电阻电路的一般分析方法

合集下载

第三章 电阻电路的一般分析

第三章  电阻电路的一般分析

第三章电阻电路的一般分析电路的一般分析是指方程分析法,它是以电路元件的约束特性(VCR)和电路的拓扑约束特性(KCL,KVL)为依据,建立以支路电流或回路电流,或结点电压为变量的回路方程组,从中解出所要求的电流、电压、功率等。

方程分析法的特点是:(1)具有普遍适用性,即无论线性和非线性电路都适用;(2)具有系统性,表现在不改变电路结构,应用KCL,KVL,元件的VCR建立电路变量方程,方程的建立有一套固定不变的步骤和格式,便于编程和用计算机计算。

本章的重点是会用观察电路的方法,熟练运用支路法、回路法和结点电压法的“方程通式”写出支路电流方程、回路方程和结点电压方程,并加以求解。

3-1 在一下两种情况下,画出图示电路的图,并说明其节点数和支路数(1)每个元件作为一条支路处理;(2)电压源(独立或受控)和电阻的串联组合,电流源和电阻的并联组合作为一条支路处理。

解:(1)每个元件作为一条支路处理时,图(a)和(b)所示电路的图分别为题解3-1图(a1)和(b1)。

图(a1)中节点数6b==n,支路数11图(b1)中节点数7=bn,支路数12=(2)电压源和电阻的串联组合,电流源和电阻的并联组合作为一条支路处理时,图(a)和图(b)所示电路的图分别为题解图(a2)和(b2)。

图(a2)中节点数4b=n,支路数8=图(b2)中节点数15b=n,支路数9=3-2指出题3-1中两种情况下,KCL,KVL独立方程数各为多少?解:题3-1中的图(a)电路,在两种情况下,独立的KCL方程数分别为(1)51==4n1--1=6-1-=n (2)3独立的KVL方程数分别为(1)61=84+--n+=1b1=111b (2)5+6+--n=图(b)电路在两种情况下,独立的KCL方程数为(1)61=5-=1n-7n (2)41=1-=-独立的KVL方程数分别为(1)6+1=95b1-n+=-=1271b (2)51=-n++-3-3对题图(a)和(b)所示G,各画出4个不同的树,树支数各为多少?解:一个连通图G 的树T 是这样定义的:(1) T 包含G 的全部结点和部分支路;(2) T 本身是连通的且又不包含回路。

第03章电阻电路的一般分析

第03章电阻电路的一般分析

例3 列支路电流法方程。
a
解:
I1 7
+ 70V

I2
1+
5U
_
7 I3 11 +
U 2-
节点a: –I1–I2+I3=0 回路1: 7I1–11I2 - 70 +5U =0 回路2: 11I2+7I3 - 5U =0 增补方程:
b
U=7I3
(1-18)
§3.4 网孔电流法
网孔电流——假想每个网孔中有一个网孔电流。方向可 任意假设。
(1-22)
理想电流源(恒流源)支路的处理
①若恒流源支路仅有一个网孔电流穿过,则该网孔电 流= ± 该恒流源电流(同方向取+,否则取-)。 ②非上述情况时:设恒流源两端电压,当作恒压源列方 程。然后增补恒流源电流与网孔电流的关系方程。
例2 列网孔电流方程。
R1
R2 im2 I3s
+ im1 I5s
第三章
电阻电路的一般分析
重点: 1.支路电流法; 2. 网孔电流法; 3.回路电流法; 4.节点电压法。
对于简单电路,通过电阻串、并联关系或 Y—△等效变换关系即可求解。如:
i总 R
R
R i=?
+
-u
2R
2R
2R 2R
i总
i总

u 2R
+
- u 2R
111 u i i总 2 2 2 16R
例4 列网孔电流方程。
解:网孔电流方向如图所示。 (R1 + R3)i1-R3i3=-U2
+
U1 _
R1
iS
R3 i1
+

第3章 电阻电路的一般分析总结

第3章 电阻电路的一般分析总结

第三章电阻电路的一般分析◆重点:1、支路法2、节点法3、网孔法和回路法◆难点:1、熟练掌握支路法、网孔法和割集分析法的计算思路,会用这几种方法列写电路方程。

2、熟练地运用节点法和回路法分析计算电路。

3-1 电网络中的基本概念网络图论与矩阵论、计算方法等构成电路的计算机辅助分析的基础。

其中网络图论主要讨论电路分析中的拓扑规律性,从而便于电路方程的列写。

1.支路——Branch流过同一个电流的电路部分为一条支路。

2.节点——node三条或者三条以上支路的汇集称为节点。

4.网络的图——graph节点和支路的集合,称为图,每一条支路的两端都连接到相应的节点上。

6.回路——loop电路中的任意闭合路径,称为回路。

8.网孔——mesh一般是指内网孔。

平面图中自然的“孔”,它所限定的区域不再有支路。

例如:在下图中,支路数6,节点数4,网孔数3,回路数79.树一个连通图G的树T是指G的一个连通子图,它包含G的全部节点,但不含任何回路。

树中的支路称为“树支”——tree branch,图G中不属于T 的其他支路称为“连支”——link,其集合称为“树余”。

一个连通图的树可能存在多种选择方法。

10.基本回路只含一条连支的回路称为单连支回路,它们的总和为一组独立回路,称为“基本回路”。

树一经选定,基本回路唯一地确定下来。

对于平面电路而言,其全部网孔是一组独立回路。

3-2 2B 法与1B 法3.2.1 支路法(2B 法)介绍1.方法概述以支路电压和支路电流作为变量,对节点列写电流(KCL )方程,对回路列写电压(KVL )方程,再对各个支路写出其电压电流关系方程,简称支路方程。

从而得到含2b 个变量的2b 个独立方程。

又称为“2b 法”。

2.思路由上述方法可见,“2b 法”实际上清晰地体现了求解电路的两个不可或缺的方面,即电路的解一是要满足网络的拓扑约束,二是要满足电路中各个元件的伏安关系约束。

3.方程结构b 个支路方程,)1(-n 个电流(KCL )方程,))1((--n b 个电压(KVL )方程。

第3章 电阻电路的一般分析

第3章 电阻电路的一般分析
2 3
解2. I1 7 + 70V –
a
增补方程:I2=6A 11 由于I2已知,故只列写两个方程。 a:–I1+I3=6 7
I2
1 6A b
I3
避开电流源支路取回路: 1: 7I1+7I3=70
返 回 上 页 下 页
例6.
I1 7
+ 70V –
列写支路电流方程(电路中含有受控源)。 a
I2 1 + 5U _ b 11 2 I3 + 7 U _ 解
返 回
支路、结点、路径、回路和网孔的概念。 (1)连通图 图G的任意两结点间至少有一条路径 时,称图G为连通图。非连通图至少 存在两个分离部分。
(2) 子图
若图G1中所有支路和结点都是图G中 的支路和结点,则称G1是G的子图。
返 回
上 页
下 页
(3)树 (Tree)
T是连通图G的一个子图, 并满足条件:
依据:
KCL、KVL以及元件的VCR。
方法: 根据列方程时所选变量不同,可分为支路电流法、
网孔电流法、回路电流法和结点电压法。
返 回 上 页 下 页
对于线性电阻电路,电路方程是一组线性代数方程。
例1
3
I1 R1 uS1 + –
a I2 I3
R2 + – b 2 独立? R3 求I1、I2和I3?
1 uS2
独立回路=2,选为网孔。
+ –
R3
i1 il 1 i3 il 2 i2 il 2 il 1
uS2
b
回路1:R1 il1-R2(il2- il1) +uS2-uS1=0 回路2:R2(il2- il1)+ R3 il2 -uS2=0 自电阻 (R1+ R2) il1 -R2 il2 = uS1-uS2

邱关源《电路》第五版第3章电阻电路的一般分析

邱关源《电路》第五版第3章电阻电路的一般分析

第 1 步 选定各支路电流参考方向,如图 3-1 所示。 第 2 步 对(n-1)个独立节点列 KCL 方程 如果选图 3-1 所示电路中的节点 4 为参考节点,则节点 1、2、3 为独 立节点,其对应的 KCL 方程必将独立,即: 1 I1 I3 I4 0 2 I1 I 2 I5 0 3 I 2 I3 I6 0 第 3 步.对 b (n 1) 个独立回路列关于支路电流的 KVL 方程 Ⅰ: R1 I 1 R5 I 5 U s 4 R4 I 4 U s1 0 Ⅱ: R2 I 2 U s 2 R6 I 6 R5 I 5 0 Ⅲ: R4 I 4 U s 4 R6 I 6 U s3 R3 I 3 0 第 4 步.求解
第三步,网孔电流方程的一般形式
R11im1 R12im 2 R13im3 us11 R21im1 R22im 2 R23im3 us 22 R31im1 R32im 2 R33im3 us 33
式中,Rij(i=j)称为自电阻,为第 i 个网孔中各支路的电阻之和,值恒为 正。Rij(i≠j)称为互电阻,为第 i 个与第 j 个网孔之间公共支路的电阻之 和,值可正可负;当相邻网孔电流在公共支路上流向一致时为正,不一 致时为负。 usii 为第 i 个网孔中的等效电压源。其值为该网孔中各支路电
G5 1 + US

2 G1 G3 G2 G4
3
4
图 3-8
b.对不含有电压源支路的节点利用直接观察法列方程: G1U n1 (G1 G2 G3 )U n 2 G3U n3 0
G5U n1 G3U n (G3 G4 G5 )U n3 0
c.求解 ② 含多条不具有公共端点的理想电压源支路,如图 3-9。 a.适当选取参考点:令 U n4 0 ,则 U n1 U s 。 b. 虚设电压源电流为 I,利用直接观察法形成方程

电路中的电阻分析方法

电路中的电阻分析方法

电路中的电阻分析方法在电路学中,电阻是一个重要的概念,它是电流和电压之间的关系所基于的基本物理量。

在电路设计和故障排除过程中,正确地分析和计算电阻值是至关重要的。

本文将介绍一些常用的电路中电阻的分析方法。

一、欧姆定律欧姆定律是最基本的电阻分析方法之一。

根据欧姆定律,电路中的电阻值可以通过电流和电压之间的比例来确定。

即电阻值等于电压与电流之比,用公式表示为R=U/I。

这种方法适用于简单的电路,并且可以用来计算电阻的数值。

二、串联电阻的分析在电路中,当电阻按照串联连接时,它们的总电阻可以通过将单个电阻的电阻值相加来计算。

例如,当两个电阻R1和R2串联时,它们的总电阻R总= R1 + R2。

串联电阻的分析方法可以适用于更复杂的电路,只需要将所有串联电阻的电阻值相加即可。

三、并联电阻的分析当电阻按照并联连接时,它们的总电阻可以通过将单个电阻的倒数相加并取倒数来计算。

例如,当两个电阻R1和R2并联时,它们的总电阻可以表示为1/R总= 1/R1 + 1/R2。

并联电阻的分析方法适用于复杂的电路,尤其是当电路中有大量并联电阻时,可以通过这种方法有效地计算总电阻。

四、电桥法电桥法是一种常用的分析电阻的方法,它通过使用电桥电路来测量未知电阻的值。

电桥电路由四个电阻和一个电源组成,其中两个电阻是已知的。

通过调节未知电阻与已知电阻的比例,使得电桥平衡,可以测量出未知电阻的值。

这种方法适用于测量较小的电阻值,特别是在实验室环境中。

五、瞬态电流分析电路中的电阻不仅会阻碍电流流过,还会产生热量。

在某些情况下,电阻的瞬态行为对电路的性能有重要影响。

通过分析电路中电阻的瞬态响应,可以了解电流和电压随时间的变化规律,从而更好地设计和优化电路。

综上所述,电路中的电阻分析方法多种多样,选择适合的方法取决于电路的复杂程度和所需的准确度。

欧姆定律是最基本的电阻分析方法,而串联和并联电阻的分析方法适用于更复杂的电路。

电桥法和瞬态电流分析方法则可用来测量和优化电路中的电阻值。

电阻电路的一般分析思维导图

电阻电路的一般分析思维导图

电阻电路的一般分析回路电流法术语支路每一个二端元件称为一条支路多个二端元件串联可视为一条支路结点支路与支路的连接点称为结点多个等电位的结点可视为一个结点路径从一个结点到另一个结点所经过的支路集合回路从起点出发,终点又回到起点,所形成的闭合路径称为回路。

要求中间经过的结点只能经过一次。

网孔不包含支路的回路称为网孔网孔数量 = KVL 独立方程数回路电流法本质上是 KVL 方程,以回路电流为独立变量,列写独立回路 KVL 方程,共有n个独立方程,称为回路电流方程,n是网孔的数量。

即有几个网孔,就有几个独立方程,也可以以一个回路列写方程,但是一般用网孔列回路电流方程。

回路电流方程(对于一个网孔而言)自阻*当前网孔电流 + Σ(互阻*对应网孔电流) = 电源电压自阻项:是当前回路的所有电阻之和,前永远取正互阻项:是当前回路与其他回路共同所有的电阻当前回路电流与相邻回路电流在互阻上的方向与相同,则前取正相反则前取负电源电压项电源电压与当前回路电流关联前则取正非关联则取负网孔电流法和回路电流法的关系网孔电流法就是采用网孔作为独立回路的回路电流法网孔电流法是回路电流法的一个特例例题普通回路含受控电压源回路通过u1 = R1i1,又变为了两个方程、两个未知数含独立电流源回路解法一:因为回路电流法本质上是 KVL 方程,又因为电流源的电压尤其外电路决定,因此可以将电流源先当作电压源看待,即引入了一个未知量:电流源的电压u。

但是根据电流源的电流列出第四个方程,变为了四个方程、四个未知数,问题可解解法二含受控电流源回路选取和附加方程回路一般选取网孔列方程方程列举个数如果既没有受控源,也没有电流源,那么有多少个独立回路就列多少个回路电流方程独立回路:选一系列回路,每一次选择的回路中都有一条原先选择的回路所没有的新支路,那么这一系列回路叫独立回路每多一个受控电压源就增加一个方程关于独立电流源和受控电流源采用方法1:含独立电流源需附加一个方程;含受控电流源需附加2个方程采用方法2:含独立电流源不需附加方程;含受控电流源需附加1个方程电路图的基本概念连通图:任意两个结点之间至少存在一条路径树:包含所有结点,但不包含任何回路的连通图树支数所包含的支路树支数 = 结点数 - 1连支树所不包含的支路数连支数 = 总支路数 - 树支数每增加一个连支,形成一个独立回路,因此 KVL 独立方程数 = 连支数平面图:能令所有支路的交点均为结点,反之为非平面图网孔:能令平面图回路中不另外含有支路的回路,网孔概念不适用于非平面图电路对于平面图而言,KVL独立方程数=网孔数,所以数一数即可!结点电压法本质上是 KCL 方程,以结点电压为独立变量,列写独立节点的 KCL 方程,共有(n-1)个独立方程,称为结点电压方程。

第3章 电阻电路的一般分析方法

第3章 电阻电路的一般分析方法
R5
(2) 列KCL方程: iR出= iS入
结点 1 i1+i6=iS3 代入支路特性(用结点电压表示):
结点 2
un 2 un 2 un3 un 2 un3 un1 un 2 is 2 (2) R2 R3 R4 R6
i2 + i3 + i4 – i6= -iS2
电路物理量的关系 (电流、电压)
本课程主要研究电路分析,其基本方法: 确定变量 根据约束关系列方程 求解
特点:不改变电路结构,由根据约束关系建立方程求解。
回路电流法(网孔法)和结点电压法。
根据列方程时所选变量的不同可分为支路电流法、
章目录 上一页 下一页
3.1 支路电流法
一、支路电流法:以各支路电流为未知量列写电路, 方程分析电路的方法,称为支路电流法。 步骤:
方法2:选取独立回路时,使理想电流源支路仅仅属 于一个回路, 该回路电流即IS 。
R3 _ Ui + US1_ R1 I1=IS -R2I1+(R2+R4+R5)I2+R5I3=-US2 R1I1+R5I2+(R1+R3+R5)I3=US1
章目录 上一页 下一页
+
I3

R4 I2 R5
IS R2 I1 _ US2 +
u2=R2(iL1-iL2)
章目录 上一页 下一页
回路电流法的一般步骤: (1) 选定独立回路,并在图中标出。 (2) 对独立回路,以回路电流为未知量,列写其 KVL方程。
注意自电阻总是正,互电阻可正可负; 沿着回路绕行方向,电源压升为正,压降 为负; (3)当电路中有受控源或无伴电流源时需另行处理; (4) 求各支路电流(用回路电流表示);

线性电阻电路的一般分析方法-A

线性电阻电路的一般分析方法-A

受控源是电路中一种特殊的元件,其电压或电流受其他元件的控制。通
过应用叠加定理,可以将受控源转化为独立源,从而简化电路分析和计
算。
THANKS.
叠加定理的步骤
1. 将复杂电路分解为若干个独 立源和电阻元件的简单电路。
2. 分别计算各个独立源单独作 用于电路时产生的电流或电压

3. 将各个电流或电压值进行代 数相加,得到总电流或电压。
4. 根据总电流或电压和电阻值 ,计算出任意支路的电流或电 压。
叠加定理的应用实例
01
1. 计算复杂电路的总电阻
网孔分析法的步骤
确定网孔
根据电路图,将电路分解 为若干个网孔,每个网孔 由一个或多个支路组成。
设定电流变量
在每个网孔中设定一个 电流变量,并标明电流
的方向。
列写方程
解方程
根据基尔霍夫定律(KCL) 和欧姆定律,列出每个网孔
的电压和电流方程。
求解列出的方程组,得 到各网孔的电流和电压。
网孔分析法的应用实例
线性电阻电路的分析
05
方法-叠加定理
叠加定理的原理
叠加定理是线性电路的基本性质,它表明在多个独立源共同作用的线性电阻电路 中,任一支路的电流或电压等于各个独立源单独作用于电路时在该支路产生的电 流或电压的代数和。
叠加定理只适用于线性电阻电路,对于非线性元件或含有非线性元件的电路,叠 加定理不成立。
线性电阻电路的一般分 析方法-a
目录
• 线性电阻电路的基本概念 • 欧姆定律与基尔霍夫定律 • 线性电阻电路的分析方法-节点分析法 • 线性电阻电路的分析方法-网孔分析法 • 线性电阻电路的分析方法-叠加定理
线性电阻电路的基本
01

电阻电路的一般分析法

电阻电路的一般分析法
如有限元法、有限差分法等。
高阶电路的分析涉及到多个动态 元件之间的相互作用,需要综合
考虑电路的时域和频域特性。
05
非线性电阻电路的分析
非线性电阻元件的特性
1 2 3
电压-电流特性
非线性电阻元件的电压和电流之间的关系是非线 性的,线性电阻元件的电阻值随温度变化而变化,通 常表现出正温度系数(PTC)或负温度系数 (NTC)特性。
04
线性电阻电路的分析
一阶线性电阻电路
一阶线性电阻电路是指电路中 只包含一个动态元件(如电阻
、电容或电感)的电路。
一阶线性电阻电路的分析方法 主要包括时域分析和频域分析

时域分析是通过建立和求解一 阶常微分方程来研究电路的瞬 态响应。
频域分析是通过傅里叶变换将 时域函数转换为频域函数,从 而分析电路的频率响应。
时间特性
某些非线性电阻元件的电阻值会随着时间的推移 而发生变化,例如由于化学反应或机械变形引起 的电阻变化。
非线性电阻电路的分析方法
解析法
通过数学公式推导电路元件的电压、电流和功率等参数,适用于 简单电路。
图解法
通过绘制电路图并使用欧姆定律、基尔霍夫定律等基本电路定理 进行分析,适用于复杂电路。
计算机辅助分析法
局限性
计算机辅助分析依赖于精确的模型和参数,对于复杂电路或非线性元件的分析可能存在误差;对于实 际电路的布局和布线等因素,计算机辅助分析可能无法完全模拟;对于一些特定应用领域,如生物医 学工程或量子计算等,现有的计算机辅助分析工具可能不适用。
THANKS FOR WATCHING
感谢您的观看
电阻元件的种类
01
02
03
固定电阻器
阻值固定的电阻器,常用 的有碳膜电阻、金属膜电 阻等。

第三章电阻电路的一般分析

第三章电阻电路的一般分析

第三章电阻电路的一般分析本章内容:1.电路的图及KCL和KVL独立方程数 2.支路分析法3.网孔分析法4.回路电流法5.结点分析法本章重点:主要学习电阻电路的方程建立及一般分析方法(支路分析法、网孔分析法、节点分析法、回路分析法。

其中,支路分析法是最基本的方法)。

本章难点:独立回路数的确定, 回路分析法及节点分析法.§3-1 电路的图本节介绍有关图论的初步知识,学习应用图的方法选择电路方程的独立变量一、电路的图(G)数学上的图:是边(支路)和顶点(结点)的集合,每一条边都连到相应的顶点上,边是抽象的线段,当移去边时,顶点保留,当移去顶点时,应将顶点所连的支路移走。

1.电路的图(连通图G):是将支路画成的抽象线段形成的节点和支路的集合,结点相对于数学图的顶点,支路相当于数学图中的边。

支路是实体。

KVL和KCL 与元件的性质无关,故可用图讨论其方程。

2.无向图:画出的没有方向的图为无向图3.有向图:画出的有方向的图为有向图4.连通图:任意两个结点之间至少有一条支路或路径时的图为连通图。

二、电路的图的画法(有几种,其中简便的画法)1.一般将电阻和电压源串联的组合,电阻和电流源并联的组合看成一条支路, 将流过同一个电流的每一个分支看成一条支路。

如(b)2.指定电流和电压的参考方向,一般选关联参考方向。

如图(c)(a) (b) (c)§3-2 KCL和KVL的独立方程数一、KCL的独立方程数(n个结点电路,KCL的独立方程是n-1个)将电路的有向图,结点和支路加以编号,如下图,对结点①②③④列写KCL 方程有由于每条支路与两个结点相联,其电流从一个节点流出,从另一个结点流入,一正,一负(从表达式可见),将上面4个方程相加,等式两边为0,说明4个方程不是独立的;将上面3个方程相加,等式两边不为0,说明3个方程是独立的。

可见,n个结点电路,n-1个结点的KCL方程是独立的一、KVL的独立方程数(b条支路,n个结点,KVL为b-(n-1)个)KVL的独立方程数等于独立回路数独立回路数等于基本回路数,回路与支路的方向无关,以无向图讨论。

第三章 电阻电路的一般分析

第三章 电阻电路的一般分析


I1
+ US1



(
U S1 U S 2 1 1 1 U n1 IS3 R1 R2 R3 R1 R2 U S1 U S 2 IS3 R1 R2 U n1 1 1 1 R1 R2 R3
)

R1
R2
R3
IS3
对n=2的电路有
U n1
GU I G
I1 I l 1 I 2 I l1 I l 2 I3 Il2
据KVL得
R1 I1 R2 I 2 U S1 U S 2 R I R I U 3 3 S2 2 2
(不可解)
回路电流法比支路电流法求解的方程数少(n1)即只有(b-n+1)个。
由于有受控源,100=R12 ≠R21 = –1350 !
例2.求uA 、iB
a iB 4Ω
6A
b + 20V
-

iC
+ u A-
c

2 uA
d
- 2Ω 6iB +
a
b
c
o
解:回路取lbodb(2uA) 、 labdoa(iB) 、 lbcdb (iC), lacdoa(6A) labdoa 7iB +3×6=6iB -20 lbcdb 8iC+2×6 = 20
其系数规律为:
R11 ─自电阻,回路l1的所有电阻之和(恒正)(R22…Rmm 同);
R12 、R21 ─互电阻,回路1、2的公有电阻“代数和”,Il1 、 Il2在互电阻上同方向时取正;反之取负。无受控源时相 等.
US11 ─ 回 路 l1 沿 Il1 方 向 上 电 压 源 电 位 升 的 代 数 和 (US22…USmm 同)。

3 第 三 章 电阻电路的一般分析

3 第 三 章 电阻电路的一般分析
第 三 章 电阻电路的一般分析
重点掌握
1. 图论有关概念、独立结点、独立回路。 图论有关概念、独立结点、独立回路。 2. 电路三大分析法: 电路三大分析法: 支路电流法 结点电压法 回路电流法(含网孔电流法) 回路电流法(含网孔电流法)
★§3.1 ★§
一、概念 i1 R1 R2 + uS – ② i2
支路与结点的移去: 支路与结点的移去:支路必须 终止在结点上, 终止在结点上,移去支路不意 味着移去结点,但移去结点必 味着移去结点, 须移去与之相连的所有支路, 须移去与之相连的所有支路, 因此可以存在孤立结点 孤立结点。 因此可以存在孤立结点。
6. 回路(loop): 回路 : 由支路所构成的一条闭合路径。 由支路所构成的一条闭合路径。 该闭合路径中与每个结点相关联 的支路数为2。 的支路数为 。 7. 网孔(mesh):平面 网孔( : 图中的自然孔。 图中的自然孔。孔内区 域中不再含有任何支路 和结点。 和结点。 1 ②
i −i −i = 0
− i 2 + i 3 + i4 = 0 − i4 + i 5 − i 6 = 0 u1 + u2 + u3 = 0 − u3 + u4 + u5 = 0 − u2 − u4 + u6 = 0 u1 = R1 i1 − uS 1 u2 = R2 i2 u3 = R3 i3 u4 = R4 i4 u5 = R5 i5 + R5 i S 5 u6 = R6 i6
② ① ③
树支

连支
9.单连支回路(基本回路):只有一个连支 单连支回路(基本回路 只有一个连支 单连支回路 的回路。 个单连支回路. 的回路。有(b-n+1)个单连支回路 个单连支回路

C3.1电阻电路的一般分析

C3.1电阻电路的一般分析

3.2 2b法和支路法
一、2b法: n个节点,b条支路
VCR: b 个支路方程 KCL:(n-1)个独立方程 KVL:(b-n+1)个独立方程
以支路电流、支路电压为变量 则 2b 个变量 2b法 2b 个独立方程
(缺点:方程个数多,求解繁杂)
二、支路电流法
以支路电流 ik 为变量 (b个) 列方程。 依据: VCR: KCL: KVL:
(2) 路径、闭合路径及回路:从图G的一个节点出发沿着一些支 路连续移动到达另一节点所经过的支路构成路径。起始节点与 终止节点重合的路径为闭合路径。若闭合路径所经过的节点均 相异,则该闭合路径构成图G的一个回路。 (3) 连通图、子图:任意两个节点之间至少存在一条支路的图称 连通图。(非连通图至少存在两个分离部分)。若图G1中所有支路 和节点都是图G中的支路和节点,则称G1是G的子图。图 (b)、(c) 都是图 (a)的子图。
iS3 un1
1
R4 0
R3
un2 2
R5
令 Gk=1/Rk, k=1,2,3,4,5
iS1
R1
iS2
R2
G11=G1+G2+G3+G4 —节点1的自电导,
接在节点1上所有支路的电导之和。 G22=G3+G4+G5 — 节点2的自电导, 接在节点2上所有支路的电导之和。
G12= G21 =-(G3+G4) — 节点1与节点2之间的互电导, 接在节点1与节点2之间的所有支路的电导之和,并冠以负号。
自电导: G 接在节点 i 11 所 有 支 路 G21 电导之和, 恒正。
G(n 1)1
G12 G22 G(n 1)2

电路分析基础第二章

电路分析基础第二章

- R2il1+ (R2 +R3) il2 =uS2

R11=R1+R2 — 回路1的自电阻。等于回路1中所有电阻之和。 R22=R2+R3 — 回路2的自电阻。等于回路2中所有电阻之和。
自电阻总为正。 R12= R21= –R2 — 回路1、回路2之间的互电阻。 当两个回路电流流过相关支路方向相同时,互电阻取正 号;否则为负号。
(2) 列 KVL 方程
(R1+R2)Ia
-R2Ib
= US1- US2
-R2Ia + (R2+R3)Ib
- R3Ic = US2
-R3Ib + (R3+R4)Ic = -US4
对称阵,且 互电阻为负
(3) 求解回路电流方程,得 Ia , Ib , Ic
(4) 求各支路电流: I1=Ia , I2=Ib-Ia , I3=Ic-Ib , I4=-Ic
0 : 无关
特例:不含受控源的线性网络 Rjk=Rkj , 系数矩阵为对称阵。 (平面电路, Rjk均为负(当回路电流均取顺(或逆)时针方向))
回路法的一般步骤: (1) 选定l=b-(n-1)个独立回路,并确定其绕行方向; (2) 对l个独立回路,以回路电流为未知量,列写其 KVL方程; (3) 求解上述方程,得到l个回路电流; (4) 求各支路电流(用回路电流表示);
-Ib+3Ic=3U2
增补方程: ② U2=3(Ib-Ia)
4Ia-3Ib=2
解得 Ia=1.19A
受控电压源
③ -12Ia+15Ib-Ic=0 9Ia-10Ib+3Ic=0
Ib=0.92A Ic=-0.51A
看作独立电 压源列方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电路常用分析方法
第一:支路电流法:以各支路电流为未知量列写电路方程分析电路的方法。

独立方程的列写:(1)从电路的n 个结点中任意选择n-1个结点列写KCL 方程;
(2)选择基本回路列写b-(n-1)个KVL 方程。

支路电流法的一般步骤:
第二:回路电流法:以基本回路中沿回路连续流动的假想电流为未知量列写电路方程分析电路的方法。

它适用于平面和非平面电路。

1.列写的方程:回路电流法是对独立回路列写KVL 方程,方程数为:)1(--n b ,与支路电流法相比,方程减少1-n 个。

2.回路电流法适用于复杂电路,不仅适用于平面电路,还适用于非平面电路回路电流法的一般步骤:
(1)选定)1(--=n b l 个独立回路,并确定其绕行方向;
(2)对l 个独立回路,以回路电流为未知量,列写其KVL 方程;
(3)求解上述方程,得到l 个回路电流;
(4)求各支路电流。

回路电流法的特点:
(1)通过灵活的选取回路可以减少计算量;
(2)互有电阻的识别难度加大,易遗漏互有电阻。

理想电流源支路的处理:
网孔电流法是回路电流法的一种特例。

引入电流源电压,增加回路电流和电流源
电流的关系方程。

i来表示。

第三:网孔电流法:是一种沿着网孔边界流动的假想的环流,用
m
1.网孔电流法:是以网孔电流作为电路的独立变量的求解方法,仅适用于平面电路。

2.基本思想:利用假想的网孔电流等效代替支路电流来列方程。

3.列写的方程:KCL自动满足。

只需对网孔回路,列写KVL方程,方程数为网孔数。

网孔电流法的一般步骤:
(1)选定各网孔电流的参考方向,它们也是列方程时的绕行方向。

(通常各网孔电流都取顺时针方向或都取逆时针方向)
(2)根据电路,写出自阻、互阻及电源电压。

(3)根据推广公式,列网孔方程。

(4)求解网孔方程,解得网孔电流。

(5)根据题目要求,进行求解。

第四:结点电压法:以结点电压为未知量列写电路方程分析电路的方法。

适用于结点较少的电路。

结点电压法的一般步骤为:
(1)选定参考结点,标定1
n个独立结点;
-
(2)对1
-
n个独立结点,以结点电压为未知量,列写其KCL方程;
(3)求解上述方程,得到1
n个结点电压;
-
(4)通过结点电压求各支路电流;
(5)其他分析。

相关文档
最新文档