甘肃省定西市临洮县第二中学2020届高三上学期第三次月考诊断数学(理)试卷(无答案)
甘肃省定西市高考数学三模试卷(理科)
甘肃省定西市高考数学三模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019高二下·亳州月考) 复数 = (i是虚数单位),则复数的虚部为()A . iB . -iC . 1D . -12. (2分)(2020·定远模拟) 若集合,,则()A .B .C .D .3. (2分)下列函数是偶函数的是()A .B . y=C .D .4. (2分)(2016·嘉兴模拟) 已知等差数列的等差,且,,成等比数列,若,为数列的前项和,则的最小值为()B . 3C . 2−2D .5. (2分)若α,β均为锐角,sinα=,sin(α+β)=,则cosβ等于()A .B .C . 或D .6. (2分) (2017高一下·丰台期末) 执行如图所示的程序框图,如果输入的x=2,则输出的y等于()A . 2B . 4C . 67. (2分)如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1 ,正视图是正方形,俯视图是正三角形,该三棱柱的侧视图面积为()A . 2B .C . 2D . 48. (2分)根据工作需要,现从4名女医生,a名男医生中选3名医生组成一个救援团队,其中a= xdx,则团队中男、女医生都有的概率为()A .B .C .D .9. (2分) (2016高三上·重庆期中) 已知向量 =(1,2), =(x,﹣2),且⊥ ,则| + |=()A . 5B .C . 4D .10. (2分) (2016高三上·嵊州期末) 已知点P在以F1 , F2为焦点的双曲线 =1(a>0,b>0)上,过P作y轴的垂线,垂足为Q,若四边形F1F2PQ为菱形,则该双曲线的离心率为()A .B .C . 1D . 1+11. (2分)已知空间4个球,它们的半径分别为2, 2, 3, 3,每个球都与其他三个球外切,另有一个小球与这4个球都外切,则这个小球的半径为()A .B .C .D .12. (2分)方程x(x2+y2﹣4)=0与x2+(x2+y2﹣4)2=0表示的曲线是()A . 都表示一条直线和一个圆B . 都表示两个点C . 前者是两个点,后者是一直线和一个圆D . 前者是一条直线和一个圆,后者是两个点二、填空题 (共4题;共4分)13. (1分)某校现有高一、高二、高三三个年级共48个教学班,各年级学生数分别是1000,1050,1200,若按分层抽样从全校抽出65名学生,则高二年级比高一年级多抽出________名学生.14. (1分)知三棱锥P﹣ABC的顶点都在同一个球面上(球O),且PA=2,PB=PC= ,当三棱锥P﹣ABC的三个侧面的面积之和最大时,该三棱锥的体积与球O的体积的比值是________.15. (1分)(2016·潮州模拟) 已知数列{an}的前n和为Sn , a1=2,当n≥2时,2Sn﹣an=n,则S2016的值为________.16. (1分) (2015高一上·福建期末) 点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是________.三、解答题 (共7题;共65分)17. (10分)(2017·四川模拟) 在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosB=bcosA.(1)判断△ABC的形状;(2)求sin(2A+ )﹣2cos2B的取值范围.18. (5分)某高校文学院和理学院的学生组队参加大学生电视辩论赛,文学院推荐了2名男生,3名女生,理学院推荐了4名男生,3名女生,文学院和理学院所推荐的学生一起参加集训,由于集训后学生水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.(1)求文学院至少有一名学生入选代表队的概率;(2)某场比赛前,从代表队的6名学生在随机抽取4名参赛,记X表示参赛的男生人数,求X的分布列与数学期望.19. (10分)在四棱锥P﹣ABCE中,PA⊥底面ABCE,CD⊥AE,AC平分∠BAD,G为PC的中点,PA=AD=2,BC=DE,AB=3,CD=2 ,F,M分别为BC,EG上一点,且AF∥CD.(1)求的值,使得CM∥平面AFG;(2)求直线CE与平面AFG所成角的正弦值.20. (10分)(2017·黑龙江模拟) 已知椭圆,其左、右焦点分别为F1 , F2 ,离心率为,点R的坐标为,又点F2在线段RF1的中垂线上.(1)求椭圆C的方程;(2)设椭圆C的左、右顶点分别为A1,A2,点P在直线上(点P不在x轴上),直线PA1,PA2与椭圆C分别交于不同的两点M,N,线段MN的中点为Q,若|MN|=λ|A1Q|,求λ.21. (10分) (2015高三下·武邑期中) 设函数f(x)=x3+ax2+bx(x>0)的图像与x轴相切于M(3,0).(1)求f(x)的解析式;(2)是否存在两个不等正数s,t(s<t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有这样的正数s,t,若不存在,请说明理由.22. (10分)已知曲线C1的参数方程为(t为参数),曲线C2的参数方程为(θ为参数).(1)若C1与C2相交于A、B两点,求|AB|;(2)若把曲线C2上各点的横坐标扩大到原来的2倍,纵坐标保持不变,得到曲线C3,设点P是曲线C3上的一个动点,求它到曲线C1的距离的最大值.23. (10分)(2018·呼和浩特模拟) 已知函数 . (1)若不等式恒成立,求实数的取值范围;(2)设,且,求证: .参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共65分)17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、。
甘肃省2020届高三月考数学(理)试题
2020学期高三月考试题数 学(理)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.答案写在答题卡上,交卷时只交答题卡.一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.............) 1.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围为( ) A .(0,1] B .[1,+∞) C .(0,1) D .(1,+∞) 2.若复数z 满足()3443i z i -=+,则z 的虚部为( )A . 45i -B . 45-C . 45D . 45i3.已知直线:10(R)l x ay a +-=∈是圆22:4210C x y x y +--+=的对称轴.过点()4,A a -作圆C 的一条切线,切点为B ,则AB =( ) A .2 B .42 C .6 D .2104.如图,在斜三棱柱ABC -A 1B 1C 1中,∠BAC =90°,且BC 1⊥AC ,过C 1作C 1H ⊥底面ABC ,垂足为H ,则点H 在( ) A .直线AC 上 B .直线AB 上 C .直线BC 上D .△ABC 内部5.已知三条直线2x -3y +1=0,4x +3y +5=0,mx -y -1=0不能构成三角形,则实数m 的取值集合为( )A .⎩⎨⎧⎭⎬⎫-43,23 B .⎩⎨⎧⎭⎬⎫-43,23,43 C .⎩⎨⎧⎭⎬⎫43,-23 D .⎩⎨⎧⎭⎬⎫-43,-23,236.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…, 960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷C 的人数为( )A .7B .9C .10D .157.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为,x y ,则2log 1x y =的概率为( )A .16 B . 536C . 112D .12 8.若实数x ,y 满足条件402200x y x y x y +-≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,则12x y-⎛⎫ ⎪⎝⎭ 的最大值为( ) A .116B . 12C . 1D .29.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回地摸取5次,设摸得白球个数为X ,已知E (X )=3,则D (X )=( ) A .85 B .65 C .45D .2510.已知等比数列{a n }的各项均为正数且公比大于1,前n 项积为T n ,且a 2a 4=a 3,则使得T n >1的n 的最小值为( ) A .4B .5C .6D .711.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞) C .(-∞,-1)D .(-∞,+∞)12.已知椭圆()221112211:10x y C a b a b +=>>与双曲线()222222222:10,0x y C a b a b -=>>有相同的焦点12,F F ,若点P 是1C 与2C 在第一象限内的交点,且1222F F PF =,设1C 与2C 的离心率分别为12,e e ,则21e e -的取值范围是( )A . 1,3⎡⎫+∞⎪⎢⎣⎭B . 1,3⎛⎫+∞ ⎪⎝⎭ C . 1,2⎡⎫+∞⎪⎢⎣⎭ D .1,2⎛⎫+∞ ⎪⎝⎭二、填空题(本大题共4 小题,每小题5分,共20分) 13.计算:⎠⎛01(2x +1-x 2)d x =________.14.已知抛物线方程为y 2=-4x ,直线l 的方程为2x +y -4=0,在抛物线上有一动点A ,点A到y 轴的距离为m ,到直线l 的距离为n ,则m +n 的最小值为________.15.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________(用数字作答).16.已知实数e ,0()lg(),0x x f x x x ⎧≥=⎨-<⎩,若关于x 的方程()2()0f x f x t ++=有三个不同的实根,则t 的取值范围为____________.三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(12分)已知向量()()2cos ,1,cos 2,a x b x x =r r =函数().f x a b =⋅r r(1)求函数()f x 的单调增区间; (2)当0,6x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 值域.18.(12分)在锐角ABC △中,,,a b c 为内角,,A B C 的对边,且满足(2)cos cos 0c a B b A --=. (1)求角B 的大小;(2)已知2c =,AC 边上的高BD ABC △的面积S 的值.19. (10分)在平面直角坐标系xOy 中,直线l 的参数方程为2,{2x t y =--= (t 为参数),直线l 与曲线()22:21C y x --=交于,A B 两点.(1)求AB 的长;(2)在以O 为极点, x 轴的正半轴为极轴建立极坐标系,设点P 的极坐标为34π⎛⎫ ⎪⎝⎭,求点P 到线段AB 中点M 的距离.20.(10分)已知()()20?f x ax ax a a =-+->. (1)当1a =时,求()f x x ≥的解集;(2)若不存在实数x ,使()3f x <成立,求a 的取值范围.21.(12分)设f (x )=x ln x -ax 2+(2a -1)x (常数a >0). (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围.22.(14分)已知函数()(2)ln(1)()f x x x ax a R =++-∈ (1)若1a =,求曲线()y f x =在点()0,(0)f 处的切线方程; (2)若()0f x ≥在[)0,+∞上恒成立,求实数a 的取值范围;(3)若数列{}n a 的前n 项和231n S n n =+-,4n nb a =,求证:数列{}n b 的前n 项和ln(1)(2)n T n n <++ .2020学期月考试题答案数 学(理)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.答案写在答题卡上,交卷时只交答题卡.一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.............) 1.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围为( B ) A .(0,1] B .[1,+∞) C .(0,1) D .(1,+∞) 2.若复数z 满足()3443i z i -=+,则z 的虚部为 ( B )A . 45i - B . 45-C . 45D . 45i 3.已知直线:10(R)l x ay a +-=∈是圆22:4210C x y x y +--+=的对称轴.过点()4,A a -作圆C 的一条切线,切点为B ,则AB =( C )A .2B .42C .6D .2104.如图,在斜三棱柱ABC -A 1B 1C 1中,∠BAC =90°,且BC 1⊥AC ,过C 1作C 1H ⊥底面ABC ,垂足为H ,则点H 在( B ) A .直线AC 上 B .直线AB 上 C .直线BC 上D .△ABC 内部5.已知三条直线2x -3y +1=0,4x +3y +5=0,mx -y -1=0不能构成三角形,则实数m 的取值集合为( D )A .⎩⎨⎧⎭⎬⎫-43,23 B .⎩⎨⎧⎭⎬⎫-43,23,43 C .⎩⎨⎧⎭⎬⎫43,-23 D .⎩⎨⎧⎭⎬⎫-43,-23,236.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…, 960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷C 的人数为( A )A .7B .9C .10D .157.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为,x y ,则2log 1x y =的概率为( C )A .16 B . 536C . 112D .12 8.若实数x ,y 满足条件4022000x y x y x y +-≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,则12x y -⎛⎫⎪⎝⎭ 的最大值为( D )A .116B . 12C . 1D .29.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回地摸取5次,设摸得白球个数为X ,已知E (X )=3,则D (X )=( B ) A .85 B .65 C .45D .2510.已知等比数列{a n }的各项均为正数且公比大于1,前n 项积为T n ,且a 2a 4=a 3,则使得T n >1的n 的最小值为( C ) A .4B .5C .6D .711.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( B )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)12.已知椭圆()221112211:10x y C a b a b +=>>与双曲线()222222222:10,0x y C a b a b -=>>有相同的焦点12,F F ,若点P 是1C 与2C 在第一象限内的交点,且1222F F PF =,设1C 与2C 的离心率分别为12,e e ,则21e e -的取值范围是( D )A . 1,3⎡⎫+∞⎪⎢⎣⎭B . 1,3⎛⎫+∞ ⎪⎝⎭C . 1,2⎡⎫+∞⎪⎢⎣⎭D . 1,2⎛⎫+∞ ⎪⎝⎭二、填空题(本大题共4 小题,每小题5分,共20分) 13.计算:⎠⎛01(2x +1-x 2)d x =________π4+1._..14.已知抛物线方程为y 2=-4x ,直线l 的方程为2x +y -4=0,在抛物线上有一动点A ,点A 到y 轴的距离为m ,到直线l 的距离为n ,则m +n 的最小值为___655-1..15.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=____10____(用数字作答).16.已知实数e ,0()lg(),0x x f x x x ⎧≥⎨-<⎩,若关于x 的方程()2()0f x f x t ++=有三个不同的实根,则t的取值范围为 (,2]-∞-__________.三、解答题(写出必要的计算步骤、解答过程,只写最后结果的不得分,共70分)17.(12分)已知向量()()2cos ,1,cos 2,a x b x x =r r =函数().f x a b =⋅r r(1)求函数()f x 的单调增区间;(2)当0,6x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 值域 ()22cos 2f x a b x x =⋅=r r2cos 212sin 216x x x π⎛⎫=++=++ ⎪⎝⎭由()222,262k x k k Z πππππ-≤+≤+∈,得(),.36k x k k Z ππππ-≤≤+∈2.由1知()f x 在0,6π⎡⎤⎢⎥⎣⎦上单调递增 ∴当6x π=时, ()max 3f x =;当0x =时, ()min 2f x =18.(12分)在锐角ABC △中,,,a b c 为内角,,A B C 的对边,且满足(2)cos cos 0c a B b A --=. (1)求角B 的大小.(2)已知2c =,AC 边上的高BD =,求ABC △的面积S 的值. (1)∵(2)cos cos 0c a B b A --=,由正弦定理得(2sin sin )cos sin cos 0C A B B A --=,∴2sin cos sin cos sin cos C B A B B A =+,即2sin cos sin C B C =. ∵πA B C +=-且sin 0C ≠,∴1cos 2B =, ∵(0,π)B ∈,∴π3B =. (2)∵11sin 22S ac B BD b ==⋅,代入,c BD B ==,得b由余弦定理得,22222cos 42b a c ac B a a =+-=+-代入b ,得29180a a -+=,解得3a b =⎧⎪⎨=⎪⎩6a b =⎧⎪⎨=⎪⎩又∵ABC △是锐角三角形∴222a c b <+,故3a =,b∴11sin 2322ABC S ac B ==⨯⨯=△19.(10分)在平面直角坐标系xOy 中,直线l的参数方程为2,{2x t y =--= (t 为参数),直线l 与曲线()22:21C y x --=交于,A B 两点.(1)求AB 的长;(2)在以O 为极点, x 轴的正半轴为极轴建立极坐标系,设点P的极坐标为34π⎛⎫⎪⎝⎭,求点P 到线段AB 中点M 的距离。
甘肃省定西市临洮县第二中学2020届高三上学期第三次月考诊断化学试卷
高三化学一、单选题(共16小题,每小题3分,共48分)1.科学家发现一种化学式为H3的氢分子。
1molH3和1molH2具有相同的( )A.分子数B.原子数C.质子数D.电子数2.设N A代表阿伏加德罗常数的数值,下列说法正确的是()A.22.4LCl2中含有N A个C12分子B.1L0.1mol·L-1Na2SO4溶液中有0.1N A个Na+C.1molH2与1molC12反应生成N A个HCl分子D.1molCa变成Ca2+时失去的电子数为2N A3.是常规核裂变产物之一,可以通过测定大气或水中的含量变化来检测核电站是否发生放射性物质泄漏。
下列有关的叙述中错误的是()A.的化学性质与相同B.的原子序数为53C.的原子核外电子数为78D.的原子核内中子数多于质子数4.化学在生产和日常生活中有着重要的应用.下列说法不正确的是()A.明矾水解形成的Al(OH)3胶体能吸附水中悬浮物,可用于水的净化B.在海轮外壳上镶入锌块,可减缓船体的腐蚀速率C.“静电除尘”、“燃煤固硫”、“汽车尾气催化净化”都能提高空气质量D.电解MgCl2溶液,可制得金属镁5.用化学方法区别MgSO4、Al2(SO4)3和Fe2(SO4)3三种溶液时,最好选择下列试剂中的( ) A.NaOH溶液B.KSCN溶液C.氨水D.石蕊试液6.获得“863”计划和中科院“百人计划”支持的环境友好型铝碘电池已研制成功,电解液为AlI3溶液,已知电池总反应为2Al+3I2=2AlI3。
下列说法不正确的是( )A.该电池负极的电极反应为Al-3e-=Al3+B.电池工作时,溶液中铝离子向正极移动C.消耗相同质量的金属,用锂作负极时,产生电子的物质的量比铝多D.该电池可能是一种可充电的二次电池7..我国已跨入“互联网+”时代,而“互联网+”的建设离不开无机非金属材料硅。
下列物品中用到硅单质的是()A.陶瓷餐具B.石英钟表C.计算机芯片D.光导纤维8.一定量的浓硝酸与过量的铜充分反应,生成的气体是( )A.只有NO2B.只有NOC.NO2和NOD.NO2和H29.某同学利用下图装置进行喷泉实验,已知圆底烧瓶内充满X气体,胶头滴管内装有少量Y 液体,烧杯内装有足量Z液体,下列组合能进行喷泉实验且最终液体一定能充满整个烧瓶的是()A.AB.BC.CD.D10.室温下,下列各组离子在指定溶液中能大量共存的是( )A.0.1mol·L-1KI溶液:Na+、K+、ClO-、OH-B.0.1mol·L-1Fe2(SO4)3溶液:Cu2+、N、N、SC.0.1mol·L-1HCl溶液:Ba2+、K+、CH3COO-、ND.0.1mol·L-1NaOH溶液:Mg2+、Na+、S、HC11.甲醇是一种重要的化工原料,广泛应用于化工生产,也可以直接用作燃料.已知:CH3OH(l)+O2(g)=CO(g)+2H2O(g)△H1=﹣443.64kJ•mol﹣12CO(g)+O2(g)=2CO2(g)△H2=﹣566.0kJ•mol﹣1下列说法或热化学方程式正确的是()A.CO的燃烧热为566.0 kJ•mol﹣1B.2molCO和1molO2的总能量比2molCO2的总能量低C.完全燃烧20g甲醇,生成二氧化碳和水蒸气时放出的热量为908.3kJD.2CH3OH(l)+3O2(g)=2CO2(g)+4H2O(g)△H=﹣1453.28kJ•mol﹣112.原子的核电荷数小于18的某元素X,其原子的电子层数为n,最外层电子数为2n+1,原子核内质子数为2n2-1。
甘肃省定西市2019-2020学年高考第三次模拟数学试题含解析
甘肃省定西市2019-2020学年高考第三次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数22()2cos (sin cos )2f x x x x =++-的一个单调递增区间是( ) A .,44ππ⎡⎤-⎢⎥⎣⎦ B .3,88ππ⎡⎤-⎢⎥⎣⎦ C .5,88ππ⎡⎤⎢⎥⎣⎦D .59,88ππ⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】利用同角三角函数的基本关系式、二倍角公式和辅助角公式化简()f x 表达式,再根据三角函数单调区间的求法,求得()f x 的单调区间,由此确定正确选项. 【详解】因为22()2cos (sin cos )2f x x x x =++-1cos 21sin 2224x x x π⎛⎫=+++-=+ ⎪⎝⎭,由()f x 单调递增,则222242k x k πππππ-≤+≤+(k ∈Z ),解得388k x k ππππ-≤≤+(k ∈Z ),当1k =时,D 选项正确.C 选项是递减区间,A ,B 选项中有部分增区间部分减区间. 故选:D 【点睛】本小题考查三角函数的恒等变换,三角函数的图象与性质等基础知识;考查运算求解能力,推理论证能力,数形结合思想,应用意识.2.已知甲盒子中有m 个红球,n 个蓝球,乙盒子中有1m -个红球,+1n 个蓝球(3,3)m n ≥≥,同时从甲乙两个盒子中取出(1,2)i i =个球进行交换,(a )交换后,从甲盒子中取1个球是红球的概率记为(1,2)i p i =.(b )交换后,乙盒子中含有红球的个数记为(1,2)i i ξ=.则( )A .1212,()()p p E E ξξ><B .1212,()()p p E E ξξC .1212,()()p p E E ξξ>>D .1212,()()p pE E ξξ<<【答案】A 【解析】分析:首先需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望.详解:根据题意有,如果交换一个球,有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球, 红球的个数就会出现,1,1m m m -+三种情况;如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是2,1,,1,2m m m m m --++五种情况,所以分析可以求得1212,()()p p E E ξξ><,故选A.点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可取值会分析是多少,利用期望公式求得结果.3.正四棱锥P ABCD -,侧棱长为球的表面积为( ) A .4π B .8πC .16πD .20π【答案】C 【解析】 【分析】如图所示,在平面ABCD 的投影为正方形的中心E ,故球心O 在PE 上,计算长度,设球半径为R ,则()222PE R BE R -+=,解得2R =,得到答案.【详解】如图所示:P 在平面ABCD 的投影为正方形的中心E ,故球心O 在PE 上,BD ==12BE BD ==3PE ==, 设球半径为R ,则()222PE R BE R -+=,解得2R =,故2416S R ππ==. 故选:C .【点睛】本题考查了四棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.4.函数()1log1axf x xx+=+(01a<<)的图象的大致形状是()A.B.C.D.【答案】C【解析】【分析】对x分类讨论,去掉绝对值,即可作出图象.【详解】()()()log 11log log 101log 0.a a a ax x x f x x x x x x x ⎧--<-+⎪==--<<⎨+⎪>⎩,,,,,故选C . 【点睛】 识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题. 5.复数1i i+=( ) A .2i - B .12i C .0 D .2i【答案】C 【解析】略6.设集合A ={y|y =2x ﹣1,x ∈R},B ={x|﹣2≤x≤3,x ∈Z},则A∩B =( ) A .(﹣1,3] B .[﹣1,3] C .{0,1,2,3} D .{﹣1,0,1,2,3}【答案】C 【解析】 【分析】先求集合A ,再用列举法表示出集合B ,再根据交集的定义求解即可. 【详解】解:∵集合A ={y|y =2x ﹣1,x ∈R}={y|y >﹣1}, B ={x|﹣2≤x≤3,x ∈Z}={﹣2,﹣1,0,1,2,3}, ∴A∩B ={0,1,2,3}, 故选:C . 【点睛】本题主要考查集合的交集运算,属于基础题. 7.已知函数()ln 1f x x =+,()122x g x e -=,若()()f m g n =成立,则m n -的最小值是( ) A .1ln 22+ B .2e -C .1ln 22-D12【答案】A 【解析】分析:设()()f m g n t ==,则0t >,把,m n 用t 表示,然后令()h t m n =-,由导数求得()h t 的最小值.详解:设()()f m g n t ==,则0t >,1t m e -=,11lnln ln 2222t n t =+=-+, ∴11ln ln 22t m n e t --=-+-,令11()ln ln 22t h t e t -=-+-,则11'()t h t e t -=-,121"()0t h t e t-=+>,∴'()h t 是(0,)+∞上的增函数,又'(1)0h =,∴当(0,1)t ∈时,'()0h t <,当(1,)t ∈+∞时,'()0h t >, 即()h t 在(0,1)上单调递减,在(1,)+∞上单调递增,()h 1是极小值也是最小值,1(1)ln 22h =+,∴m n -的最小值是1ln 22+.故选A .点睛:本题易错选B ,利用导数法求函数的最值,解题时学生可能不会将其中求b a -的最小值问题,通过构造新函数,转化为求函数()h t 的最小值问题,另外通过二次求导,确定函数的单调区间也很容易出错.8.已知集合{}1,2,3,4,5,6U =,{}13,5A =,,{}2,3,4B =,则集合()U B A =U ð( )A .{}1,2,6B .{}1,3,6C .{}1,6D .{}6【答案】D 【解析】 【分析】根据集合的混合运算,即可容易求得结果. 【详解】{}1,2,3,4,5A B ⋃=Q ,故可得()U B A =U ð{}6.故选:D. 【点睛】本题考查集合的混合运算,属基础题.9.如图是一个几何体的三视图,则这个几何体的体积为( )A .53π B .2πC .52π D .3π【答案】A 【解析】 【分析】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.再由球与圆柱体积公式求解. 【详解】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱, 半球的半径为1,圆柱的底面半径为1,高为1. 则几何体的体积为32145111233V πππ=⨯⨯+⨯⨯=.故选:A . 【点睛】本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平.10.已知平行于x 轴的直线分别交曲线2ln 21,21(0)y x y x y =+=-≥于,A B 两点,则4AB 的最小值为( ) A .5ln 2+ B .5ln 2- C .3ln 2+ D .3ln 2-【答案】A 【解析】 【分析】设直线为1122(0),(,)(,)y a a A x y B x y =>,用a 表示出1x ,2x ,求出4||AB ,令2()2ln f a a a =+-,利用导数求出单调区间和极小值、最小值,即可求出4||AB 的最小值. 【详解】解:设直线为1122(0),(,)(,)y a a A x y B x y =>,则1ln 21a x =+,11(ln 1)2x a ∴=-, 而2x 满足2221a x =-,2212a x +∴=那么()()22211144()4ln 122ln 22a AB x x a a a ⎡⎤+=-=--=+-⎢⎥⎣⎦设2()2ln f a a a =+-,则221()a f a a -'=,函数()f a在0,2⎛ ⎝⎭上单调递减,在2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以minmin 42()25ln 2AB f a f ===+⎝⎭故选:A . 【点睛】本题考查导数知识的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导确定函数的最小值是关键,属于中档题.11.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]0.51-=-,[]1.51=,已知函数12()4324x x f x -=-⋅+(02x <<),则函数[]()y f x =的值域为( ) A .13,22⎡⎫-⎪⎢⎣⎭ B .{}1,0,1- C .{}1,0,1,2- D .{}0,1,2【答案】B 【解析】 【分析】利用换元法化简()f x 解析式为二次函数的形式,根据二次函数的性质求得()f x 的取值范围,由此求得[]()y f x =的值域.【详解】 因为12()4324x x f x -=-⋅+(02x <<),所以()21241324232424x x x x y =-⋅+=-⋅+,令2x t =(14t <<),则21()342f t t t =-+(14t <<),函数的对称轴方程为3t =,所以min 1()(3)2f t f ==-,max 3()(1)2f t f ==,所以13(),22f x ⎡⎫∈-⎪⎢⎣⎭,所以[]()y f x =的值域为{}1,0,1-. 故选:B 【点睛】本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识.12.如图,平面α与平面β相交于BC ,AB α⊂,CD β⊂,点A BC ∉,点D BC ∉,则下列叙述错误的是( )A .直线AD 与BC 异面B .过AD 只有唯一平面与BC 平行 C .过点D 只能作唯一平面与BC 垂直 D .过AD 一定能作一平面与BC 垂直 【答案】D 【解析】 【分析】根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断. 【详解】A.假设直线AD 与BC 共面,则A ,D ,B ,C 共面,则AB ,CD 共面,与AB α⊂,CD β⊂矛盾, 故正确.B. 根据异面直线的性质知,过AD 只有唯一平面与BC 平行,故正确.C. 根据过一点有且只有一个平面与已知直线垂直知,故正确.D. 根据异面直线的性质知,过AD 不一定能作一平面与BC 垂直,故错误. 故选:D 【点睛】本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。
甘肃省临洮县二中2025届高三第三次测评数学试卷含解析
甘肃省临洮县二中2025届高三第三次测评数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数2(2)(32)m m m m i -+-+是纯虚数,则实数m 的值为( )A .0或2B .2C .0D .1或22.设,m n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( ) A .若m n ⊥,//n α,则m α⊥B .若//m β,βα⊥,则m α⊥C .若m β⊥,n β⊥,n α⊥,则m α⊥D .若m n ⊥,n β⊥,βα⊥,则m α⊥3.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .4.若直线2y kx =-与曲线13ln y x =+相切,则k =( ) A .3B .13C .2D .125.函数1()ln ||1xf x x+=-的图象大致为 A . B . C .D .6.设i 是虚数单位,若复数103m i++(m R ∈)是纯虚数,则m 的值为( ) A .3-B .1-C .1D .37.若非零实数a 、b 满足23a b =,则下列式子一定正确的是( ) A .b a > B .b a < C .b a <D .b a >8.在精准扶贫工作中,有6名男干部、5名女干部,从中选出2名男干部、1名女干部组成一个扶贫小组分到某村工作,则不同的选法共有( ) A .60种B .70种C .75种D .150种9.在正方体1111ABCD A B C D -中,点E ,F ,G 分别为棱11A D ,1D D ,11A B 的中点,给出下列命题:①1AC EG ⊥;②//GC ED ;③1B F ⊥平面1BGC ;④EF 和1BB 成角为4π.正确命题的个数是( ) A .0B .1C .2D .310.已知等差数列{}n a 的公差为2-,前n 项和为n S ,1a ,2a ,3a 为某三角形的三边长,且该三角形有一个内角为120︒,若n m S S ≤对任意的*n ∈N 恒成立,则实数m =( ). A .6B .5C .4D .311.在ABC ∆中,“tan tan 1B C >”是“ABC ∆为钝角三角形”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既不充分也不必要条件12.我们熟悉的卡通形象“哆啦A 梦”2.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是( ) A .400米 B .480米 C .520米D .600米二、填空题:本题共4小题,每小题5分,共20分。
甘肃省定西市2020版数学高三上学期理数期中考试试卷(I)卷
甘肃省定西市2020版数学高三上学期理数期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分)(2019·黑龙江模拟) 已知集合则集合()A .B .C .D .2. (1分) (2018高二下·张家口期末) 已知复数(是虚数单位),则(是的共轭复数)的虚部为()A .B .C .D .3. (1分)(2019·金华模拟) 等差数列,等比数列,满足,,则能取到的最小整数是()A .B .C .4. (1分) (2019高三上·西安月考) 公元263年左右,我国数学家刘徽发现,当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率,下图是利用刘徽的割圆术设计的程序框图,则输出的值为()(参考数据:,,)A . 3B . 4C . 5D . 65. (1分)下列命题中,真命题的个数为()①有一根大于1,另一根小于1的充要条件是②当时,的最小值为1③对于恒成立,则④的一个充分不必要条件是A . 1B . 2D . 46. (1分) (2019高二下·吉林月考) 在区间内随机取两个数分别记为,则使得函数有零点的概率为()A .B .C .D .7. (1分)一束光线从点出发,经x轴反射到圆上的最短路径是()A . 4B . 5C .D .8. (1分)过双曲线()的右焦点作圆的切线,交轴于点,切圆于点,若,则双曲线的离心率是()A .B .C .D .9. (1分) (2019高二下·滁州期末) 设函数,若,且,则的取值范围是()A .B .C .D .10. (1分) (2017高一下·西华期末) 函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为()A . y=2sin(2x+ )B . y=2sin(2x+ )C . y=2sin(﹣)D . y=2sin(2x﹣)11. (1分)已知F1,F2是椭圆的左、右焦点,点P在椭圆上,且,线段PF1与y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1: 2,则该椭圆的离心率等于()A .B .C .D .12. (1分)(2019·湖南模拟) 已知满足,且,则的最小值为()A .B .C .D . 10二、填空题 (共4题;共4分)13. (1分) (2019高一下·南通期末) 已知平面向量的夹角为,,则________14. (1分) (2019高二下·浙江期末) 若满足约束条件则的最小值为________,最大值为________.15. (1分)(2016·赤峰模拟) 若(1+x)(1﹣ax)4的展开式中x2的系数为10,则实数a=________.16. (1分) (2018高二上·延边期中) 已知中,,若三角形有两解,则的取值范围是________三、解答题 (共6题;共13分)17. (2分)在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA=(2c+a)cos(π﹣B)(1)求角B的大小;(2)若b=4,△ABC的面积为,求a+c的值.18. (2分) (2017高一下·长春期末) 已知{an}是等差数列,Sn是其前n项和.已知a1+a3=16,S4=28.(1)求数列{an}的通项公式(2)当n取何值时Sn最大,并求出这个最大值.19. (3分)某公司的两个部门招聘工作人员,应聘者从 T1、T2两组试题中选择一组参加测试,成绩合格者可签约.甲、乙、丙、丁四人参加应聘考试,其中甲、乙两人选择使用试题 T1 ,且表示只要成绩合格就签约;丙、丁两人选择使用试题 T2 ,并约定:两人成绩都合格就一同签约,否则两人都不签约.已知甲、乙考试合格的概率都是,丙、丁考试合格的概率都是,且考试是否合格互不影响.(1)求丙、丁未签约的概率;(2)记签约人数为 X,求 X的分布列和数学期望EX.20. (2分) (2019高二下·温州期末) 如图,在四棱锥E﹣ABCD中,底面ABCD是边长为2的正方形,且DE =,平面ABCD⊥平面ADE,∠ADE=30°(1)求证:AE⊥平面CDE;(2)求AB与平面BCE所成角的正弦值.21. (2分)已知函数.(1)若,且,求的最大值;(2)当时,恒成立,且,求的取值范围.22. (2分) (2019高二下·九江期中) 已知函数 .(1)若在定义域上不单调,求的取值范围;(2)设分别是的极大值和极小值,且,求的取值范围.参考答案一、单选题 (共12题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共13分) 17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、。
甘肃省2020届高三数学上学期第三次阶段性复习过关考试试题理.doc
武威六中2020届高三一轮复习过关考试(三)数 学(理)一、选择题(51260⨯=)1.若集合A ={x |x >0},且B ⊆A ,则集合B 可能是( )A.{1,2}B.{x |x ≤1}C.{-1,0,1}D.R 2.若复数z 满足i i z i ()1(=+是虚数单位),则z 的虚部为( ) A .i 21-B .21- C .i 21 D . 213.设函数f (x )=ln (1+x )-ln (1-x ),则f (x )是( )A. 偶函数,且在(0,1)内是增函数B.奇函数,且在(0,1)内是减函数C. 奇函数,且在(0,1)内是增函数D.偶函数,且在(0,1)内是减函数 4.若tan α=34,则cos 2α+2sin 2α=( )A .6425B .4825C .1D .16255.若f (x )=2xf ′(1)+x 2,则f ′(0)等于( ) A .2B .0C .-2D .-46.函数y =A sin (ωx +φ)的部分图象如图所示,则 ( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π6B .y =2sin ⎝⎛⎭⎪⎫2x -π3 C .y =2sin ⎝ ⎛⎭⎪⎫x +π6 D .y =2sin ⎝⎛⎭⎪⎫x +π3 7.函数f (x )=2x|log 0.5x |-1的零点个数为( ) A .1B .2C .3D .48.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≥4,f (x +1),x <4,则f (2+log 23)的值为( )A.24B.16C.12D.89.已知m ∈R ,“函数y =2x+m -1有零点”是“函数y =log m x 在(0,+∞)上为减函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.已知f (x )为偶函数,且当x ∈[0,2)时,f (x )=2sin x ,当x ∈[2,+∞)时,f (x )=log 2x ,则f ⎝⎛⎭⎪⎫-π3+f (4)等于( ) A.-3+2 B.1 C.3 D.3+211.南宋时期的数学家秦九韶独立发现的计算三角形面积的“三斜求积术”,与著名的海伦公式等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减小,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即S 且))sin :sin :sin 11A B C =的ABC △,则其面积为( )A B C D 12.定义域为R 的可导函数y =f (x )的导函数,f ′(x ),满足f (x )< f ′(x ),且f (0)=2,则不等式f (x )<2e x的解集为( )A. (2,+∞)B.(-∞,2)C.(0,+∞)D. (-∞,0)二、填空题(4520⨯=)13.已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为________.14.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.15.已知f (x )为偶函数,当x <0时,f (x )=ln (-x )+3x ,则曲线y =f(x )在点(1,-3)处的切线方程是________.16.将函数f (x )=3sin x -cos x 的图象沿着x 轴向右平移a (a >0)个单位后的图象关于y 轴对称,则a 的最小值是________.三、解答题17.(本小题12分)设p :实数x 满足x 2-5ax +4a 2<0(其中a >0),q :实数x 满足2<x ≤5.(1)若a =1,且p ∧q 为真,求实数x 的取值范围. (2)若q ⌝是p ⌝的必要不充分条件,求实数a 的取值范围.18.(本小题12分)已知函数f (x )=23sin ⎝ ⎛⎭⎪⎫x 2+π4·cos ⎝ ⎛⎭⎪⎫x 2+π4-sin (x +π). (1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.19.(本小题12分)已知函数f (x )=ln x ,g (x )=12ax 2+2x .(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围.20.(本小题12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长.21.(本小题12分)设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.22.(本小题满分10分)坐标系与参数方程.在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =4cos α+2,y =4sin α(α为参数),以O 为极点,以x 轴的正半轴为极轴的极坐标系中,直线l 的极坐标方程为θ=π6(ρ∈R ).(1)求曲线C 的极坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|AB |的值.2020届武威六中第三次阶段性过关测试卷 理科数学答案 一、选择题二、填空题13.32 14. 4 15. 2x +y +1=0 16. π3三、解答题17.解(1)当a =1时,x 2-5ax +4a 2<0即为x 2-5x +4<0,解得1<x <4, 当p 为真时,实数x 的取值范围是1<x <4. 若p ∧q 为真,则p 真且q 真, 所以实数x 的取值范围是(2,4).(2) q ⌝是p ⌝的必要不充分条件,即p 是q 的必要不充分条件. 设A ={x |p (x )},B ={x |q (x )},则B A ⊆. 由x 2-5ax +4a 2<0得(x -4a )(x -a )<0, ∵a >0,∴A ={x |a <x <4a },又B ={x |2<x ≤5},则a ≤2且4a >5,解得54<a ≤2.∴实数a 的取值范围是⎝ ⎛⎦⎥⎤54,2. 18. 解 (1)f (x )=23sin ⎝ ⎛⎭⎪⎫x 2+π4·cos ⎝ ⎛⎭⎪⎫x 2+π4-sin(x +π) =3cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π3,于是T =2π1=2π.(2)由已知得g (x )=f ⎝⎛⎭⎪⎫x -π6=2sin ⎝ ⎛⎭⎪⎫x +π6,∵x ∈[0,π],∴x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin ⎝ ⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤-12,1,∴g (x )=2sin ⎝⎛⎭⎪⎫x +π6∈[-1,2],故函数g (x )在区间[0,π]上的最大值为2,最小值为-1. 19.解 (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),①所以h ′(x )=1x-ax -2,由h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x-ax -2<0有解,②即a >1x 2-2x有解.设G (x )=1x 2-2x,所以只要a >G (x )min 即可.而G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1. 所以a >-1.(2)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,③即a ≥1x 2-2x 恒成立.设G (x )=1x 2-2x,所以a ≥G (x )max ,而G (x )=⎝ ⎛⎭⎪⎫1x -12-1, 因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.20.解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B ·cos A )=sin C ,2cos C sin(A +B )=sin C ,故2sin C cos C =sin C . 由C ∈(0,π)知sin C ≠0, 可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cos C =7,故a 2+b 2=13, 从而(a +b )2=25.所以△ABC 的周长为5+7.21.解: (1)由f (x )=x 22-k ln x (k >0),得x >0且f ′(x )=x -k x =x 2-kx.由f ′(x )=0,解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:所以,f (f (x )在x =k 处取得极小值f (k )=k (1-ln k )2.(2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2.因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e ,当k =e 时,f (x )在区间(1,e)上单调递减,且f (e)=0, 所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(1,e)上单调递减,且f (1)=12>0,f (e)=e -k 2<0,所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.22.解 (1)将方程⎩⎪⎨⎪⎧x =4cos α+2,y =4sin α消去参数α得x 2+y 2-4x -12=0,∴曲线C 的普通方程为x 2+y 2-4x -12=0,将x 2+y 2=ρ2,x =ρcos θ代入上式可得ρ2-4ρcos θ=12, ∴曲线C 的极坐标方程为:ρ2-4ρcos θ=12. (2)设A ,B 两点的极坐标分别为⎝⎛⎭⎪⎫ρ1,π6,⎝ ⎛⎭⎪⎫ρ2,π6,由⎩⎪⎨⎪⎧ρ2-4ρcos θ=12,θ=π6消去θ得ρ2-23ρ-12=0, 根据题意可得ρ1,ρ2是方程ρ2-23ρ-12=0的两根, ∴ρ1+ρ2=23,ρ1ρ2=-12,∴|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=215.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理科数学
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()A
B C =( ) A .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6}
2.若a 为实数,且2+a i
1+i =3+i ,则a =( )
A .-4
B .-3
C .3
D .4
3.下列函数中,定义域是R 且为增函数的是( )
A .x e y
-= B .x y = C .x y ln = D .3x y =
4.已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a<b.下列命题为真命题的是
( )
A .p q ∧ B.p q ∧⌝ C.p q ⌝∧ D.p q ⌝∧⌝
5.已知54)cos(=-απ,且α为第三象限角,则α2tan 的值等于( )
A.34B .-34C.-247D .247
6.已知函数⎩⎨⎧=x x x f 3
log )(2)0()0(≤>x x ,则)]41([f f 的值是() A.9B.91- C.9
1D .9- 7.设x R ∈,向量(,1),(1,2),a x b ==-且a b ⊥,则||a b +=() A.5B.10C.52 D.10
8.要得到函数⎪⎭⎫ ⎝
⎛-=34sin πx y 的图象,只需将函数x y 4sin =的图象( )
A .向右平移π12个单位
B .向左平移π12个单位
C .向左平移π3个单位
D .向右平移π3个单位 9.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为
( )
A. B. C. D.
10.我国古代数学名著《算法统宗》中有如下问题:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()
A.1盏
B.2盏 C .3盏 D .9盏
11.设曲线x x y sin cos 1+=在点)1,2
(π处的切线与直线01=+-ay x 平行,则实数=a () A .1B -1C .2D .-2 12.已知函数()f x '是函数()f x 的导函数,1(1)f e =
,对任意实数都有()()0f x f x '->,则不等式2()x f x e -<的解集为( )
A .(1,)+∞
B .(,)e -∞
C .(1,)e
D .(,)e +∞
二、填空题:本题共4小题,每小题5分,共20分。
13.若209,T
x dx T =⎰则常数的值为 .
14.已知向量,的夹角为2=a 1=b ,=b a 2________.
15.已知x ,y 满足约束条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩
,则z=-2x+y 的最大值是________.
16.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象
与函数|lg |y x =的图象的交点个数为________.
三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)
17.(本题满分10分)
记n S 为等差数列{}n a 的前n 项和,已知71-=a ,153-=S .
(1)求{}n a 的通项公式;
(2)求n S ,并求n S 的最小值.
18.(本题满分12分)
△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .
①求C ;
②若c =7,△ABC 的面积为33
2,求△ABC 的周长.
19.(本题满分12分)
已知是各项均为正数的等比数列,且,. (1)求数列
的通项公式; (2)为各项非零的等差数列,其前
项和为.已知,求数列⎭⎬⎫⎩⎨⎧n n a b 的前项和n T .
20.(本题满分12分)
在平面直角坐标系xOy 中,已知向量⎪⎪⎭
⎫ ⎝⎛-=22,22m ,()x x n cos ,sin =,⎪⎭⎫ ⎝⎛∈2,0πx . (1)若⊥,求x tan 的值;
(2)若与的夹角为π
3,求x 的值.
21.(本题满分12分)
已知e 是自然对数的底数,实数a 是常数,函数1)(--=ax e x f x 的定义域为(0,+
∞).
(1)设e a =,求函数f (x )的图象在点()()1,1f 处的切线方程;
(2)判断函数)(x f 的单调性.
22.(本题满分12分)
已知常数0≠a ,x x a x f 2ln )(+=.
(1)当a =-4时,求
)(x f 的极值; (2)当)(x f 的最小值不小于a -时,求实数a 的取值范围.。