六自由度平台力学仿真研究

合集下载

《2024年六自由度机械臂控制系统设计与运动学仿真》范文

《2024年六自由度机械臂控制系统设计与运动学仿真》范文

《六自由度机械臂控制系统设计与运动学仿真》篇一一、引言六自由度机械臂,以其出色的灵活性、灵活的运动空间以及复杂的运动能力,在现代自动化工业和高端科技领域有着广泛的应用。

本篇论文旨在介绍一种六自由度机械臂控制系统的设计与运动学仿真。

通过详细阐述系统设计、控制策略以及运动学仿真结果,为六自由度机械臂的研发与应用提供理论依据和实验支持。

二、系统设计1. 硬件设计六自由度机械臂控制系统硬件主要包括机械臂本体、驱动器、传感器和控制单元等部分。

其中,机械臂本体采用串联式结构设计,通过六个关节的协调运动实现六自由度。

驱动器选用高性能直流无刷电机,并配备高精度减速器以提高控制精度。

传感器包括位置传感器、力传感器等,用于实时监测机械臂的状态和外部环境信息。

控制单元采用高性能微处理器,负责接收传感器信息、处理控制指令并输出控制信号。

2. 软件设计软件设计主要包括控制系统算法设计和人机交互界面设计。

控制系统算法包括运动规划、轨迹跟踪、姿态调整等模块,通过优化算法提高机械臂的运动性能和控制精度。

人机交互界面采用图形化界面设计,方便用户进行操作和监控。

三、控制策略1. 运动规划运动规划是六自由度机械臂控制系统的重要组成部分,主要任务是根据任务需求规划出合理的运动轨迹。

本系统采用基于规划的方法,通过预设的运动路径和速度参数,使机械臂按照规划的轨迹进行运动。

同时,采用动态规划算法对机械臂的运动进行实时调整,以适应外部环境的变化。

2. 轨迹跟踪轨迹跟踪是六自由度机械臂控制系统的核心部分,主要任务是使机械臂在运动过程中始终保持正确的姿态和位置。

本系统采用基于PID控制算法的轨迹跟踪策略,通过实时调整控制信号,使机械臂能够准确、快速地跟踪预设的轨迹。

同时,针对机械臂在运动过程中可能出现的扰动和误差,采用鲁棒性较强的控制策略进行优化。

四、运动学仿真为验证六自由度机械臂控制系统的设计效果和运动性能,我们进行了运动学仿真实验。

通过建立三维模型,模拟机械臂在不同任务下的运动过程,并分析其运动轨迹、姿态调整和速度变化等关键参数。

基于ADAMS的六自由度飞行模拟器动力学仿真研究

基于ADAMS的六自由度飞行模拟器动力学仿真研究

Ke y wo r ds:f li g h t s i mu l a t o r ;d y n a mi c s ; ADA M S
0 引 言
随着科技 的发展 , 飞行模 拟器 的应 用也 越来 越广 泛, 它在军 事训 练上 有先 天性 的优势 , 有 着节 省经 费、
试 验优 化 设 计 、 A D A Ms / H y d r a u l i c s液 压 传 动 分 析 、 A D A M S / V i b r a t i o n振 动仿 真分 析 、 汽车 整 车系 统仿 真
系统 的 设 计 、 制造、 创 新 和 模 拟 运 动 提 供 了理 论 依 据 和 实 践 价 值 。
关键词 : 飞行 模 拟 器; 动力学; A D A MS
中图分类 号 : T H1 6 ; T G 6 5 9 文献 标识 码 : A
S t u dy o n Fl i g ht Si mu l a t o r Dyn a mi c s S i m ul a t i o n Ba s e d o n A DAM S
文章编号 : 1 0 0 1—2 2 6 5 ( 2 01 3) l 1—0 0 1 4—0 3
基于 A D A MS的 六 自由度 飞 行模 拟 器 动 力学仿 真 研 究
刘志星 , 潘春 萍 , 赵 玉龙 , 吴健 楠
( 空军航 空大 学 军事仿真 技术 研 究所 , 长 春 1 3 0 0 2 2 ) 摘要 : 针对 负载 变化对 六 自由度平 台的影 响 , 应用机械 系统动 力学仿 真分析 软件 A D A MS建 立 了六 自 由度 飞行模 拟 器模 型 , 得 到 了基 于 A D A MS的六 自由度 飞行 模 拟 器有 关 动 力学 特性 曲线。仿 真 结 果 表 明, 不 同质心位 置及 质量 的模拟 器舱 体 对 驱 动杆 力影 响较 大 , 其 仿 真数 据 为 六 自由度 飞行 模 拟 器

六自由度运动平台位置反解的建模与仿真研究

六自由度运动平台位置反解的建模与仿真研究

14 m 7 0m
六 个 液 压 缸 的 下 铰 点 ; AB
为 第 1 6号 液 压 ~
缸; h为上平铰点在 坐标系 中的位置 关系可 得下平
台各铰点 在静 坐标系 中的坐标 为 ( 位 : m) 单 a
21 0 0年 1 月 1
图 1 所示 。
上 平 台铰点所 在外接 圆直径 下 平 台铰 点所在 外接 圆直径 两 相邻上 ( ) 点距离 下 铰
1 坐 标 系 的 建 立 . 2
10m 3 m
为求 解六 自由度 运 动平 台的空 间位 置关 系 , 首
先在上 、 下平 台上建 立静 、 动两 坐标 系f I - Z和 B( XY ) O f (- I 。 A} - 1 0" ’ 静坐 标 系原 点 0位 于下平 台 中心 , X- Z 轴垂直 底 面 向上 , 位 于底面 ,垂直 下 铰点 和 y轴
曰 的连线 , 轴 方 向 符 合 右 手 法 则 。动 坐 标 系原 点 位 于 上 平 台 中 心 , 上 平 台 在 中 位 时 , 坐 标 当 静 系 、 Z轴 与 动 坐标 系 轴 方 向一 致 ,且 动 坐 标 y、 系 轴 穿 过 点 , 垂 直 于 上 平 台 向上 , 垂 直 上 铰 轴 轴 点 和 的连线 , 同理轴方 向符合 右手 法则嘲 。各轴 指示
六 自由度运 动平 台位 置反解 的建模 与仿真研 究
晁智强 郭小 牛 刘相 波 韩 寿松 李华 莹
( 甲兵 工 程学 院机 械 工 程 系 北 京 装 10 7 0 0 2)
摘 要 : 用 MA L BS l k对 实 验 室 研 制 的六 自 由度 运 动 平 台位 置 反 解 建 模 、 真 、 析 , 过 对 上 平 台 进 行 垂 应 T A /i i mu n 仿 分 通

六自由度平台

六自由度平台

六自由度平台简介六自由度平台是一种具有六个自由度的机械装置,用于模拟某种特定的运动或操作。

它由一个固定的基座和一个可运动的平台组成,平台可以在六个方向上进行运动。

这些方向分别是平移运动的x、y和z轴以及旋转运动的绕x、y和z轴。

工作原理六自由度平台的工作原理基于平台上的六个自由度。

通过控制这些自由度的运动,可以实现平台的任意姿态和位置。

六自由度平台通常由六个执行机构组成,每个执行机构负责控制平台上的一个自由度。

这些执行机构可以是液压马达、电动推杆或转动电机等。

通过改变这些执行机构的运动方式和速度,可以控制平台的姿态和位置。

在六自由度平台上,平台和基座之间通常有一个连接机构。

这个连接机构被设计为可以使平台相对于基座在六个方向上运动,并且能够支持所需的载荷。

常见的连接机构包括球接头、万向节等。

六自由度平台在许多领域都有重要的应用。

以下是一些典型的应用领域:航天航空领域在航天航空领域,六自由度平台可以用于模拟和测试航天器和飞行器的运动和操纵。

通过控制平台的自由度,可以模拟各种姿态和操纵条件,以帮助设计和验证飞行器的控制系统。

机器人领域在机器人领域,六自由度平台可以用于模拟和测试机器人的运动和操作。

通过控制平台的自由度,可以模拟各种机器人的运动和操作场景,以帮助设计和验证机器人的运动控制算法。

模拟训练领域在模拟训练领域,六自由度平台可以用于模拟各种训练场景,如飞行模拟器、驾驶模拟器等。

通过控制平台的自由度,可以模拟各种实际场景下的运动和操作,以帮助训练人员提高技能和应对各种情况。

在医疗领域,六自由度平台可以用于模拟和测试医疗设备的运动和操作。

通过控制平台的自由度,可以模拟各种医疗设备的运动和操作,以帮助医生和护士熟悉设备的使用和操作步骤。

总结六自由度平台是一种具有六个自由度的机械装置,通过控制平台的自由度,可以实现平台的任意姿态和位置。

它在航天航空领域、机器人领域、模拟训练领域和医疗领域等许多领域都有广泛的应用。

六自由度平台实验报告

六自由度平台实验报告

六⾃由度平台实验报告六⾃由度平台实验报告机械电⼦⼯程系张梦辉21525074⼀、实验简介实验对象为⼀个六⾃由度平台,每个⾃由度的运动均由⼀个永磁式直流电机驱动,实验要求对其中⼀个电动缸进⾏位置控制,位置由⼀个滑变电阻式的位移传感器反馈回的电压信号确定,驱动则是通过研华的PCI1716L的数字输出实现,控制软件采⽤Labview8.6。

⼆、实验装置PC机⼀台研华PCI1716L多功能板卡⼀个PCI总线⼀根固态继电器板⼀块220V AC—24VDC变压器三个直流电动机六个三、实验台介绍六⾃由度运动平台是由六⽀电动缸,上、下各六只万向铰链和上、下两个平台组成,下平台固定在基础上,借助六只电动缸的伸缩运动,完成上平台在空间六个⾃由度(α,β,γ,X,Y,Z)的运动,从⽽可以模拟出各种空间运动姿态。

六⾃由度运动平台涉及到机械、液压、电⽓、控制、计算机、传感器,空间运动数学模型、实时信号传输处理等⼀系列⾼科技领域,因此六⾃由度运动平台是机电控制领域⽔平的标志性象征。

主要包括平台的空间运动机构、空间运动模型、机电控制系统。

本实验台,PC机作为板卡和⼈的接⼝,通过在PC机上编程来控制板卡发送数字信号和采集位置信号。

将PCI多功能卡设置为设备0,选择PCI板卡的模拟信号输⼊⼝AI4⼝来采集2号缸的位置信号,通过PORT1号⼝来控制2号缸对应直流电机的正转、反转和停⽌。

通过数字信号输出⼝发送开关量来控制固态继电器的开和闭,固态继电器导通的话,则接通直流电动机,直流电动机开始运⾏,这时候,电动缸就会朝着指定⽅向运⾏,并且到达指定的位置。

实验中⽤到的接⼝的说明:AI0-AI5 模拟信号输⼊⼝,⽤来采集六个缸的位置信号;AIGND 模拟信号公共地DO0-DO11 数字信号输出⼝,⽤来控制六个缸的运动(其中DO11-DO10 分别控制1号缸的正反转DO09-DO08 分别控制2号缸的正反转DO07-DO06 分别控制3号缸的正反转DO05-DO04 分别控制4号缸的正反转DO03-DO02 分别控制5号缸的正反转DO01-DO00 分别控制6号缸的正反转DGND 数字输出信号公共地PCI1716L板卡端⼝四、实验过程Labview实验程序:1、数字信号输出程序段通过调⽤PCI板卡的例⼦程序:DioWritePortWord.vi程序来发送数字信号,当控制⼦为1时,通过板卡数字信号输出⼝DO8⼝发送1,这样2号缸的电机发转,电动缸退回;当控制字为2时,通过数字信号输出⼝DO9发送1,这样2号缸的电机正转,电动缸前进。

六自由度自动驾驶仿真测试平台搭建及其应用研究

六自由度自动驾驶仿真测试平台搭建及其应用研究

六自由度自动驾驶仿真测试平台搭建及其应用研究目录一、内容描述 (2)1.1 研究背景 (3)1.2 研究目的与意义 (4)1.3 国内外研究现状综述 (5)1.4 论文结构安排 (6)二、六自由度自动驾驶仿真测试平台需求分析 (7)2.1 自动驾驶系统组成与功能需求 (9)2.2 仿真测试平台性能需求 (10)2.3 仿真测试平台硬件需求 (12)2.4 仿真测试平台软件需求 (13)三、六自由度自动驾驶仿真测试平台搭建 (14)3.1 平台总体架构设计 (16)3.2 传感器仿真模块设计与实现 (17)3.3 控制系统仿真模块设计与实现 (18)3.4 通信系统仿真模块设计与实现 (20)3.5 路径规划与决策系统仿真模块设计与实现 (21)3.6 数据处理与存储系统设计与实现 (22)四、六自由度自动驾驶仿真测试平台应用研究 (23)4.1 仿真测试流程设计 (24)4.2 仿真测试方法研究 (26)4.3 仿真测试结果分析 (27)4.4 仿真测试优化建议 (28)五、结论与展望 (29)5.1 研究成果总结 (30)5.2 存在问题与不足 (32)5.3 未来研究方向展望 (33)一、内容描述本文档主要围绕“六自由度自动驾驶仿真测试平台搭建及其应用研究”展开详细的内容描述。

接下来是关于搭建六自由度自动驾驶仿真测试平台的具体内容。

需要确定仿真测试平台的核心硬件和软件组件,包括高性能计算机、图形处理器、仿真软件、自动驾驶算法等。

需要考虑如何搭建这些组件,包括硬件设备的选型与配置、软件的安装与调试等。

环境的构建也是关键的一环,需要模拟各种真实的驾驶场景,包括城市道路、高速公路、山区道路等,以及各种复杂的交通环境,如雨天、雾天、夜间等。

关于应用研究部分,重点将探讨六自由度自动驾驶仿真测试平台在自动驾驶系统研发中的应用。

如何利用该平台对自动驾驶系统进行算法验证和性能评估将是重要内容。

如何通过该平台改进和优化自动驾驶系统也是一个重要的研究方向。

六自由度微重力模拟平台研究

六自由度微重力模拟平台研究
S t e w a r t m e c h a n i s m nd a a d y n a mi c s m o d e l ft o h s i s i mu l t a i o n p l a t f o r m s i e s t a b l i s h e d b a s e d o n K a n e ’ S e q u a t o i n s . Ac c o r d i n gt o t e h
d y n a mi c s mo d e l a k i d o n fc o m p u t e dt o r q u e c o n t r o l l a w f o r t h e p l t a f o m i r s ev d e l o p e d . F i n a l l y , t h e c o n t r o l l a wi s m  ̄i f e s t e d b y
第 3期
2 0 1 5年 3月
机 械 设 计 与 制 造
Ma c h i n e r y Des i g n &


Ma n u f a c t u r e
六 、 自 。 由 目 度 微 重 力 模 拟 平 台研 究
杨 平, 吴 洪涛 , 杨 小龙 , 陈 柏
2 1 0 0 1 6 ) ( 南京航空航天大学 机电学 院, 江苏 南京

要: 太空环境与地面环境有着很 大的不 同, 根 据地 面环境下动 力学特性设 计而成 的机械 系统在 太空零重力环境下作
业时会产生“ 动力过冲” 的现 象, 因此 太 空 机械 系统 在 进 入 太 空工 作 之 前 需要 进 行 严 格 的 地 面 微 重 力模 拟 实验 以 对 系统

六自由度运动平台的仿真研究说课讲解

六自由度运动平台的仿真研究说课讲解

六自由度运动平台的仿真研究六自由度运动平台的仿真研究天津工程机械研究院杨永立摘要:本文分析了六自由度运动平台分别采用球铰链和万向节铰链进行连接时的自由度,运用欧拉角、旋转变换的方法推导出位置反解方程,介绍了数值迭代法进行位置正解的过程。

关键词:并联,局部自由度,位置反解,位置正解。

1. 简介运动平台按结构形式可分为串联和并联两大类。

与串联形式相比,并联形式具有刚度大、承载能力强、结构简单、运动负荷小、能实现包括横移、纵移、升沉等多个自由度运动等特点。

同时,串联形式的优点也很明显,其具有运动空间大,测量精度高,运动、受力分析相对简单、控制、测量的实现相对容易,且每个自由度都能独立运动等特点。

六自由度运动平台(如图1所示)是由六条油缸通过万向节铰链(或球铰链)将上、下两个平台连接而成,下平台固定在基础上,借助六条油缸的伸缩运动,完成上平台在三维空间六个自由度(X ,Y ,Z ,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。

2. 自由度的确定若在三维空间有n 个完全不受约束的物体,任选其中一个作为固定参照物,因每个物体相对参照物都有6个运动自由度,则n 个物体相对参照物共有6(n-1)个运动自由度。

若在所有物体之间用运动副联接起来组成机构,设第i 个运动副的约束为u i (1到5之间的整数),如果运动副的总数为g ,则机构的自由度M 为:∑=--=gi i u n M 1)1(6利用上述公式计算一下如图1所示运动平台(采用球铰链)的自由度数。

将油缸分解为缸筒和活塞杆,则总的构件数n=14,油缸与上下平台之间的连接为12个球铰链(约束为3),缸筒和活塞杆构成6个既可以相对移动,又可以相对转动的运动副(约束为4),则平台的自由度M 为:∑=--=g i iu n M 1)1(6=6 (14-1)-(3×12+4×6)=18计算结果出人意料,平台似乎无法只通过六条油缸进行驱动。

但是,如果保持上平台和缸筒固定不动,由球铰链的特性可知,活塞杆仍然可以相对其轴线转动;同理,缸筒也具有同样的效应。

《2024年六自由度机械臂控制系统设计与运动学仿真》范文

《2024年六自由度机械臂控制系统设计与运动学仿真》范文

《六自由度机械臂控制系统设计与运动学仿真》篇一一、引言随着工业自动化和智能制造的快速发展,六自由度(6-DOF)机械臂因其出色的灵活性和可操控性在各个领域得到广泛应用。

六自由度机械臂能完成复杂的作业任务,且能够通过精确的控制系统实现高效和精确的操作。

因此,对六自由度机械臂控制系统设计与运动学仿真的研究具有重要意义。

本文将介绍一种六自由度机械臂控制系统的设计与实现,并通过运动学仿真来验证其性能。

二、六自由度机械臂控制系统设计1. 硬件设计六自由度机械臂控制系统主要由机械臂本体、驱动器、传感器和控制单元等部分组成。

其中,机械臂本体采用模块化设计,通过多个关节连接,形成多段连杆结构。

每个关节均采用伺服电机驱动,配合相应的编码器进行位置反馈,实现对关节运动的精确控制。

控制单元是整个系统的核心,采用高性能的嵌入式计算机系统,具备强大的数据处理能力和实时控制能力。

传感器包括力传感器、位置传感器等,用于实时监测机械臂的状态和外部环境信息。

2. 软件设计软件设计包括控制算法、通信协议和人机交互界面等部分。

控制算法采用经典的PID算法和基于模糊逻辑的控制算法相结合,实现对关节运动的精确控制。

通信协议采用标准的工业通信协议,保证系统与上位机之间的数据传输稳定可靠。

人机交互界面采用图形化界面,方便操作人员对机械臂进行控制和监控。

三、运动学仿真运动学仿真是对六自由度机械臂控制系统性能进行验证的重要手段。

本文采用MATLAB软件进行运动学仿真。

首先建立机械臂的数学模型,包括各关节的转动范围、连杆长度等参数。

然后根据机械臂的运动轨迹和速度要求,设定仿真参数和仿真时间。

最后通过仿真软件对机械臂的运动进行模拟和分析。

在仿真过程中,可以观察到机械臂在不同轨迹和速度下的运动情况,包括关节转角、连杆长度等参数的变化。

通过对仿真结果的分析,可以评估机械臂控制系统的性能和精度,为后续的优化和改进提供依据。

四、实验结果与分析为了验证六自由度机械臂控制系统的实际性能,我们进行了实际实验。

基于SW的六自由度平台仿真

基于SW的六自由度平台仿真

基于SW的六自由度平台仿真基于SolidWorks的六自由度液压平台运动仿真0前言虚拟样机技术是建造物理样机前对设计对象在计算机上建立的虚拟模型机,利用其完成设计对象功能的可行性及其工作性能的分析,更好地理解系统的运动特性、动力特性,比较设计方案,优化设计,提高产品质量和机械设计效率等。

仿真模型的建立和模拟现实条件是虚拟样机的重要基础。

笔者设计的六自由度液压平台因其自由度较多,正过程的运动仿真比较困难,进行运动逆过程的仿真,即给定末部执行器的运动轨迹或运动参数,来研究各驱动液压缸的运动参数和特性,包括平台的建模、仿真运动过程、极限位置、最大运动量、干涉等。

1 液压平台的基本结构设计液压六自由度运动平台本体结构包括上、下平台,变长杆系统,链接上、下平台和变长杆的铰接元件,力传感元件,位移传感元件等,如图1所示。

下平台为固定平台,上平台是可动平台,采用6根变长杆机构驱动。

6根变长支杆采用铰接在上、下平台之间的液压缸进行运动驱动。

从模仿人肌肉的角度出发,为体现机构、检测一体化的思想,将力传感器分别集成在液压平台的2个平台间的6个液压缸的缸杆上,用6个一维拉、压传感器检测1个六维力。

位移检测元件位移传感器选用FX.11型直流差动变压器式位移传感器。

它把振荡器、相敏解调器与差动变压器封装在一起,只需提供稳定的直流电源,就能获得与位移量成线性关系的直流电压输出。

铰接元件,采用万向节铰接设计。

这样,在支路上,上、下万向节各有2个转动的自由度,液压缸伸缩有1个移动自由度,缺少的1个转动自由度由液压缸和液压活塞杆的相对转动实现。

按照上面的设计原则,采用的结构尺寸:上、下铰接元件的分布圆半径分别为上平台半径ra=300mm,下平台半径rb=600mm,液压缸行程为60mm,上、下平台的初始位置高度为h=1.5ra的负二次方,上、下铰接点之间的距离和上平台端铰接元件的分布圆之间的关系满足:l*l=4.5r*r另外,为了保证铰接元件运动副运动空间的充分利用,采用支座设计使铰接元件在液压缸的中间工作位置时处在原始状态(即铰接元件的轴线重合状态)。

飞机六自由度飞行动力学仿真试验

飞机六自由度飞行动力学仿真试验

1飞机六自由度飞行动力学仿真实验
一.实验目的 
1.本实验将理论力学课程教学内容与航空航天工程应用相结合,分析、研究飞
机受力与六自由度运动特性,培养学生分析问题和解决问题的能力,展现理论力学知识在航空航天工程中的应用。

2.通过本实验,使学生更好地学习和理解理论力学的有关内容,如飞机的受力
分析、空间力系的简化与合成、刚体的平面运动与一般运动、刚体微分方程的建立与求解等,激发学生对理论力学的学习兴趣,开阔视野,增强工程概念。

二.实验仪器与设备 
实验在PC 个人计算机、WINDOWS 98以上操作系统环境中进行。

三.实验原理
飞机在空中的运动,在一定的假设条件下,可以视为理想刚体的运动,遵循刚体的运动规律,理论力学中介绍的刚体平动和转动基本定律都适用于飞行器的运动分析。

飞机在空中的运动为刚体的一般运动,具有六个自由度。

通常建立的机体坐标系如下图所示。

飞机的一般运动可以分解为随质心的平动和绕质心的转动,随质心的平动的速度可表示为??????????=W V U V G ,绕质心的转动角速度可表示为????
??????=R Q P ωG 。

飞机受到的气动力、发动机推力、重力是一个空间任意力系,向质心简化的主矢和主矩。

飞机六自由度模型及仿真研究

飞机六自由度模型及仿真研究

飞机六自由度模型及仿真研究一、本文概述随着航空工业的快速发展和飞行器设计的日益复杂化,对飞机动力学特性的理解和分析变得越来越重要。

其中,飞机的六自由度模型是理解和分析飞机动力学特性的基础工具。

本文旨在深入探讨飞机六自由度模型的建立过程,以及基于该模型的仿真研究。

我们将首先介绍飞机六自由度模型的基本概念和理论框架,然后详细阐述模型的建立过程,包括动力学方程的推导、运动学方程的构建以及控制逻辑的设计。

在此基础上,我们将展示如何利用该模型进行仿真研究,包括飞行轨迹的模拟、飞行稳定性的分析以及飞行控制策略的优化等。

我们将总结飞机六自由度模型及仿真研究的重要性,并展望未来的研究方向和应用前景。

本文的目标读者包括航空工程领域的学者、工程师以及研究生,希望通过本文的阐述,能够帮助读者更好地理解和掌握飞机六自由度模型及仿真研究的相关知识和技术。

我们也希望本文的研究能够对飞行器设计、飞行控制以及飞行安全等领域的发展提供一定的理论支持和实践指导。

二、飞机六自由度模型建立在飞行动力学中,飞机的运动可以分解为六个自由度:三个沿坐标轴的平动(纵向、横向和垂直)和三个绕坐标轴的转动(滚转、俯仰和偏航)。

六自由度模型的建立是飞行仿真研究的基础,它能够全面、准确地描述飞机的空间运动特性。

我们需要定义飞机的坐标系和参考坐标系。

通常采用机体坐标系来描述飞机的姿态和运动,而地面坐标系或惯性坐标系则用于描述飞机的位置和速度。

在机体坐标系中,飞机的滚转、俯仰和偏航运动可以通过欧拉角来描述。

接下来,根据牛顿第二定律和动量矩定理,建立飞机的运动方程。

这些方程包括沿三个坐标轴的平动方程和绕三个坐标轴的转动方程。

平动方程描述了飞机的加速度与所受合力的关系,而转动方程则描述了飞机的角加速度与所受合力矩的关系。

在建立运动方程时,需要考虑飞机的质量、质心位置、惯性矩等参数,以及作用在飞机上的各种力(如重力、推力、升力、阻力等)和力矩(如滚转力矩、俯仰力矩、偏航力矩等)。

基于MATLAB的六自由度工业机器人运动分析及仿真

基于MATLAB的六自由度工业机器人运动分析及仿真

基于MATLAB的六自由度工业机器人运动分析及仿真六自由度工业机器人是一种常见的工业自动化设备,通过对其运动进行分析和仿真,可以对其性能进行评估和优化。

MATLAB是一种强大的数学计算软件,在工程领域广泛应用,可以帮助我们进行机器人的运动分析和仿真。

首先,我们可以使用MATLAB对六自由度机器人进行建模。

六自由度机器人具有六个自由度,分别为三个旋转自由度和三个平移自由度。

我们可以使用MATLAB的机器人工具箱来建立机器人的模型,并定义其关节参数和连接方式。

通过模型可以获得机器人的几何结构、动力学参数和运动学方程。

接下来,我们可以使用MATLAB进行机器人的运动分析。

运动分析是指通过对机器人的运动学和动力学进行计算,从而获得机器人的运动和力学特性。

机器人的运动学分析主要是利用机器人的几何结构来推导出末端执行器的位置和姿态。

可以使用MATLAB的运动学工具函数来计算机器人的正运动学和逆运动学。

机器人的动力学分析主要是研究机器人的运动和力学特性之间的关系。

动力学分析可以帮助我们确定机器人的运动特性和关节力矩。

我们可以使用MATLAB的动力学工具箱来建立机器人的动力学模型,并使用动力学工具函数来计算机器人的动力学性能。

最后,我们可以使用MATLAB进行机器人的仿真。

机器人的仿真是通过对机器人的动力学进行数值计算,来模拟机器人的运动和力学特性。

通过仿真可以验证机器人的设计和控制方案,并进行参数优化。

在MATLAB 中,我们可以使用数值计算函数和绘图函数来进行机器人的仿真和可视化。

总结起来,基于MATLAB的六自由度工业机器人运动分析及仿真可以帮助我们对机器人的运动和力学特性进行研究和优化。

通过建立机器人的模型,进行运动分析和动力学分析,以及进行仿真和可视化,可以帮助我们理解和改进机器人的性能,在工业自动化领域发挥更大的作用。

六自由度运动平台PID控制系统仿真研究

六自由度运动平台PID控制系统仿真研究

六自由度运动平台PID控制系统仿真研究摘要Stewart 平台的出现始于 1965 年德国学者 Stewart 发明的具有六自由度运动能力的并联机构飞行模拟器。

目前经典的 Stewart 平台机构由上、下两个平台和六个可伸缩的支腿以及它们之间的连接铰链构成,其下平台通常为基台(Base-platform),上平台通常为负载平台(Payload-platform)(即 Stewart 平台的工作平台)。

Stewart平台通过六个支腿的伸缩运动可以实现负载平台在工作空间范围内的六自由度运动,并具有刚度高、精度高、承载能力强、动态特性好等优点,因此近年来被广泛应用于并联机床、精密定位平台和振动隔离平台等方面。

Stewart 平台在并联机床和精密定位平台方面的应用相对成熟,已有实用化的商品供应市场。

Stewart 平台应用于六自由度振动隔离平台的研究与开发相对发展较晚,不仅开发的系统远未达到实用化水平,其理论领域的研究也多属空白,其根本原因是应用于振动隔离的 Stewart 平台的基台是运动的,随之而带来许多新的问题。

到目前为止,在 Stewart 平台的理论研究方面已取得一些研究成果,比如Mille(r1992)使用 Lagrange 动力学方程建立了 Stewart 平台的动力学模型;Dasgupta和 Mruthyunjaya(1998)使用 Newton-Euler 动力学方程推导出闭合形式的 Stewart平台的动力学模型;Codourey 和 Burdet(1997)、Wang 和 Gosselin(1998)、Tsai(2000)等人分别利用虚功原理建立了 Stewart 平台的逆动力学模型。

但是,上述关于 Stewart 平台的动力学模型都是在假设Stewart 平台的基台固定不动的情况下建立的。

本文的主要研究工作和意义如下:1、基于 Dasgupta 提出的在基台固定情况下的 Stewart 平台的动力学模型,在Matlab/Simulink 环境下建立了 Stewart 平台闭环动力学仿真系统。

飞机六自由度飞行动力学仿真实验

飞机六自由度飞行动力学仿真实验

飞机六自由度飞行动力学仿真实验一.实验目的1.本实验将理论力学课程教学内容与航空航天工程应用相结合,分析、研究飞机受力与六自由度运动特性,培养学生分析问题和解决问题的能力,展现理论力学知识在航空航天工程中的应用。

2.通过本实验,使学生更好地学习和理解理论力学的有关内容,如飞机的受力分析、空间力系的简化与合成、刚体的平面运动与一般运动、刚体微分方程的建立与求解等,激发学生对理论力学的学习兴趣,开阔视野,增强工程概念。

二.实验仪器与设备实验在PC 个人计算机、WINDOWS 98以上操作系统环境中进行。

三.实验原理飞机在空中的运动,在一定的假设条件下,可以视为理想刚体的运动,遵循刚体的运动规律,理论力学中介绍的刚体平动和转动基本定律都适用于飞行器的运动分析。

飞机在空中的运动为刚体的一般运动,具有六个自由度。

通常建立的机体坐标系如下图所示。

飞机的一般运动可以分解为随质心的平动和绕质心的转动,随质心的平动的速度可表示为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=W V U V G ,绕质心的转动角速度可表示为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=R Q P ωG 。

飞机受到的气动力、发动机推力、重力是一个空间任意力系,向质心简化的主矢和主矩分别为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Fz Fy Fx F G 和⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Mz My Mx M G 。

根据质心运动定理(牛顿方程)和相对于质心的动量矩定理可得飞机的动力学微分方程,一般说来,该方程没有解析解,只能通过数值积分得到数值解。

系统分为“概念演示”与“f16实时仿真”两大模块。

在“概念演示”模块中着重介绍了飞机运动的自由度、单自由度下的操纵与响应特性。

在“f16实时仿真”模块中介绍了飞机定直平飞、盘旋、拉起、起飞、着陆、失速尾旋等的飞行过程及受力情况,学生也可以亲自驾驶这架F16进行实时仿真飞行。

四.实验步骤1.概念演示六自由度演示:点击菜单“概念演示->六自由度演示”,进入六自由度演示状态,如下图所示。

六自由度工业机器人的建模与仿真研究共3篇

六自由度工业机器人的建模与仿真研究共3篇

六自由度工业机器人的建模与仿真研究共3篇六自由度工业机器人的建模与仿真研究1六自由度工业机器人的建模与仿真研究随着工业自动化的不断发展,工业机器人已经成为工厂中不可或缺的重要设备之一。

其中,六自由度工业机器人因其具有灵活性强、运动范围广等优点而得到广泛应用。

因此,对于六自由度工业机器人的建模和仿真研究具有非常重要的意义。

一、六自由度工业机器人的概述六自由度工业机器人是指具有6个自由度的工业机器人,通常由机身、驱动器和控制器组成。

其中,机身由臂、手和手腕组成,可根据任务需求进行操作或载物。

驱动器是机身各部分的驱动器件,常用的驱动器有电机、气缸等。

控制器是控制机器人的核心部分,可完成运动的规划、控制和反馈等。

二、六自由度工业机器人的建模六自由度工业机器人的建模是建立机器人的数学模型,目的是为了分析机器人的运动规律和控制过程,同时也是设计自动控制器的重要基础。

1. 正向运动学模型正向运动学模型是指将机器人的变量作为输入,根据手臂各段的长度和角度、各关节的偏转角度等信息,计算机器人的末端位置、姿态等信息的模型。

这个模型对机器人的分析非常重要,因为它可以方便地解决机器人的直观显示、位置控制等问题。

在建模时,需要对机器人进行分段处理,每一段均要计算其末端的位置和姿态信息,并将其传递到下一段中。

2. 逆向运动学模型逆向运动学模型是指将机器人所需的输出信息作为输入,根据末端位置、姿态等信息,反推出机器人各关节需要转动的角度等信息的模型。

这个模型对机器人的姿态调节、轨迹规划等问题非常重要。

3. 动力学模型动力学模型是指对机器人的力学特性进行建模,为机器人的运动规划和控制提供必要的参考和依据。

在建模时,需要考虑力、转矩、惯性等因素,并通过控制器控制机器人的动作。

三、六自由度工业机器人的仿真研究仿真是对机器人进行数字化模拟的过程。

通过仿真,可以在事先构建好的环境中,对机器人进行各种测试和优化,进而提高其运动精度、速度和稳定性等。

基于SimMechanics的六自由度加载平台仿真研究

基于SimMechanics的六自由度加载平台仿真研究
* ©~► F6
图4 SimMechanics的机械系统模型
2.4液压驱动系统建模
液压驱动系统包括电液伺服阀、单出杆非对称液压作 动筒、负载及载荷/位移传感器等。电液伺服阀根据控制 器的输出信号转换为对应流量,驱动非对称缸运动;位移
Joint Sensor
图5液压作动筒的模型结构
传感器测量非对称缸位移变化,作为系统闭环控制反馈 值;载荷传感器对负载受力进行监控。
-85 -
•信息技术•
周挺,等•基于SimMechanics的六自由度加载平台仿真研究
控制参数,驱动液压作动筒协调加载运动,进行位控模式 的闭环控制,实现动平台六自由度控制。
图2系统控制框图
2系统建模
2.1运动学反解
并联机构的运动学反解是指已知平台位姿参数,求解 支杆伸缩长度的过程。图3为六自由度加载平台的空间 结构示意图和运动学简化模型。
关系,各液压作动筒在基坐标系中的方向矢量Lb表示为
£b = Pb-fib = TxPp +S-fib
(3)
L:的标量| Lb |为各液压作动筒的瞬时长度,初始长 度Li0可由Pi、Bi的初始位置得到,动平台运动时各液压作 动筒的伸缩量ALi为
△厶=Lb -Li0= (TxPp+S-Bb)( TxPp+S-Bb)T-Li0
中qc为伺服阀零位泄露流量,ApN为额定压降。
考虑液压缸的内泄漏、外泄漏和压缩性流量,其流量
连续性方程为
X +C +a (A|+A2) -
Kt -
qL= 2
P P tp L 20 PL
负载流量qL的线性化方程为
- qL=饨Xv %c?L= qLO-cPL
(12)

《2024年六自由度机械臂控制系统设计与运动学仿真》范文

《2024年六自由度机械臂控制系统设计与运动学仿真》范文

《六自由度机械臂控制系统设计与运动学仿真》篇一一、引言随着现代工业自动化和智能制造的快速发展,六自由度(6DOF)机械臂作为一种重要的自动化设备,在工业生产、航空航天、医疗康复等领域得到了广泛应用。

本文旨在设计一个六自由度机械臂控制系统,并对其运动学进行仿真分析。

二、六自由度机械臂控制系统设计1. 硬件设计六自由度机械臂控制系统硬件主要包括机械臂本体、驱动器、传感器、控制器等部分。

其中,机械臂本体采用模块化设计,由六个旋转关节组成,每个关节均配备有电机驱动器。

传感器用于获取机械臂的位置、速度、加速度等状态信息,控制器则负责根据预设的算法对机械臂进行控制。

2. 软件设计软件设计是六自由度机械臂控制系统的核心部分。

控制系统采用分层结构设计,包括上层控制层和下层执行层。

上层控制层主要负责任务规划、路径规划、姿态控制等任务,下层执行层则负责接收上层控制层的指令,并通过驱动器控制机械臂的运动。

软件设计中,需考虑到实时性、稳定性和可扩展性等因素。

3. 控制系统算法控制系统算法是实现六自由度机械臂精确控制的关键。

常用的算法包括PID控制算法、模糊控制算法、神经网络控制算法等。

本设计中,采用PID控制算法,通过调整比例、积分和微分系数,实现对机械臂的精确控制。

三、运动学仿真分析运动学仿真是对六自由度机械臂控制系统设计的重要环节。

通过建立机械臂的运动学模型,可以分析机械臂的运动特性,为控制系统的设计提供依据。

1. D-H参数法建模采用D-H(Denavit-Hartenberg)参数法建立机械臂的运动学模型。

通过确定各关节的连杆参数,建立连杆之间的相对位置和姿态关系,从而得到机械臂的空间姿态。

2. 正运动学分析正运动学分析是指根据关节角度计算机械臂末端的位置和姿态。

通过求解机械臂的正运动学方程,可以得到机械臂末端在笛卡尔空间中的位置和姿态信息。

3. 逆运动学分析逆运动学分析是指根据机械臂末端的位置和姿态计算关节角度。

六自由度平台动力学仿真研究

六自由度平台动力学仿真研究

六自由度运动平台动力学仿真研究陈勇军(华中光电技术研究所—武汉光电国家实验室,武汉430223)摘要:针对六自由度运动平台设计过程中遇到的问题,文中运用ADAMS软件对六自由度运动平台运动过程进行仿真研究,并进行可平台的逆运动学和正运动学仿真。

仿真结果表明:通过仿真可以检测该机构运动过程中的干涉情况,也可直观再现平台的运动过程。

还可求出平台的位置反解和位置正解,大大减少了工作量,缩短了产品的研制周期。

关键字:六自由度运动平台;动力学分析;仿真;正解;反解Research on Simulation of Dynamic Analysis on Six-DOFMotion PlatformCHEN Yongjun(Huazhong Institute of Electro-optics—Wuhan National Laboratory for Optoelectronics,Wuhan430223,China)Abstract:Due toKeywords: Six-DOF motion platform ; dynamic analysis ; simulation; positive solutions; anti-positive solutions1 引言六自由度运动平台通过模拟物体在三个方向的平动和转动,即前后平移、左右平移、上下垂直运动、俯仰、滚转和偏航及复合运动,进而可模拟出各种空间运动姿态。

六自由度平台作为一种重要的仿真实验设备,已广泛应用于导弹、飞机、舰船和车辆等领域的模拟训练,还可用来模拟地震的情景,在动感电影、娱乐设备等领域也有应用。

六自由度运动平台主要由上下两个平台和六个并联的、可独立自由伸缩的缸组成,其中伸缩缸与平台通过球铰联接,通过改变伸缩缸的长度就可实现上平台的各种空间运动[1]。

要准确的控制上平台的运动姿态就需要精确的控制六个缸的运动,这样就要求我们了解六自由平台的位置反解和位置正解的算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六自由度运动平台动力学仿真研究陈勇军(华中光电技术研究所—武汉光电国家实验室,武汉430223)摘要:针对六自由度运动平台设计过程中遇到的问题,文中运用ADAMS软件对六自由度运动平台运动过程进行仿真研究,并进行可平台的逆运动学和正运动学仿真。

仿真结果表明:通过仿真可以检测该机构运动过程中的干涉情况,也可直观再现平台的运动过程。

还可求出平台的位置反解和位置正解,大大减少了工作量,缩短了产品的研制周期。

关键字:六自由度运动平台;动力学分析;仿真;正解;反解Research on Simulation of Dynamic Analysis on Six-DOFMotion PlatformCHEN Yongjun(Huazhong Institute of Electro-optics—Wuhan National Laboratory for Optoelectronics,Wuhan430223,China)Abstract:Due toKeywords: Six-DOF motion platform ; dynamic analysis ; simulation; positive solutions; anti-positive solutions1 引言六自由度运动平台通过模拟物体在三个方向的平动和转动,即前后平移、左右平移、上下垂直运动、俯仰、滚转和偏航及复合运动,进而可模拟出各种空间运动姿态。

六自由度平台作为一种重要的仿真实验设备,已广泛应用于导弹、飞机、舰船和车辆等领域的模拟训练,还可用来模拟地震的情景,在动感电影、娱乐设备等领域也有应用。

六自由度运动平台主要由上下两个平台和六个并联的、可独立自由伸缩的缸组成,其中伸缩缸与平台通过球铰联接,通过改变伸缩缸的长度就可实现上平台的各种空间运动[1]。

要准确的控制上平台的运动姿态就需要精确的控制六个缸的运动,这样就要求我们了解六自由平台的位置反解和位置正解的算法。

杨永立运用欧拉角、旋转变换的方法推导出位置反解方程,并介绍了数值迭代法进行位置正解的过程[2]。

李维嘉提出了采用虚拟连杆对结构进行简化,进而求解六自由度并联运动机构正向解的方法[3]。

但到目前位置还没有一种非常高效的求六自由度平台位置正解的算法。

近年来,随着计算机的快速发展,仿真软件已经成为设计产品过程中的一种重要工具,在运动学仿真方面也出现了许多仿真软件,这其中的杰出代表是ADAMS软件。

本文提出了采用ADAMS软件对六自由度运动平台的运动过程进行仿真研究,使平台运动的位置反解和位置正解在ADAMS 中完成,可减小计算工作量且仿真结果可用视图直接表示出来。

2 模型建立采用三维绘图软件建立六自由运动平台的模型,并运用的机构运动仿真功能检测了模型在极限位置时的干涉情况,当发生干涉时需对零件进行修改,最终建立的模型如图1所示。

该模型主要由上下平台、电动缸以及球铰等零件组成。

在建立三维模型之后将其导入ADAMS 软件中,在ADAMS 中选用计量单位为m-kg-N-s ,设置各零件的属性并添加运动副。

其中在下平台与ADAMS 中的大地之间建立固定连接副。

并对六个电动缸上下铰节距离和上平台姿态进行测量,可得到电动缸长度变化和上平台姿态的六个自由度随时间变化的曲线。

上平台的初始位置在中间位置,此时各电动缸上下铰节之间的距离i l 为 m 。

并在ADAMS 中创建12个传感器是的 m<i l < m ,在运动过程中如果i l 超出了这个范围,仿真将停止。

图1 六自由度运动平台仿真模型3 仿真过程及结果分析六自由度平台的逆运动学仿真首先在上平台的质心处添加一个点驱动(选择可多自由度驱动按钮),该点可添加X 、Y 、Z 方向的三个平移运动和绕X 、Y 、Z 方向的三个旋转运动,即(X ,Y ,Z ,α,β,γ),如图2所示。

可定义不同的姿态,还可将各个方向的值定义为随时间变化的函数[4]。

图2 点多自由度驱动设置图在点多自由度驱动中输入姿态(X ,Y ,Z ,α,β,γ)的参数,即可得到六个电动缸的长度。

为了验证模型的可靠性,仿真分析了不同姿态时,并分别得到六个电动缸的长度仿真值。

再根据文献[3]推导出的位置反解方程,利用Matlab 计算了六个电动缸长度的理论值,并将模拟值与理论值做了比较。

不同姿态时电动缸长度的仿真值与理论值分别如表1和表2所列,其中上下铰节距离的初始值为0l = m ,0i l l <说明电动缸缩短,0i l l <说明电动缸伸长。

比较表1和表2可知,在不同运动姿态时,各电动缸伸缩量的仿真值与理论值基本相等,说明仿真模型是正确可信的。

进一步说明了可以采用ADAMS 对六自由度平台进行逆运动学仿真,从而获得电动缸的伸缩量,即可以利用逆运动学仿真代替用理论计算求平台的位置反解。

表1 不同姿态时电动缸上下铰节距离仿真值平台不同运动姿态(X ,Y ,Z ,α,β,γ)电动缸上下铰节距离仿真值(m ) 1号杆 2号杆 3号杆 4号杆 5号杆 6号杆 (,0,0,0,0,0)(0,,0,0,0,0)(0,0,,0,0,0)表2 不同姿态时电动缸上下铰节距离理论值平台不同运动姿态(X ,Y ,Z ,α,β,γ)电动缸上下铰节距离理论值(m ) 1号杆 2号杆 3号杆 4号杆 5号杆 6号杆 (,0,0,0,0,0)(0,,0,0,0,0)(0,0,,0,0,0)而当X 方向的位移按X=*sin (pi/10*time )运动,其它值均为零时,各上下铰节距离随时间变化曲线如图3所示,由图可知通过控制1、4、5号电动缸伸缩运动,2、3、6号电动缸沿相反方向做伸缩运动,即可实现平台沿X方向的平移。

图3 六个电动缸上下铰节距离随时间变化曲线采用类似的方法得到平台在Y轴方向平移、Z轴方向平移以及绕X、Y、Z转动时6个电动缸的运动情况,具体结果表3所列。

表3 平台分别沿X、Y、Z平动和转动时各电动缸运动情况汇总平台运动形式各电动缸伸缩情况沿X轴方向平动1、4、5号伸缩运动,2、3、6号做相反方向的运动沿Y轴方向平动1、6号伸缩运动,2、3、4、6号做相反方向的运动沿Z轴方向平动六个电动缸同时伸长或缩短沿X轴方向转动1、2、5、6号伸缩运动,3、4号做相反方向的运动沿Y轴方向转动1、2号伸缩运动,5、6号做相反方向的运动,其它电动缸从动沿Z轴方向转动1、3、5号伸缩运动,2、4、6号做相反方向运动,且伸缩量相等;六自由度平台的正运动学仿真由于并联机构结构的复杂性,使得求解六自由度运动平台的位置正解难度比较大,在位置正解的算法中使用比较多的是数值法中的牛顿迭代法。

本文采用ADAMS软件来模拟六自由度运动平台的位置正解过程,即六个电动缸的伸缩量来求解运动平台的空间姿态。

仿真时需在六个电动缸上分别加上直线运动驱动,并分别定义各电动缸的伸缩量或者伸缩量随时间变化的函数,利用ADAMS的测量功能,可以不同缸长时上平台的姿态,即X、Y、Z方向的平移量和转角值。

首先利用ADAMS模拟上平台运动姿态为(*sin(pi/10*time),0,0,0,0,0)的过程中,并将获得的六个电动缸上下铰节距离的曲线拟合成样条函数spline,再利用ADAMS的功能将函数AKISPL(time,0,spline,0)作为驱动函数加载到六个电动缸上,通过六个电动缸的运动就可获得上平台的运动姿态,其姿态运动曲线如图4所示。

从图中可知,上平台只做沿X方向的正弦运动,这与模拟位置反解时给上平台姿态加载的函数一致,说明可以对六自由度运动平台进行正运动学仿真获得平台的姿态,即采用正运动学仿真代替用迭代法求位置正解。

图4 上平台运动姿态曲线在各电动缸上添加的驱动函数分别为电动缸1:*sin(pi/10* time),电动缸2:*sin(pi/10* time),电动缸3:*sin(pi/10* time),电动缸4:*sin(pi/10* time),电动缸5:*sin(pi/10* time),电动缸6:*sin(pi/10* time),可得到平台的平移和旋转运动曲线如图5和6所示,两图相同时刻所对应的参数组合在一起就是该时刻平台的运动姿态。

图5 上平台质心沿X、Y、Z轴向位移变化曲线图6 上平台绕X、Y、Z轴角度变化曲线4 结论本文运用ADAMS软件仿真分析了六自由度运动平台的运动过程,通过对平台的逆运动学仿真获得了动平台机构位置反解,并将其与理论计算方法作了比较,验证了该方法的可行性。

再通过对平台的正运动学仿真获得了动平台机构位置正解。

还获得了姿态随连续变化时,各电动缸伸缩量随时间变化的曲线;各点电动缸连续伸缩变化时,动平台位置随时间变化的情况。

通过该方法可以减少设计初始阶段的理论计算工作量,缩短产品的设计周期,该方法还可以直观的再现平台的各种空间姿态的运动过程,为设计出可靠产品提供了重要保证。

[1] 贺利乐. 六自由度并联杆系机床位置正解的研究[J]. 机床与液压, 2004,no,112.[2] 杨永立. 六自由度运动平台的仿真研究[J]. 工程机械文摘, 2009, 1.[3] 李维嘉. 六自由度并联运动机构正向解的研究[J]. 华中理工大学学报, 1997, 25(9):38-40.[4] 马永晓. 并联六自由度运动平台动力学分析及最优控制研究[D]. 南京:南京航空航天大学,2010.[5] 黄真, 赵永生, 赵铁石. 高等空间结构学[M]. 北京:中国水利水电出版社,2010.[6] 李增刚. ADAMS入门详解与实例[M]. 北京:国防工业出版社,2007.。

相关文档
最新文档