中考真题函数及其图像
中考数学总复习 第三单元 函数及其图像 第11课时 一次函数的图像与性质课件
y=-x+2
.
图 11-1
2021/12/9
第十一页,共三十二页。
y= x
,图②
课前双基巩固
5. [八上 P164 探索改编] 已知一次函数 y=2x+4.
图 11-2
(1)在如图 11-2 所示的平面直角坐标系中,画出函数的图像;
(2)图像与 x 轴的交点 A 的坐标是 (-2,0) ,与 y 轴的交点 B 的坐标是 (0,4)
与 x 轴交点坐标
令 y=0,求出对应的 x 值
两直线的
与 y 轴交点坐标
令 x=0,求出对应的 y 值
交点坐标
与其他函数图
像的交点坐标
一条直线与坐标轴围
成的三角形的面积
2021/12/9
解由两个函数表达式组成的二元一次方程组,方程组的解即两函数
图像的交点坐标
1
2
直线 y=kx+b(k≠0)与 x 轴的交点为 - ,0 ,与 y 轴的交点为(0,b),三角形面积为 S△= - ×|b|(用
a2+a2=
直线 y=2x+1 向右、向上平移 3 个单位后的解析式是 y=2x-2.
2021/12/9
第二十二页,共三十二页。
2
3 2 ,解得 a=3.
高频考向探究
[方法模型] 直线 y=kx+b(k≠0)在平移过程中 k 值不变.平移的规律是:若上下平移,则直接在常数 b 后加上或减
去平移的单位长度数;若向左(或向右)平移 m 个单位长度,则直线 y=kx+b(k≠0)变为 y=k(x±m)+b,其口诀是上加
中考数学专题复习 函数及其图像
中考数学专题复习函数及其图像考点3.1 位置与坐标序号考查内容考查方式学习目标考点位置与坐标坐标与象限1、坐标值的几何意义2、特殊点的坐标特征3、两点之间距离的求法4、能根据图形建立适当坐标系并写出关键点的坐标5、能根据点的坐标值确定其余各点的坐标6、用极坐标表示点的位置考点3.2 函数的表示序号考查内容考查方式学习目标考点一函数的取值范围分式或根式何时有意义考点二函数及其图像实际问题与函数图像1、能根据具体情况识别函数图象2、能从函数图象中读出关键信息考点3.3 一次函数序号考查内容考查方式学习目标考点一一次函数图像和性质一次函数图像和性质综合应用1、能熟练判断出图像中的k b取值范围2、能根据k,b的取值范围熟练画出函数图象的草图3、能判断出函数图的共存4、能用待定系数法熟练求出函数解析式过程完整考点二一次函数的应用结合一次函数图像解决实际问题1、能正确解释交点坐标在实际问题中的意义2、能正确分割三角形和多边形的面积进而求出其面积3、能正确理解和应用简单的分段函数图象及其代表的意义考点3.4 反比例函数序号考查内容考查方式学习目标考点一反比例函数解析式的确定确定比例系数1、能从不同的表达式中分离出比例系数2、能根据比例系数画出函数草图待定系数法求解析式利用比例系数的几何意义确定反比例函数解析式k值的几何意义反映到函数中要结合具体的象限来确定值k考点二反比例函数的应用一次函数与反比例函数的综合应用考点3.5 二次函数序号考查内容考查方式学习目标考点一二次函数图像和性质确定二次函数图像的对称轴和顶点、与x轴的交点的坐标1、能准确化为一般形式,并指出其系数2、能熟练进行配方写出其顶点坐标式3、能熟练从三种解析式几个方面值的确定考点二二次函数的应用画二次函数图像及应用能熟练画出草图并进行分析应用考点三二次函数与实际问题(二次函数的应用题)确定解析式、求极值(解答题)能根据已知条件熟练写出解析式,并进行五个方面的相关计算考点3.6 用函数观点看方程(组)和不等式序号考查内容考查方式学习目标考点一函数与方程二次函数与一元二次方程理解二次函数与一元二次方程的联系,并能正确地将二次函数问题转化为一元二次方程,能用一元二次方程的根解释图象中的交点坐标考点二函数与不等式一次函数与一元一次不等式1、能根据图象正确判断不等式的解集2、理解交点坐标的意义3、能根据交点坐标正确写出方程或方程组反比例函数与不等式一次函数、反比例函数与不等式同上。
杭州中考真题分类:2、函数
15.(2015•杭州)在平面直角坐标系中,O 为坐标原点,设点 P(1,t)在反比例函数 y = 2 的图象上,过点 P 作直线 l 与 x 轴 x
平行,点 Q 在直线 l 上,满足 QP = OP.若反比例函数 y = k 的图象经过点 Q,则 k =
.
x
第5页
22.(2013•杭州)(1) ② 如图②,在直角坐标系中,点 A 在 y 轴正半轴上,AC∥x 轴,点 B,C 的横坐标都是 3,且 BC = 2,点 D 在 AC 上,且
(4)丙骑摩托车与乙同时出发,从 N 地沿同一公路匀速前往 M 地,若丙经过 4 h 与乙相遇,问丙出发后多少时间与甲相遇? 3
第3页
三、反比例函数 图像
6.(2014•杭州)函数的自变量 x 满足 1 ≤ x ≤ 2 时,函数值 y 满足 1 ≤ y ≤ 1,则这个函数可以是(
2
4
A.y = 1 2x
第 12 页
23. (2011 杭州)设函数 y=kx2+(2k+1)x+1(k 为实数) (1)写出其中的两个特殊函数,使它们的图象不全是抛物线,并在同一直角坐标系中,用描点法画出这两个特殊函数的图象; (2)根据所画图象,猜想出:对任意实数 k,函数的图象都具有的特征,并给予证明; (3)对任意负实数 k,当 x<m 时,y 随着 x 的增大而增大,试求出 m 的一个值。
第 11 页
22. (2016 杭州)已知函数 y1=ax2+bx,y2=ax+b(ab≠0). 在同一平面直角坐标系中. (1)若函数 y1 的图象过点(−1,0),函数 y2 的图象过点(1,2),求 a,b 的值. (2)若函数 y2 的图象经过 y1 的顶点. ①求证:2a+b=0;
中考数学--函数的图像与性质(较难)
专题6:函数的图象与性质一、选择题1.已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为A. 1x <-B. 1x >-C. 1x >D.1x <2.如图,直线 6y x =- 交x 轴、y 轴于A 、B 两点,P 是反比例函数4(0)y x x=>图象上位于直线下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F 。
则AF·BE=A. 8B.6C. 4D. 623.已知直线l 经过点A(1,0)且与直线y x =垂直,则直线l 的解析式为 A .1y x =-+ B .1y x =-- C .1y x =+ D . 1y x =-4.有下列函数:①3y x =- ②1y x =- ③1(0)y x x=-> ④221y x x =++,其中函数值y 随自变量x 增大而增大的函数有A .①②B .②④C .②③D .①④5.已知二次函数y=ax 2+bx+c 的图象如图,其对称轴x=﹣1,给出下列结果①b 2>4ac ;②abc >0;③2a +b=0;④a+b+c >0;⑤a ﹣b+c <0,则正确的结论是 A 、①②③④ B 、②④⑤ C 、②③④ D 、①④⑤6.如图,直线b x y +-=(b >0)与双曲线xky =(x >0)交于A 、B 两点,连接OA 、OB ,AM ⊥y 轴于M ,BN ⊥x 轴于N ;有以下结论:①OA=OB ,②△AOM ≌△BON ,③若∠AOB=45°,则S △AOB =k ,④当AB=2时,ON -BN=1;其中结论正确的个数为A .1B .2C .3D .47.若二次函数2()1y x m =--,当1x ≤时,y 随x 的增大而减小,则m 的取值范围是 A 、1m =B 、1m >C 、1m ≥D 、1m ≤8.反比例函数y =-1-a 2x (a 是常数)的图象分布在A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限9.在平面直角坐标系中,如果抛物线y =3x 2不动,而把x 轴、y 轴分别向上、向右平 移3个单位,那么在新坐标系中此抛物线的解析式是 A .y =3(x -3)2+3 B .y =3(x -3)2-3 C .y =3(x +3)2+3 D .y =3(x +3)2-310.若是方程(x -a )(x -b )= 1(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为A .x 1<x 2<a <bB .x 1<a <x 2<bC .x 1<a <b <x 2D .a <x 1<b <x 211.小明乘车从南充到成都,行车的平均速度v (km/h )和行车时间t (h )之间的函数图象是12小明的父亲饭后出去散步,从家中出发走20分钟到一个离家900米的报亭看报10分钟后,用15分钟返回家,下列图中表示小明的父亲离家的距离y (米)与离家的时间x (分)之间的函数关系的是13.(已知二次函数y=ax 2+bx+c (a ,b ,c 为常数,a≠0)的图象如图所示,有下列结论:①abc >0,②b 2﹣4ac <0,③a ﹣b+c >0,④4a ﹣2b+c <0,其中正确结论的个数是A 、1B 、2C 、3D 、4二、填空题1.在平面直角坐标系xOy 中,已知反比例函数2(0)ky k x=≠满足:当0x <时,y 随x 的增大而减小。
中考数学真题专题[一次函数的图像与性质]
表达式为
A. B. C. D.
【答案】A
14.(2010 山东东营)一次函数的图象不经过( )
(A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限
【答案】B
15.(2010
湖北孝感)若直线的交点在第四象限,则整数m的值
为
()
A.—3,—2,—1,0 B.—2,—1,0,1
C.—1,0,1,2 D.0,1,2,3
一、选择题 1.(2010山东烟台)如图,直线y1=k1x+a与y2=k3x+b的交点坐标为
(1,2),则使y1∠ y2的x的取值范围为 A、x>1 B、x>2 C、x<1 Dx<2
【答案】C 2.(2010 浙江省温州)直线y=x+3与y轴的交点坐标是(▲) A.(0,3) B.(0,1) C.(3,O) D.(1,0) 【答案】A 3.(2010山东聊城)如图,过点Q(0,3.5)的一次函数与正比例函
∴△ABP的面积为或. 4.(2010湖北随州)某同学从家里出发,骑自行车上学时,速度v(米/
秒)与时间t(秒)的关系如图a,A(10,5),B(130,5), C(135,0). (1)求该同学骑自行车上学途中的速度v与时间t的函数关系式;
(2)计算该同学从家到学校的路程(提示:在OA和BC段的运动 过程中的平均速度分别等于它们中点时刻的速度,路程=平均速度 ×时间); (3)如图b,直线x=t(0≤t≤135),与图a的图象相交于P、Q,用 字母S表示图中阴影部分面积,试求S与t的函数关系式; (4)由(2)(3),直接猜出在t时刻,该同学离开家所超过的路 程与此时S的数量关系.
【答案】B
18.(2010 贵州贵阳)一次函数的图象如图2所示,当<0时, x的取值范围是 (A)x<0 (B)x>0 (C)<2 (D)x>2
中考数学试题分类分析汇编专题6:函数的图像与性质
中考数学试题分类分析汇编(12专题)专题6:函数的图像与性质一.选择题1. (2001年福建福州4分)二次函数2y ax bx c(a 0)=++≠的图象如图所示,下列结论: (1)c 0<(2)b 0> (3)4a 2b c 0++> (4)22(a c)b +<其中正确的有【 】 A. 1个B. 2个C. 3个D. 4个【答案】C 。
【考点】二次函数图象与系数的关系。
【分析】(1)∵图象与y 轴交于y 轴负半轴,则c <0,正确。
(2)∵对称轴bx 12a=-=,开口向下,∴a<0,故b >0,正确。
(3)当x=2时,y <0,即4a +2b +c >0,错误。
(4)22(a c)b +<可化为(a -b +c )(a +b +c )<0,∵当x=1时,a +b +c >0,当x=-1时,a -b +c <0,故22(a c)b +<正确。
故选C 。
2. (2002年福建福州4分)如果反比例函数ky x=的图象经过点(-2,-1),那么k 的值为【 】 (A )21 (B )-21 (C )2 (D )-2【答案】C 。
【考点】曲线上点的坐标与方程的关系。
【分析】根据点在曲线上点的坐标满足方程的关系,将(-2,-1)代入k y x =,得k12-=-,解得k=2。
故选C 。
3. (2002年福建福州4分)已知:二次函数y =x 2+bx+c 与x 轴相交于A (x 1,0)、B (x 2,0)两点,其顶点坐标为P (b 2-,24c b 4-),AB =︱x 1-x 2︱,若S △APB =1,则b 与c 的关系式是【 】 (A )b 2-4c +1=0 (B )b 2-4c -1=0 (C )b 2-4c +4=0(D )b 2-4c -4=04. (2003年福建福州4分)反比例函数4y x=-的图象大致是【 】 (A ) (B ) (C ) (D )【答案】A 。
2018-2019年北京中考数学真题分类解析【06】函数的图像与性质(解析版)
1.(2003年北京市4分)如果反比例函数ky x =的图象经过点P (-2,3),那么k 的值是【 】A. -6B. 32-C. 23- D. 6中.考.资.源.2. (2006年北京市大纲4分)一次函数y=x+3的图象不经过...的象限是【 】A 、第一象限B 、第二象限C 、第三象限D 、第四象限3.(2019年北京市4分)将二次函数2y x 2x 3=-+化成的2y (x h)k =-+形式,结果为【 】A. 2y (x 1)4=++B. 2y (x 1)4=-+C. 2y (x 1)2=++D. 2y (x 1)2=-+4.(2019年北京市4分)抛物线y=x2﹣6x+5的顶点坐标为【】A、(3,﹣4)B、(3,4)C、(﹣3,﹣4)D、(﹣3,4)1.(2004年北京市4分)我们学习过反比例函数.例如,当矩形面积S一定时,长a是宽b的反比例函数,其函数关系式可以写为a=Sb(S为常数,S≠0).请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:▲ ;函数关系式:▲ .2.(2005年北京市4分)反比例函数ky=x的图象经过点(1,﹣2),则这个反比例函数的关系式为▲ .3.(2006年北京市大纲4分)如果正比例函数的图象经过点(1,2),那么这个正比例函数的解析式为▲ 。
[:中.考.资.源.WWW.ZK5U]4.(2019年北京市4分)请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式▲ .5.(2019年北京市4分)如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数ky(k0)x=≠,使它的图象与正方形OABC有公共点,这个函数的表达式为▲ .∴这个函数的表达式可以为2yx=(答案不唯一).1.(2003年北京市8分)已知:抛物线2y ax 4ax t =++与x 轴的一个交点为A (-1,0)(1)求抛物线与x 轴的另一个交点B 的坐标;(2)D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式;(3)E 是第二象限内到x 轴,y 轴的距离 的比为5:2的 点,如果点E 在(2)中的抛物线上,且它与点A 在此抛物线对称轴的同侧,问 :在抛物线的对称轴上是否存在点P , 使△APE 的周长最小?若存在,求出点P 的坐标,若不存在,请说明理由。
中考复习数学分类检测试卷(3)函数及其图像(含答案)
中考复习数学分类检测三 函数及其图象(时间:90分钟 总分:120分)一、选择题(每小题4分,共40分)1.在平面直角坐标系中,点P (3,-x 2-1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 2.若反比例函数y =kx 的图象经过点(-1,2),则这个函数的图象一定经过点( )A .(2,-1)B .⎝⎛⎭⎫-12,2C .(-2,-1)D .⎝⎛⎭⎫12,2 3.如果一次函数y =kx +b 的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .k >0,b >0 B .k >0,b <0 C .k <0,b >0 D .k <0,b <04.在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程s (米)与所用时间t (秒)之间的函数图象分别为线段OA 和折线OBCD .下列说法正确的是( )A .小莹的速度随时间的增大而增大B .小梅的平均速度比小莹的平均速度大C .在起跑后180秒时,两人相遇D .在起跑后50秒时,小梅在小莹的前面5.把抛物线y =-x 2向左平移1个单位长度,然后向上平移3个单位长度,则平移后抛物线的解析式为( )A .y =-(x -1)2-3B .y =-(x +1)2-3C .y =-(x -1)2+3D .y =-(x +1)2+36.矩形面积为4,长为y ,宽为x ,y 是x 的函数,其函数图象大致是( )7.如图,A 是反比例函数y =kx 图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上,△ABP 的面积为2,则k 的值为( )A .1B .2C .3D .48.图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2 m ,水面宽为4 m .如图(2)建立平面直角坐标系,则抛物线的关系式是( )A .y =-2x 2B .y =2x 2C .y =-12x 2D .y =12x 29.函数y =x +m 与y =mx(m ≠0)在同一坐标系内的图象如图,可以是( )10.函数y =ax 2+bx +c 的图象如图所示,那么关于x 的一元二次方程ax 2+bx +c -3=0的根的情况是( )A .有两个不相等的实数根B .有两个异号的实数根C .有两个相等的实数根D .没有实数根 二、填空题(每小题4分,共24分)11.在平面直角坐标系中,点A (1,2)关于y 轴对称的点为B (a ,2),则a =__________. 12.函数y =-xx -1中自变量x 的取值范围是__________.13.如图,l 1反映了某公司的销售收入与销量的关系,l 2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入大于成本)时,销售量必须__________.14.已知关于x 的一次函数y =mx +n 的图象如图所示,则|n -m |-m 2可化简为__________.15.函数y 1=x (x ≥0),y 2=4x(x >0)的图象如图所示,则结论:①两函数图象的交点A 的坐标为(2,2); ②当x >2时,y 2>y 1; ③当x =1时,BC =3;④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小. 其中正确结论的序号是__________.16.抛物线y =-x 2+bx +c 的部分图象如图所示,请写出与其关系式、图象相关的2个正确结论:__________,__________.(对称轴方程,图象与x 轴正半轴、y 轴交点坐标例外)三、解答题(共56分)17.(6分)在平面直角坐标系xOy 中,反比例函数y =k x 的图象与y =3x 的图象关于x 轴对称,又与直线y =ax +2交于点A (m ,3),试确定a 的值.18.(9分)为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求购买每个笔记本和钢笔分别为多少元;(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x (x >0)支钢笔需要花y 元,请你求出y 与x 的函数关系式;(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱. 19.(9分)如图,一次函数y =ax +b 的图象与反比例函数y =kx 的图象相交于A ,B 两点,与y 轴交于点C ,与x 轴交于点D ,点D 的坐标为(-2,0),点A 的横坐标是2,tan ∠CDO =12.(1)求点A 的坐标;(2)求一次函数和反比例函数的解析式; (3)求△AOB 的面积.20.(10分)某单位准备印制一批证书.现有两个印刷厂可供选择.甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示.(1)请你直接写出甲厂的制版费及y 甲与x 的函数解析式,并求出其证书印刷单价. (2)当印制证书8千个时,应选择哪个印刷厂节省费用?节省费用多少元?(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?21.(10分)近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO 的浓度达到4 mg/L ,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L ,发生爆炸;爆炸后,空气中的CO 浓度成反比例下降.如图,根据题中相关信息回答下列问题.(1)求爆炸前后空气中CO 浓度y 与时间x 的函数关系式,并写出相应自变量的取值范围.(2)当空气中的CO 浓度达到34 mg/L 时,井下3 km 的矿工接到自动报警信号,这时他们至少要以多快的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO 浓度降到4 mg/L 及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井.22.(12分)如图,对称轴为直线x =72的抛物线经过点A (6,0)和B (0,4).(1)求抛物线解析式及顶点坐标.(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围. ①OEAF 的面积为24时,请判断OEAF 是否为菱形?②是否存在点E ,使OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.参考答案一、1.D2.A 将(-1,2)代入y =k x ,得k =-2,则y =-2x ,然后将A 项的横坐标代入,得y =-22=-1,可知A 项符合,其他选项不符合.3.B ∵当k <0,b <0时,一次函数y =kx +b 的图象只能过第二、三、四象限,而不过第一象限,又∵函数图象与y 轴负半轴相交,∴b <0,k >0.4.D5.D 将抛物线向左平移1个单位长度得到y =-(x +1)2,再向上平移3个单位长度得到y =-(x +1)2+3.6.B 7.D8.C 根据题意设抛物线解析式为y =ax 2,点(2,-2)在函数图象上,所以代入y =ax 2,得a =-12,故解析式为y =-12x 2.9.B ∵对于y =x +m 中,k =1>0, ∴y 随x 的增大而增大;又∵当m >0时,y =mx (m ≠0)的图象在第一、三象限内,且y =x +m 的图象与y 轴交于正半轴,故知选B.10.C 由图象可知,4ac -b 24a =3,可得b 2-4ac =-12a .而一元二次方程ax 2+bx +c -3=0判别式为b 2-4a (c -3)=b 2-4ac +12a =-12a +12a =0,所以方程有两相等的实数根.二、11.-1 12.x ≥0,且x ≠113.大于4 从图象上看,销量等于4时,销售收入和成本相等;销量大于4时,收入大于成本. 14.n 由图象可知m <0,n >0, ∴|n -m |-m 2=n -m +m =n .15.①③④ 令y 1=y 2,即x =4x ,得x =±2,∵x >0, ∴x =2,∴交点A 的坐标为(2,2),结论①正确;由两个函数图象可知,当x >2时,函数y 2在函数y 1的下方,即当x >2时,y 2<y 1,所以结论②错误; 当x =1时,y 1=1,y 2=4,所以BC =y 2-y 1=3,结论③正确; 由正比例函数、反比例函数的性质可知,结论④正确.16.答案不唯一.如①c =3;②b +c =1;③c -3b =9;④b =-2;⑤当x >-1时,y 随x 的增大而减小;⑥当x <-1时,y 随x 的增大而增大,等等.三、17.解:由题意,得k =-3,即y =-3x ,把A (m,3)代入得m =-1,即A (-1,3).将A (-1,3)代入y =ax +2,得-a +2=3,故a =-1.18.解:(1)设每个笔记本x 元,每支钢笔y 元,则⎩⎪⎨⎪⎧ 4x +2y =86,3x +y =57,解得⎩⎪⎨⎪⎧x =14,y =15,故每个笔记本14元,每支钢笔15元.(2)y =⎩⎪⎨⎪⎧15x ,0<x ≤10,12x +30,x >10.(3)当14x <12x +30时,x <15;当14x =12x +30时,x =15;当14x >12x +30时,x >15.综上,当买超过10件但少于15件商品时,买笔记本省钱;当买15件奖品时,买笔记本和钢笔一样;当买奖品超过15件时,买钢笔省钱.19.解:(1)过点A 作AE 垂直x 轴于E ,因为D (-2,0),E (2,0),所以OD =OE =2.因为在R t △ADE 中,∠AED =90°,tan ∠ADE =AE DE ,因为tan ∠CDO =tan ∠ADE =12,OD =2,OE =2,所以AE =tan ∠ADE ·DE=12×4=2,所以A (2,2).(2)因为反比例函数y =k x 过点A (2,2),所以k =4,所以y =4x.因为一次函数y =ax +b 过A (2,2),D (-2,0),所以⎩⎪⎨⎪⎧2a +b =2,-2a +b =0,解得⎩⎪⎨⎪⎧a =12,b =1,所以y =12x +1.(3)因为4x =12x +1,所以x 2+2x -8=0,即(x +4)(x -2)=0,所以x 1=-4,x 2=2,所以B (-4,-1),所以S △AOB =S △AOD +S △BOD =12×2×2+12×2×1=3.20.解:(1)制版费1千元,y 甲=12x +1,证书单价0.5元.(2)把x =6代入y 甲=12x +1中得y 甲=4.当x ≥2时,由图象可设y 乙与x 的函数关系式为y 乙=kx +b ,由已知得⎩⎪⎨⎪⎧2k +b =3,6k +b =4,解得⎩⎨⎧b =52,k =14,得y 乙=14x +52.当x =8时,y 甲=12×8+1=5,y 乙=14×8+52=92,5-92=0.5(千元).即当印制8千张证书时,选择乙厂,节省费用500元. (3)设甲厂每个证书的印刷费用应降低a 元, 8 000a =500, 解得a =0.062 5.答:甲厂每个证书印刷费最少降低0.062 5元.21.解:(1)∵爆炸前浓度呈直线型增加,∴可设y 与x 的函数关系式为y =k 1x +b . 由图象知y =k 1x +b 过点(0,4)与(7,46),∴⎩⎪⎨⎪⎧ b =4,7k 1+b =46,解得⎩⎪⎨⎪⎧k 1=6,b =4.∴y =6x +4,此时自变量x 的取值范围是0≤x ≤7. ∵爆炸后浓度成反比例下降, ∴可设y 与x 的函数关系式为y =k 2x.由图象知y =k 2x 过点(7,46),∴k 27=46,∴k 2=322,∴y =322x,此时自变量x 的取值范围是x >7. (2)当y =34时,由y =6x +4得6x +4=34,x =5. ∴撤离的最长时间为7-5=2(h). ∴撤离的最小速度为3÷2=1.5(km/h).(3)当y =4时,由y =322x 得x =80.5,80.5-7=73.5(h).∴矿工至少在爆炸后73.5小时才能下井.22.解:(1)由抛物线的对称轴是x =72,可设解析式为y =a ⎝⎛⎭⎫x -722+k , 把A ,B 两点坐标代入上式,得⎩⎨⎧a ⎝⎛⎭⎫6-722+k =0,a ⎝⎛⎭⎫0-722+k =4,解得a =23,k =-256,故抛物线解析式为y =23⎝⎛⎭⎫x -722-256,顶点为⎝⎛⎭⎫72,-256.(2)∵点E (x ,y )在抛物线上,位于第四象限,且坐标适合y =23⎝⎛⎭⎫x -722-256, ∴y <0,即-y >0,-y 表示点E 到OA 的距离. ∵OA 是OEAF 的对角线,∴S =2S △OAE =2×12×OA ·|y |=-6y =-4⎝⎛⎭⎫x -722+25. ∵抛物线与x 轴的两个交点是(1,0)和(6,0), ∴自变量x 的取值范围是1<x <6.①根据题意,当S =24时,即-4⎝⎛⎭⎫x -722+25=24, 化简,得⎝⎛⎭⎫x -722=14,解得x 1=3,x 2=4, 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4), 点E 1(3,-4)满足OE =AE ,此时OEAF 是菱形; 点E 2(4,-4)不满足OE =AE ,此时OEAF 不是菱形.②当OE ⊥EA ,且OE =EA 时,OEAF 是正方形,此时点E 的坐标只能是(3,-3),而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E ,使OEAF 为正方形.。
二次函数图像与性质中考真题(含详细答案和分析)
二次函数图像与性质中考真题一.填空题(共26小题)1.(2014•天津)抛物线y=x2﹣2x+3的顶点坐标是_________.2.(2014•长沙)抛物线y=3(x﹣2)2+5的顶点坐标是_________.3.(2014•大连)函数y=(x﹣1)2+3的最小值为_________.4.已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线_________5.(2014•温州一模)二次函数y=(x+3)2﹣5的对称轴是直线_________.6.(2014•奉贤区二模)二次函数y=x2+3图象的顶点坐标是_________.7.(2014•青浦区一模)函数y=(x+5)(2﹣x)图象的开口方向是_________.8.(2014•金山区一模)抛物线y=x2+2x的对称轴是_________.9.(2014•杨浦区二模)抛物线y=2x2+4x﹣2的顶点坐标是_________.10.如果二次函数y=(2k﹣1)x2﹣3x+1的图象开口向上,那么常数k的取值范围是_________.11.(2014•天河区二模)二次函数y=x2﹣4x的顶点坐标是_________.12.(2014•泰兴市二模)二次函数y=2(x+1)(x﹣3)图象的顶点坐标为_________.13.(2014•崇明县一模)抛物线y=x2﹣4x+5的对称轴是直线_________.14.(2014•成都高新区一模)抛物线y=x2﹣12x+9的顶点坐标是_________.15.(2014•和平区一模)求抛物线y=﹣2x2+8x﹣8的开口方向、对称轴及顶点坐标.16.(2014•鄂托克旗模拟)抛物线y=﹣x2+4x﹣5的顶点坐标是_________.17.(2014•奉贤区一模)二次函数y=﹣2(x﹣2)2的图象在对称轴左侧部分是_________.“上升或下降”18.(2014•历城区一模)抛物线y=2(x﹣3)2+1的顶点坐标是_________.19.(2014•青浦区一模)如果二次函数y=x2+2kx+k﹣4图象的对称轴为x=3,那么k=_________.20.(2014•奉贤区一模)抛物线y=3x2﹣1的顶点坐标为_________.21.抛物线y=﹣(x﹣1)2+1在对称轴的右侧的部分是_________的.(从“上升”或“下降”中选择)22.(2014•黄浦区一模)若抛物线y=(x+m)2+m﹣1的对称轴是直线x=1,则它的顶点坐标是_________.23.(2014•安徽模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是_________.24.(2014•靖江市模拟)已知二次函数y=ax2+bx+c的图象如图所示,则下列7个代数式ab,ac,bc,b2﹣4ac,a+b+c,a﹣b+c,2a+b中,其值为正的式子的个数为_________个.25.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过_________象限.26.(2014•长宁区一模)已知抛物线y=mx2+4x+m(m﹣2)经过坐标原点,则实数m的值是二.解答题(共4小题)27.(2012•宿迁模拟)已知抛物线的顶点坐标为M(1,﹣2),且经过点N(2,3),求此二次函数的解析式.28.(2009•衡阳)已知二次函数的图象过坐标原点,它的顶点坐标是(1,﹣2),求这个二次函数的关系式.29.(2009•临沂)如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.求出抛物线的解析式;30.(2008•镇江)推理运算:二次函数的图象经过点A(0,﹣3),B(2,﹣3),C(﹣1,0).(1)求此二次函数的关系式;(2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少平移_________个单位,使得该图象的顶点在原点.参考答案与试题解析一.填空题(共26小题)1.(2014•天津)抛物线y=x2﹣2x+3的顶点坐标是(1,2).考点:二次函数的性质.专题:计算题.分析:已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解答:解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).点评:此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.2.(2014•长沙)抛物线y=3(x﹣2)2+5的顶点坐标是(2,5).考点:二次函数的性质.分析:由于抛物线y=a(x﹣h)2+k的顶点坐标为(h,k),由此即可求解.解答:解:∵抛物线y=3(x﹣2)2+5,∴顶点坐标为:(2,5).故答案为:(2,5).点评:此题主要考查了二次函数的性质,解题的关键是熟练掌握抛物线y=a(x﹣h)2+k的顶点坐标为(h,k).3.(2014•大连)函数y=(x﹣1)2+3的最小值为3.专题:常规题型.分析:根据顶点式得到它的顶点坐标是(1,3),再根据其a>0,即抛物线的开口向上,则它的最小值是3.解答:解:根据非负数的性质,(x﹣1)2≥0,于是当x=1时,函数y=(x﹣1)2+3的最小值y等于3.故答案为:3.点评:本题考查了二次函数的最值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.4.(2014•南通)已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线x=﹣1.考点:抛物线与x轴的交点.专题:待定系数法.分析:因为点(﹣4,0)和(2,0)的纵坐标都为0,所以可判定是一对对称点,把两点的横坐标代入公式x=求解即可.解答:解:∵抛物线与x轴的交点为(﹣4,0),(2,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x==﹣1,即x=﹣1.故答案是:x=﹣1.点评:本题考查了抛物线与x轴的交点,以及如何求二次函数的对称轴,对于此类题目可以用公式法也可以将函数化为顶点式来求解,也可以用公式x=求解,即抛物线y=ax2+bx+c与x轴的交点是(x1,0),(x2,0),则抛物线的对称轴为直线x=.5.(2014•温州一模)二次函数y=(x+3)2﹣5的对称轴是直线x=﹣3.考点:二次函数的性质.分析:对照顶点式y=a(x﹣h)2+k的对称轴是x=h,求本题中二次函数的对称轴.解答:解:因为二次函数y=(x+3)2﹣5的顶点坐标是(﹣3,﹣5),故对称轴是直线x=﹣3.点评:顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h,此题考查了学生的应用能力.6.(2014•奉贤区二模)二次函数y=x2+3图象的顶点坐标是(0,3).考点:二次函数的性质.分析:根据二次函数的性质,利用顶点式直接得出顶点坐标即可.解答:解:∵二次函数y=x2+3,∴二次函数y=x2+3图象的顶点坐标是:(0,3).点评:此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.7.(2014•青浦区一模)函数y=(x+5)(2﹣x)图象的开口方向是向下.考点:二次函数的性质.分析:首先将二次函数化为一般形式,然后根据二次项系数的符号确定开口方向.解答:解:y=(x+5)(2﹣x)=﹣x2+3x+10,∵a=﹣1<0,∴开口向下,故答案为:向下.点评:本题考查了二次函数的性质,解题的关键是正确的化为一般形式.8.(2014•金山区一模)抛物线y=x2+2x的对称轴是直线x=﹣1.考点:二次函数的性质.专题:计算题.分析:先把一般式配成顶点式,根据二次函数的性质即可得到抛物线的对称轴.解答:解:y=x2+2x=(x2+2x+1)﹣1=(x+1)2﹣1,抛物线的对称轴为直线x=﹣1.故答案为直线x=﹣1.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.9.(2014•杨浦区二模)抛物线y=2x2+4x﹣2的顶点坐标是(﹣1,﹣4).考点:二次函数的性质.分析:利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.解答:解:x=﹣=﹣1,把x=﹣1代入得:y=2﹣4﹣2=﹣4.则顶点的坐标是(﹣1,﹣4).故答案是:(﹣1,﹣4).点评:本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解.10.(2014•嘉定区一模)如果二次函数y=(2k﹣1)x2﹣3x+1的图象开口向上,那么常数k的取值范围是k>.考点:二次函数的性质.分析:根据二次函数的开口向上列出关于k的不等式,求出k的取值范围即可.2∴2k﹣1>0,解得k>.故答案为:k>.点评:本题考查的是二次函数的性质,熟知二次函数y=ax2+bx+c(a≠0),当a>0时,抛物线的开口向上是解答此题的关键.11.(2014•天河区二模)二次函数y=x2﹣4x的顶点坐标是(2,﹣4).考点:二次函数的性质.分析:用配方法将抛物线的一般式转化为顶点式,确定顶点坐标即可.解答:解:∵y=x2﹣4x=(x﹣2)2﹣4,∴抛物线顶点坐标为(2,﹣4).故本题答案为:(2,﹣4).点评:本题考查了抛物线解析式与顶点坐标的关系,求顶点坐标可用配方法,也可以用顶点坐标公式.12.(2014•泰兴市二模)二次函数y=2(x+1)(x﹣3)图象的顶点坐标为(1,﹣8).考点:二次函数的性质.分析:根据函数解析式的相互转化,可得顶点式解析式,根据顶点式解析式,可得答案.解答:解:y=2(x+1)(x﹣3)转化成y=2(x﹣1)2﹣8,故答案为:(1,﹣8).点评:本题考查了二次函数的性质,转化成顶点式解析式是解题关键.13.(2014•崇明县一模)抛物线y=x2﹣4x+5的对称轴是直线x=2.考点:二次函数的性质.专题:数形结合.分析:首先把y=x2﹣4x+5进行配方,然后就可以确定抛物线的对称轴,也可以利用公式x=﹣确定.解答:解:y=x2﹣4x+5,=x2﹣4x+4+1,=(x﹣2)2+1,∴对称轴是直线x=2.故答案为:x=2.点评:此题主要考查了二次函数的性质,解题的关键是会配方法或对称轴的公式x=﹣.14.(2014•成都高新区一模)抛物线y=x2﹣12x+9的顶点坐标是(6,﹣27).考点:二次函数的性质.分析:把抛物线解析式整理成顶点式形式,然后写出顶点坐标即可.解答:解:y=x2﹣12x+9=(x﹣6)2﹣27,故答案为:(6,﹣27).点评:本题考查了二次函数的性质,把抛物线解析式整理成顶点式形式求解更简便.15.(2014•和平区一模)求抛物线y=﹣2x2+8x﹣8的开口方向、对称轴及顶点坐标.考点:二次函数的性质.分析:根据二次项系数得出抛物线的开口方向,将一般式转化为顶点式即可得出对称轴和顶点坐标.解答:解:y=2x2+8x﹣8,∵a=﹣2<0,∴抛物线开口向下.∵y=﹣2x2+8x﹣8=﹣2(x2﹣4x+4)=﹣2(x﹣2)2,∴对称轴为直线x=﹣2,顶点坐标为(2,0).点评:本题考查了二次函数的性质及配方法的应用,用到的知识点:二次函数y=a(x﹣h)2+k,当a >0时,抛物线开口向上;对称轴是直线x=h,顶点坐标是(h,k).利用配方法将一般式转化为顶点式是解题的关键.16.(2014•鄂托克旗模拟)抛物线y=﹣x2+4x﹣5的顶点坐标是(2,﹣1).考点:二次函数的性质.分析:根据所给的二次函数,把a=﹣1、b=4、c=﹣5代入顶点公式即可求.解答:解:∵y=﹣x2+4x﹣5∴,.故答案为:(2,﹣1).点评:本题考查了二次函数的性质,解题的关键是熟练掌握二次函数顶点公式.17.(2014•奉贤区一模)二次函数y=﹣2(x﹣2)2的图象在对称轴左侧部分是上升.“上升或下降”考点:二次函数的性质.分析:直接根据二次函数的性质进行解答即可.解答:解:∵二次函数y=﹣2(x﹣2)2中,a=﹣2<0,∴抛物线开口向下,∴函数图象在对称轴左侧部分是上升.故答案为:上升.点评:本题考查的是二次函数的性质,熟知当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大是解答此题的关键.18.(2014•历城区一模)抛物线y=2(x﹣3)2+1的顶点坐标是(3,1).考点:二次函数的性质.分析:已知抛物线解析式为顶点式,可直接求出顶点坐标.解答:解:由抛物线解析式可知,抛物线顶点坐标为(3,1),点评:本题考查了二次函数的性质,将解析式化为顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.19.(2014•青浦区一模)如果二次函数y=x2+2kx+k﹣4图象的对称轴为x=3,那么k=﹣3.考点:二次函数的性质.分析:直接利用对称轴公式求解即可.解答:解:∵二次函数y=x2+2kx+k﹣4图象的对称轴为x=3,∴对称轴为:x=﹣=3,解得:k=﹣3,故答案为:﹣3点评:本题主要考查二次函数的性质,解此题的关键是对二次函数的性质的理解和掌握,知对称轴.20.(2014•奉贤区一模)抛物线y=3x2﹣1的顶点坐标为(0,﹣1).考点:二次函数的性质.分析:根据形如y=ax2+k的顶点坐标为(0,k),据此可以直接求顶点坐标.解答:解:∵抛物线的解析式为y=3x2﹣1,∴其顶点坐标为(0,﹣1).故答案为:(0,﹣1).点评:本题考查了二次函数的性质.二次函数的顶点式方程y=a(x﹣k)2+h的顶点坐标是(k,h),对称轴方程是x=k.21.(2014•嘉定区一模)抛物线y=﹣(x﹣1)2+1在对称轴的右侧的部分是下降的.(从“上升”或“下降”中选择)考点:二次函数的性质.分析:根据a<0,知抛物线开口向下,则在对称轴右侧的部分呈下降趋势.解答:解:∵a<0,∴抛物线开口向下,∴对称轴右侧的部分呈下降趋势.故答案为:下降.点评:考查了二次函数的性质,能够根据抛物线的开口方向分析对称轴左右两侧的变化规律.22.(2014•黄浦区一模)若抛物线y=(x+m)2+m﹣1的对称轴是直线x=1,则它的顶点坐标是(1,﹣2).考点:二次函数的性质.分析:首先根据对称轴是直线x=1,从而求得m的值,然后根据顶点坐标公式直接写出顶点坐标;解答:解:∵抛物线y=(x+m)2+m﹣1的对称轴是直线x=1,∴m=﹣1,∴解析式y=(x﹣1)2﹣2,∴顶点坐标为:(1,﹣2),点评:本题主要考查了二次函数的性质,熟练掌握顶点式是解题的关键,难度适中.23.(2014•安徽模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是②③.考点:二次函数图象与系数的关系.专题:压轴题.分析:由x=1时,y=a+b+C>0,即可判定①错误;由x=﹣1时,y=a﹣b+c<0,即可判定②正确;由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上得到c>0,又对称轴为x=<1,得到2a+b<0,由此可以判定③正确;由对称轴为x=>0即可判定④错误.解答:解:①当x=1时,y=a+b+C>0,∴①错误;②当x=﹣1时,y=a﹣b+c<0,∴②正确;③由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,∴c>0,∵对称轴为x=<1,∴﹣b>2a,∴2a+b<0,∴③正确;④对称轴为x=>0,∴a、b异号,即b>0,∴abc<0,∴④错误.∴正确结论的序号为②③.故填空答案:②③.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.24.(2014•靖江市模拟)已知二次函数y=ax2+bx+c的图象如图所示,则下列7个代数式ab,ac,bc,2考点:二次函数图象与系数的关系.分析:由抛物线开口向上,得到a>0,再由对称轴在y轴右侧,得到a与b异号,可得出b<0,又抛物线与y轴交于正半轴,得到c大于0,可得出ab<0,ac>0,由抛物线与x轴有2个交点,得到根的判别式b2﹣4ac>0,当x=1时,y=a+b+c<0,x=﹣1时,y=a﹣b+c>0,由﹣=1得b+2a=0.解答:解:∵抛物线的开口向上,∴a>0,∵﹣>0,∴b<0,∵抛物线与y轴交于正半轴,∴c>0,∴ab<0,ac>0,bc<0∵抛物线与x轴有2个交点,∴b2﹣4ac>0∵x=1时的函数值小于0,∴y=a+b+c<0又∵x=﹣1时的函数值大于0∴y=a﹣b+c>0∵对称轴为直线x=1,∴﹣=1,即2a+b=0,所以一共有3个式子的值为正.故答案为:3.点评:此题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a≠0),a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定;抛物线与x轴的交点个数,决定了b2﹣4ac的符号,此外还要注意x=1,﹣1对应函数值的正负来判断其式子的正确与否.25.(2014•平原县二模)二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过二、三、四象限.分析:根据抛物线的顶点在第四象限,得出n<0,m<0,即可得出一次函数y=mx+n的图象经过二、三、四象限.解答:解:∵抛物线的顶点(﹣m,n)在第四象限,∴﹣m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故答案是:二、三、四.点评:此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n、m的符号.26.(2014•长宁区一模)已知抛物线y=mx2+4x+m(m﹣2)经过坐标原点,则实数m的值是2.考点:二次函数图象上点的坐标特征.分析:把原点坐标代入函数解析式进行计算即可得解.解答:解:∵抛物线y=mx2+4x+m(m﹣2)经过坐标原点,∴m(m﹣2)=0,解得m1=0,m2=2,当m=0时,函数为一次函数,不是抛物线,所以,m≠0,因此,实数m的值是2.故答案为:2.点评:本题考查了二次函数图象上点的坐标特征,要注意二次项系数不等于0.二.解答题(共4小题)27.(2012•宿迁模拟)已知抛物线的顶点坐标为M(1,﹣2),且经过点N(2,3),求此二次函数的解析式.考点:待定系数法求二次函数解析式.分析:因为抛物线的顶点坐标为M(1,﹣2),所以设此二次函数的解析式为y=a(x﹣1)2﹣2,把点(2,3)代入解析式即可解答.解答:解:已知抛物线的顶点坐标为M(1,﹣2),设此二次函数的解析式为y=a(x﹣1)2﹣2,把点(2,3)代入解析式,得:a﹣2=3,即a=5,∴此函数的解析式为y=5(x﹣1)2﹣2.点评:本题考查了用待定系数法求函数解析式的方法.若题目给出了二次函数的顶点坐标,则采用顶点式求解简单.28.(2009•衡阳)已知二次函数的图象过坐标原点,它的顶点坐标是(1,﹣2),求这个二次函数的关系式.考点:待定系数法求二次函数解析式.分析:此题告诉了二次函数的顶点坐标,采用顶点式比较简单.解答:解:设这个二次函数的关系式为y=a(x﹣1)2﹣2,∵二次函数的图象过坐标原点,∴0=a(0﹣1)2﹣2解得:a=2故这个二次函数的关系式是y=2(x﹣1)2﹣2,即y=2x2﹣4x.点评:本题考查了用待定系数法求函数解析式的方法,设解析式时要根据具体情况选择适当形式.29.(2009•临沂)如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.考点:二次函数综合题.专题:压轴题.分析:(1)已知抛物线经过A(4,0),B(1,0),可设抛物线解析式的交点式,再把C(0,﹣2)代入即可;(2)∵△OAC是直角三角形,以A,P,M为顶点的三角形与其相似,由于点P可能在x轴的上方,或者下方,分三种情况,分别用相似比解答;(3)过D作y轴的平行线交AC于E,将△DCA分割成两个三角形△CDE,△ADE,它们的底相同,为DE,高的和为4,就可以表示它们的面积和,即△DCA的面积,运用代数式的变形求最大值.解答:解:(1)∵该抛物线过点C(0,﹣2),设该抛物线的解析式为y=ax2+bx﹣2.将A(4,0),B(1,0)代入,得,解得,∴此抛物线的解析式为y=﹣x2+x﹣2.(2)存在.如图,设P点的横坐标为m,则点P的纵坐标为,当1<m<4时,AM=4﹣m,PM=,又∵∠COA=∠PMA=90°,∴①当==2时,△APM∽△ACO,∴=2,即|4﹣m|=2(),∴4﹣m=m2+5m﹣4,∴m2﹣6m+8=0,∴(m﹣2)(m﹣4)=0,解得:m1=2,m2=4(舍去)∴P(2,1)②当,△APM∽△CAO,那么有:2|4﹣m|=,∴2(4﹣m)=﹣m2+m﹣2,∴m2﹣9m+20=0,∴(m﹣4)(m﹣5)=0,解得:m1=4(舍去),m2=5(舍去),∴当1<m<4时,P(2,1),类似地可求出当m>4时,P(5,﹣2),当m<1时,P(﹣3,﹣14),当P,C重合时,△APM≌△ACO,P(0,﹣2).综上所述,符合条件的点P为(2,1)或(5,﹣2)或(﹣3,﹣14)或(0,﹣2);(3)如图,设D点的横坐标为t(0<t<4),则D点的纵坐标为﹣t2+t﹣2.过D作y轴的平行线交AC于E.由题意可求得直线AC的解析式为y=x﹣2.∴E点的坐标为(t,t﹣2).∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t.∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4.∴当t=2时,△DAC面积最大.∴D(2,1).点评:本题综合考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里表示三角形的面积及其最大值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形.30.(2008•镇江)推理运算:二次函数的图象经过点A(0,﹣3),B(2,﹣3),C(﹣1,0).(1)求此二次函数的关系式;(2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少平移5个单位,使得该图象的顶点在原点.考点:待定系数法求二次函数解析式;二次函数的性质;二次函数图象与几何变换.分析:(1)可用一般式来求二次函数的关系式;(2)把二次函数的关系式整理为顶点式即可求得顶点;(3)应看顶点坐标是如何经过最短距离之和到达原点.解答:解:(1)设y=ax2+bx﹣3,(1分)把点(2,﹣3),(﹣1,0)代入得,(2分)解方程组得∴y=x2﹣2x﹣3;(3分)(也可设y=a(x﹣1)2+k)(2)y=x2﹣2x﹣3=(x﹣1)2﹣4,(4分)∴函数的顶点坐标为(1,﹣4);(5分)(3)|1﹣0|+|﹣4﹣0|=5.(6分)点评:一般用待定系数法来求函数解析式;抛物线y=ax2+bx+c(a≠0)通过配方,将一般式化为y=a(x ﹣h)2+k的形式,可确定其顶点坐标为(h,k).进一步考查了平移的知识.。
【中考压轴之满分集训】专题02 函数图像与性质综合题(四大类)(解析版)
冲刺中考数学压轴之满分集训专题02函数图像与性质综合题(四大类)【类型一:分析函数图像】【典例1】(锦州)已知A,B两地相距10千米,上午9:00甲骑电动车从A 地出发到B地,9:10乙开车从B地出发到A地,甲、乙两人距A地的距离y(千米)与甲所用的时间x(分)之间的关系如图所示,则乙到达A地的时间为.【答案】9:20【解答】解:因为甲30分走完全程10千米,所以甲的速度是千米/分,由图中看出两人在走了5千米时相遇,那么甲此时用了15分钟,则乙用了(15﹣10)分钟,所以乙的速度为:5÷5=1千米/分,所以乙走完全程需要时间为:10÷1=10分,因为9:10乙才出发,所以乙到达A地的时间为9:20;故答案为9:20.【变式1-1】(2022•潍坊)如图,在▱ABCD中,∠A=60°,AB=2,AD=1,点E,F在▱ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C 的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y与x之间函数关系的图象是()A.B.C.D.【答案】A【解答】解:过点F作FH⊥AB于H,当0≤x≤1时,如图1,在Rt△FAH中,AF=x,∠A=60°,则FH=AF•sin A=x,∴线段EF扫过区域的面积y=x•x=x2,图象是开口向上的抛物线,当1<x≤2时,如图2,过点D作DP⊥AB于P,则DP=AD•sin A=,∴线段EF扫过区域的面积y=×(x﹣1+x)×=x﹣,图象是y 随x的增大而增大的线段,当2<x≤3时,如图3,过点E作EG⊥CD于G,则CE=CF=3﹣x,∴EG=(3﹣x),∴线段EF扫过区域的面积y=2×﹣×(3﹣x)×(3﹣x)=﹣(3﹣x)2,图象是开口向下的抛物线,故选:A.【变式1-2】(2022•齐齐哈尔)如图①所示(图中各角均为直角),动点P从点A出发,以每秒1个单位长度的速度沿A→B→C→D→E路线匀速运动,△AFP的面积y随点P运动的时间x(秒)之间的函数关系图象如图②所示,下列说法正确的是()A.AF=5B.AB=4C.DE=3D.EF=8【答案】B【解答】解:由图②的第一段折线可知:点P经过4秒到达点B处,此时的三角形的面积为12,∵动点P从点A出发,以每秒1个单位长度的速度沿A→B→C→D→E路线匀速运动,∴AB=4.∵×AF•AB=12,∴AF=6,∴A选项不正确,B选项正确;由图②的第二段折线可知:点P再经过2秒到达点C处,∴BC=2,由图②的第三段折线可知:点P再经过6秒到达点D处,∴CD=6,由图②的第四段折线可知:点P再经过4秒到达点E处,∴DE=4.∴C选项不正确;∵图①中各角均为直角,∴EF=AB+CD=4+6=10,∴D选项的结论不正确,故选:B.【变式1-3】(2022•宜昌)如图是小强散步过程中所走的路程s(单位:m)与步行时间t(单位:min)的函数图象.其中有一时间段小强是匀速步行的.则这一时间段小强的步行速度为()A.50m/min B.40m/min C.m/min D.20m/min【答案】D【解答】解:由函数图象知,从30﹣70分钟时间段小强匀速步行,∴这一时间段小强的步行速度为=20(m/min),故选:D.【变式1-4】(2022•辽宁)如图,在等边三角形ABC中,BC=4,在Rt△DEF 中,∠EDF=90°,∠F=30°,DE=4,点B,C,D,E在一条直线上,点C,D重合,△ABC沿射线DE方向运动,当点B与点E重合时停止运动.设△ABC运动的路程为x,△ABC与Rt△DEF重叠部分的面积为S,则能反映S与x之间函数关系的图象是()A.B.C.D.【答案】A【解答】解:过点A作AM⊥BC,交BC于点M,在等边△ABC中,∠ACB=60°,在Rt△DEF中,∠F=30°,∴∠FED=60°,∴∠ACB=∠FED,∴AC∥EF,在等边△ABC中,AM⊥BC,∴BM=CM=BC=2,AM=BM=2,=BC•AM=4,∴S△ABC①当0<x≤2时,设AC与DF交于点G,此时△ABC与Rt△DEF重叠部分为△CDG,由题意可得CD=x,DG=x∴S=CD•DG=x2;②当2<x≤4时,设AB与DF交于点G,此时△ABC与Rt△DEF重叠部分为四边形AGDC,由题意可得:CD=x,则BD=4﹣x,DG=(4﹣x),﹣S△BDG=4﹣×(4﹣x)×(4﹣x),∴S=S△ABC∴S=﹣x2+4x﹣4=﹣(x﹣4)2+4,③当4<x≤8时,设AB与EF交于点G,过点G作GM⊥BC,交BC于点M,此时△ABC与Rt△DEF重叠部分为△BEG,由题意可得CD=x,则CE=x﹣4,DB=x﹣4,∴BE=x﹣(x﹣4)﹣(x﹣4)=8﹣x,∴BM=4﹣x在Rt△BGM中,GM=(4﹣x),∴S=BE•GM=(8﹣x)×(4﹣x),∴S=(x﹣8)2,综上,选项A的图像符合题意,故选:A.【类型二:判断函数图像】【典例2】(2020•铜仁市)如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.【答案】D【解答】解:由题意当0≤x≤4时,y=×AD×AB=×3×4=6,当4<x<7时,y=×PD×AD=×(7﹣x)×4=14﹣2x.故选:D.【变式2-1】(2022•湖北)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为S1,小正方形与大正方形重叠部分的面积为S2,若S=S1﹣S2,则S随t变化的函数图象大致为()A.B.C.D.【答案】A【解答】解:由题意得:当0≤t<1时,S=4﹣t,当1≤t≤2时,S=3,当2<<t≤3时,S=t+1,故选:A.【变式2-2】(2022•绥化)已知二次函数y=ax2+bx+c的部分函数图象如图所示,则一次函数y=ax+b2﹣4ac与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【答案】B【解答】解:∵二次函数y=ax2+bx+c的部分函数图象开口向上,∴a>0,∵二次函数y=ax2+bx+c的部分函数图象顶点在x轴下方,开口向上,∴二次函数y=ax2+bx+c的图象与x轴有两个交点,b2﹣4ac>0,∴一次函数y=ax+b2﹣4ac的图象位于第一,二,三象限,由二次函数y=ax2+bx+c的部分函数图象可知,点(2,4a+2b+c)在x轴上方,∴4a+2b+c>0,∴y=的图象位于第一,三象限,据此可知,符合题意的是B,故选:B.【变式2-3】(2022•广西)已知反比例函数y=(b≠0)的图象如图所示,则一次函数y=cx﹣a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【答案】D【解答】解:∵反比例函数y=(b≠0)的图象位于一、三象限,∴b>0;∵A、B的抛物线都是开口向下,∴a<0,根据同左异右,对称轴应该在y轴的右侧,故A、B都是错误的.∵C、D的抛物线都是开口向上,∴a>0,根据同左异右,对称轴应该在y轴的左侧,∵抛物线与y轴交于负半轴,∴c<0由a>0,c<0,排除C.故选:D.【类型三:反比例函数综合】【典例3】(2022•十堰)如图,正方形ABCD的顶点分别在反比例函数y=(k1>0)和y=(k2>0)的图象上.若BD∥y轴,点D的横坐标为3,则k1+k2=()A.36B.18C.12D.9【答案】B【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图象上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图象上,D(3,a)在y=(k2>0)的图象上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B【变式3-1】(2021•鄂州)如图,点A是反比例函数y=(x>0)的图象上一点,过点A作AC⊥x轴于点C,AC交反比例函数y=(x>0)的图象于点B,点P是y轴正半轴上一点.若△PAB的面积为2,则k的值为.【答案】8【解答】解:连接OA、OB,∵AC⊥x轴,∴AC∥y轴,=S△APB,∴S△AOB=2,∵S△APB=2,∴S△AOB由反比例函数系数k的几何意义可得:S△AOC=6,S△BOC=,∴6﹣=2,解得:k=8,故答案为8.【变式3-2】(2021•荆州)如图,过反比例函数y=(k>0,x>0)图象上的四点P1,P2,P3,P4分别作x轴的垂线,垂足分别为A1,A2,A3,A4,再过P1,P2,P3,P4分别作y轴,P1A1,P2A2,P3A3的垂线,构造了四个相邻的矩形.若这四个矩形的面积从左到右依次为S1,S2,S3,S4,OA1=A1A2=A2A3=A3A4,则S1与S4的数量关系为.【答案】S1=4S4【解答】解:∵过双曲线上任意一点、向坐标轴作垂线所围成的矩形面积S 是个定值,OA1=A1A2=A2A3=A3A4,∴S1=k,S2=k,S3=k,S4=k,∴S1=4S4.故答案为:S1=4S4.【变式3-3】(2022•毕节市)如图,在平面直角坐标系中,正方形ABCD的顶点A,B分别在x轴、y轴上,对角线交于点E,反比例函数y=(x>0,k>0)的图象经过点C,E.若点A(3,0),则k的值是.【答案】4【解答】解:设C(m,),∵四边形ABCD是正方形,∴点E为AC的中点,∴E(,),∵点E在反比例函数y=上,∴,∴m=1,作CH⊥y轴于H,∴CH=1,∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°,∴∠OBA=∠HCB,∵∠AOB=∠BHC,∴△AOB≌△BHC(AAS),∴BH=OA=3,OB=CH=1,∴C(1,4),∴k=4,故答案为:4.【变式3-4】(2022•雁塔区校级模拟)如图,正方形ACBE的边长是,点B,C分别在x轴和y轴正半轴上,BO=2,ED⊥x轴于点D,ED的中点F在反比例函数y=(x>0)的图象上,则k=.【答案】3【解答】解:∵正方形ACBE的边长是,BO=2,∴BC=BE=,∴OC===1,∵∠ABC=90°,∴∠OBC+∠EBD=90°,∵∠OBC+∠OCB=90°,∴∠OCB=∠EBD,在△OBC和△DEB中,,∴△OBC≌△DEB(AAS),∴BD=OC=1,DE=OB=2,∴OD=3,∴E(3,2),∵点F是ED的中点,∴F(3,1),∵点F在反比例函数y=(x>0)的图象上,∴k=3×1=3,故答案为3.【变式3-5】(2021•广元)如图,点A(﹣2,2)在反比例函数y=的图象上,点M在x轴的正半轴上,点N在y轴的负半轴上,且OM=ON=5.点P(x,y)是线段MN上一动点,过点A和P分别作x轴的垂线,垂足为点D和E,<S△OPE时,x的取值范围是.连接OA、OP.当S△OAD【答案】1<x<4【解答】解:过点B作BF⊥ON于F,连接OB,过点C作CG⊥OM于点G,连接OC,如图,∵点A(﹣2,2)在反比例函数y=的图象上,∴k=﹣4.∴y=.∵点A(﹣2,2),∴AD=OD=2.∴.设B(a,b),则ab=﹣4,OF=﹣b,BF=a.∴==2.=2.同理:S△OCG>S△OBF,从图中可以看出当点P在线段BC上时,S△OPE<S△OPE.即当点P在线段BC上时,满足S△OAD∵OM=ON=5,∴N(0,﹣5),M(5,0).设直线MN的解析式为y=mx+n,则:,解得:.∴直线MN的解析式为y=x﹣5.∴,解得:,.∴B(1,﹣4),C(4,﹣1).∴x的取值范围为1<x<4.【变式3-6】(2021•荆门)如图,在平面直角坐标系中,Rt△OAB斜边上的高为1,∠AOB=30°,将Rt△OAB绕原点顺时针旋转90°得到Rt△OCD,点A的对应点C恰好在函数y=(k≠0)的图象上,若在y=的图象上另有一点M使得∠MOC=30°,则点M的坐标为.【答案】(,1)【解答】解:作AE⊥OB于E,MF⊥x轴于F,则AE=1,∵∠AOB=30°,∴OE=AE=,将Rt△OAB绕原点顺时针旋转90°得到Rt△OCD,点A的对应点C为(1,),∵点C在函数y=(k≠0)的图象上,∴k=1×=,∴y=,∵∠COD=∠AOB=30°,∠MOC=30°,∴∠DOM=60°,∴∠MOF=30°,∴OF=MF,设MF=n,则OF=n,∴M(n,n),∵点M在函数y=的图象上,∴n=,∴n=1(负数舍去),∴M(,1),故答案为(,1).【变式3-7】(2021•达州)如图,将一把矩形直尺ABCD和一块等腰直角三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,EF交BC于点M,反比例函数y=(x<0)的图象恰好经过点F,M,若直尺的宽CD=1,三角板的斜边FG=4,则k=.【答案】﹣12【解答】解:过点M作MN⊥AD,垂足为N,则MN=CD=1,在Rt△FMN中,∠MFN=45°,∴FN=MN=1又∵FG=4,∴NA=MB=FG﹣FN=4﹣1=3,设OA=a,则OB=a+1,∴点F(﹣a,4),M(﹣a﹣1,3),又∵反比例函数y=(x<0)的图象恰好经过点F,M,∴k=﹣4a=3(﹣a﹣1),解得,a=3,∴k=﹣4a=﹣12,故答案为:﹣12.【类型4:二次函数综合】【典例4】(2021•广安)二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0,②4a﹣2b+c<0,③a﹣b≥x(ax+b),④3a+c<0,正确的有()A.1个B.2个C.3个D.4个【答案】C【解答】解:∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣1,即,∴b=2a,则b<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故①正确;∵抛物线对称轴为直线x=﹣1,与x轴的一个交点横坐标在0和1之间,则与x轴的另一个交点在﹣2和﹣3之间,∴当x=﹣2时,y=4a﹣2b+c>0,故②错误;∵x=﹣1时,y=ax2+bx+c的最大值是a﹣b+c,∴a﹣b+c≥ax2+bx+c,∴a﹣b≥ax2+bx,即a﹣b≥x(ax+b),故③正确;∵当x=1时,y=a+b+c<0,b=2a,∴a+2a+c=3a+c<0,故④正确;故选:C.【变式4-1】(2022•辽宁)抛物线y=ax2+bx+c的部分图象如图所示,对称轴为直线x=﹣1,直线y=kx+c与抛物线都经过点(﹣3,0).下列说法:①ab>0;②4a+c>0;③若(﹣2,y1)与(,y2)是抛物线上的两个点,则y1<y2;④方程ax2+bx+c=0的两根为x1=﹣3,x2=1;⑤当x=﹣1时,函数y=ax2+(b﹣k)x有最大值.其中正确的个数是()A.2B.3C.4D.5【答案】A【解答】解:∵抛物线的开口方向向下,∴a<0.∵抛物线的对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,b<0.∵a<0,b<0,∴ab>0,∴①的结论正确;∵抛物线y=ax2+bx+c经过点(﹣3,0),∴9a﹣3b+c=0,∴9a﹣3×2a+c=0,∴3a+c=0.∴4a+c=a<0,∴②的结论不正确;∵抛物线的对称轴为直线x=﹣1,∴点(﹣2,y1)关于直线x=﹣1对称的对称点为(0,y1),∵a<0,∴当x>﹣1时,y随x的增大而减小.∵>0>﹣1,∴y1>y2.∴③的结论不正确;∵抛物线的对称轴为直线x=﹣1,抛物线经过点(﹣3,0),∴抛物线一定经过点(1,0),∴抛物线y=ax2+bx+c与x轴的交点的横坐标为﹣3,1,∴方程ax2+bx+c=0的两根为x1=﹣3,x2=1,∴④的结论正确;∵直线y=kx+c经过点(﹣3,0),∴﹣3k+c=0,∴c=3k.∵3a+c=0,∴c=﹣3a,∴3k=﹣3a,∴k=﹣a.∴函数y=ax2+(b﹣k)x=ax2+(2a+a)x=ax2+3ax=a﹣a,∵a<0,∴当x=﹣时,函数y=ax2+(b﹣k)x有最大值,∴⑤的结论不正确.综上,结论正确的有:①④,故选:A.【变式4-2】(2022•烟台)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其对称轴为直线x=﹣,且与x轴的一个交点坐标为(﹣2,0).下列结论:①abc>0;②a=b;③2a+c=0;④关于x的一元二次方程ax2+bx+c﹣1=0有两个相等的实数根.其中正确结论的序号是()A.①③B.②④C.③④D.②③【答案】D【解答】解:①由图可知:a>0,c<0,<0,∴b>0,∴abc<0,故①不符合题意.②由题意可知:=﹣,∴b=a,故②符合题意.③将(﹣2,0)代入y=ax2+bx+c,∴4a﹣2b+c=0,∵a=b,∴2a+c=0,故③符合题意.④由图象可知:二次函数y=ax2+bx+c的最小值小于0,令y=1代入y=ax2+bx+c,∴ax2+bx+c=1有两个不相同的解,故④不符合题意.故选:D.【变式4-3】(2022•梧州)如图,已知抛物线y=ax2+bx﹣2的对称轴是直线x =﹣1,直线l∥x轴,且交抛物线于点P(x1,y1),Q(x2,y2),下列结论错误的是()A.b2>﹣8aB.若实数m≠﹣1,则a﹣b<am2+bmC.3a﹣2>0D.当y>﹣2时,x1•x2<0【答案】C【解答】解:根据函数图象可知a>0,根据抛物线的对称轴公式可得x=﹣=﹣1,∴b=2a,∴b2>0,﹣8a<0,∴b2>﹣8a.故A正确,不符合题意;∵函数的最小值在x=﹣1处取到,∴若实数m≠﹣1,则a﹣b﹣2<am2+bm﹣2,即若实数m≠﹣1,则a﹣b<am2+bm.故B正确,不符合题意;∵l∥x轴,∴y1=y2,令x=0,则y=﹣2,即抛物线与y轴交于点(0,﹣2),∴当y1=y2>﹣2时,x1<0,x2>0.∴当y1=y2>﹣2时,x1•x2<0.故D正确,不符合题意;∵a>0,∴3a>0,没有条件可以证明3a>2.故C错误,符合题意;故选:C.【变式4-4】(2022•天津)已知抛物线y=ax2+bx+c(a,b,c是常数,0<a<c)经过点(1,0),有下列结论:①2a+b<0;②当x>1时,y随x的增大而增大;③关于x的方程ax2+bx+(b+c)=0有两个不相等的实数根.其中,正确结论的个数是()A.0B.1C.2D.3【答案】C【解答】解:①∵抛物线y=ax2+bx+c经过点(1,0),∴a+b+c=0,∵a<c,∴a+b+a<0,即2a+b<0,本小题结论正确;②∵a+b+c=0,0<a<c,∴b<0,∴对称轴x=﹣>1,∴当1<x<﹣时,y随x的增大而减小,本小题结论错误;③∵a+b+c=0,∴b+c=﹣a,对于方程ax2+bx+(b+c)=0,Δ=b2﹣4×a×(b+c)=b2+4a2>0,∴方程ax2+bx+(b+c)=0有两个不相等的实数根,本小题结论正确;故选:C.【变式4-5】(2021•福建)二次函数y=ax2﹣2ax+c(a>0)的图象过A(﹣3,y1),B(﹣1,y2),C(2,y3),D(4,y4)四个点,下列说法一定正确的是()A.若y1y2>0,则y3y4>0B.若y1y4>0,则y2y3>0C.若y2y4<0,则y1y3<0D.若y3y4<0,则y1y2<0【答案】C【解答】解:如图,由题意对称轴为直线x=1,观察图象可知,y1>y4>y2>y3,若y1y2>0,如图1中,则y3y4<0,选项A不符合题意,若y1y4>0,如图2中,则y2y3<0,选项B不符合题意,若y2y4<0,如图3中,则y1y3<0,选项C符合题意,若y3y4<0,如图4中,则y1y2>0,选项D不符合题意,故选:C.【变式4-6】(2021•恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴交于(﹣3,0),顶点是(﹣1,m),则以下结论:①abc>0;②4a+2b+c>0;③若y≥c,则x≤﹣2或x≥0;④b+c=m.其中正确的有()个.A.1B.2C.3D.4【答案】B【解答】解:①∵抛物线开口向上,对称轴在y轴左边,与y轴交于负半轴,∴a>0,b>0,c<0,∴abc<0,故结论①错误;②∵二次函数y=ax2+bx+c的图象与x轴交于(﹣3,0),顶点是(﹣1,m),∴抛物线与x轴的另一个交点为(1,0),∵抛物线开口向上,∴当x=2时,y=4a+2b+c>0,故结论②正确;③由题意可知对称轴为:直线x=﹣1,∴x=,∴b=2a,把y=c,b=2a代入y=ax2+bx+c得:ax2+2ax+c=c,∴x2+2x=0,解得x=0或﹣2,∴当y≥c,则x≤﹣2或x≥0,故结论③正确;④把(﹣1,m),(1,0)代入y=ax2+bx+c得:a﹣b+c=m,a+b+c=0,∴b=,∵b=2a,∴a=,∵抛物线与x轴的另一个交点为(1,0),∴a+b+c=0,∴c=,∴b+c=,故选:B.。
2022最新中考复习真题精选:二次函数的图像及性质(含解析)
二次函数图像及其性质江苏近4年中考真题精选(2013~胡文)命题点1 二次函数的图象及性质(胡文年4次,2022模拟年4次,2022模拟年3次,2013年8次)1. (2022模拟常州7题2分)已知二次函数y =x2+(m -1)x +1,当x >1时,y 随x 的增大而增大,则m 的取值范围是()A. m =-1B. m =3C. m ≤-1D. m ≥-12. (2013常州7题2分)二次函数y =ax2+bx +c(a 、b 、c 为常数且a ≠0)中的x 与y 的部分对应值如下表:给出以下结论:①二次函数y =ax2+bx +c 有最小值,最小值为-3;②当-12<x<2时,y<0; ③二次函数y =ax2+bx +c 的图象与x 轴有两个交点,且它们分别在y 轴两侧.则其中正确结论的个数是()A. 3B. 2C. 1D. 03. (2022模拟淮安15题3分)二次函数y =x2-2x +3的图象的顶点坐标是________.4. (胡文镇江10题2分)a、b、c是实数,点A(a+1,b)、B(a+2,c)在二次函数y=x2-2ax+3的图象上,则b、c的大小关系是b________c(用“>”或“<”号填空).第5题图5. (2022模拟扬州16题3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线l上,则4a-2b+c的值为________.6. (2013南通18题3分)已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m-n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于________.命题点2待定系数法求二次函数解析式(胡文年8次,2022模拟年5次,2022模拟年3次,2013年2次)7. (胡文徐州28(1)题3分)如图,在平面直角坐标系中,二次函数y =ax2+bx+c的图象过点A(-1,0)、B(0,-3)、C(2,0),其对称轴与x轴交于点D.求二次函数的表达式及其顶点坐标.第7题图8. (胡文淮安27(1)题3分)如图,在平面直角坐标系中,二次函数y=-14x2+bx +c 的图象与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为(-4,0).求该二次函数的表达式及点C 的坐标.第8题图命题点3 二次函数图象的平移(胡文年11次,2022模拟年3次)9. (2022模拟宿迁7题3分)若将抛物线y =x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A. y =(x +2)2+3B. y =(x -2)2+3C. y =(x +2)2-3D. y =(x -2)2-310. (2022模拟南京24(2)题4分)已知二次函数y =x2-2mx +m2+3.(m是常数)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数图象与x轴只有一个公共点?命题点4 二次函数与一元二次方程、不等式的关系(胡文年5次,2022模拟年2次,2022模拟年1次,2013年3次)11. (2022模拟苏州8题3分)若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A. x1=0,x2=4B. x1=1,x2=5C. x1=1,x2=-5D. x1=-1,x2=512. (胡文宿迁8题3分)若二次函数y=ax2-2ax+c的图象经过点(-1,0),则方程ax2-2ax+c=0的解为()A. x1=-3,x2=-1B. x1=1,x2=3C. x1=-1,x2=3D. x1=-3,x2=113. (胡文徐州12题3分)若二次函数y=x2+2x+m的图象与x轴没有公共点,则m的取值范围是________.14. (2022模拟南京16题3分)已知二次函数y=ax2+bx+c中,函数y 与自变量x 的部分对应值如下表:则当y <5时,x 的取值范围是________.15. (2022模拟南通18题3分)关于x 的一元二次方程ax2-3x -1=0的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是________.答案1. D 【解析】∵当x >1时,y 随x 的增大而增大,∴对称轴的值不能大于1才能满足题意,即x =-m -12≤1,解得m ≥-1. 2. B 【解析】由表格数据可知,二次函数的对称轴为直线x =1,所以当x =1时,二次函数y =ax2+bx +c 有最小值,最小值为-4,故①错误;根据表格数据,当-1<x <3时,y <0,所以,-12<x <2时,y <0正确,故②正确;二次函数y =a2+bx +c 的图象与x 轴有两个交点,分别为(-1,0)、(3,0),它们分别在y 轴两侧,故③正确;综上所述,结论正确的是②③.3. (1,2) 【解析】用配方法将二次函数化为y =a(x -h)2+k 的形式,得顶点坐标为(h ,k).由y =x2-2x +3=x2-2x +1+2=(x -1)2+2.故顶点坐标为(1,2).4. < 【解析】在二次函数图象中:当a >0时,开口向上,距离对称轴越远,函数值越大;当a <0时,开口向下,距离对称轴越远,函数值越小.函数y =x2-2ax +3,开口向上,对称轴x =a ,∴a +1<a +2,即B 点距离对称轴较A 点远,∴c >b.第5题解图5. 0 【解析】设抛物线与x 轴的另一个交点是Q ,∵抛物线的对称轴过点(1,0),抛物线与x 轴的一个交点是P(4,0),∴与x 轴的另一个交点Q(-2,0),把(-2,0)代入解析式得:0=4a -2b +c ,∴4a -2b +c =0.6. 3 【解析】∵x =2m +n +2和x =m +2n 时,多项式x2+4x +6的值相等,∴二次函数y =x2+4x +6的对称轴为直线x =2m +n +2+m +2n 2=3m +3n +22,又∵二次函数y =x2+4x +6的对称轴为直线x =-2,∴3m +3n +22=-2,∴3m +3n +2=-4,∴m +n =-2,∴当x =3(m +n +1)=3(-2+1)=-3时,x2+4x +6=(-3)2+4×(-3)+6=3.7. 解:(1)设二次函数的表达式为y =a(x +1)(x -2),将B(0,-3)代入得a =32,∴二次函数的表达式为y =32(x +1)(x -2)=32(x -12)2-938,∴二次函数的顶点坐标为(12,-938); 8. 解:(1)∵二次函数y =-14x2+bx +c 过A(0,8)、B(-4,0)两点,∴⎩⎨⎧-14×(-4)2-4b +c =0c =8,解得⎩⎨⎧b =1c =8. ∴二次函数的解析式为y =-14x2+x +8, 当y =0时,解得x1=-4,x2=8,所以C 点坐标为(8,0).9. B 【解析】将抛物线y =x2向右平移2个单位可得y =(x -2)2,再向上平移3个单位可得y =(x -2)2+3.10. 解:y =x2-2mx +m2+3=(x -m)2+3,把函数y =(x -m)2+3的图象沿y 轴向下平移3个单位长度后,得到函数y =(x -m)2的图象,它的顶点坐标是(m ,0),这个函数的图象与x 轴只有一个公共点.∴把函数y =x2-2mx +m2+3的图象沿y 轴向下平移3个单位长度后,得到的函数图象与x 轴只有一个公共点.11. D 【解析】由题意知此抛物线的对称轴是直线x =2,故-b 2=2,得方程x2-4x =5,解得x1=-1,x2=5.12. C 【解析】∵图象过点(-1,0),∴将点(-1,0)代入方程得a +2a +c =0,即3a +c =0.当x =3时,将(3,0)代入方程得到3a +c =0成立,当x =-3时,将(-3,0)代入方程得到15a +c =0与3a +c =0不相符,当x =1时,将(1,0)代入方程得-a +c =0与3a +c =0不相符,∴方程的两个根为x1=-1,x2=3.【一题多解】由题意可知x =-1是方程ax2-2ax +c =0的一个解.∵二次函数图象的对称轴为x =--2a 2a=1,∴二次函数的图象经过(3,0),即方程的另一个解为x =3.∴方程的两个解为x1=-1,x2=3.13. m >1 【解析】由题意得,当一元二次方程x2+2x +m =0无实数根时,即b2-4ac =4-4m <0,解得,m >1.第14题解图14. 0<x <4 【解析】由表格的数据可以看出,x =1和x =3时,y 的值都是2,所以可以判断出,点(1,2)和点(3,2)关于二次函数的对称轴x =1+32=2对称,再根据对称性即可求出与(0,5)对称的点为(4,5).从表格中可分析出y <5的x 的取值范围为0<x <4.15. -94<a <-2 【解析】∵ax2-3x -1=0有两个不相等的实数根,∴b2-4ac =9+4a >0,∴a >-94,又∵两个不相等的实数根都在-1和0之间,∴当x =-1和x =0时的函数y =ax2-3x -1的值同号.∵当x =-1时,y =a +2;当x =0时,y =-1.∴a +2<0,即a <-2.∴-94<a <-2.。
辽宁省各市中考数学分类解析 专题6:函数的图像与性质
辽宁各市中考数学试题分类解析汇编专题6:函数的图像与性质 锦元数学工作室 编辑一、选择题1. (辽宁鞍山3分)如图,点A 在反比例函数()3y=x 0x>的图象上,点B 在反比例函数()ky=x 0x>的图象上,AB⊥x 轴于点M ,且AM :MB=1:2,则k 的值为【 】A . 3B .-6C .2D .6 【答案】B 。
【考点】反比例函数图象上点的坐标特征。
【分析】如图,连接OA 、OB .∵点A 在反比例函数()3y=x 0x>的图象上,点B 在反比例函数()ky=x 0x>的图象上,AB⊥x 轴于点M , ∴S △AOM =32,S △BOM =k 2。
∴S △AOM :S △BOM =32:k 2=3:|k|。
∵S △AOM :S △BOM =AM :MB=1:2,∴3:|k|=1:2。
∴|k|=6。
∵反比例函数()ky=x 0x>的图象在第四象限,∴k<0。
∴k=-6。
故选B 。
2. (辽宁鞍山3分)如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点B 坐标(﹣1,0),下面的四个结论:①OA=3;②a+b+c<0;③ac>0;④b 2﹣4ac >0.其中正确的结论是【 】A.①④ B.①③ C.②④ D.①②【答案】A。
【考点】二次函数图象与系数的关系,二次函数的性质,一元二次方程根的判别式。
【分析】∵由图象知,点B坐标(﹣1,0),对称轴是直线x=1,∴A的坐标是(3,0)。
∴OA=3。
∴结论①正确。
∵由图象知:当x=1时,y>0,∴把x=1代入二次函数的解析式得:y=a+b+c>0。
∴结论②错误。
∵抛物线的开口向下,与y轴的交点在y轴的正半轴上,∴a<0,c>0。
∴ac<0。
∴结论③错误。
∵抛物线与x轴有两个交点,∴b2﹣4ac>0。
∴结论④正确。
综上所述,结论①④正确。
故选A。
3. (辽宁本溪3分)如图,已知点A在反比例函数4y=x图象上,点B在反比例函数ky=x(k≠0)的图象上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为C、D,若OC=13OD,则k的值为【】A、10B、12C、14D、16 【答案】B。
中考数学专题 函数及图像
举 一 反 三
【解析】由 x+1≠0 得 x≠-1.
考 点 训 练
【答案】C
目录
首页
上一页
下一页
末页
宇轩图书
3.(2010· 眉山)某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗 考 点 衣机内无水),在这三个过程中洗衣机内水量 y(升)与时间 x(分)之间的函数关系对应的图象大 知 致为( ) 识 精 讲
考 点 知 识 精 讲 中 考 典 例 精 析
7.某游泳池的横截面如图所示,用一水管向池内持续注水.若单位时间内注入的水量保 持不变,则在注水过程中,下列图象能反映深水区水深 h 与注水时间 t 之间关系的是( A )
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 8. 如图, 乌鸦口渴到处找水喝,它看到了一个装有水的瓶子, 但水位较低, 且瓶口又小, 识 精 乌鸦喝不着水,沉思一会后,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝 讲 到了水.在这则乌鸦喝水的故事中,从乌鸦看到瓶的那刻起开始计时并设时间为 x,瓶中水 中 考 典 例 精 析
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
举 一 反 三
(2010· 丹东)星期天,小明与小刚骑自行车去距家 50 千米的某地旅游,匀速行驶 1.5 小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然 后以原速继续前行,行驶 1 小时到达目的地.请在右面的平面直角坐标系 中,画出符合他们行驶的路程 s(千米)与行驶时间 t(时)之间的函数图象.
中考数学压轴题---《函数图像问题》例题讲解
中考数学压轴题---《函数图像问题》例题讲解例1、(2022•辽宁)某超市以每件13元的价格购进一种商品,销售时该商品的销售单价不低于进价且不高于18元.经过市场调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x之间的函数关系式;(2)销售单价定为多少时,该超市每天销售这种商品所获的利润最大?最大利润是多少?【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),由所给函数图像可知:,解得:,故y与x的函数关系式为y=﹣20x+500;(2)设每天销售这种商品所获的利润为w,∵y=﹣20x+500,∴w=(x﹣13)y=(x﹣13)(﹣20x+500)=﹣20x2+760x﹣6500=﹣20(x﹣19)2+720,∵﹣20<0,∴当x<19时,w随x的增大而增大,∵13≤x≤18,∴当x=18时,w有最大值,最大值为700,∴售价定为18元/件时,每天最大利润为700元.【变式1-1】(2023•泸县校级一模)某商场以每件20元的价格购进一种商品,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间满足一次函数关系,其图像如图所示.设该商场销售这种商品每天获利w(元).(1)求y与之间的函数关系式;(2)求w与x之间的函数关系式;(3)该商场规定这种商品每件售价不低于进价且不高于38元,商品要想获得600元的利润,每件商品的售价应定为多少元?【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),由所给函数图像可知:,解得,故y与x的函数关系式为y=﹣2x+120;(2)∵y=﹣2x+120,∴w=(x﹣20)y=(x﹣20)(﹣2x+120)=﹣2x2+160x﹣2400,即w与x之间的函数关系式为w=﹣2x2+160x﹣2400;(3)根据题意得:600=﹣2x2+160x﹣2400,∴x1=30,x2=50(舍),∵20≤x≤38,∴x=30.答:每件商品的售价应定为30元.【变式2-2】(2022•潍坊)某市在盐碱地种植海水稻获得突破性进展,小亮和小莹到海水稻种植基地调研.小莹根据水稻年产量数据,分别在直角坐标系中描出表示2017﹣2021年①号田和②号田年产量情况的点(记2017年为第1年度,横轴表示年度,纵轴表示年产量),如图.小亮认为,可以从y=kx+b(k>0),y=(m>0),y=﹣0.1x2+ax+c中选择适当的函数模型,模拟①号田和②号田的年产量变化趋势.(1)小莹认为不能选y=(m>0).你认同吗?请说明理由;(2)请从小亮提供的函数模型中,选择适当的模型分别模拟①号田和②号田的年产量变化趋势,并求出函数表达式;(3)根据(2)中你选择的函数模型,请预测①号田和②号田总年产量在哪一年最大?最大是多少?【解答】解:(1)认同,理由是:当m>0时,y=中,y随x的增大而减小,而从图中描点可知,x增大y随之增大,故不能选y=(m>0);(2)观察①号田和②号田的年产量变化趋势可知,①号田为y=kx+b(k>0),②号田为y=﹣0.1x2+ax+c,把(1,1.5),(2,2.0)代入y=kx+b得:,解得,∴y=0.5x+1;把(1,1.9),(2,2.6)代入y=﹣0.1x2+ax+c得:,解得,∴y=﹣0.1x2+x+1,答:模拟①号田的函数表达式为y=0.5x+1,模拟②号田的函数表达式为y=﹣0.1x2+x+1;(3)设①号田和②号田总年产量为w吨,由(2)知,w=0.5x+1+(﹣0.1x2+x+1)=﹣0.1x2+1.5x+2=﹣0.1(x﹣7.5)2+7.625,∵﹣0.1<0,抛物线对称轴为直线x=7.5,而x为整数,∴当x=7或8时,w取最大值,最大值为7.6,答:①号田和②号田总年产量在2023年或2024年最大,最大是7.6吨.【变式3-3】(2021•大庆)如图①是甲,乙两个圆柱形水槽的横截面示意图,乙槽中有一圆柱形实心铁块立放其中(圆柱形实心铁块的下底面完全落在乙槽底面上),现将甲槽中的水匀速注入乙槽,甲,乙两个水槽中水的深度y(cm)与注水时间x(min)之间的关系如图②所示,根据图像解答下列问题:(1)图②中折线EDC表示乙槽中水的深度与注水时间之间的关系;线段AB表示甲槽中水的深度与注水时间之间的关系;铁块的高度为16cm.(2)注水多长时间,甲、乙两个水槽中水的深度相同?(请写出必要的计算过程)【解答】解:(1)由题意可知,乙槽在注入水的过程中,由于有圆柱铁块在内,所以水的高度出现变化,∴EDC表示的是乙槽的水深与注水时间的关系;∵甲槽的水是匀速外倒,∴线段AB表示甲槽水深与注水时间的关系;折线EDC中,在D点表示乙槽水深16cm,也就是铁块的高度16cm;故答案为:乙,甲,16;(2)由图像可知,两个水槽深度相同时,线段ED与线段AB相交,设AB的解析式为y=kx+b,将点(0,14),(7,0)代入,得解得,,∴y=﹣2x+14;设ED的解析式为y=mx+n,将点(0,4),(4,16)代入,得,解得,∴y=3x+4;联立方程组,∴,∴注水2分钟,甲、乙两个水槽的水深度相同.【变式1-4】(2022秋•河口区期末)随着春节临近,某儿童游乐场推出了甲、乙两种消费卡,设消费次数为x时,所需费用为y元,且y与x的函数关系如图所示.根据图中信息,解答下列问题;(1)分别求出选择这两种卡消费时,y关于x的函数表达式.(2)求出B点坐标.(3)洋洋爸爸准备240元钱用于洋洋在该游乐场消费,请问选择哪种消费卡划算?【解答】解:(1)设y=k1x,甲根据题意得5k1=100,解得k1=20,∴y=20x;甲=k2x+100,设y乙根据题意得:20k2+100=300,解得k2=10,∴y=10x+100;乙(2)解方程组,得,∴B点坐标为(10,200);(3)甲:20x=240,解得x=12,即甲种消费卡可玩12次;乙:10x+100=240,解得x=14,即乙种消费卡可玩14次;14>12,∴洋洋爸爸准备240元钱用于洋洋在该游乐场消费,选择乙种消费卡划算.【变式1-5】(2021•陕西)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”、“猫”距起点的距离y(m)与时间x (min)之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是1m/min;(2)求AB的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.【解答】解:(1)由图像知:“鼠”6min跑了30m,∴“鼠”的速度为:30÷6=5(m/min),“猫”5min跑了30m,∴“猫”的速度为:30÷5=6(m/min),∴“猫”的平均速度与“鼠”的平均速度的差是1(m/min),故答案为:1;(2)设AB的解析式为:y=kx+b,∵图像经过A(7,30)和B(10,18),把点A和点B坐标代入函数解析式得:,解得:,∴AB的解析式为:y=﹣4x+58;(3)令y=0,则﹣4x+58=0,∴x=14.5,∵“猫”比“鼠”迟一分钟出发,∴“猫”从起点出发到返回至起点所用的时间为14.5﹣1=13.5(min).答:“猫”从起点出发到返回至起点所用的时间为13.5min.【变式1-6】(2022秋•南关区校级期末)洋洋和妮妮分别从学校和公园同时出发,沿同一条路相向而行.洋洋开始跑步中途改为步行,到达公园恰好用了30min.妮妮骑单车以300m/min的速度直接回学校.两人离学校的路程y(m)与各自离开出发地的时间x(min)之间的函数图像如图所示.(1)学校与公园之间的路程为4000m,洋洋步行的速度为100m/min;(2)求妮妮离学校的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.【解答】解:(1)结合题意和图像可知,线段CD为妮妮路程与时间函数图像,折线O﹣A﹣B为洋洋的路程与时间图像,则学校与公园之间的路程为4000米,洋洋步行的速度==100m/min,故答案为:4000,100;(2)妮妮骑自行车从公园回学校所需时间为4000÷300=(分钟),∴妮妮离学校的路程y关于x的函数解析式为y=4000﹣300x(0≤x≤);(3)当x=10时,妮妮离学校的路程y=4000﹣300x=4000﹣300×10=1000(米),由图可知x=10时,洋洋离学校的路程是2000米,∴两人相遇是在洋洋慢跑途中,由4000﹣300x=x得:x=8,∴两人相遇的时间为8min.。
中考题数学一次函数图像应用题
第1题图(1)第1题图(2)中考题数学----一次函数图像应用题1/.已知某种水果的批发单价与批发量的函数关系如图(1)所示. (1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.)分2、邮递员小王从县城出发,骑自行车到A 村投递,途中遇到县城中学的学生李明从A 村步行返校.小王在A 村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求: (1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案.(2)小王从县城出发到返回县城所用的时间.(3)李明从A 村到县城共用多长时间?3、(本小题满分8分)甲、乙两人骑自行车前往A 地,他们距A 地的路程s (km )与行驶时间t (h )之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)求出甲距A 地的路程s 与行驶时间t 之间的函数关系式.(3)在什么时间段内乙比甲离A 地更近?4、(本小题满分8分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图象(线段AB表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程y与时间x的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)5.南宁市狮山公园计划在健身区铺设广场砖.现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y(元)与铺设面积()2m x的函数关系如图12所示;乙工程队铺设广场甲砖的造价y 乙(元)与铺设面积()2m x 满足函数关系式:y kx =乙.(1)根据图12写出甲工程队铺设广场砖的造价y 甲(元)与铺设面积()2m x 的函数关系式; (2)如果狮山公园铺设广场砖的面积为21600m ,那么公园应选择哪个工程队施工更合算?6、(本小题满分7分)为迎接2008年北京奥运会,某学校组织了一次野外长跑活动,参加长跑的同学出发后,另一些同学从同地骑自行车前去加油助威。
江苏中考数学历年真题分类 二次函数图像、性质及应用
江苏中考数学历年真题分类二次函数图像、性质及应用一、单选题1.(2021·徐州)在平面直角坐标系中,将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为()A.y=(x−2)2+1B.y=(x+2)2+1C.y=(x+2)2−1D.y=(x−2)2−1【答案】B【解析】【解答】解:∵y=x2的顶点坐标为(0,0)∴将二次函数y=x2的图象向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-2,1),∴所得抛物线对应的函数表达式为y=(x+2)2+1,故答案为:B【分析】先求出y=x2的顶点坐标为(0,0),再求出平移后的抛物线的顶点坐标为(-2,1),利用平移的性质利用顶点式写出平移后抛物线解析式即可.2.(2021·常州)已知二次函数y=(a−1)x2,当x>0时,y随x增大而增大,则实数a的取值范围是()A.a>0B.a>1C.a≠1D.a<1【答案】B【解析】【解答】∵二次函数y=(a−1)x2的对称轴为y轴,当x>0时,y随x增大而增大,∴二次函数y=(a−1)x2的图象开口向上,∴a-1>0,即:a>1,故答案为:B.【分析】由二次函数的性质结合题意可得a-1>0,求解即可.3.(2021·宿迁)已知二次函数y=ax2+bx+c的图象如图所示,有下列结论:①a>0;②b2−4ac>0;③4a+b=0;④不等式ax2+(b−1)x+c<0的解集为1≤x<3,正确的结论个数是()A.1B.2C.3D.4【答案】A【解析】【解答】解:∵抛物线的开口向上,∴a>0,故①正确;∵抛物线与x轴没有交点∴b2−4ac<0,故②错误∵抛物线的对称轴为x=1∴−b2a=1,即b=-2a∴4a+b=2a≠0,故③错误;由抛物线可知顶点坐标为(1,1),且过点(3,3)则{b=−2a a+b+c=19a+3b+c=3,解得{a=12b=−1c=32∴ax2+(b−1)x+c<0可化为12x2−2x+32<0,解得:1<x<3故④错误.故答案为:A.【分析】①根据开口向上可得a>0;②根据与x轴无交点可得b2−4ac<0;③由对称轴x=−b2a=1可得4a+b=2a;④由抛物线顶点坐标和过点(3,3)可得抛物线解析式,即可得12x2−2x+32<0,可得结果.4.(2021·苏州)已知抛物线y=x2+kx−k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.-5或2B.-5C.2D.-2【答案】B【解析】【解答】解:∵抛物线y=x2+kx-k2的对称轴在y轴右侧,∴x=−k2>0,∴k <0.∵抛物线y=x 2+kx-k 2=(x +k 2)2−5k 24.∴将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线的表达式是:y =(x +k 2−3)2−5k24+1,∴将(0,0)代入,得0=(0+k 2−3)2−5k 24+1,解得k 1=2(舍去),k 2=-5. 故答案为:B.【分析】先将二次函数配成顶点式,再根据二次函数平移的点的坐标变化规律“左加右减、上加下减”可得平移后的解析式,再根据平移后的抛物线经过原点可将(0,0)代入平移后的解析式得关于k 的一元二次方程,解方程可求得k 的值,再根据对称轴在y 轴右侧可得x=-k 2>0,解不等式可得k 的范围,结合范围可确定k 的值.5.点P(m ,n)在以y 轴为对称轴的二次函数y =x 2+ax+4的图象上.则m ﹣n 的最大值等于( )A .154B .4C .﹣ 154D .﹣ 174【答案】C【解析】【解答】解:∵点P (m ,n )在以y 轴为对称轴的二次函数y =x 2+ax+4的图象上,∴a =0, ∴n =m 2+4,∴m ﹣n =m ﹣(m 2+4)=﹣m 2+m ﹣4=﹣(m ﹣ 12 )2﹣ 154 ,∴当m = 12 时,m ﹣n 取得最大值,此时m ﹣n =﹣ 154,故答案为:C.【分析】根据题意,可以得到a 的值以及m 和n 的关系,然后将m 、n 作差,利用二次函数的性质,即可求出m ﹣n 的最大值.6.(2020·宿迁)将二次函数y=(x ﹣1)2+2的图象向上平移3个单位长度,得到的拋物线相应的函数表达式为( ) A .y=(x+2)2﹣2 B .y=(x ﹣4)2+2 C .y=(x ﹣1)2﹣1D .y=(x ﹣1)2+5【答案】D【解析】【解答】解:由“上加下减”的原则可知,将二次函数y=(x﹣1)2+2的图象向上平移3个单位长度,所得抛物线的解析式为:y=(x﹣1)2+2+3,即y=(x﹣1)2+5.故答案为:D.【分析】根据“上加下减”的原则进行解答即可.7.如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.18√3m2C.24√3m2D.45√32m2【答案】C【解析】【解答】解:如图,过点C作CE∠AB于E,则四边形ADCE为矩形,设CD=AE=x,∠DCE=∠CEB=90°,则∠BCE=∠BCD-∠DCE=30°,BC=12-x,在Rt∠CBE中,∵∠CEB=90°,∴BE=12BC=6−12x∴AD=CE=√3BE=6√3−√32x,AB=AE+BE=x+6−12x=12x+6∴梯形ABCD面积S=12(CD+AB)⋅CE=12(x+12x+6)⋅(6√3−√32x)=−3√38x2+3√3x+18√3=−3√388(x−4)2+24√3∴当x=4时,S最大=24 √3.即CD长为4 m时,使梯形储料场ABCD的面积最大为24 √3m2。
武汉中考复习:二次函数的图像与性质(15题)
专题四:二次函数的图像与性质(中考15题)1.二次函数y =ax 2+bx +c (a ≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x =2,下列结论:①4a +b =0;②9a +c >3b ;③4a +2b ≥am 2+bm (m 为任意实数);④当x >﹣1时,y 的值随x 值的增大而增大;⑤若(−12,y 1),(133,y 2)是抛物线上两点,则y 1<y 2,⑥若点B (m ,y 1),C (4﹣m ,y 2)在此函数图象上,则y 1=y 2.其中正确的结论有 (填序号).第1题图 第2题图 第5题图2.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A (﹣1,0),对称轴为直线x =1,与y 轴的交点B 在(0,2)和(0,3)之间(不包括这两个点),下列结论:①当﹣1<x <3时,y >0;②﹣1<a <﹣.③当m ≠1时,a +b >m (am +b );④b 2﹣4ac =15a 2.其中正确的结论的序号 .3.抛物线y =ax 2+bx +c 经过点(﹣1,0),对称轴为直线x =2,与y 轴的交点在(0,﹣2)与(0,﹣3)之间(不包括这两点).下列结论:①a +b +c <0;②若点M (0.5,y 1)、N (2.5,y 2)在图象上,则y 1<y 2;③若m 为任意实数,则a (m 2﹣4)+b (m ﹣2)≥0;④﹣24≤5(a +b +c )<﹣16.其中正确结论的序号为 .4.在平面直角坐标系中,二次函数y =ax 2+bx +c (a ≠0)的图象与轴的交点分别(﹣3,0),(1,0),且函数与y 轴交点在(0,﹣1)的下方,现给以下结论:①abc <0:②关于方程a (x 2﹣1)+b (x ﹣1)+c =0始终有两个不相等的实数解;③当﹣2≤x ≤3时,y 的取值范围是﹣≤y ≤6b ;则上述说法正确的是 .(填序号)5.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,且OA =OC ,对称轴为直线x =1,则下列结论:①abc <0;②a +12b +14c =0;③当m <﹣1时,关于x 的方程ax 2+bx +c +m =0无实根;④ac ﹣b +1=0;⑤OA •OB =c a ,⑥2+c 是关于x 的一元二次方程ax 2+bx +c =0的一个根.其中正确的结论有 (填序号).6.二次函数y =ax 2+bx +c 的部分图象如图所示,对称轴为,与x 轴负半轴交点在(﹣4,0)与(﹣3,0)之间,以下结论:①3a ﹣b =0;②b 2﹣4ac >0;③5a ﹣2b +c >0;④4b +3c >0.其中一定正确的是 (填序号).7.如图,抛物线y =﹣x 2+2x +m +1(m 为常数)交y 轴于点A ,与x 轴的一个交点在2和3之间,顶点为B.以下结论:①抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点;②若点M(﹣2,y1)、点N(,y2)、点P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y=﹣(x+1)2+m;④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为.其中一定正确的是(填序号).第6题图第7题图第8题图8.二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),0<x0<1,与y轴正半轴相交,且交点在(0,1)的上方,下列结论:①2a<b;②(a+c)2<b2;③a(m2﹣1)+b(m+1)≤0(m 为任意实数);④b>2a+.其中一定成立的结论的序号是.9.二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①abc>0;②3a﹣c>0;③若﹣1<m<n <1,则m+n<﹣;④<16,其中正确的序号是.10.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣1<x1<0,1<x2<2.下列结论:①﹣a<b<﹣2a;②b2+8a>4ac;③a<﹣1;④方程ax2+(b+c﹣2)x=0的解为x1=0,x2=1.其中正确的是.第9题图第10题图第11题图11.抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的顶点坐标是(﹣2,3),与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,下列结论:①4a﹣b=0;②关于x的方程ax2+bx+c=2有两个不相等实数根;③c≤3a.其中正确的序号是.12.二次函数y =ax 2+bx +c (a 、b 、c 为常数,a ≠0)中的x 与y 的部分对应值如下表:x ﹣3 01 y 4 4 n当n <0时,下列结论:①abc <0;②当x >﹣1时,y 的值随x 值的增大而减小;③a <﹣1;④n >4a ;⑤当n =−43时,关于x 的不等式ax 2+(b +43)x +c <0的解集为x <﹣3或x >1.其中一定正确的是 (填序号即可).13.二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如表: x … ﹣2 ﹣1 01 2 … y =ax 2+bx +c …t m ﹣2 ﹣2 n … 且当x =时,与其对应的函数值y >0,下列结论:①abc >0;②﹣2和3是关于x 的方程ax 2+bx +c=t 的两个根;③0<m +n <;④4a +c >n +2b ;其中,正确结论的是 . 14.二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)中的x 与y 的部分对应值如表:x…… ﹣3 ﹣2 ﹣1 0 t …… y …… 0 m n m0 …… 下列结论中一定正确的有 .(填序号即可)①9a ﹣3b +c =0;②t =1;③关于x 的一元二次方程a (x ﹣1)2+bx +c =2a 的解是x 1=﹣2,x 2=2;④若方程ax 2+bx +c =p 有两个实数根x 1,x 2,则二次函数y =a (x ﹣x 1)(x ﹣x 2)+p 与x 轴的交点坐标是(﹣1,0),(3,0).15.定义[a 、b 、c ]为二次函数y =ax 2+bx +c (a ≠0)的特征数,下面给出特征数为[2m ,1﹣m ,﹣1﹣m ]的函数的一些结论:①当m =﹣3时,函数图象的顶点坐标是(,);②当m >0时,函数图象截x 轴所得的线段长度大于;③当m <0时,函数在x >时,y 随x 的增大而减小;④当m ≠0时,函数图象经过同一个点,正确的结论是 .16.已知,抛物线y =﹣x 2+mx +m (其中m 是常数).下列结论:①无论m 取何实数,它都经过定点P (﹣1,﹣1);②它的顶点在抛物线y =x 2+2x 上运动;③当它与x 轴有唯一交点时,m =0;④当x <﹣1时,﹣x 2+mx +m <x .其中一定正确的是 (填序号即可).17.二次函数y =(m +1)x 2﹣2mx +m ﹣2的图象与x 轴有两个交点(x 1,0)和(x 2,0),下列结论:①该函数图象过点(1,﹣1);②当m =0时,二次函数与坐标轴的交点所围成的三角形面积是2;③若该函数的图象开口向下,则m 的取值范围为﹣2<m <﹣1;④当m >0,且﹣2≤x ≤﹣1时,y 的最大值为(9m +2).其中一定正确的是 (填序号即可).18.已知二次函数y=ax2+bx+c(a>0,c<0)的图象经过点(,m),(3,n),与x轴交于点A(x1,0),点B(x2,0)(点A在点B的左侧).若7a+3b+2c=0,则有下列结论:①m<0,n>0;②x1+x2<;③<x2<3.其中一定正确的是(填序号即可).19.已知抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)的图象如图所示,下列结论:①b>a;②若﹣1<m<n<1,则m+n<﹣;③3|a|+|c|<2|b|.其中一定正确的是(填序号即可).第19题图第20题图第21题图20.数学课上老师出了这样一道题:如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,请同学们据此写出正确结论,每写对一个结论得20分,写错一个结论倒扣10分;小涛得到了如下结论:①c>0;②4a﹣b=0;③﹣3a+c>0;④4a﹣2b≥at2+bt(t为实数);⑤点(﹣3,y1),(﹣5,y2),(0,y3)是该抛物线的点,则y1>y3>y2.则小涛此题得分为21.如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当﹣3<x<2时,ax2+kx<b,其中一定正确的是(填序号即可).22.在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣3与x轴交于点A、B.下列结论:①m的取值范围是m>0;②抛物线的顶点坐标为(1,﹣3);③若线段AB上有且只有5个点的横坐标为整数,则m的取值范围是<m≤;④若抛物线在﹣3<x<0这一段位于x轴下方,在5<x<6这一段位于x轴上方,则m的值为.其中一定正确的是(填序号即可).23.已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,3)和(0,4)之间(包含这两个点).有下列结论:①abc<0;②关于x的方程ax2+bx+c =2a有两个不等的实数根;③﹣≤a≤﹣1.其中一定正确的是(填序号即可).。
2020中考数学 函数及其图象综合训练(含答案)
2020中考数学函数及其图象综合训练(含答案)一、选择题(本大题共6道小题)1. 已知A,B两地相距3千米,小黄从A地到B地,平均速度为4千米/时,若用x表示行走的时间(小时),y表示余下的路程(千米),则y关于x的函数解析式是()A.y=4x(x≥0)B.y=4x-3x≥34C.y=3-4x(x≥0)D.y=3-4x0≤x≤342. 二次函数y=x2-ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是()A.a=4B.当b=-4时,顶点的坐标为(2,-8)C.当x=-1时,b>-5D.当x>3时,y随x的增大而增大3. 正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,则一次函数y=x+k的图象大致是 ()4. 在平面直角坐标系中,点P(-3,m2+1)关于原点的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限5. 已知二次函数y=(x-a-1)(x-a+1)-3a+7(其中x是自变量)的图象与x轴没有公共点,且当x<-1时,y随x的增大而减小,则实数a的取值范围是() A.a<2 B.a>-1 C.-1<a≤2D.-1≤a<26. 已知m>0,关于x的一元二次方程(x+1)(x-2)-m=0的解为x1,x2(x1<x2),则下列结论正确的是()A.x1<-1<2<x2B.-1<x1<2<x2C.-1<x1<x2<2D.x1<-1<x2<2二、填空题(本大题共6道小题)7. 若二次函数y=ax2+bx的图象开口向下,则a0(填“=”或“>”或“<”).8. 如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是x=.9. 如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<13x时,x的取值范围为.10. 已知抛物线y=ax2+4ax+4a+1(a≠0)过点A(m,3),B(n,3)两点,若线段AB的长不大于4,则代数式a2+a+1的最小值是.11. 如图,点A,C分别是正比例函数y=x的图象与反比例函数y=4x的图象的交点,过A点作AD⊥x轴于点D,过C点作CB⊥x轴于点B,则四边形ABCD的面积为.12. 已知二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:x…-1 0 1 2 3 …y… 3 0 -1 0 m…(1)观察上表可求得m的值为;(2)这个二次函数的解析式为;(3)若点A(n+2,y1),B(n,y2)在该抛物线上,且y1>y2,则n的取值范围为.三、解答题(本大题共5道小题)13. 点P(1,a)在反比例函数y=kx的图象上,它关于y轴的对称点在一次函数y=2x+4的图象上,求此反比例函数的解析式.14. 某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间,经市场调查表明,该宾馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数y(间)与每间标准房的价格x(元)的数据如下表:x(元) …190 200 210 220 …y(间) …65 60 55 50 …(1)根据所给数据在坐标系中描出相应的点,并画出图象.(2)求y关于x的函数表达式,并写出自变量x的取值范围.(3)设客房的日营业额为w(元),若不考虑其他因素,问宾馆标准房的价格定为多少元时,客房的日营业额最大?最大为多少元?15. 如图,▱ABCD中,顶点A的坐标是(0,2),AD∥x轴,BC交y轴于点E,的图象经过点B和D,顶点C的纵坐标是-4,▱ABCD的面积是24.反比例函数y=kx求:(1)反比例函数的表达式;(2)AB所在直线的函数表达式.16. 如图,在平面直角坐标系xOy中,过点A(-2,0)的直线交y轴正半轴于点B,将直线AB绕着点O顺时针旋转90°后,分别与x轴、y轴交于点D,C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.17. 如图,一次函数y=k1x+b的图象与反比例函数y=k2x的图象相交于A,B两点,其中点A的坐标为(-1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足k1x+b>k2x的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP∶S△BOP=1∶2,求点P的坐标.2020中考数学函数及其图象综合训练-答案一、选择题(本大题共6道小题)1. 【答案】D2. 【答案】C[解析]选项A,由对称轴为直线x=2可得--a2=2,∴a=4,正确;选项B,∵a=4,b=-4,∴代入解析式可得,y=x2-4x-4,当x=2时,y=-8,∴顶点的坐标为(2,-8),正确;选项C,由图象可知,x=-1时,y<0,即1+4+b<0,∴b<-5,∴错误;选项D,由图象可以看出当x>3时,在对称轴的右侧,y随x的增大而增大,正确,故选C.3. 【答案】A[解析]因为正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,所以k<0,所以一次函数y=x+k的函数值y随着x增大而增大,图象与y轴交于负半轴,故选A.4. 【答案】D [解析]m 2是非负数,m 2+1一定是正数,所以点P (-3,m 2+1)在第二象限.关于原点对称的两个点横、纵坐标都互为相反数.由此得点P 关于原点的对称点在第四象限.5. 【答案】D[解析]y=(x -a -1)(x -a +1)-3a +7=x 2-2ax +a 2-3a +6,∵抛物线与x 轴没有公共点,∴Δ=(-2a )2-4(a 2-3a +6)<0,解得a<2. ∵抛物线的对称轴为直线x=--2a 2=a ,抛物线开口向上,而当x<-1时,y 随x 的增大而减小,∴a ≥-1,∴实数a 的取值范围是-1≤a<2.故选D .6. 【答案】A[解析]关于x 的一元二次方程(x +1)(x -2)-m=0的解为x 1,x 2,可以看作二次函数m=(x +1)(x -2)的图象与x 轴交点的横坐标,∵二次函数m=(x +1)(x -2)的图象与x 轴交点坐标为(-1,0),(2,0),如图: 当m>0时,就是抛物线位于x 轴上方的部分,此时x<-1,或x>2. 又∵x 1<x 2, ∴x 1<-1,x 2>2, ∴x 1<-1<2<x 2, 故选A .二、填空题(本大题共6道小题) 7. 【答案】<8. 【答案】2[解析]考查一元一次方程与一次函数的关系,即关于x 的方程ax +b=0的解就是一次函数y=ax +b 的图象与x 轴交点(2,0)的横坐标2.9. 【答案】x>3[解析]当x=3时,13x=13×3=1,∴点A 在一次函数y=13x 的图象上,且一次函数y=13x 的图象经过第一、三象限,∴当x>3时,一次函数y=13x 的图象在y=kx +b 的图象上方,即kx +b<13x.10. 【答案】74[解析]∵抛物线y=ax 2+4ax +4a +1(a ≠0)过点A (m ,3),B (n ,3)两点, ∴m+n 2=-4a2a =-2.∵线段AB 的长不大于4,∴4a +1≥3,∴a ≥12,∴a 2+a +1的最小值为:122+12+1=74. 11. 【答案】8 [解析]由{y =x ,y =4x,得{x =2,y =2或{x =-2,y =-2,, ∴A 的坐标为(2,2),C 的坐标为(-2,-2).∵AD ⊥x 轴于点D ,CB ⊥x 轴于点B ,∴B (-2,0),D (2,0),∴BD=4,AD=2, ∴四边形ABCD 的面积=12AD ·BD ×2=8.12. 【答案】解:(1)3[解析]观察表格,根据抛物线的对称性可得x=3和x=-1时的函数值相等,∴m 的值为3,故答案为:3.(2)y=(x -1)2-1 [解析]由表格可得,二次函数y=ax 2+bx +c 图象的顶点坐标是(1,-1),∴y=a (x -1)2-1.又当x=0时,y=0,∴a=1,∴这个二次函数的解析式为y=(x -1)2-1.(3)n>0 [解析]∵点A (n +2,y 1),B (n ,y 2)在该抛物线上,且y 1>y 2,∴结合二次函数的图象和性质可知n>0.三、解答题(本大题共5道小题)13. 【答案】解:点P(1,a )关于y 轴的对称点是(-1,a ). ∵点(-1,a )在一次函数y =2x +4的图象上, ∴a =2×(-1)+4=2.∵点P(1,2)在反比例函数y =kx 的图象上,∴k =2.∴反比例函数的解析式为y =2x .14. 【答案】解:(1)如图所示.(2)设y=kx +b (k ≠0),把(200,60)和(220,50)代入, 得{200k +b =60,220k +b =50,解得{k =-12,b =160.∴y=-12x +160(170≤x ≤240).(3)w=x ·y=x ·-12x +160=-12x 2+160x.∴函数w=-12x 2+160x 图象的对称轴为直线x=-1602×(-12)=160,∵-12<0,∴在170≤x ≤240范围内,w 随x 的增大而减小. 故当x=170时,w 有最大值,最大值为12750元.15. 【答案】解:(1)∵AD ∥x 轴,AD ∥BC ,∴BC ∥x 轴. ∵顶点A 的坐标是(0,2),顶点C 的纵坐标是-4, ∴AE=6,又∵▱ABCD 的面积是24, ∴AD=BC=4, 则D (4,2), ∴k=4×2=8,∴反比例函数的表达式为y=8x . (2)由题意知B 的纵坐标为-4, ∴其横坐标为-2,则B (-2,-4). 设AB 所在直线的表达式为y=k'x +b , 将A (0,2),B (-2,-4)的坐标代入, 得:{b =2,-2k '+b =-4,解得:{k '=3,b =2,所以AB 所在直线的函数表达式为y=3x +2.16. 【答案】解:(1)因为OB=4,且点B 在y 轴正半轴上, 所以点B 的坐标为(0,4).设直线AB 的函数关系式为y=kx +b , 将点A (-2,0),B (0,4)的坐标分别代入, 得{b =4,-2k +b =0,解得{b =4,k =2,所以直线AB 的函数关系式为y=2x +4. (2)设OB=m ,因为△ABD 的面积是5,所以12AD ·OB=5.所以12(m +2)m=5,即m 2+2m -10=0. 解得m=-1+√11或-1-√11(舍去). 因为∠BOD=90°,所以点B 的运动路径长为14×2π×(-1+√11)=-1+√112π.17. 【答案】解:(1)x<-1或0<x<4.(2)把A (-1,4)的坐标代入y=k2x ,得k 2=-4.∴y=-4x .∵点B (4,n )在反比例函数y=-4x 的图象上,∴n=-1.∴B (4,-1).把A (-1,4),B (4,-1)的坐标代入y=k 1x +b , 得{-k 1+b =4,4k 1+b =-1,解得{k 1=-1,b =3.∴y=-x +3.(3)设直线AB 与y 轴交于点C , ∵点C 在直线y=-x +3上,∴C (0,3). S △AOB =12OC ·(|x A |+|x B |)=12×3×(1+4)=7.5, 又∵S △AOP ∶S △BOP =1∶2, ∴S △AOP =13×7.5=2.5,S △BOP =5. 又S △AOC =12×3×1=1.5,1.5<2.5, ∴点P 在第一象限.∴S △COP =2.5-1.5=1. 又OC=3,∴12×3×x P =1,解得x P =23. 把x P =23代入y=-x +3,得y P =73. ∴P23,73.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010中考真题函数及其图像7.若点A (x i , yj 、B (X 2, y 2)在反比例函数y0的大小关系是A. y i 讨2 0B. y i y 0C. y i 014.抛物线y X 2 bx c 的部分图象如图所示, 若y 0,贝U x 的取值围是 _____________ .i9. ( 8分)20i0年4月i4日我国地区发生强烈地震,急需大量赈灾帐篷 .某帐篷生产企业接到任务后,加大生产投入,提高生产效率, 实际每天生产帐篷比原计划多200顶,现在生产3 000顶帐篷所用的时间与原计划生产 2 000顶的时间相同.现在该企业每天能生产多少顶帐篷?22. (i0分)如图(i ),某灌溉设备的喷头 B 高出地面i.25m ,喷出的抛物线形水流在与喷 头底部A 的距离为im 处达到距地面最大高度 2.25m ,试在恰当的直角坐标系中求出与该抛 物线水流对应的二次函数关系式 .学生小龙在解答图(i )所示的问题时,具体解答如下:② 设抛物线水流对应的二次函数关系式为 y ax 2 ; ③ 根据题意可得 B 点与x 轴的距离为im 故B 点的坐标为(i , i ); ④ 代入y ax 2得i a-i ,所以a i ;⑤所以抛物线水流对应的二次函数关系式为y x 2.数学老师看了小龙的解题过程说: “小龙的解答是错误的”.(i )请指出小龙的解答从第 __________ 步开始出现错误,错误的原因是什么? (2 )请你写出完整的正确解答过程 .24. (i2分)师傅在铺地板时发现,用 8块大小一样的长方形瓷砖恰好可以拼成一个大的长 方形,如图(i ).然后,他用这8块瓷砖又拼出一个正方形,如图(2),中间恰好空出一个 边长为i 的小正方形(阴影部分),假设长方形的长为 y ,宽为x ,且y x.3的图象上,且x y 2D . y iy 2t1 1 1 1yi 0 t\ \ xx i 0 x 2,则 y i 、y 2 和(第 i4题图) ①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴,建立如图(2)(1)请你求出图(1)中y与x的函数关系式;(2)求出图(2)中y与X的函数关系式;(3)在图(3)中作出两个函数的图象,写出交点坐标,并解释交点坐标的实际意义;(4)根据以上讨论完成下表,观察X与y的关系,回答:如果给你任意8个相同的长方形, 你能否拼出类似图(1)和图(2)的图形?说出你的理由.图(2)中小正方形边长1234x6y102011中考真题函数及其图像k7.(11 •兵团维吾尔)如图,I1是反比例函数y= -在第一象限的图象,且经过点A(1 ,2) .11X2 2A. y=尹< o)B. y= jx>o)19 . (11 •兵团维吾尔)(8分)已知抛物线y=—x2+ 4x —3与x轴交于A B两点(A点在B 点左侧),顶点为P.(1 )求A B、P三点的坐标;(2 )在直角坐标系中,用列表描点法作出抛物线的图象,并根据图象写出数值大于零;关于X轴对称的图象为|2,那么I 2的函数表达式为第7题图12 . (11 •兵团维吾尔)若关于卜y2一1—J J 1 1 」1丨■-2 -1—1O^1 2 3 4 5 6 x—2L—3一—4——5 1x的一元二次方程x2+2x + a= 0有实数根,则a的取值围是2C y=- x(x< o)x取何值时,函图(1)图(2)(3 )将此抛物线的图象向下平移一个单位,请写出平移后图象的函数表达式.23. (11 •兵团维吾尔)(10分)某商场推销一种书包,进价为30元,在试销中发现这种书包每天的销售量P (个)与每个书包销售价x (元)满足一次函数关系式•当定价为35元时,每天销售30个;定价为37元时,每天销售26个•问:如果要保证商场每天销售这种书包获利200元,求书包的销售单价应定为多少元?24. (11 •兵团维吾尔)(10分)如图,在等腰梯形ABCD中,AD= 4, BC= 9,/ B= 45° .动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动.(1 )求AB的长;(2)设BP= x,问当x为何值时厶PCQ勺面积最大,并求出最大值;(3)探究:在AB边上是否存在点M使得四边形PCQI为菱形?请说明理由.A DQB CP第24题图2012中考真题函数及其图像& ( 5分)(2012?新疆)甲乙两班进行植树活动,根据提供信息可知:①甲班共植树90棵,乙班共植树129棵;②乙班的人数比甲班的人数多3人;③甲班每人植树数是乙班每人植树数的总•若设甲班人数为4x人,求两班人数分别是多少,正确的方程是()冬129 B.90 3 ^ 129—.zSC. 1)3“ 90 129.-=D 3 90129 F 4 吵3K-34 x 4 K_ 3 z 4 K x+3211. (5分)当x= ____________ 时,二次函数y=x+2x- 2有最小值17. (6分)(2012?新疆)如图,一次函数y=kx - 3的图象与反比例函数尸卫(孟>0)的图象交于P (1,2).(1 )求k,m的值;(2 )根据图象,请写出当x取何值时,一次函数的值小于反比例函数的值.21. ( 8分)(2012?新疆) 某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的 A,B 两种长方体形状的无盖纸盒•现有正方形纸板140,长方形纸板360,刚好全部用完,问能做成多少个 A 型盒子?多少个 B 型盒子?(1 )根据题意,甲和乙两同学分别列出的方程组如下:甲:x 表示 ______________ , y 表示 ______________ ; 乙: x 表示 ______________ , y 表示 ______________ ;(2) 求出做成的 A 型盒子和B 型盒子分别有多少个(写出完整的解答过程)梨300吨,现将这些香梨运到 C, D 两个冷藏仓库.已知 C 仓库可储存240吨,D 仓库可储存260吨,从A 村运往C, D 两处的费用分别为每吨 40元和45元;从B 村运往C, D 两处的 费用分别为每吨25元和32元.设从A 村运往C 仓库的香梨为x 吨,A , B 两村运香梨往两 仓库的运输费用分别为 y A 元,y B 元.A BC D总计 A x 吨200吨 B300吨 总计 240吨 260吨 500吨(3) 请问怎样调运,才能使两村的运费之和最小?求出最小值24. (12分)(2012?新疆)如图 1,在直角坐标系中,已知△ AOC 勺两个顶点坐标分别为 A (2, 0), C (0, 2).甲:严"询;4i+3y=360乙: 丫4厂丄&04^+-|y=360根据两位同学所列的方程组,请你分别指出未知数 x , y 表示的意义: 库尔勒某乡 A , B 两村盛产香梨 A 村有香梨200吨,B 村有香 个冬型盒)乙(3^)(1)请你以AC的中点为对称中心,画出△ AOC的中心对称图形△ ABC此图与原图组成的四边形OABC勺形状是一_==^,请说明理由;(2)如图2,已知D(-2, 0),过A C, D的抛物线与(1)所得的四边形OABC的边BC2|交于点E,求抛物线的解析式及点E的坐标;(3)在问题(2)的图形中,一动点P由抛物线上的点A开始,沿四边形OABC勺边从A- B -C 向终点C运动,连接OP交AC于N,若P运动所经过的路程为x,试问:当x为何值时,△ AON 为等腰三角形(只写出判断的条件与对应的结果)?2013中考真题函数及其图像9. (5 分)(2013?新疆)方程x2- 5x=0 的解是()A. X1=0, X2= - 5B. x=5C. X1=0, X2=5D. x=013. (5分)(2013?新疆)2009年国家扶贫开发工作重点县农村居民人均纯收入为2027元,2011年增长到3985元.若设年平均增长率为x,则根据题意可列方程为___________215. ____ (5分)(2013?新疆)如果关于x的一元二次方程x - 4x+k=0有实数根,那么k的取值围是____ .16. (5分)(2013?新疆)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系 _______________ .18. (8分)(2013?新疆)如图,已知一次函数y1=kx+b与反比例函数匕弓的图象交于A(2, 4)、B (- 4, n)两点.(1 )分别求出y1和y2的解析式;(2)写出y1=y2时,x的值;(3)写出y1> y2时,x的取值围.24. (12分)(2013?新疆)如图,已知抛物线 y=ax+bx+3与x 轴交于A B 两点,过点 A的直线I 与抛物线交于点 C,其中A 点的坐标是(1 , 0), C 点坐标是(4, 3).(1) 求抛物线的解析式;(2) 在(1)中抛物线的对称轴上是否存在点 。
,使厶BCD 的周长最小?若存在,求出点 D的坐标,若不存在,请说明理由;(3) 若点E 是(1 )中抛物线上的一个动点,且位于直线 AC 的下方,试求△ ACE 的最大面 积及E 点的坐标.2014中考真题函数及其图像__ _______________ 2 . .6. ( 5分)(2014?新疆)对于二次函数 y= (x - 1) +2的图象,下列说确的是( )A.开口向下B.对称轴是x= - 1C.顶点坐标是(1,2)D.与x 轴有两个交点& ( 5分)(2014?新疆)“六?一”儿童节前夕,某超市用 3360元购进A , B 两种童装共120套,其中A 型童装每套24元,B 型童装每套36元.若设购买 A 型童装x 套,B 型童装y 套,依题意列方程组正确的是( )A.fx+y=120136i+24y=3360C. T36x+24y=120 x+y=33&011. (5分)(2014?新疆)若点 A (1 , y 1)和点B (2, y 2)在反比例函数y 」图象上,则y 1 与y 2的大小关系是:y 1—y 2 (填 或“=”).19. (10分)(2014?新疆)如图,要利用一面墙(墙长为 25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB, BC 各为多少米?B .I 24x+36y=3360D. p4x+36y=120B C22. (11分)(2014?新疆)如图 1所示,在A, B 两地之间有汽车站 C 站,客车由A 地驶往 C 站,货车由B 地驶往A 地.两车同时出发,匀速行驶.图2是客车、货车离C 站飞路程y 1.(2)求两小时后,货车离 C 站的路程y 2与行驶时间x 之间的函数关系式; (3 )客、货两车何时相遇?23. (12分)(2014?新疆)如图,直线 y=-里x+8与x 轴交于A 点,与y 轴交于B 点,动点3P 从A 点出发,以每秒2个单位的速度沿 AO 方向向点O 匀速运动,同时动点 Q 从B 点出发, 以每秒1个单位的速度沿 BA 方向向点A 匀速运动,当一个点停止运动,另一个点也随之停 止运动,连接PQ 设运动时间为t (s ) (0 v t w 3). (1) 写出A , B 两点的坐标;(2) 设厶AQP 的面积为S ,试求出S 与t 之间的函数关系式;并求出当 t 为何值时,△ AQP 的面积最大?(3) 当t 为何值时,以点 A , P , Q 为顶点的三角形与△ ABC 相似,并直接写出此时点Q 的2015中考真题函数及其图像D27. (5分)(2015?新疆)抛物线y= (x - 1)+2的顶点坐标是()A . (- 1, 2)B . (- 1,- 2)C. (1,- 2)D . (1, 2)& ( 5分)(2015?新疆)如图,小红居住的小区有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长I与行走的路程S之间的变化关系用图象刻画出来,大致图象是()211. (5分)(2015?新疆)已知k > 0,且关于x的方程3kx+12x+k+1=0有两个相等的实数根,那么k的值等于______________13. (5分)(2015?新疆)若点P1 (- 1, m), P2 ( - 2, n)在反比例函数y幺(k v 0)的图象上,则m ___________ n(填或“=”)19. (9分)(2015?新疆)某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如表所示,设购进A种T恤x件,且所购进的两种T恤全部卖出,获得的总利润为W 元.品牌进价/ (元/件)售价/ (元/件)A 50 80B 40 65(1 )求W关于x的函数关系式;(2)如果购进两种T恤的总费用不超过9500元,那么超市如何进货才能获得最大利润?并求出最大利润.(提示:利润=售价-进价)21. (11分)(2015?新疆)如图,在直角坐标系中,矩形OABC勺顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标(4, 2),过点D(0,3)和E(6,0)的直线分别于AB, BC交于点M, N.(1)求直线DE的解析式和点M的坐标;(2)若反比例函数y= (x>0)的图象经过点M,求该反比函数的解析式,并通过计算判x断点N是否在该函数的图象上.23. (13分)(2015?新疆)如图,直线y= - 3x+3与x轴、y轴分别交于点A、B.抛物线y=a(x - 2)2+k经过A、B,并与x轴交于另一点C,其顶点为P,(1 )求a, k的值;(2)在图中求一点Q, A B、C为顶点的四边形是平行四边形,请直接写出相应的点Q的坐标;(3)抛物线的对称轴上是否存在一点M,使厶ABM的周长最小?若存在,求△ ABM的周长;若不存在,请说明理由;(4)抛物线的对称轴是上是否存在一点N,使A ABN是以AB为斜边的直角三角形?若存在,求出N点的坐标,若不存在,请说明理由.。