) 试验仪器应能完整记录低励限制动作波形,记录的波形可以进行后台分析。 c) 试验仪器应满足GB/T 22264对计量精度的相关要求。 6 进相试验内容 6.1 进行发电机不同有功功率下的进相能力测试,要求发电机功角、机端电压、端部铁芯和 金属结构件温度、 高/低压厂用电源母线电压、 主变高压侧母线电压在 DL/T 5153、 DL/T 5164 及运行规程规定的范围内。 6.2 在实测的进相能力范围内,整定低励限制曲线。 6.3 检验低励限制环节的静态限制特性,验证低励限制定值。 6.4 检验低励限制环节的动态限制特性。 7 进相试验方法及注意事项 7.1 机组的进相过程可以通过逐渐提高系统电压使被试机组自然进相实现。 7.2 当采用 7.1 所述方法无法测定进相能力时, 可采用人为减磁使被试机组进相的方法实现。 7.3 试验机组选择的有功工况应包括机组正常运行功率的最大值和最小值, 中间点可根据机 组稳定运行情况选定。 通常汽轮发电机组进相试验工况为50%、75%、100% 额定有功功率;水轮发电机组进相 试验工况为0%、50%、75%、100% 额定有功功率。 7.4 每一种工况下的试验应包括滞(迟)相、零无功、进相三种状态(进相工况应达到进相 限制条件) ,在三种状态下分别选择停留点记录发电机状态量。 7.5 温度记录应待温度稳定后进行。 7.6 试验过程中至少应记录如下发电机变压器组状态量: 发电机有功功率、 无功功率、 功角、 机端电压、机端电流、励磁电压、励磁电流、端部铁芯和金属结构件(如阶梯齿、压指、压 圈等)温度、进出水温度、冷热风温度,高、低压厂用电源最低母线电压,主变高压侧母线 电压,同厂陪试机组出线潮流。另外,试验过程中同厂陪试机组的无功功率总和应尽可能保

同步发电机及调相机试验方法

同步发电机及调相机试验方法

发电机及调相机试验方法第一部分:发电机及调相机的静态试验方法一.测量定子绕组的绝缘电阻及吸收比※各项绕组绝缘电阻的不平衡系数≤2※吸收比:对沥青浸胶及烘卷云母绝缘≥1.3;对环氧粉云母绝缘≥1.6;1.工具选择2500V兆欧表2.步骤⑴断开发电机出口电源开关;⑵用放电棒分别对U1、V1、W1接地充分放电,如图1所示;⑶解开中性点接线;⑷分别摇测出线侧U1、V1、W1对地绝缘电阻:记录R15和R60的数据。

⑸分别摇测出线侧U1对V1W1、V1对U1W1、W1对U1V1的地绝缘电阻:记录R15和R60的数据。

⑹用放电棒分别对U1、V1、W1接地充分放电。

二.测量转子绕组和励磁回路的绝缘电阻1.转子绕组※测量前将发电机大轴处的接地电刷提起(电刷离开大轴);※转子绕组、励磁回路的绝缘电阻一般≥0.5MΩ;※水内冷转子绕组选择500V的兆欧表或其它仪器,绝缘电阻≥0.5MΩ;※当发电机定子绕组绝缘电阻已符合启动要求,而转子绕组的绝缘电阻≥0.2MΩ时,可以投运;※转子绕组额定电压>200V时,选择2500V兆欧表;≤200V时,选择1000V兆欧表。

2.励磁回路※将回路中的电子元件拔出或将其两端短路。

三.测量轴承座的绝缘电阻※选择500V的兆欧表,测量值≥0.5 MΩ;※分别测量轴承座与薄铁板、薄铁板与基础台板、轴承座与基础台板之间的绝缘电阻。

四.测量定子绕组、转子绕组和灭磁电阻的直流电阻※测量定子绕组、转子绕组的直流电阻,应在冷态下进行,绕组表面温度与周围温度之差在±3℃内;※测量定子绕组、转子绕组的直流电阻,测量数值与产品出厂数值换算至同温度下的数值比较,其差值≤2%。

※测量灭磁电阻数值与铭牌数值比较,其差值≤10%。

1.电流、电压表法※ mV表的连线不应超过该表规定的电阻值,且应接于靠近触头侧2.平衡电桥法(电桥用法见《进网作业电工培训教材》P320※测量时,电压引线尽量靠近触头侧;电流引线在电压线外侧,宜分开不宜重叠※直流双臂电桥法:1~10-5Ω及以下※单臂电桥法:1~106Ω五.定子绕组的直流耐压和泄漏电流试验※定子直流耐压的试验电压为电机额定电压的3倍;※试验电压按0.5倍的额定电压分阶段升压试验,每段停留1min;※在试验电压下,各相泄漏电流的差别≤最小值的50%,当最大泄漏电流在20μA以下时,各相间差值与出厂值比较不应有明显差别;※水内冷电机,宜采用低压屏蔽法;※氢冷电机必须在充氢前或排氢后且含量在3%以下时进行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同步发电机试验方法同步发电机试验方法1 基本概念同步发电机指发电机发出的电压频率f 与发电机的转速n 与发电机的磁极对数有着如下固定的关系:pf 60n(转/分)(1.1)同步发电机按其磁极的结构又可分为隐极式和凸极式。

此外,还可按其冷却方式进行分类, 常见的有全空冷、双水内冷、半水内冷、水氢氢(定子水内冷、转子氢内冷、铁心氢冷)等。

2 发电机的绝缘2.1 定子绝缘对于用户来说,主要关心其主绝缘即对地及相间绝缘。

发电机的主绝缘又大致可分为槽绝缘、端部绝缘及引线绝缘。

我国高压电机的主绝缘目前主要是环氧粉云母绝缘,按其含胶量又可分为多胶体系和少胶体系。

定子线圈导线与定子铁芯以及槽绝缘在结构上类似一个电容器,在电气试验中完全可以把它当作一个电容器对待。

为了防止定子线棒表面电位过高在槽中产生放电,环氧粉云母绝缘的定子线棒表面涂有一层低电阻的防晕漆,或在外层包一层半导体防晕带。

端部绝缘表面从槽口开始依次涂有低阻、中阻、高阻绝缘漆,防止端部电位变化梯度过大而产生电晕。

2.2 转子绝缘转子绝缘包括对地绝缘和绕组的匝间绝缘。

3 发电机的绝缘试验项目 3.1 发电机常规试验项目(电气部分)1)定子绕组的绝缘电阻、吸收比或极化指数测量 2)定子绕组的直流电阻测量3)定子绕组泄漏电流测量和直流耐压试验 4)定子绕组交流耐压试验 5)转子绕组绝缘电阻测量 6)转子绕组直流电阻测量 7)转子绕组交流耐压试验8)发电机和励磁机的励磁回路所连接的设备(不包括发电机转子和励磁机电枢)的绝缘电阻测量 9)发电机和励磁机的励磁回路所连接的设备(不包括发电机转子和励磁机电枢)的交流耐压试验 10)发电机组和励磁机轴承的绝缘电阻11)灭磁电阻器(或自同期电阻器)的直流电阻12)转子绕组的交流阻抗和功率损耗测量3.2 发电机特殊试验项目(电气部分)1)定子铁心试验2)定子槽电位测量3)定子绕组端部手包绝缘施加直流电压测量4)轴电压测量5)定子绕组绝缘老化鉴定6)空载特性试验7)三相稳定短路特性试验8)检查相序9)温升试验4 绝缘电阻测量4.1 试验目的检查发电机绝缘是否存在受潮、脏污、机械损伤等问题。

4.2 定子绝缘电阻测量测量接线如图4.1,电机额定电压在1000V以上者采用2500V兆欧表,测量15 s和60s的绝缘电阻,并计算吸收比,如果绝缘电阻或吸收比偏小,可以增加测量10分钟的绝缘电阻,计算极化指数,对于环氧粉云母绝缘,吸收比不应小于1.6,极化指数不应小于2。

图4.1 定子绝缘电阻测量吸收比= 1分钟绝缘电阻/15秒绝缘电阻极化指数= 10分钟绝缘电阻/1分钟绝缘电阻注意事项1)为了克服电容充电电流的影响,兆欧表的短路电流应足够大,表4.1是选择兆欧表的参考数据。

如果吸收比的测量结果比较大,往往是由于兆欧表的短路电流太小造成的。

表4.1 对兆欧表短路电流的要求(参考值)试品电容/μF0.5 1 2 3 5测量吸收比I D/mA≥ 1 2 4 5 10测量极化指数I D/mA≥0.25 0.5 1 1.5 2.5 2)测量前后应将被测量的绕组三相短路对地放电5分钟以上。

如果由于意外的原因造成测量中断,应该重新充分放电后再进行测量。

如果放电不充分,对同一相重复测量的结果是绝缘电阻值偏大,而换相时,由于残余极化电势与兆欧表的电势方向一致,会出现一个极化电荷先释放再极化的过程,造成后面测量的两相绝缘电阻偏小的假像,如图4.2所示。

图4.2 绕组相间电容对绝缘电阻测量的影响3)当测量结果不合格时,应首先排除穿墙套管、支柱瓷瓶的影响,如用干净的布进行擦拭,或在套管上用软铜线绕一个屏蔽电极,接于兆欧表的屏蔽端子上。

如图4.3所示。

图4.3 对套管泄漏电流进行屏蔽的接线4)如果绝缘电阻和吸收比都很小,说明绝缘有受潮的可能,应对绕组进行烘干处理。

对大型电机可采用三相稳定短路的方式升流烘干或采用直流电流进行升温烘干,水内冷机组可通热水烘干,中小型电机可用电热元件、大功率白炽灯或机组自带的加热元件进行烘干。

4.3 转子绝缘电阻测量1)使用1000V兆欧表进行测量,转子水内冷的电机用500V兆欧表测量。

2)测量绕组(滑环)对转子本体(大轴)的绝缘电阻。

3)不测量吸收比。

4.4 轴承座绝缘电阻测量测量目的:由于发电机磁通不对称会在大轴上产生轴电压,为了防止轴电压与轴承间的环流烧坏轴瓦,通常将励磁机侧的轴承与地绝缘。

典型的汽轮发电机轴承绝缘结构如图4.4所示,检查轴承绝缘时用1000V兆欧表测量金属垫片对地的绝缘电阻。

有些汽轮发电机采用轴瓦绝缘的方式,每块轴瓦引出一个测点,应检查每个轴瓦的绝缘电阻,有些汽轮发电机没有引出轴瓦的测量点,只能在安装过程进行检查。

水轮发电机的的推力轴承、导轴承在每块推力瓦下垫有绝缘垫,应在安装过程检查每块轴瓦的绝缘电阻,在轴承充油前每块轴瓦的绝缘电阻不应低于100MΩ。

当轴承绝缘不合格时,除了检查绝缘垫,还应注意检查与轴承相连接的部件如温度、振动传感器、油管等的绝缘是否正常。

图4.4 汽轮发电机典型的轴承绝缘结构4.5 励磁机的励磁回路所连接的设备(不包括发电机转子和励磁机电枢)的绝缘电阻测量1)小修时用1000V兆欧表,大修时用2500V兆欧表。

2)如果励磁回路中有半导体电子元件时,测量前应退出这些元件或将这些元件短路,避免这些元件在测量中击穿。

5 直流电阻测量测量目的:检查绕组导体是否存在断股、断裂、开焊或虚焊等问题。

测量发电机定子或转子绕组的直流电阻、灭磁电阻(不包括非线性灭磁电阻)等可以采用双臂电桥、电压电流法(直流)、直流电阻测试仪等。

目前多数是采用直流电阻测试仪进行测量。

测量要点:1)测量前应在定子绕组或转子绕组不同部位放置三支以上的温度计,取平均值作为绕组的温度。

2)如果仪器的电流端子和电压端子分开时,应将电压端子夹在电流端子的内侧,避免电流端子的接触压降影响测量的准确度,如图5.1所示。

图5.1 直流电阻测量接线图3)测量结果换算到75℃时的数值,并与历年试验数据进行比较。

铜导体换算公式如下: tR R t++=2357523575 (5.1) 式中,R 75:换算至75℃时的电阻;R t :温度为t ℃时测量的电阻值;t :测量时的温度。

6 直流耐压试验及泄漏电流测量 6.1 直流耐压试验的特点1)对检出绕组端部绝缘缺陷有较高灵敏度在交流电压下和直流电压下电机端部绝缘的电压分布如图6.1所示。

在交流电压下电压的分布与电容有关,由于电机绝缘的介电系数比空气大,而且端部绕组距离铁心远,所以绝缘层的电容C i 比绝缘表面到铁心的电容C g 大得多,绝缘层的容抗比绝缘表面对地的容抗小得多,所以绕组端部绝缘层中的交流电压降U Ci 要比绝缘层表面对地的电压降U Cg 小得多,不容易检查出端部绝缘的缺陷。

而直流电压的分布与绝缘电阻成正比,端部表面的绝缘在制造时从槽口向外依次喷涂低阻、中阻、高阻绝缘漆,所以端部绝缘层的绝缘电阻R i 比绝缘表面电阻R g 大得多,绝缘层上的电压降U Ri 很大,表面电位U Rg 较低,对检出端部绝缘层的缺陷有较高的灵敏度。

由于交流耐压时绕组端部绝缘表面电压较高,所以交流耐压时端部电晕较大,而直流耐压时端部绝缘表面电压较低,一般不容易看到电晕。

图6.1 在交流电压和直流电压下绕组端部绝缘的电压分布2)对绝缘的破坏性较小直流耐压试验设备输出的功率一般都很小,对试品的破坏性也很小,而且不会象交流耐压试验那样对绝缘的破坏存在累积效应。

在进行耐压试验时首先进行直流耐压试验,还可以通过监测直流泄漏电流的大小和变化了解绝缘是否存在局部缺陷或受潮等可以处理的问题,减少在交流耐压时绝缘击穿的可能性。

6.2 直流耐压试验电压的确定发电机绝缘在进行直流耐压和交流耐压试验时,它们的击穿电压值是不一样的。

如果以U DB代表直流击穿电压,以U AB代表交流击穿电压,它们的比值K通常称为巩固系数,即:K = U DB/U AB (6.1)大量的试验统计数据说明,对新绝缘来说K值在1.2~2.2的范围内,平均值为1.7左右,绝缘无损伤时K值最大,随着绝缘损伤深度的增加K值成比例地减小;随着绝缘的运行小时增加,K值也会随着减小。

也就是说,在大多数情况下要击穿同一个绝缘缺陷,所施加的直流电压要比交流电压高得多。

根据我国的实际经验,K的取值为1.55~2.2,并据此制定出交流耐压与直流耐压的标准。

以额定电压为6kV~24kV的电机为例,按我国现行的交接和预防性试验标准,在进行定子绕组直流耐压和交流耐压试验时,K值在1.54~1.84之间。

如果交流耐压值为1.5U N(U N为发电机额定电压),直流耐压值应为:1.5×(1.54~1.84) U N =(2.31~2.76) U N(6.2)平均值约为2.5 U N,现发现有些电厂在进行1.5UN的交流耐压前随意将直流耐压的数值降为2.0U N,显然对后续的交流耐压是比较危险的,是不可取的做法。

6.3 试验方法一般电机可以使用直流发生器进行试验,试验接线见图6.1图6.1 发电机直流耐压试验接线1)在正式试验前应进行一次空升试验,即甩开被试验绕组按每级0.5U n分阶段升一次电压,记录各阶段的泄漏电流,一方面可以检查试验设备和接线是否正常,另一方面可以测量试验设备本身的泄漏电流,以便于在正式试验时将所测量的泄漏电流减去空升时的泄漏电流。

2)正式试验。

试验电压按每级0.5U n分阶段升高,每阶段停留1分钟,记录1分钟时的泄漏电流。

3)试验前应将绕组短路接地放电,试验后应首先将被试绕组通过放电棒放电,待电压降到一定数值后(比如1000V以下)才能将被试绕组直接接地放电。

4)在试验中应注意观察泄漏电流的变化,如果发现泄漏电流摆动或急剧增加,应停止试验,待查明原因后方可继续试验。

5)对于电压较高的电机,在试验中应采取必要的措施防止电晕过大造成泄漏电流不正常。

一般的措施有增加高压端与地端的距离,如果距离不够可增加绝缘隔板,避免接线中存在尖端放电等等。

6)对于氢冷发电机禁止在氢气置换过程中进行试验。

7)高压试验应遵守相关的安全工作规定。

7 交流耐压试验7.1 常规试验方法由于发电机试验时电容电流通常都比较大,限流电阻和保护电阻的选择应根据实际情况选择,应保证被试品击穿时过流保护能可靠动作并有足够大的功率,通常是水电阻,可添加食盐调节水的电阻。

图6.2 常规交流耐压试验接线限流电阻:由于电流较大,阻值越大,压降越大,损耗也越大,阻值应小于试品的容抗,而且要有足够大的热容量,通常采用水电阻;铜球保护电阻:为了保证铜球击穿后过流保护装置能够动作,应满足U T / 阻值≥动作电流。

CXC ω=1(Ω) (7.1) T CTCU X U I ω==(A )(7.2)式中,C :绕组对地及相间电容(F );Xc :容抗(Ω);ω:角频率,ω = 2πf ,对于工频,f = 50 Hz ,ω = 314 7.2 串联谐振交流耐压试验 7.2.1 试验接线图7.1 变频式串联谐振法交流耐压试验接线7.2.2 谐振条件I L =I C =I (7.3)X L =X C (7.4)U L =-U C(7.5)式中:X L =ωL由于谐振的条件是X L =X C ,即:ωL=1/ωC ,整理后可得谐振条件为:LCf π=21(7.6)从上式可知,通过调整电感L 或电容C 或调整频率f ,都可以使试验回路达到谐振的状态。

相关文档
最新文档