二次函数考点归纳

合集下载

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是数学中的重要概念,广泛应用于各个领域。

它是指一个形如y=ax^2+bx+c的函数,其中a、b、c为常数且a≠0。

在二次函数中,x的平方是最高次幂,这也是其与一次函数的主要区别之一。

一、二次函数的一般形式二次函数的一般形式可以写为y=ax^2+bx+c,其中a、b、c分别对应二次、一次和常数项。

如果a>0,那么二次项的系数为正,此时函数的图像开口向上;如果a<0,那么二次项的系数为负,函数的图像开口向下。

二、二次函数的图像特征1. 零点:二次函数的零点即为函数图像与x轴的交点,可以通过解方程ax^2+bx+c=0来求得。

零点有可能是一个,两个或者零个,具体取决于方程的判别式。

2. 导数与凹凸性:二次函数的导数为2ax+b,可以用来研究函数的凹凸性。

当a>0时,导数为正,说明函数是单调递增的;当a<0时,导数为负,函数单调递减。

此外,二次函数的凹凸性由二次项的系数a决定,当a>0时,函数图像是向上凹的;当a<0时,函数图像是向下凹的。

3. 对称轴和顶点:二次函数的对称轴是x=-b/(2a),顶点坐标为(-b/(2a),f(-b/(2a))。

对称轴是函数图像的一条轴线,将图像分为两个对称的部分。

顶点则是函数的最低点(对于a>0)或最高点(对于a<0)。

三、二次函数在现实生活中的应用二次函数的应用非常广泛,在各个领域中都有重要作用。

以下为几个常见的应用示例:1. 弹射物的抛物线轨迹:物体在空中受到重力的作用,其运动轨迹可以用二次函数描述。

例如,一个抛出的物体在空中的运动轨迹就是一个抛物线。

2. 路面设计中的起伏:为了确保道路排水畅通,路面设计中通常会有一定的起伏。

这些起伏可以用二次函数来描述,以确保水沿着特定的方向流动。

3. 经济模型中的成本和收益:在经济学中,二次函数也有广泛的应用。

例如,利润函数可以用二次函数来刻画,通过求导可以找到最大利润的产量。

完整版)二次函数知识点复习

完整版)二次函数知识点复习

完整版)二次函数知识点复习二次函数知识点一、二次函数概念:二次函数是形如y=ax²+bx+c(a≠0)的函数。

需要强调的是,和一元二次方程类似,二次项系数a≠0,而b、c可以为零。

二次函数的定义域是全体实数。

二、二次函数的基本形式1.二次函数基本形式:y=ax²的性质:a的绝对值越大,抛物线的开口越小。

a的符号决定开口方向,顶点坐标为(0,0),对称轴为y轴。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

性质:a>0时,当x增大时,y增大;当x减小时,y减小;当x=0时,y有最小值。

a<0时,当x增大时,y减小;当x减小时,y增大;当x=0时,y有最大值。

2.y=ax²+c的性质:上加下减。

a的符号决定开口方向,顶点坐标为(0,c),对称轴为y轴。

性质:a>0时,当x增大时,y增大;当x减小时,y减小;当x=0时,y有最小值c。

a<0时,当x增大时,y减小;当x减小时,y增大;当x=0时,y有最大值c。

3.y=a(x-h)²的性质:左加右减。

a的符号决定开口方向,顶点坐标为(h,0),对称轴为x=h。

性质:a>0时,当x>h时,y增大;当x<h时,y减小;当x=h 时,y有最小值。

ah时,y减小;当x<h时,y增大;当x=h时,y有最大值。

4.y=a(x-h)²+k的性质:a的符号决定开口方向,顶点坐标为(h,k),对称轴为x=h。

性质:a>0时,当x>h时,y增大;当x<h时,y减小;当x=h 时,y有最小值k。

ah时,y减小;当x<h时,y增大;当x=h时,y有最大值k。

三、二次函数图象的平移平移步骤:方法一:将抛物线解析式转化成顶点式y=a(x-h)²+k,确定其顶点坐标(h,k),具体平移方法如下:保持抛物线y=ax²的形状不变,将其顶点平移到(h,k)处,向上(k>0)或向下(k<0)平移|k|个单位。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是初中数学的重要内容,也是高中数学的基础。

它在数学和实际生活中都有广泛的应用。

下面就来对二次函数的知识点进行一个全面的总结。

一、二次函数的定义一般地,形如$y = ax^2 + bx + c$($a$、$b$、$c$是常数,$a ≠ 0$)的函数,叫做二次函数。

其中,$x$是自变量,$a$叫做二次项系数,$b$叫做一次项系数,$c$叫做常数项。

需要注意的是,二次函数的二次项系数$a$不能为$0$,否则就变成了一次函数。

二、二次函数的图像二次函数的图像是一条抛物线。

当$a > 0$时,抛物线开口向上;当$a < 0$时,抛物线开口向下。

抛物线的对称轴是直线$x =\frac{b}{2a}$。

抛物线的顶点坐标为$\left(\frac{b}{2a},\frac{4ac b^2}{4a}\right)$。

三、二次函数的表达式1、一般式:$y = ax^2 + bx + c$($a ≠ 0$)2、顶点式:$y = a(x h)^2 + k$($a ≠ 0$,顶点坐标为$(h, k)$)3、交点式:$y = a(x x_1)(x x_2)$($a ≠ 0$,$x_1$、$x_2$是抛物线与$x$轴交点的横坐标)四、二次函数的性质1、当$a > 0$时,在对称轴左侧,$y$随$x$的增大而减小;在对称轴右侧,$y$随$x$的增大而增大。

当$a < 0$时,在对称轴左侧,$y$随$x$的增大而增大;在对称轴右侧,$y$随$x$的增大而减小。

2、二次函数的最值:当$a > 0$时,函数有最小值,$y_{min} =\frac{4ac b^2}{4a}$。

当$a < 0$时,函数有最大值,$y_{max} =\frac{4ac b^2}{4a}$。

五、二次函数与一元二次方程的关系抛物线$y = ax^2 + bx + c$与$x$轴的交点的横坐标就是一元二次方程$ax^2 + bx + c = 0$的根。

二次函数全部知识点及典型例题(全)

二次函数全部知识点及典型例题(全)

二次函数一.复习1.函数的概念:一般地,在一个变化过程中,如果有两个变量x,y,对于自变量x在某一范围内的每一个确定值,y都有惟一确定的值与它对应,那么就说y是x的函数.对于自变量x在可以取值范围内的一个确定的值a,函数y有惟一确定的对应值,这个对应值叫做当x=a时函数的值,简称函数值. 要点诠释:对于函数的概念,应从以下几个方面去理解:(1)函数的实质,揭示了两个变量之间的对应关系;(2)判断两个变量之间是否有函数关系,要看对于x允许取的每一个值,y是否都有惟一确定的值与它相对应;(3)函数自变量的取值范围,应要使函数表达式有意义,在解决实际问题时,还必须考虑使实际问题有意义.2.函数的三种表示方法表示函数的方法,常见的有以下三种:(1)解析法:用来表示函数关系的数学式子叫做函数的表达式,(或解析式),用数学式子表示函数的方法称为解析法.(2)列表法:用一个表格表达函数关系的方法.(3)图象法:用图象表达两个变量之间的关系的方法.要点诠释:函数的三种表示方法各有不同的长处.解析式法能揭示出变量之间的内在联系,但较抽象,不是所有的函数都能列出解析式;列表法可以清楚地列出一些自变量和函数值的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等;图象法可以直观形象地反映函数的变化趋势,而且对于一些无法用解析式表达的函数,图象可以充当重要角色.对照表如下:二.二次函数的概念一般地,形如y=ax2+bx+c(a, b, c是常数,a≠0)的函数叫做x的二次函数.若b=0,则y=ax2+c;若c=0,则y=ax2+bx;若b=c=0,则y=ax2.以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c(a≠0)是二次函数的一般式.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.例1.下列函数一定是二次函数的是__________.①;②;③;④;⑤y=(x-3)2-x 2 例2.若是221(3)2a a y a x --=--二次函数,则a=__________例 3.中的二次项系数=__________,一次项系数=__________,常数项=__________.例4.边长为12 cm 的正方形铁片,中间剪去一个边长x cm 的小正方形铁片,剩下的四方框铁片的面积y(cm 2)与x(cm)之间的函数关系式为_______________.例 6.某地绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在当地收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x 天后,将这批香菇一次性出售,设这批香菇的销售总金额为y 元,试写出y 与x 之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)c bx ax y ++=2xy 3-=1342+-=x x y c bx x m y ++-=2)1(2y =(2x -1)-6a b c练习:1.下列函数中是二次函数的有( )个.(1)1y x x=+;(2)y=3(x-1)2+2;(3)y=(x+3)2-2x 2;(4) 21y x x =+ A.4 B.3 C.2 D.1 2.当m= 时,函数y=(m ﹣1)x |m|+1是二次函数.3.若267(1)m m y m x-+=-是二次函数,则m 的值是( ).A.5B.1C.1或5D.以上都不对.4.将化成二次函数的一般式是:________________.5.一个圆柱的高与底面直径相等,试写出它的表面积S 与底面半径r 之间的函数关系式___________________.6.(2014秋·温岭市校级月考) 已知某商品的进价为每件40元,售价是每件60元,每周可卖出300件.市场调查反映:如调整价格,每涨价1元,每周要少卖出10件.假设涨价x 元,求每周的利润y (元)与涨价x 之间的函数关系式,并写出自变量的取值范围.(23)(1)3y x x =+--三.二次函数的图像及性质:二次函数y=ax2(a≠0)的图象与性质二次函数y=ax2(a≠0)的图象:二次函数y=ax2的图象(如图),是一条关于y轴对称的曲线,这样的曲线叫做抛物线.抛物线y=ax2(a≠0)的对称轴是y轴,它的顶点是坐标原点.当a> 0时,抛物线的开口向上,顶点是它的最低点;当a<0时,抛物线的开口向下,顶点是它的最高点.二次函数y=ax2(a≠0)的图象的画法——描点法描点法画图的基本步骤:列表、描点、连线.(1)列表:选择自变量取值范围内的一些适当的x的值,求出相应的y值,填入表中.(自变量x的值写在第一行,其值从左到右,从小到大.)(2)描点:以表中每对x和y的值为坐标,在坐标平面内准确描出相应的点.一般地,点取的越多,图象就越准确.(3)连线:按照自变量的值由小到大的顺序,把所描的点用平滑的曲线连结起来. 要点诠释:(1)用描点法画二次函数y=ax 2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值. (2)二次函数y=ax 2(a≠0)的图象,是轴对称图形,对称轴是y 轴.y=ax 2(a≠0)是最简单的二次函数.(3)画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.二次函数y=ax 2(a ≠0)的图象的性质x y要点诠释:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. │a │相同,抛物线的开口大小、形状相同.│a │越大,开口越小,图象两边越靠近y 轴,│a │越小,开口越大,图象两边越靠近x 轴二次函数y=ax 2+c(a ≠0)的图象关于二次函数的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图象,将其性质列表归纳如下:a 2(0)y ax c a =+≠例1.二次函数y=ax2与直线y=2x﹣1的图象交于点P(1,m)(1)求a,m的值;(2)写出二次函数的表达式,并指出x取何值时该表达式y随x的增大而增大?(3)写出该抛物线的顶点坐标和对称轴.例2.已知y=(m+1)x 2m m +是二次函数且其图象开口向上,求m 的值和函数解析式例3.求下列抛物线的解析式:(1)与抛物线形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线;(2)顶点为(0,1),经过点(3,-2)并且关于y 轴对称的抛物线.例4.在同一直角坐标系中,画出和的图象,并根据图象回答下列问题.2132y x =-+2y x =-21y x =-+(1)抛物线向________平移________个单位得到抛物线;(2)抛物线开口方向是________,对称轴为________,顶点坐标为________;(3)抛物线,当x________时,随x 的增大而减小;当x________时,函数y 有最________值,其最________值是________. 练习:1.下列函数中,当x <0时,y 值随x 值的增大而增大的是( ) A. B. C. D.2.在同一坐标系中,作出,,的图象,它们的共同点是( ).A .关于y 轴对称,抛物线的开口向上B .关于y 轴对称,抛物线的开口向下21y x =-+2y x =-21y x =-+21y x =-+25y x =212y x =-2y x =213y x =22y x =22y x =-212y x =C .关于y 轴对称,抛物线的顶点都是原点D .关于原点对称,抛物线的顶点都是原点3.抛物线y=2x 2+1的对称轴是( ) A .直线x=B.直线x=﹣ C .y 轴 D . x轴4.已知抛物线的解析式为y =-3x 2,它的开口向________,对称轴为________,顶点坐标是________,当x >0时,y 随x 的增大而________.5.函数,、的图象大致如图所示,则图中从里向外的三条抛物线对应的函数关系式是_____________________.6.抛物线与的形状相同,其顶点坐标为(0,1),则其解析式为 .7.已知直线与x 轴交于点A ,抛物线的顶点平移后与点A 重合.(1)求平移后的抛物线C 的解析式;2y x =212y x =23y x=2y ax c =+23y x =1y x =+22y x =-(2)若点B(,),C(,)在抛物线C 上,且,试比较,的大小.8.(2014春·牙克石市校级月考)函数y=ax 2 (a ≠0)的图象与直线y=2x-3交于点(1,b). (1)求a 和b 的值;(2)求抛物线y=ax 2的解析式,并求顶点坐标和对称轴; (3)x 取何值时,y 随x 的增大而增大?(4)求抛物线与直线y=-2的两个交点及其顶点所构成的三角形的面积.函数2()(0)y a x h a =-≠与函数2()(0)y a x h k a =-+≠的图象与性质 1.函数2()(0)y a x h a =-≠的图象与性质1x 1y 2x 2y 1212x x -<<1y 2y2.函数2()(0)y a x h k a =-+≠的图象与性质要点诠释:二次函数的图象常与直线、三角形、面积问题结合在一起,借助它的图象与性质.运用数形结合、函数、方程思想解决问题.要点二、二次函数的平移 1.平移步骤:2()+(0y a x h k a =-≠)⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标;⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2.平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”. 要点诠释:⑴沿轴平移:向上(下)平移个单位,变成(或)⑵沿x 轴平移:向左(右)平移个单位,变成(或例1.将抛物线作下列移动,求得到的新抛物线的解析式.(1)向左平移2个单位,再向下平移3个单位;()2y a x h k =-+()h k ,2y ax =()h k,h k c bx ax y ++=2y m c bx ax y ++=2m c bx ax y +++=2m c bx ax y -++=2c bx ax y ++=2m c bx ax y ++=2c m x b m x a y ++++=)()(2c m x b m x a y +-+-=)()(222(1)3y x =-+(2)顶点不动,将原抛物线开口方向反向; (3)以x 轴为对称轴,将原抛物线开口方向反向.例2.二次函数的图象可以看作是二次函数的图象向 平移4个单位,再向 平移3个单位得到的.例3.将抛物线y=x 2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,抛物线解析式为______________.例4.已知抛物线向上平移2个单位长度,再向右平移1个单位长度得到抛物线; (1)求出a ,h ,k 的值;(2)在同一直角坐标系中,画出与的图象; (3)观察的图象,当________时,y 随x 的增大而增大;当________时,函数y 有最________值,最________值是________;(4)观察的图象,你能说出对于一切的值,函数y 的取值范围吗?21(3)42y x =-+212y x=212y x =-2()y a x h k =-+2()y a x h k =-+212y x =-2()y a x h k =-+x x y =2()y a x h k =-+x例5.二次函数y 1=a (x ﹣2)2的图象与直线y 2交于A (0,﹣1),B (2,0)两点.(1)确定二次函数与直线AB 的解析式.(2)如图,分别确定当y 1<y 2,y 1=y 2,y 1>y 2时,自变量x 的取值范围.练习:1.抛物线的顶点坐标是( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3) 2.函数y=x 2+2x+1写成y=a(x -h)2+k 的形式是( )A.y=(x -1)2+2 B.y=(x -1)2+ C.y=(x -1)2-3 D.y=(x+2)2-1 3.抛物线y=x 2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是( )2(2)3y x =-+-21212121212121A.y=(x+3)2-2 B.y=(x -3)2+2 C.y=(x -3)2-2 D.y=(x+3)2+2 4.把二次函数配方成顶点式为( )A .B .C .D .5.由二次函数,可知( )A .其图象的开口向下B .其图象的对称轴为直线C .其最小值为1D .当时,y 随x 的增大而增大6.(2015•泰安)在同一坐标系中,一次函数y=﹣mx+n 2与二次函数y=x 2+m 的图象可能是( ).A. B. C. D.7. 把二次函数的图象先向左平移2个单位,再向上平移4个单位,得到二次函数的图象.(1)试确定a 、h 、k 的值;(2)指出二次函数的开口方向,对称轴和顶点坐标,分析函数的增减性.21212121122--=x x y 2)1(-=x y 2)1(2--=x y 1)1(2++=x y 2)1(2-+=x y 22(3)1y x =-+3x =-3x <2()y a x h k =-+21(1)12y x =-+-2()y a x h k =-+二次函数与之间的相互关系:1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h ,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式. 2.一般式化成顶点式.对照,可知,.∴ 抛物线的对称轴是直线,顶点坐标是. 要点诠释:1.抛物线的对称轴是直线,顶点坐标是2(0)y ax bx c a =++≠=-+≠2()(0)y a x h k a 2()y a x h k =-+2()y a x h k =-+2()y a x h k =-+2y ax bx c =++2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a -⎛⎫=++ ⎪⎝⎭2()y a x h k =-+2b h a=-244ac b k a -=2y ax bx c =++2bx a=-24,24b ac b a a ⎛⎫-- ⎪⎝⎭2y ax bx c =++2bx a=-,可以当作公式加以记忆和运用. 2.求抛物线的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.二次函数的图象的画法1.一般方法:列表、描点、连线;2.简易画法:五点定形法. 其步骤为:(1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M ,并用虚线画出对称轴.(2)求抛物线与坐标轴的交点,当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 关于对称轴的对称点D ,将A 、B 、C 、D 及M 这五个点按从左到右的顺序用平滑曲线连结起来. 要点诠释:当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D ,由C 、M 、D 三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后顺次用平滑曲线连结五点,画出二次函数的图象,24,24b ac b a a ⎛⎫-- ⎪⎝⎭2y ax bx c =++2(0)y ax bx c a =++≠2y ax bx c =++二次函数的图象与性质2(0)=++≠y ax bx c aa<a>02.二次函数图象的特征与a 、b 、c 及b 2-4ac 的符号之间的关系20()y ax bx c a =++≠要点四、求二次函数的最大(小)值的方法如果自变量的取值范围是全体实数,那么函数在顶点处取得最大(或最小)值,即当时,.要点诠释:如果自变量的取值范围是x 1≤x ≤x 2,那么首先要看是否在自变量的取值范围x 1≤x ≤x 2内,若在此范围内,则当时,,若不在此范围内,则需要考虑函数在x 1≤x ≤x 2范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当x =x 2时,;当x =x 1时,,如果在此范围内,y 随x 的增大而减小,则当x =x 1时,211=ax +bx +y c 最大值;当x =x 2时,222=ax +bx +y c 最小值,如果在此范围内,y 值有增有减,则需考察x =x 1,x =x 2,时y 值的情况.例1.求抛物线的对称轴和顶点坐标.例2.把一般式化为顶点式.2(0)y ax bx c a =++≠2b x a =-244ac b y a-=最值2ba-2bx a=-244ac b y a-=最值222y ax bx c =++最大值211y ax bx c =++最小值2bx a=-2142y x x =-+-2286y x x =-+-(1)写出其开口方向、对称轴和顶点D 的坐标;(2)分别求出它与y 轴的交点C ,与x 轴的交点A 、B 的坐标.例3.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b ;③抛物线与x 轴的另一个交点为(3,0);④abc >0.其中正确的结论是 (填写序号).例4.求二次函数的最小值.例5.已知二次函数的图象过点P(2,1).(1)求证:; (2)求bc 的最大值.例6. 抛物线与y 轴交于(0,3)点:211322y x x =++21y x bx c =+++24c b =--2(1)y x m x m =-+-+(1)求出m 的值并画出这条抛物线; (2)求它与x 轴的交点和抛物线顶点的坐标; (3)x 取什么值时,抛物线在x 轴上方? (4)x 取什么值时,y 的值随x 值的增大而减小练习:1. 将二次函数化为的形式,结果为( ).A .B .C .D . 2.已知二次函数的图象,如图所示,则下列结论正确的是( ).A .B .C .D . 3.若二次函数配方后为,则b 、k 的值分别为( ).A .0,5B .0,1C .-4,5D .-4,14.抛物线的图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为,则b 、c 的值为( ). A .b=2,c=2 B . b=2,c=0 C . b= -2,c= -1 D . b= -3,c=25.已知抛物线y=ax 2+bx+c 的对称轴为x=2,且经过点(3,0),则a+b+223y x x =-+2()y x h k =-+2(1)4y x =++2(1)4y x =-+2(1)2y x =++2(1)2y x =-+2y ax bx c =++0a >0c <240b ac -<0a b c ++>25y x bx =++2(2)y x k =-+2y x bx c =++223y x x =--的值( )A. 等于0B.等于1C. 等于-1D. 不能确定6.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q 两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A. B. C. D.7.如图二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0)且与y轴交于负半轴.第①问:给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0其中正确的结论的序号是__________第②问:给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1,其中正确的结论的序号是_________8.如图,在平面直角坐标系中,正方形OABC 的边长为4,顶点A 、C 分别在x 轴、y 轴的正半轴,抛物线y=﹣x 2+bx+c 经过B 、C 两点,点D 为抛物线的顶点,连接AC 、BD 、CD . (1)求此抛物线的解析式.(2)求此抛物线顶点D 的坐标和四边形ABCD 的面积.用待定系数法求二次函数解析式1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0);(2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0); (3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0).2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组);第三步,解:解此方程或方程组,求待定系数; 第四步,还原:将求出的待定系数还原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.例1. 已知抛物线c bx ax y 2++=经过A ,B ,C 三点,当x ≥0时,其图象如图所示.求抛物线的解析式,写出顶点坐标.例2. 形状与抛物线y=2x 2﹣3x +1的图象形状相同,但开口方向不同,顶点坐标是(0,﹣5)的抛物线的关系式为 . 例3. 已知抛物线c bx ax y 2++=的顶点坐标为(-1,4),与x 轴两交点间的距离为6,求此抛物线的函数关系式.例4.已知二次函数的图象如图所示,根据图中的数据,(1)求二次函数的解析式;(2)设此二次函数的顶点为P,求△ABP的面积.练习:1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式.2.已知抛物线的顶点坐标为M(1,﹣2),且经过点N(2,3),求此二次函数的解析式.3.(2016•丹阳市校级模拟)抛物线的图象如图,则它的函数表达式是.当x时,y>0.4.已知抛物线经过(3,5),A(4,0),B(-2,0),且与y轴交于点C.(1)求二次函数解析式;(2)求△ABC的面积.5.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.。

考点12 二次函数(精讲)(解析版)

考点12 二次函数(精讲)(解析版)

考点12.二次函数(精讲)【命题趋势】二次函数作为初中三大函数考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点,年年都会考查,总分值为15-20分。

而对于二次函数图象和性质的考查,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。

题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。

【知识清单】1:二次函数的相关概念(☆☆)1)二次函数的概念:一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2)二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.2:二次函数的图象与性质(☆☆☆)解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2b a ,244ac b a-)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2b a 时,y 最小值=244ac b a-。

当x =–2b a 时,y 最大值=244ac b a-。

最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小(1)二次函数图象的翻折与旋转抛物线y=a (x -h )²+k ,绕顶点旋转180°变为:y =-a (x -h )²+k ;绕原点旋转180°变为:y =-a (x+h )²-k ;沿x 轴翻折变为:y =-a (x-h )²-k ;沿y 轴翻折变为:y =a (x+h )²+k ;(2)二次函数平移遵循“上加下减,左加右减”的原则;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.3:二次函数与各项系数之间的关系(☆☆☆)1)抛物线开口的方向可确定a 的符号:抛物线开口向上,a >0;抛物线开口向下,a <02)对称轴可确定b 的符号(需结合a 的符号):对称轴在x 轴负半轴,则2b x a =-<0,即ab >0;对称轴在x 轴正半轴,则2bx a=->0,即ab <03)与y 轴交点可确定c 的符号:与y 轴交点坐标为(0,c ),交于y 轴负半轴,则c <0;交于y 轴正半轴,则c >04)特殊函数值符号(以x =1的函数值为例):若当x =1时,若对应的函数值y 在x 轴的上方,则a+b+c >0;若对应的函数值y 在x 轴上方,则a+b+c =0;若对应的函数值y 在x 轴的下方,则a+b+c <0;5)其他辅助判定条件:1)顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭;2)若与x 轴交点()1,0A x ,()2,0B x ,则可确定对称轴为:x =122x x +;3)韦达定理:1212b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩具体要考虑哪些量,需要视图形告知的条件而定。

初中数学二次函数知识点归纳

初中数学二次函数知识点归纳

初中数学二次函数知识点整理1.定义:一般地,假如 y ax 2bx c(a,b,c 是常数,a0),那么y 叫做x 的二次函数.二次函数yax 2的性质(1 )抛物线yax 2的极点是坐标原点,对称轴是y 轴.(2 )函数y ax 2的图像与a 的符号关系.①当②当a 0时抛物线张口向上 极点为其最低点; a0时 抛物线张口向下极点为其最高点.( 3)极点是坐标原点,对称轴是 y轴的抛物线的分析式形式为y(a 0)ax 2.3.二次函数y ax 2 bx c 的图像是对称轴平行于(包含重合)y 轴的抛物线.4. 二次函数yax 2 bxc 用配方法可化成:yaxh 2k 的形式,此中hb,k4acb 2 .2a4a5. 二次函数由特别到一般,可分为以下几种形式:①yax 2 ;②yax 2k ;③yaxh 2;④yaxh 2 k ;⑤yax 2bxc .6. 抛物线的三因素:张口方向、对称轴、极点.①a 的符号决定抛物线的张口方向:当 a0时,张口向上;当 a0时,张口向下;a 相等,抛物线的张口大小、形状相同.②平行于y 轴(或重合)的直线记作 xh .特别地,y 轴记作直线x0.7. 极点决定抛物线的地点.几个不一样的二次函数,假如二次项系数a 相同,那么抛物线的张口方向、张口大小完整相同,不过极点的地点不一样.b 24ac b28. 求抛物线的极点、对称轴的方法(1)公式法: yax2bxcax2a 4a,∴极点是(b 4ac b 2),对称轴是直线 xb .2a,4a2a(2)配方法:运用配方的方法,将抛物线的分析式化为y axh 2k 的形式,获得极点为(h ,k ),对称轴是直线x h .(3)运用抛物线的对称性:因为抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直均分线是抛物线的对称轴,对称轴与抛物线的交点是极点.用配方法求得的极点,再用公式法或对称性进行考据,才能做到万无一失.9.抛物线y ax2bx c中,a,b,c的作用(1)a决定张口方向及张口大小,这与y ax2中的a完整相同.(2)b和a共同决定抛物线对称轴的地点.因为抛物线y ax2bx c的对称轴是直线x b,故:①b0时,对称轴为y轴;②b0(即a、b同号)时,对称轴在y轴左边;③2a ab0(即a、b异号)时,对称轴在y轴右边.a(3)c的大小决定抛物线y ax2bx c与y轴交点的地点.当x0时,y c,∴抛物线y ax2bxc与y轴有且只有一个交点(0,c):①c0,抛物线经过原点;②c0,与y轴交于正半轴;③c0,与y轴交于负半轴.以上三点中,当结论和条件互换时,仍建立.如抛物线的对称轴在y轴右边,则b.a几种特别的二次函数的图像特色以下:函数分析式张口方向对称轴极点坐标y ax2x0(y轴)(0,0)y ax2k x0(y轴)(0,k) y ax h2当a0时x h(h,0)y ax h2k张口向上x h(h,k)yax2bxc 当a0时b b4acb2张口向下x2a(,)2a4a用待定系数法求二次函数的分析式(1)一般式:y ax2bx c.已知图像上三点或三对x、y的值,平时选择一般式.(2)极点式:y ax h2k.已知图像的极点或对称轴,平时选择极点式.(3)交点式:已知图像与x轴的交点坐标x1、x,平时采纳交点式:yaxx1xx2.212.直线与抛物线的交点(1)y 轴与抛物线yax 2bxc 得交点为(0, c ).(2)与y 轴平行的直线xh 与抛物线yax 2bxc 有且只有一个交点(h ,ah 2bhc ).(3)抛物线与x 轴的交点二次函数yax 2 bx c 的图像与x 轴的两个交点的横坐标x 1、x 2,是对应一元二次方程ax 2bxc0的两个实数根.抛物线与x 轴的交点状况可以由对应的一元二次方程的根的鉴别式判定:①有两个交点 0 抛物线与x 轴订交;②有一个交点(极点在 x 轴上)0抛物线与x 轴相切;③没有交点抛物线与x 轴相离.(4)平行于x 轴的直线与抛物线的交点同(3)相同可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是ax 2bx c k 的两个实数根.(5)一次函数y kx nk 0 的图像l 与二次函数 yax 2 bxca0的图像G 的交点,由方程ykx nl 与G 有两个交点;②方程组ax 2的解的数量来确立:①方程组有两组不一样的解时ybxc组只有一组解时l 与G 只有一个交点;③方程组无解时l 与G 没有交点.(6)抛物线与 x轴两交点之间的距离:若抛物线y ax2bx c与 x12轴两交点为Ax ,,Bx,,由于x 1、x 2是方程ax 2bx c0的两个根,故x 1x 2b,x 1x 2ca ab 24c b24ac ABx 1x 2x 1 x 22 x 1x 22 4x 1x 2aaaa一次函数与反比率函数考点一、平面直角坐标系(3分)1、平面直角坐标系在平面内画两条相互垂直且有公共原点的数轴,就构成了平面直角坐标系。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是初中数学的重要内容之一,也是中考数学的重点和难点。

它不仅在数学领域有着广泛的应用,在物理、经济等其他学科中也经常出现。

下面我们来详细总结一下二次函数的相关知识点。

一、二次函数的定义一般地,形如\(y = ax^2 + bx + c\)(\(a\)、\(b\)、\(c\)是常数,\(a ≠ 0\))的函数,叫做二次函数。

其中\(x\)是自变量,\(a\)叫做二次项系数,\(b\)叫做一次项系数,\(c\)叫做常数项。

需要注意的是,二次函数的最高次必须是二次,并且二次项系数\(a\)不能为\(0\)。

如果\(a = 0\),那么函数就变成了一次函数。

二、二次函数的图象二次函数的图象是一条抛物线。

抛物线的形状由二次项系数\(a\)决定:1、当\(a > 0\)时,抛物线开口向上;当\(a < 0\)时,抛物线开口向下。

2、\(|a|\)越大,抛物线的开口越窄;\(|a|\)越小,抛物线的开口越宽。

抛物线是轴对称图形,对称轴为直线\(x =\frac{b}{2a}\)。

二次函数的顶点式为\(y = a(x h)^2 + k\),其中\((h, k)\)是抛物线的顶点坐标。

当抛物线的顶点坐标已知时,通常使用顶点式来表示二次函数,这样可以更方便地求出函数的最值等性质。

四、二次函数的一般式与顶点式的转化由一般式\(y = ax^2 + bx + c\)通过配方法可以转化为顶点式:\\begin{align}y&=ax^2 + bx + c\\&=a(x^2 +\frac{b}{a}x) + c\\&=a(x^2 +\frac{b}{a}x +\frac{b^2}{4a^2} \frac{b^2}{4a^2})+ c\\&=a(x +\frac{b}{2a})^2 \frac{b^2}{4a} + c\\&=a(x +\frac{b}{2a})^2 +\frac{4ac b^2}{4a}\end{align}\所以顶点坐标为\((\frac{b}{2a},\frac{4ac b^2}{4a})\)。

二次函数的相关知识点总结

二次函数的相关知识点总结

二次函数的相关知识点总结一、二次函数的概念。

1. 定义。

- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。

其中x是自变量,a、b、c分别是二次项系数、一次项系数、常数项。

- 例如y = 2x^2+3x - 1,这里a = 2,b=3,c=-1。

二、二次函数的图象。

1. 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。

2. 抛物线的顶点坐标。

- 对于二次函数y = ax^2+bx + c(a≠0),其顶点坐标公式为(-(b)/(2a),frac{4ac - b^2}{4a})。

- 例如,对于二次函数y=x^2-2x - 3,其中a = 1,b=-2,c=-3。

根据顶点坐标公式,-(b)/(2a)=-(-2)/(2×1)=1,frac{4ac - b^2}{4a}=frac{4×1×(-3)-(-2)^2}{4×1}=(-12 - 4)/(4)=-4,所以顶点坐标为(1,-4)。

3. 抛物线的对称轴。

- 对称轴方程为x =-(b)/(2a)。

4. 抛物线的开口方向。

- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。

- 例如,y = 3x^2+2x - 1中a = 3>0,开口向上;y=-2x^2+5x+3中a=-2 < 0,开口向下。

三、二次函数的性质。

1. 增减性。

- 当a>0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而减小;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而增大。

- 当a < 0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而增大;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而减小。

2. 最值。

- 当a>0时,抛物线开口向上,函数有最小值,y_min=frac{4ac - b^2}{4a},此时x =-(b)/(2a)。

二次函数的十二个考点

二次函数的十二个考点

二次函数的十二个考点
1. 二次函数的定义和一般形式:$y = ax^2 + bx + c$,其中$a\neq 0$。

2. 二次函数的图像特征:开口方向、顶点、对称轴。

3. 二次函数的顶点和对称轴的求解方法:通过配方法、求导、平方完成平方等。

4. 二次函数的零点的求解方法:因式分解、配方法、求根公式。

5. 二次函数的判别式:$b^2 - 4ac$,用于判断二次函数的零点个数和开口方向。

6. 二次函数的最值:最大值或最小值的求解方法。

7. 二次函数在坐标轴上的截距:$x$轴截距和$y$轴截距的计算方法。

8. 二次函数的增减性:根据二次函数的导数的正负来判断。

9. 二次函数的平移:对二次函数的顶点进行平移,改变二次函数的图像位置。

10. 二次函数的对称性:关于对称轴的对称性,可以通过图像观察或计算得出。

11. 二次函数与其他函数的关系:与一次函数、指数函数、对数函数等的比较。

12. 二次函数在实际问题中的应用:如抛物线轨道、抛物线天桥等的建模与问题求解。

二次函数复习总结归纳

二次函数复习总结归纳

y xO二次函数复习归纳(培优)1. 二次函数2()y a x h k =-+的图像和性质a >0a <0图 象 开 口 对 称 轴 顶点坐标最 值 当x = 时,y 有最 值 当x = 时,y 有最 值 增减性在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧y 随x 的增大而y 随x 的增大而2. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中h = , k= .3. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系:; 4.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴或最值,通常选择顶点式.求抛物线的顶点、对称轴的方法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=, ∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(3)交点式:已知图像与x 轴交点的横坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=(4)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、知识要点2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()aa acb a ca b x x x xx xx x AB ∆=-=-⎪⎪⎭⎫ ⎝⎛-=-+=-=-=4442221221221215.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小:a >0,开口向上;a <0,开口向下;α越大,开口越小 (2)b 和a 决定抛物线对称轴(左同右异)①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧; ③0<ab(即a 、b 异号)时,对称轴在y 轴右侧. (3)c 决定抛物线与y 轴交点的位置.c >0时,与y 轴正半轴相交;c <0时,与y 轴负半轴相交。

二次函数的知识点归纳总结

二次函数的知识点归纳总结

二次函数的知识点归纳总结二次函数是一类形式为:f(x)=ax^2+bx+c(a≠0)的函数,它是由一个未知量x及其次方以及常数和构成的多项式函数,是函数论中最重要的一类函数,也是流行的一类多项式函数,可以表示物理、化学等各种简单工程运动的轨迹。

1、定义:2、关于二次函数的一般性质:(1)根据二次函数f(x)的形式,当a>0时,f(x)的图像至少在原点处有一个局部极大值;当a<0时,f(x)的图像至少在原点处有一个局部极小值。

(2)二次函数f(x)=ax^2+bx+c,其图像受常数c的影响最大,位移平面;受系数a的影响较大,改变函数图像的凹凸程度以及波长;受系数b的影响最小,表明函数图像关于原点x轴对称。

(3)二次函数f(x)=ax^2+bx+c中,判别式D=b^2-4ac,有3种不同的情况:(a)D>0,表明函数的图像具有两个不同的实根x1和x2,也就是在X轴上有两个不同的交点;无论D的值如何,都可以一般的、因式分解的、平方差的、二次根和完全平方式的解法来得到函数的实根。

(1)一般解法:f(x)=0,解出二次函数的实根x1和x2的方法是把二次函数的系数都乘以同一个数,使这个函数化简成一元二次方程的形式,然后求解其实根。

(2)因式分解:这是一种形式上很漂亮的方法,但是只有当判别式D=b^2-4ac被完全开方时才可以用,即只有当D=(a+b)*(A-b)时,这样当把ax^2+ bx+ c这个二次多项式用(a+b)*(a-b)因式分解后再解每个因式,就可以求出实根x1,x2。

(3)平方差的方法:这是一种非常好的方法,可以用它来快速求出二次函数的实根。

其原理是:用a,b,c构成两个二次数相差一个平方差,每个二次数的两个实根相等,根据这个性质,我们要找到这两个二次数的实根,就成了一个直觉的问题。

(4)完全平方式:这相对于因式分解和平方差法来说是一种更为抽象的方式,其方法是:从f(x)=ax^2+bx+c函数中把bc/a去掉,把(b/2a)^2也去掉,只留下一个完全平方式,然后按照完全平方式的特征,把a的倍数运算到等式另一边,最后化简求解。

二次函数考点归纳

二次函数考点归纳

A.0
B.1
C.2
D.3
12、(2014 云南双柏县)在同一坐标系中一次函数 y ax b 和二次函数 y ax2 bx 的图象可能为( )
13、(2013 济宁)二次函数 y=ax2+bx+c(a≠0)的图象如图所示,则下列结
论中正确的是( )
A.a>0
B.当﹣1<x<3 时,y>0
C.c<0
图 9 所示,根据图象解答下列问题:
(1)写出方程 ax2 bx c 0 的两个根.(2 分) (2)写出不等式 ax2 bx c 0 的解集.(2 分)
(3)写出 y 随 x 的增大而减小的自变量 x 的取值范围.(2 分)
(4)若方程 ax2 bx c k 有两个不相等的实数根,求 k 的取值范围.(4 分)
;b 和 a 同号,对称轴在 y 轴 侧;
b 和 a 异号,对称轴在 y 轴 侧;
c 与 y 轴交点:c=0,交点是 ;c>0,交点在 y 轴的 半轴上;c<0,交点在 y 轴
的 半轴上;
b2 4ac 与 x 轴交点个数: b2 4ac 0 ,与 x 轴有
个交点; b2 4ac 0 ,
与 x 轴有
知识点 2:1、双曲线
2(1)上 x b 减小 增大 低 b 4ac b2
2a
2a 4a
(2)下 x b 增大 减小 高 b
2a
2a
一 没有 (4)左加右减 上加下减 知识点 3、一般式 顶点式 交点式
4ac b2 4a
(3)y 轴 左 右 原点 正 负 两
知识点 4、(1)两个 一个 没有 (2) ax2 bx c 0
B. <x<
C. <x<
D. <x<

二次函数知识点归纳总结

二次函数知识点归纳总结

二次函数知识点归纳总结二次函数知识点总结二次函数是形如y=ax²+bx+c(a≠0)的函数。

与一元二次方程类似,二次项系数a≠0,而b和c可以为零。

二次函数的定义域是全体实数。

二次函数的根本形式是y=ax²。

a的绝对值越大,抛物线的开口越小。

a的符号决定开口方向。

当a>0时,开口向上;当a<0时,开口向下。

顶点坐标是(0,0),对称轴是y轴。

当x增大时,y随之增大,当x减小时,y随之减小,当x=0时,y有最小值。

当二次函数的形式为y=ax²+c时,顶点坐标是(0,c),对称轴是y轴。

其他性质与y=ax²相同。

当二次函数的形式为y=a(x-h)²时,顶点坐标是(h,0),对称轴是以顶点为中心的垂直于x轴的直线。

当x增大时,y随之增大,当x减小时,y随之减小,当x=h时,y有最小值。

当二次函数的形式为y=a(x-h)²+k时,顶点坐标是(h,k),对称轴是以顶点为中心的垂直于x轴的直线。

其他性质与y=a(x-h)²相同。

平移二次函数的图像,可以将抛物线的顶点平移到(h,k)处。

具体方法是保持抛物线形状不变,将其顶点平移到(h,k)处。

如果k>0,则向上平移|k|个单位;如果k<0,则向下平移|k|个单位。

y=ax^2+k向右移动h个单位(h>0)或向左移动|h|个单位(h0)或向下移动|k|个单位(k<0)。

y=a(x-h)^2向上移动k个单位(k>0)或向下移动|k|个单位(k<0),平移规律为“左加右减,上加下减”,概括为八个字。

另一种方法是对于y=ax^2+bx+c,沿y轴平移m个单位向上(下)为y=ax^2+bx+c+m(或y=ax^2+bx+c-m),沿轴平移m个单位向左(右)为y=a(x+m)^2+b(x+m)+c(或y=a(x-m)^2+b(x-m)+c)。

对于二次函数y=a(x-h)^2+k和y=ax+bx+c,两者是不同的表达形式,通过配方可以得到y=ax^2+bx+c,其中h=-b/2a,k=a(h^2)+b(h)+c。

二次函数知识点与题型总结

二次函数知识点与题型总结

二次函数知识点一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用()b a ,表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a ≠时,()b a ,和()a b ,是两个不同点的坐标。

知识点二、函数及其相关概念 1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。

2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点 (1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

知识点三、概念总结及基本性质1、二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

二次函数的定义域是全体实数.2.、二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 3、二次函数的基本形式(平移规律:左加右减,上加下减) (1)2y ax =的性质:a 的绝对值越大,抛物线的开口越小。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是一种具有特殊形状和特殊性质的函数,在广泛的几何和代数应用中具有重要的地位。

许多几何图形,比如椭圆、双曲线和抛物线,都可以用二次函数表示。

在这里,我们将简要介绍二次函数的基本概念、性质和应用,以及在几何中的使用方法。

一、基本概念二次函数是一种二次项(即幂次为2的项)的多项式,形式为y=ax2+bx+c (a≠0),其中a,b,c为实数,x表示变量。

函数y=ax2+bx+c 当x取值时,可以得到一个实数y,当y值取值时,可以得到x的值。

因此,二次函数可以看做一个定义在实数域上的映射。

二、性质1、a的正负性决定函数的开关性:改变函数y=ax2+bx+c中a项的系数,可以改变函数的形状。

当a>0,抛物线向上开;当a<0,抛物线向下开。

2、函数的最值:二次函数y=ax2+bx+c的最值位置可以用转折点(x2, y2)来表示,转折点是函数曲线在x轴上的拐点,它的坐标可以通过求函数的导数来解决。

3、函数的对称性:一般地,一个二次函数的图像是封闭的,且具有对称性。

以函数y=x2为例,其图像是一个抛物线,它具有绕着y轴的中心点(0,0)的对称性。

三、应用1、函数的应用二次函数的应用主要在几何和代数方面,它在几何中主要应用于描述形状,比如椭圆、双曲线、抛物线等,在代数方面主要用于解决一元二次方程、独立变量的求解等问题。

2、几何图形的描述椭圆、双曲线和抛物线都可以用二次函数来描述。

椭圆的方程为y2=4a2(x2-a2),双曲线的方程为y2/a2-x2/b2=1,抛物线的方程为y2=2a(x-x1)。

四、几何中的使用1、直线的垂直平分线当给定直线y=kx+b,可以用二次函数y=k2x2+(2kb-2b2/k)x+(b2-1/k2)来描述垂直于该直线的一条线段,该直线段是给定直线的垂直平分线,其中k表示直线斜率,b为直线截距。

2、椭圆的对称中心当给定一个椭圆,它的方程为y2=4a2(x2-a2),可以用二次函数y=(2x-2c)2+d2来表示椭圆的对称中心的参数方程,其中c和d分别表示椭圆的一条轴半长和另一条轴半长。

二次函数中考复习题型总结归纳

二次函数中考复习题型总结归纳

中考专题之二次函数考点一:二次函数解析式【知识点】三种解析式形式 1.一般式:2+y ax bx c =+(a ≠0).若已知条件是图象上的三个点,则设所求二次函数为2y ax bx c =++,将已知条件代入,求出a 、b 、c 的值.2.交点式(双根式):12()()(0)y a x x x x a =--≠.若已知二次函数图象与x 轴的两个交点的坐标为(x 1,0),(x 2,0),设所求二次函数为12()()y a x x x x =--,将第三点(m ,n)的坐标(其中m 、n 为已知数)或其他已知条件代入,求出待定系数,最后将解析式化为一般形式. 3.顶点式:2()(0)y a x h k a =-+≠.若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),设所求二次函数为2()y a x h k =-+,将已知条件代入,求出待定系数,最后将解析式化为一般形式. 【经典例题】例1 已知一条抛物线经过点 (0,0),(2,4),(4,0),求这个函数关系式。

【变式练习】1.已知二次函数的图象经过A (0,3)、B (1,3)、C (-1,1)三点,求该二次函数的解析式。

2.已知抛物线过A (1,0)和B (4,0)两点,交y 轴于C 点且BC =5,求该二次函数的解析式。

3.已知二次函数的图象的顶点坐标为(1,-6),且经过点(2,-8),求该二次函数的解析式。

4.已知二次函数的图象的顶点坐标为(1,-3),且经过点P(2,0)点,求二次函数的解析式。

5.二次函数的图象经过A(-1,0),B(3,0),函数有最小值-8,求该二次函数的解析式。

考点二:二次函数图像【知识点】一、各种形式的二次函数的图像性质如下表:1.抛物线c bx ax y ++=2中的系数c b a ,,(1)a 决定开口方向,几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.当0>a 时,抛物线开口向上,顶点为其最低点;当0<a 时,抛物线开口向下,顶点为其最高点. (2)b 和a 共同决定抛物线对称轴的位置:当0=b 时,对称轴为y 轴;当a 、b 同号时,对称轴在y 轴左侧;当a 、b 异号时,对称轴在y 轴右侧.(3)c 决定抛物线与y 轴交点位置:当0=c 时,抛物线经过原点; 当0>c 时,相交于y 轴的正半轴;当0<c 时,则相交于y 轴的负半轴. (4).抛物线与x 轴的交点设二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式来判定: (1)240b ac ->⇔抛物线与x 轴有两个交点;(2)240b ac -=⇔抛物线与x 轴有一个交点(顶点在x 轴上); (3)240b ac -<⇔抛物线与x 轴没有交点. 要点诠释:当x =1时,函数y =a+b+c ; 当x =-1时,函数y =a-b+c ; 当a+b+c >0时,x =1与函数图象的交点在x 轴上方,否则在下方; 当a-b+c >0时,x =-1与函数图象的交点在x 轴的上方,否则在下方. 2.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,顶点是),(ab ac a b 4422--,对称轴是直线ab x 2-=。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数一、课标解读二、知识清单知识点1:二次函数定义1、一般地,形如 (a 、b 、c 是常数,a 0)的函数,叫做二次函数。

2、二次函数的三种形式一般式: 顶点式: 交点式: 知识点2:二次函数的图象与性质1、二次函数的图象是一条 。

2、二次函数的性质(1)a >0时,抛物线开口向 ,在对称轴 的左侧y 随着x 的增大而 ,在对称轴右侧y 随着x 的增大而 ,抛物线有最 点,当x= 时,y 有最小值 。

(2)a <0时,抛物线开口向 ,在对称轴 的左侧y 随着x 的增大而 ,在对称轴右侧y 随着x 的增大而 ,抛物线有最 点,当x= 时,y 有最大值 。

(3)a 的符号与开口方向; b 和a 的符号与对称轴:b=0,对称轴是 ;b 和a 同号,对称轴在y 轴 侧;b 和a 异号,对称轴在y 轴 侧;c 与y 轴交点:c=0,交点是 ;c>0,交点在y 轴的 半轴上;c<0,交点在y 轴的 半轴上; ac b 42-与x 轴交点个数:042>-ac b ,与x 轴有 个交点;042=-ac b ,与x 轴有 个交点;042<-ac b 与x 轴 交点。

(4)抛物线的平移:抛物线k h x a y +-=2)(可以由2ax y =经过平移得到,把抛物线2ax y =向右或者向左平移|h|个单位,得到2)(h x a y -=,规律是 ;把抛物线向上或者向下平移|k|个单位,得到抛物线k ax y +=2,规律是 ;把抛物线2ax y =先向右或者向左平移|h|个单位再向上或者向下平移|k|个单位,得到k h x a y +-=2)(。

知识点3:用待定系数法求二次函数的解析式已知三点坐标,选用 ;已知顶点坐标或者对称轴,选用 ;已知与x轴的交点,选用 。

知识点4:二次函数与一元二次方程之间的关系(1) 抛物线)0(2≠++=a c bx ax y 与x 轴有两个交点,则一元二次方程02=++c bx ax 有 实数根;抛物线)0(2≠++=a c bx ax y 与x 轴有一个交点,则一元二次方程02=++c bx ax 有 实数根;抛物线)0(2≠++=a c bx ax y 与x 轴无交点,则一元二次方程02=++c bx ax 实数根;(2)、)0(2≠++=a c bx ax y 的图象与x 轴有交点时,交点的横坐标就是 一元二次方程 的解。

知识点5:实际问题与二次函数利用二次函数解决实际问题,首先要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的等量关系,求出解析式,然后利用函数解析式去解决问题 三、典型例题知识点1:二次函数定义例1(2014安徽安庆)下列函数中,一定是二次函数的是( ) A 、)0(≠+=k b kx y B 、242++=x ax y C 、221xy =D 、221x y -= 知识点2:二次函数的图象与性质例2、已知二次函数c ax y +=2,当x 分别取)(212,1x x x x ≠时,函数值相等,则当x 取2,1x x +时,函数值为 ( )A 、c a +B 、c a -C 、cD 、c -点拨:抛物线是轴对称图形,纵坐标相同的两点,横坐标互为相反数。

例3、(2014•莱芜)已知二次函数y=ax 2+bx+c 的图象如图所示.下列结论: ①abc>0;②2a﹣b <0;③4a﹣2b+c <0;④(a+c )2<b 2 其中正确的个数有( )A .1 B .2 C .3 D . 4点拨:二次函数的图象与系数的关系知识点3:用待定系数法求二次函数的解析式例4、(2015•山东东营改编)抛物线经过A (),B (),C ()三点.(1) 求抛物线的解析式和顶点坐标(2) 请你写出一种平移的方法,使得平移后的抛物线顶点落在直线y=-x 上,并写出平移后的抛物线解析式。

我的解答:知识点4:二次函数与一元二次方程之间的关系例5、(2014贵州省贵阳)二次函数)0(2≠++=a c bx ax y 的图象如图9所示,根据图象解答下列问题:(1)写出方程02=++c bx ax 的两个根.(2分)(2)写出不等式02>++c bx ax 的解集.(2分)(3)写出y 随x 的增大而减小的自变量x 的取值范围.(2分)(4)若方程k c bx ax =++2有两个不相等的实数根,求k 的取值范围.(4分)我的解答:知识点5:二次函数的应用例6、(2015湖南邵阳)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y (件)与销售单价x (元)满足一次函数关系:y =﹣10x +1200. (1)求出利润S (元)与销售单价x (元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?我的解答:点拨:二次函数的应用(1)根据“总利润=单件的利润×销售量”列出二次函数关系式即可;(2)将得到的二次函数配方后即可确定最大利润.四、梯级演练(一)基础题组1、(2014四川成都)如图9所示的抛物线是二次函数的图象,那么的值是 。

2、(2014浙江杭州)设抛物线)0(2≠++=a c bx ax y 过A(0,2)、B (4,3)、C 三点,其中点C 在直线x=2上,且点C 到抛物线对称轴的距离等于1,则抛物线的函数解析式为 3、将抛物线y =x 2向左平移4个单位后,再向下平移2个单位,•则此时抛物线的解析式是_____________4、(2014江西省)已知二次函数的部分图象如图所示,则关于的一元二次方程的解为。

5、(2014•通辽)如图,⊙O的半径为2,C1是函数的图象,C2是函数的图象,C3是函数的图象,则阴影部分的面积是平方单位(结果保留π).6、(2014东营)若函数21(2)12y mx m x m =++++的图象与x 轴只有一个交点,那么m 的值为( ) A .0 B .0或2 C .2或-2 D .0,2或-27、若二次函数y =kx 2-7x -7的图象与x 轴有公共点,则k 的取值范围是( )A .47->kB .47->k 且k ≠0 C .47-≥kD .47-≥k 且k ≠0 8、二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论:①a >0;②c >0;•③b 2-4ac >0,其中正确的个数是( )A. 0个B. 1个C. 2个D. 3个9、根据下列表格中二次函数y =ax 2+bx +c 的自变量x 与函数值y•的对应值,判断方程ax 2+bx +c =0(a x 6.17 6.18 6.19 6.20 y =ax 2+bx +c-0.03-0.010.020.04A. 6<x <<x <6.20 10、(2014南充)如图是二次函数y =ax 2+bx +c 图象的一部分,图象过 点A (-3,0),对称轴为x =-1.给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确结论是( )。

(A )②④ (B )①④ (C )②③ (D )①③ 11、(2014广州市)二次函数122+-=x x y 与x 轴的交点个数是( )A .0B .1C .2D .3 12、(2014云南双柏县)在同一坐标系中一次函数b ax y +=和二次函数bx ax y +=2的图象可能为( )13、(2013济宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A .a >0B .当﹣1<x <3时,y >0C .c <0 D.当x≥1时,y 随x 的增大而增大 14、(2013齐齐哈尔)数形结合是数学中考常用的思想,运用这一思想确定函数xy x y 312=+=与的交点的横坐标0x 的取值范围是( ) A 、100<<x B 、210<<x C 、320<<x D 、010<<-x15、(2015•福建泉州第24题9分)某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB =x 米(x >0),试用含x 的代数式表示BC 的长;(2)请你判断谁的说法正确,为什么?(二)提高题组1、(2014湖北孝感)二次函数)0(2≠++=a c bx ax y 的图象如图8所示,且P =| a -b+c |+| 2a +b |,Q =| a +b +c |+| 2a -b |,则P 、Q 的大小关系为 。

2、(2013荆门)若抛物线c bx x y ++=2与x 轴只有一个交点,且过点A (m ,n )B (m+6,n ),则n=3、如图,在平面直角坐标系中,二次函数y =ax 2+c (a ≠0)的图象过正方形ABOC•的三个顶点A ,B ,C ,则ac 的值是4、(2014天津市)已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① ;②;③;④;⑤,(的实数)其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个5、函数2y x bx c =++与y x =的图象如图所示,有以下结论:①240b c ->;②10b c ++=;③360b c ++=;④当13x <<时,2(1)0x b x c +-+<; 其中正确的个数是( )A .1 B .2 C .3 D .46、若|x -1|≤3,则关于y =-x 2+2x -1的最值说法正确的是( ).A .最大值是0,无最小值B .最小值是-9,最大值是0C .无最大值,最小值是-9D .无最大值,也无最小值 7、(2015•浙江杭州) 设二次函数),0)()((21211x x a x x x x a y ≠≠--=的图象与一次函数)0(2≠+=d e dx y 的图象交于点(x1,0),若函数211y y y +=的图象与x 轴仅有一个交点,则( )A. a(x 1−x 2)=dB. a(x 2−x 1)=dC. a(x 1−x 2)2=dD. a(x 1+x 2)2=d 8、(2015山东青岛)如图隧道的截面由抛物线和长方形构成,长方形的长是12m ,宽是4m .按照图中所示的直角坐标系,抛物线可以用c bx x y ++-=261表示,且抛物线上的点C 到OB 的水平距离为3m ,到地面OA 的距离为217m 。

相关文档
最新文档