工程光学讲稿1
工程光学讲稿理想
f' f 1, 对l、l'作为微分,得 l' l
f' f - l'2 dl' l 2 dl 0
dl' dl
fl '2 f 'l2
(- f' )( - fl' )2 n' 2
f f'l n
31
二、角放大率
1、定义: 过光轴上一对共
轭点, 任取一对共轭光线,
li=li-1'-di-1 xi=xi-1'-Δi-1 Δi =di-fi'+fi+1 ⑤整个系统的放大率β等于各光组放大率的乘积
y y1 i' y y1 1 ' y y2 2 ' y yii' 1 2 i
25
例:一个光学系统由三个光组组成,f1 ' =-f1=100mm, f2 ' =-f2=-50mm f3 ' =-f3=50mm,d1=10mm,d2=20mm,一个大小为15mm实物位于第 一光组左侧120mm处,求像的位置和大小。
A
F
H
H’ F’
A’
利用物方焦平面性质求轴上物点的像
M
M’
N
N’
B’
A
F
H
H’ F’
A’
利用像方焦平面性质求轴上物点的像
11
B` B
F
H
H`
F`
物点B在F与H之间
12
A’
Q
Q’
A
F
B’ B
H
H’
F’
实物在1倍焦距以内,成放大虚像
13
虚物成实像
14
负(凹)透镜成像
1工程光学讲稿(球面)
(2)入射角的正弦与折射角的正弦之比和入射角的大小无关,只与两种
介质的折射率有关。折射定律可表示为:
siInn' 或nsiIn n'siIn ' siIn ' n
I I''
n
在折射定律中,若令n’ = -n,则得到反射定律,因此 n'
I'
可将反射定律看成是折射定律的一个特例。根据这一特点
,在光线反射的情况下,只要令 n’ = -n,所有折射光线传播的计算均适
1工程光学讲稿 (球面)
单击此处添加副标题内容
上篇 几何光学与成像理论
第一章 几何光学基本定律与成像概念
第一节 几何光学的基本定律 第二节 成像的基本概念与完善成像条件 第三节 光路计算与近轴光学系统 第四节 球面光学成像系统
2
一、光学 - 简介
光学真正形成一门科学,应该 从建立反射定律和折射定律的时代 算起,这两个定律奠定了几何光学 的基础。 光学 - 定义
费马原理:
B
s A ndl
dl A
光线从一点传播到另一点,无论经过多少次折射和反射,其
光程为极值(极大、极小、常量),也就是说光是沿着光程为极
值的路径传播。
利用费马原理,可以导出光的直线传播定律和反射、折射定17 律。
利用费马原理证明反射定律 设:A为点光源(x1,0,z1)
B为接受光源(x2,0,z2) P为光线的入射点(x,y,0) 由费马原理求光程的极值得:
合反射光线。
12
例题:一个圆柱形空筒高16cm,直径12cm。人眼若在离筒侧某处能见到筒 底侧的深度为9cm;当筒盛满液体时,则人眼在原处恰能看到筒侧底。求该 液体的折射率。
工程光学介绍课件
04
继续教育:加强继续教育和 培训,提高工程光学人才的 综合素质和技能水平
谢谢
3
相机:用于记录影像 的仪器,如数码相机、 手机相机等
望远镜:用于观察遥远 天体的仪器,如天文观 测、卫星通信等
2
投影仪:用于显示图像 的仪器,如电影放映、 会议演示等
4
光学测量系统
应用领域:工业、医疗、科研等
01
领域 功能:测量物体的几何形状、尺
02
寸、位置等参数 技术原理:利用光学原理,如激
03
于导航、教育和娱乐
上,用于游戏、电影和训练
4
工程光学的未来 展望
光学技术的创新
超材料:具有特殊 光学性质的人造材 料,如光子晶体、 超透镜等
01
纳米光学:利用纳 米尺度的光学现象, 如表面等离子体、 量子点等
02
04
集成光学:将光学 元件集成在芯片上, 如光子集成电路、 光通信系统等
03
生物光学:研究生 物系统中的光学现 象,如生物成像、 生物传感器等
05
光的衍射:光 在传播过程中 遇到障碍物时
发生衍射
06
光的偏振:光 在传播过程中 具有偏振特性
07
光的吸收与散 射:光在传播 过程中被吸收
或散射
08
光的色散:光 在传播过程中 发生色散,形
成彩色光谱
工程光学的应用领域
01
光学仪器:如显微镜、 望远镜、照相机等
02
光学通信:如光纤通信、 激光通信等
工程光学的应用拓展
虚拟现实(VR)和增强现实(AR)技术:工程光学在虚拟现实 和增强现实技术中发挥着重要作用,如光学元件的设计和制造。
自动驾驶汽车:工程光学在自动驾驶汽车领域具有广泛的应用, 如激光雷达(LiDAR)、摄像头和传感器等。
工程光学基础教程第一章-精品文档
上篇
几何光学与光学设计
几何光学基本定律与成像概念 理想光学系统 平面与平面系统 光学系统中的光束限制 像差 典型光学系统 现代光学系统
第一章:几何光学基本定律与
成像概念
第一节 几何光学的基本定律和原理 一、光波与光线
1、光的本质
光和人类的生产、生活密不可分; 人类对光的研究分为两个方面:光的本性,以此来研究各种光学现象, 称为物理光学;光的传播规律和传播现象称为几何光学。 1666年牛顿提出的“微粒说” 1678年惠更斯的“波动说” 1871年麦克斯韦的电磁场提出后,光的电磁波 1905年爱因斯坦提出了“光子”说 现代物理学认为光具有波、粒二象性:既有波动性,又有粒子性。
决定,即: sinI ' n sinI n'
通常写为: n 'sI i' n n sI in 若在此式中令n'n,则上式成为
I'I,此结果在形式上与反射定律公式
相同。
4. 光路的可逆性
若光线在折射率为 n '的介质中
沿CO方向入射,由折射定律可知,折 射光线必沿OA方向出射。同样,如果 光线在折射率为n的介质中沿BO方向 入射,则由反射定律可知,反射光线 也一定沿OA方向出射。由此可见,光 线的传播是可逆的,这就是光路的可 逆性。
球面光波对应的同心光束按光的传播方向不同又分为 会聚光束和发散光束。如图1-1所示。会聚光束所有光线实 际通过一个点。同心光束经实际光学系统后,由于像差的作 用,将不再是同心光束,与之对应的光波则为非球面光波。 与平面波相对应的源自平行光束,是同心光束的一种特殊形式
波面与光束 a)平面光波与平行光束 b)球面光波与发散光束
利用这一规律,使得对光线传播情况的 研究大为简化。
工程光学基础教程第一章
工程光学
添加标题
添加标题
添加标题
添加标题
添加标题
添加标题
上篇 几何光学与光学设计
第一节 几何光学的基本定律和原理 一、光波与光线 1、光的本质 光和人类的生产、生活密不可分; 人类对光的研究分为两个方面:光的本性,以此来研究各种光学现象,称为物理光学;光的传播规律和传播现象称为几何光学。 1666年牛顿提出的“微粒说” 1678年惠更斯的“波动说” 1871年麦克斯韦的电磁场提出后,光的电磁波 1905年爱因斯坦提出了“光子”说 现代物理学认为光具有波、粒二象性:既有波动性,又有粒子性。
光的直线传播定律
光线的独立传播定律
在各向同性的均匀介质中,光线按直线传播。例子:影子的形成、日食、月蚀等。
不同的光线以不同的方向通过某点时,彼此互不影响,在空间的这点上,其效果是通过这点的几条光线的作用的叠加。 利用这一规律,使得对光线传播情况的研究大为简化。
3.光的折射定律和反射定律
如图所示,入射光线AO入射到两种介质的分界面PQ上,在O点发生折反射,其中,反射光线为OB,折射光线为OC, 为界面上O点处的法线。入射光线、反射光线和折射光线与法线的夹角 、 和 分别称为入射角、反射角和折射角,它们均以锐角度量,由光线转向法线,顺时针方向旋转形成的角度为正,反之为负。
光程为极大、常值的实例
研究一个凹球面镜和一个椭球面: 凹球面镜反射是一个光程为极大值的例子:APB>AQB; 椭球面是光程为常数的例子
人们在研究光的各种传播现象的基础上,设计和制造了各种各样的光学仪器为生产和生活服务,如显微镜、望远镜。 所有的光学仪器中都是应用不同形状的曲面和不同介质做各种光学 零件——反射镜、透镜和棱镜等,如图所示。
工程光学讲稿(平面)
F’ A R’ ’’
L
由五角棱镜为列,求它的展开长度为:
L = AE + EB’ + B’A’’ = D + √ 2 D+ D = 3.414D
A D
B
A’
E
B’ A
’’
D C’
C
D
L ’’
E ’’
5)轴上点近轴光经平板成象是完善的。
二、平行平板的等效光学系统
1、平行平板在近轴区内以细光束成像时,近轴区内的轴向位移为:
L' d(1 tgI1' ) l' d ( 1 1 )
tgI1
n
(tgI1' sinI1' 1 ) tgI1 sin I1 n
2、在近轴区,平行平板的轴向位移只与其厚度d和折射率n有关,与入射角无
§3.1 平面镜成像
一、平面镜成像
1、平面镜的成像特性
平面镜是最常用的光学元件之一,也是最简单并能成完善像的唯一一个光 学元件。
2、物像位置关系及放大率公式
① 物像位置关系式:
r=∞
n' n n'n l' l r n' n , r l' l
即像与物相对于平面镜来讲
是对称的。
-l
l’
② 放大率公式:
3.平行于主截面的坐标轴O'Z'的方向视反 射面个数(屋脊面算二个反射面)而定。 如果物坐标系为右手坐标系,当反射面个
y z
xo
数为偶数时, O'Z'坐标轴按右手坐标系确
定;而当反射面个数为奇数时,O'Z'坐标
轴依左手坐标系确定。 举例1:试讨论由五角棱镜和直角棱镜组 合的棱镜系统的转像情况。
工程光学第章典型光学系统课件 (一)
工程光学第章典型光学系统课件 (一)
工程光学部分中,光学系统是一个非常重要的概念。
作为光学系统学习的第一步,我们需要学习典型的光学系统。
在本节课件中,我们将会学到三种典型的光学系统:单透镜系统、双透镜系统和望远镜。
第一,单透镜系统是最简单的光学系统,由一个透镜组成。
在这种情况下,光线从物体经过透镜形成像。
单透镜系统中,我们需要考虑像的位置和大小,物像距离和像的性质,如实际或虚像。
这些性质可以通过把物体图和像的图画在一起来表达。
第二,双透镜系统包括两个透镜,用于对光线进行更复杂的控制。
目光机是双透镜系统的一种,其中一个透镜更接近眼睛,另一个透镜离眼睛更远。
双透镜系统可以具有不同的配置,但是我们通常需要在系统中考虑的属性包括眼睛和物体之间的距离、眼睛所处位置、物体的位置、望远镜的放大率等,这些属性可以帮助我们确定望远镜成像的性质和特征。
第三,望远镜可以用于查看遥远的物体。
望远镜可以看作是双透镜系统的一种特殊情况,其中一个透镜是目镜行星镜,另一个透镜是大反射镜或透镜。
望远镜与单透镜和双透镜系统的不同之处在于,望远镜中透镜的位置和物体和眼睛的距离都有所不同。
在这三种光学系统中,我们学会了处理物体成像和图像特性的能力。
到达像靠近元素也需要一定的反思和技巧。
我们还意识到,光学系统可以有许多乐趣和有趣的应用场景,例如望远镜和显微镜等等。
对于喜欢光学系统的人来说,这是一种非常有趣和有创造性的领域,它可以启发人们的想象力和知识积累,可以帮助人们更好地理解我们周围的世界。
李湘宁《工程光学》第一章 绪论
光学系统对目标物体成像,目标发出的光线 在摄入系统前都称为物方光线;物方光线的 会聚点(不管是实际会聚还是虚线延长后会 聚)称为物;经过光学系统作用之后的光线 则称为像方光线,像方光线的会聚点(不管 是实际会聚还是虚线延长后会聚)称为像。
25
1.2 光学系统的物像概念
物方光线实际相交的点为实物点;延长后相
5
主要内容
包括两部分:
一、几何光学 二、波动光学 学时安排 3:2 or 1:1 or 2:1
几何光学主要内容: 光学系统的成像
6
第1章 几何光学基本定律与成像概念
1.1 几何光学的基本定律 1.2 光学系统的物像概念
唐山学院机电工程系《工程光学》
概述
光学是研究光的本性、光的传播、光与物质相互 作用以及光的实际应用的科学。 几何光学 研究范围:
d ( AOB) dx n1 x a x
2 1 2
n2 (b x ) a12 (b x ) 2
n1 sin I n2 sin I `
23
Fermat原理的极值问题
极值路径为常值:
A B
回转椭球凹面镜 , 自其一个焦点发出的光 线经镜面反射后都会到达另一焦点。
28
9
概述
几何光学和波动光学的关系?
波动光学可精确解释光学系统中的各种问 题,但很复杂;几何光学忽略了光的波动 本性,以某种近似来研究光的传播,适合 于工程应用的大多数光学系统,方法较简 单。
所以我们从最基本的几何光学开始光学之旅!
10
1.1.1 几何光学的点线面
几何光学的点、线、面是什么?
点光源
考研时一门必考课程。例如中国科技大学,合肥工业大学,
工程光学基础教程第一章
工程光学基础教程第一章工程光学是一门研究光学现象和光学器件在工程领域中应用的学科。
它涵盖了光学基础知识、光学器件和系统设计、光学测量和测试、光学传感和图像处理等方面的内容。
本文将以工程光学基础教程的第一章为主题,讨论工程光学的基本概念和原理。
第一章介绍了光的物理性质和光的波动理论。
光是一种电磁波,具有波动性和粒子性的特点。
光波动的基本特性包括波长、频率、振幅和相位。
光的波动可以通过实验来验证,例如干涉、衍射和折射等实验。
干涉是指两束光波相遇时发生的干涉现象。
干涉可以分为同相干和非相干干涉两种情况。
同相干干涉是指两束光波的相位差为整数倍的情况下发生的干涉。
非相干干涉是指两束光波的相位差不是整数倍的情况下发生的干涉。
衍射是指光通过一个小孔或经过不规则边缘时发生的衍射现象。
衍射可以用赫兹普龙原理来描述,即波的传播过程中每个波前都可以看作是一系列波源发出的球面波。
折射是指光从一种介质传播到另一种介质时发生的折射现象。
光的折射是由介质的折射率引起的,折射率是光在介质中传播速度与真空中传播速度的比值。
光的粒子性可以通过光的能量传播和光的吸收来解释。
光的能量在空间中传播时遵循能量守恒定律和动量守恒定律。
光的吸收是指光被物质吸收并转换为其他形式的能量,例如热能。
本章还介绍了光的能量和功率的计算方法。
光的能量可以通过光的强度和面积来计算,光的功率可以通过光的能量和时间来计算。
光的强度可以用辐射亮度和辐射通量来描述。
此外,本章还介绍了坐标系和光的传播方向。
坐标系是研究物体位置和光传播方向的基本工具。
光的传播方向可以用传播矢量和波矢量来描述,传播矢量指示光的传播方向,波矢量指示光的传播速度和方向。
综上所述,工程光学基础教程的第一章主要介绍了光的物理性质和光的波动理论。
通过学习这些基本概念和原理,我们可以更好地理解和应用工程光学知识。
工程光学是一门应用广泛的学科,对于光学器件和系统的设计、光学测量和测试、光学传感和图像处理等方面都有很大的意义和价值。
工程光学完整课件1上课讲义
本课程的基本情 况
专业基础课
总学时:64 其中:理论学时:48 实验学时:16
教材及参考书
教 材: 《工程光学》 郁道银 谈恒英 机械工业出版社 参考书:《应用光学》 胡玉禧 安连生 中国科技大学出版社
《应用光学》 王文生 华中科技大学出版社
考核方式
闭卷考试 总评成绩比例:卷面70% 实验20% 平时10%
天体
遥远的距离
观察者
光线
发光点向四周辐射光能量,在几何光学中将发 光点发出的光抽象为带有能量的线,它代表光的传 播方向。
光束
一个位于均匀介质中的发光点,它所发出的光 向四周传播,形成以发光点为球心的球面波。
某一时刻相位 相同的点构成的面
称为波面。
波面上某一点的法线就是这一点上光的传播
方向,波面上的法线束称为光束。
sin I sin I '
nab
n ab :介质 b 对介质 a 的相对折射率,
如果介质 a 为真空,则介质 b 对真空的折
射率也称为绝对折射率,用 n b 表示
也可表述为:
nb
c vb
C:在真空中光速, v b :在介质 b 中光速
两个介质的相对折射率可以用光在该介质中的速度表示
n ab
va vb
重点:几何光学基本定律
一、光的直线传播定律
在各向同性的均匀透明介质中,光线沿 直线传播。
二、光的独立传播定律
不同的光源发出的光线在空间某点相遇 时,彼此互不影响。在光线的相会点上,光 的强度是各光束的简单叠加,离开交会点后 ,各个光束按原方向传播。
三、折射和反射定律
光的折射和反射定律研究光传播到两 种均匀介质的分界面时的定律。
工程光学讲稿(偏振)汇编课件
偏振光路的搭建
通过光学元件的组合和调整,可以搭 建出各种偏振光路,如线偏振光路、 椭圆偏振光路等。
偏振光路的优化设计
光路优化原则
在偏振光路的优化设计中,需要 遵循能量守恒、干涉相长和干涉
相消等原则。
光路优化方法
可以采用遗传算法、模拟退火算法 等优化算法对偏振光路进行优化设 计。
光路优化实例
以某个具体的偏振光路为例,介绍 其优化设计过程和结果。
常用的偏振片有聚乙烯醇偏振片和聚甲基丙烯酸甲酯偏振 片,它们分别以聚乙烯醇薄膜和聚甲基丙烯酸甲酯薄膜为 基底。
波片
01
波片是一种特殊类型的偏振器 件,它能使入射的线偏振光产 生一定位相延迟,从而导致其 偏振状态发生变化。
02
波片的性能参数主要包括波长 范围、方位角范围和延迟精度 等。
03
常用的波片有石英波片和液晶 波片,其中石英波片具有温度 稳定性好、机械强度高、光学 质量优良等优点。
偏振分束器
1
偏振分束器是一种将入射的线偏振光分成两束或 多束不同偏振状态的线偏振光的器件。
2
常用的偏振分束器有格兰棱镜和尼科耳棱镜等, 它们分别利用了光的折射和反射原理。
3
偏振分束器的性能要求主要包括分束效率高、透 射光和反射光的偏振方向要相互垂直,并且要具 有良好的光学稳定性。
偏振合束器
偏振合束器是一种将两束或多束不同偏振状态的线偏振光合成为一束线偏振光的器 件。
偏振光在晶体中的传播特性
晶体对偏振光的折射
研究晶体对不同偏振状态的折射率变 化,了解晶体光学的基本原理。
晶体对偏振光的双折射
观察晶体对偏振光的双折射现象,了 解双折射的产生机理和影响。
05
偏振光学在工程中的应用
工程光学讲稿(平面)知识讲解
y= f 'tg2θ ≈ 2f 'θ 若平面镜转动是由测微杆引起得,设测杆到支点的距离微a,测杆的移动量 为 x, 则tgθ≈θ=x/a, 代入上式,得:y =(2f '/a)x =Kx
三、双平面镜成像
性质:在双平面镜系统中,出射光线和入射光线的夹角与入射角无关,只取
决于双面镜的夹角α。 N
β α
所以有
β=2 α
§3.2 平行平板
一、平行平板的成像特性
1、平行平板的定义:由二个互相平行的折射平面构成的光学元件。
r1 r2 透镜 平行平板 I2 I1' sIi1 n n sIi1 ' n n sIi2 n sIi2 'n
∴ I1 I2' ,或 U1 U2' 即:出射线与入射线始终平行。
工程光学讲稿(平面)
利用棱镜或平面镜的旋转,就可以 观察到四周的情况,如图中的周视瞄准 镜。 平面镜、棱镜系统主要作用有: ① 将共轴系统折叠以缩小仪器的体积和 减轻仪器的重量; ② 改变像的方向——起倒像使用; ③ 改变共轴系统中光轴的位置和方向; ④ 利用平面镜或棱镜的旋转,可连续改 变系统光轴的方向,以扩大观察范围。
分析: 平板测微器是根据平行平板使光线产生侧向位移这一特点而设计的。
在读数望远镜物镜后而设置一块平行平板。OA’为系统的光轴,当平行平 板垂直于光轴时,轴上物点经物镜所成的像落在A’点。在分划板上通常 它位于刻尺的两条刻线之间,如果要确定它位于一格的百分之几位置,则
可转动测微平板,使像点从A’移到某一点A”而与一条刻线重合由图可 见,平板转过的角度α就是光线在平板第一面的入射角i1。而A’A”就是 平板因倾斜而产生的侧向位移。当α很小时,根据公式
工程光学(1)_实验讲义
工程光学(1)_实验讲义本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March实验一光学实验主要仪器、光路调整与技巧1.引言不论光学系统如何复杂,精密,它们都是由一些通用性很强的光学元器件组成的,因此,掌握一些常用的光学元器件的结构,光学性能、特点和使用方法,对于安排实验光路系统时,正确的选择和使用光学元器件具有重要的作用。
2.实验目的1)掌握光学专业基本元件的功能;2)掌握基本光路调试技术,主要包括共轴调节和调平行光。
3.实验原理光学实验仪器概述:光学实验仪器主要包括:光源,光学元件,接收器等。
常用光源光源是光学实验中不可缺少的组成部分,对于不同的观测目的,常需选用合适的光源,如在干涉测量技术中一般应使用单色光源,而在白光干涉时又需用能谱连续的光源(白炽灯);在一些实验中,对光源尺寸大小还有点、线、面等方面的要求。
光学实验中常用的光源可分为以下几类:1)热辐射光源热辐射光源是利用电能将钨丝加热,使它在真空或惰性气体中达到发光的光源。
白炽灯属于热辐射光源,它的发光光谱是连续的,分布在红外光、可见光到紫外光范围内,其中红外成分居多,紫外成分很少,光谱成分和光强与钨丝温度有关。
热辐射光源包括以下几种:普通灯泡,汽车灯泡,卤钨灯。
2)热电极弧光放电型光源这类光源的电路基本上与普通荧光灯相同,必须通过镇流器接入220V点源,它是使电流通过气体而发光的光源。
实验中最常用的单色光源主要包括以下两种:纳光灯(主要谱线:、),汞灯(主要谱线:、、、、、、、)3)激光光源激光(Light Amplification by Stimulated Emission of Radiation,缩写:LASER),是指通过辐射的受激辐射而实现光放大,即受激辐射的光放大。
激光器作为一种新型光源,与普通光源有显著的差别。
它是利用受激辐射的原理和激光腔的滤波效应,使所发光束具有一系列新的特点。
工程光学讲稿(平面)(完整)课件
折射望远镜使用透镜作为主反射镜,能够观测可见光波段的天体。反射望远镜使用凹面反射镜作为主反射镜,能够观测红外线和射电波段的天体。射电望远镜则专门用于观测射电波段的天体。
01
02
03
04
总结词
摄影镜头是一种光学仪器,用于拍摄照片或录制视频。
总结词
摄影镜头的种类繁多,根据用途和功能可分为多种类型,如定焦镜头、变焦镜头、鱼眼镜头等。
光的衍射
平面镜与透镜
平面镜是反射面为平面的镜子,具有反射光线的能力,且入射角等于反射角。
用于日常生活、光学仪器和科学实验中,如化妆镜、眼镜、显微镜、望远镜等。
平面镜的用途
平面镜的性质
中间厚边缘薄的透镜,具有汇聚光线的能力,可以用于制作放大镜、显微镜、望远镜等。
凸透镜Βιβλιοθήκη 凹透镜透镜的焦距中间薄边缘厚的透镜,具有发散光线的能力,可以用于制作近视眼镜、散光眼镜等。
光学仪器在科研领域的应用也十分广泛,主要用于物理、化学、生物等学科的研究。例如,利用光谱仪研究物质的结构和性质,使用干涉仪测量微小距离和角度,以及通过光学仪器观测天体和微观粒子等。
科研中常用的光学仪器还包括分光仪、干涉仪、光谱分析仪等,这些仪器在推动学科发展和科技进步方面发挥着重要作用。
光的干涉与衍射实验
通过双缝干涉实验,观察光波的干涉现象,了解干涉的条件和特点。
双缝干涉实验是研究光波干涉现象的基础实验之一。在实验中,通过调整光源、双缝和屏幕的距离,观察到明暗相间的干涉条纹。通过测量干涉条纹的间距和双缝的间距,可以计算出光波的波长。
通过圆孔衍射实验,观察光波的衍射现象,了解衍射的条件和特点。
工程光学应用
光学仪器在工业中应用广泛,主要用于检测、测量和控制等方面。例如,利用光学显微镜对产品表面进行微观检测,使用激光测量仪对生产线上的产品进行高精度测量,以及通过光束控制系统实现自动化生产。
工程光学完整课件1
光学测量技 术的特点与 优势 光学 测量技术的
应用
光学测量技术的应 用
光学测量技 术在工业领
域的应用
输入你的正文,文 字是您思想提炼请 尽量言简意赅的阐
述观点
光学测量技 术在医疗领
域的应用
输入你的正文,文 字是您思想提炼请 尽量言简意赅的阐
述观点
光学测量技 术在军事领
域的应用
输入你的正文,文 字是您思想提炼请 尽量言简意赅的阐
实践环节的安排与要求
实验课程设置:包括实验项目、 实验内容、实验目的等
实验要求:实验前的准备、实验 过程中的注意事项、实验报告的 撰写等
添加标题
添加标题
添加标题
添加标题
实验时间安排:每周实验时间、 实验周期等
实践环节的考核方式:考核内容、 考核方式、评分标准等
YOUR LOGO
THANK YOU
实验设备:光学仪器、光 源、光电探测器等
实验步骤:搭建实验装置、 调整光学参数、记录实验 数据、分析实验结果
注意事项:遵守实验室规 定,注意安全操作,保护 光学仪器
实验设备与操作方法
实验设备介绍:包括光学实验箱、显微镜、望远镜等 操作方法演示:通过图文并茂的方式展示实验步骤和操作技巧 注意事项提醒:强调实验过程中的安全问题和注意事项 实验报告撰写:说明实验报告的撰写方法和要求
述观点
光学检测技术的种类与特点
干涉测量技术:利用光的干涉现象进行测量,具有高精度、高分辨率 和高灵敏度的特点。
衍射测量技术:利用光的衍射现象进行测量,具有测量范围广、测 量精度高和抗干扰能力强的特点。
光学显微技术:利用光学显微镜对微小物体进行观察和测量,具有直 观、快速和简便的特点。
工程光学讲稿(平面)
∆T = DG = DE sin( I1 − I1' ) =
d sin( I1 − I1' ) cos I1'
Q sin ( I1 − I1' ) = sin I1 cos I1' − cos I1 sin I1'
,
1 Q sin I1 = n sin I ⇒ sin I = sin I1 n d d ' ∴ ∆T = sin( I1 − I1 ) = (sin I1 cos I1' − cos I1 sin I1' ) cos I1' cos I1'
2、成象特性: 、成象特性: 1)光线经平行平板折射后光线方向不变; )光线经平行平板折射后光线方向不变; 2)平行平板不使物体放大或缩小, 其放大率 =1, 且象与物始终在同一侧; )平行平板不使物体放大或缩小 其放大率β= 且象与物始终在同一侧; 3)光线经平行平板后虽方向不变,但却要产生一定位移; )光线经平行平板后虽方向不变,但却要产生一定位移; 4)同心光束经平板后变为非同心光束(平行平板成像是不完善的), )同心光束经平板后变为非同心光束(平行平板成像是不完善的), 不完善程度也越大; 不完善程度也越大; 5)轴上点近轴光经平板成象是完善的。 )轴上点近轴光经平板成象是完善的。 越大, 越大,
即像与物相对于平面镜来讲 是对称的。 是对称的。 放大率公式: ② 放大率公式:
-l l’
这说明正立的像与物等距离的分布在镜面的二边,大小相等,虚实相反。 这说明正立的像与物等距离的分布在镜面的二边,大小相等,虚实相反。 因此,像与物完全对称于平面镜。 因此,像与物完全对称于平面镜。
3、镜像与一致像 、 ①所谓镜像是指若物为右手坐标,像为左手坐标,这种像叫为镜像。 所谓镜像是指若物为右手坐标,像为左手坐标,这种像叫为镜像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②入射角大于临界角
应用:光纤、反射棱镜等。 5、光路的可逆性: 光源S1发射的光线经B点折射向C。 若在C点置一光线,光线亦可由C点出 射经B点折射而射向A,即光线是可逆的。
S1
A
B
n
n
'
S2
C
9
例题:有一个等腰直角三棱镜,若使光线垂直于一直角面入射其内,并在
斜面上产生全反射。求该棱镜的折射率n。如果用n=1.5的玻璃做成同样的 形状三棱镜,且浸没于水中(n=1.33)。试问光线在进入棱镜后会发生什
sin I sin I ' n' n
I
I''
或
n sin I n ' sin I '
n
I'
在折射定律中,若令n’ = -n,则得到反射定律,因此 n' 可将反射定律看成是折射定律的一个特例。根据这一特点 合反射光线。
,在光线反射的情况下,只要令 n’ = -n,所有折射光线传播的计算均适
6
例题:一个圆柱形空筒高16cm,直径12cm。人眼若在离筒侧某处能见到筒 底侧的深度为9cm;当筒盛满液体时,则人眼在原处恰能看到筒侧底。求该 液体的折射率。 在ΔAOD中,根据几何关系有
20
三、近轴光线的光路计算
概念:近轴区、近轴光线 如果将入射光线限制在一个很小的区域内,使孔径角U很小时,I、I’、U’ 均很小,这样的区域称为近轴区,近轴区的光线称为近轴光线。由近轴区内的 I、I’、U和U’都很小,可用弧度代替。所有公式:
i i'
lr r n n' i
u
(1)
(2)
'
u' u i i i
)
以上公式被称为子午面光线光路计算公式。 说明:
(1)以上即为子午面内实际光线的光路计算公式,给出U、L,可算出U’、L’,
以A为顶点,2U为顶角的圆锥面光线均汇聚于A’点。 (2)由上面推导可知:L’= f(L,U)、U’= g(L,U),当L不变,只U变化时,L’也
变。说明“球差”的存在。
例:已知一折射球面其r=36.48mm、n=1、n’=1.5163轴上点的截距为-240mm 由它发出的一束同心光束,令U=-10 、 U=-20 、 U=-30 的光线,分别求它们经折 射球面后的光路。 解: U=-10 U=-20 U=-30 U’=1.5964150 U’=3.2913340 U’=5.0244840 L’=150.7065mm L’=147.3177mm L’=141.6813mm
'
) (
x x2 l2
) 0 x x2 l2
x x1 l1 x
sin i (
'
sin i )
'
n ( l 1 l 2 ) n (sin i sin i ) 0
只有当 i =i’ 时上式成立,则反射角等于入射角。证毕
13
§1.2
成像的基本概念与完善成像条件
么现象?
1)利用全反射定律可求临界角sin I m
n2 n1
I’ I1 1 I2
1 . 33 1 .5 0 . 887
分析:n2=1,若发生全反射,I1=Im=450
n1 1 sin 45
0
1 . 41
2)若棱镜浸入在水中时:sin I m Im=62.50
3) 由于光线在玻璃与水面的入射角I1=450小于临界角Im=62.50,所以不
(9)式表明了物、像位置关系。
22
AD AO 且 I 2 DOC 90 I 1 arctg ( n1 BC OC
0
A n2 =1
0
I2 O I1
P
AOD arctg (
) arctg (
9 12
) 36 . 86
0
9
12 D
n1
AOC 53 . 14 12 16 ) 36 . 86
光线的反射。在一定条件下,该界面可以将全部入射光线反射回原介质而无
折射光通过,这就是光的全反射现象。
n>n'
A
n P n' 0
I I'
Im 0 900 0 Q
8
光密介质:分界面两边折射率较高的介质 光疏介质:分界面两边折射率较低的介质 由上图可知当光从两个光滑分界面(n>n’)的A点以一定的入射角时,由折 射定律可知当入射角增大到一定程度时,在分界面可看到折射光线沿分界 面射出,此时的入射角为临界角 Im=acrsin(n’/n) 全反射条件: ①光线从光密介质进入光疏介质;
上篇
几何光学与成像理论
第一章 几何光学基本定律与成像概念
第一节 几何光学的基本定律
第二节 成像的基本概念与完善成像条件
第三节 光路计算与近轴光学系统 第四节 球面光学成像系统
1
第一章 几何光学基本定律与成像概念
§1.1
1、光波 (1)光是一种电磁波,其在空间的传播和在界面的行为遵从电磁波的一般 规律。
A z i 0 x P x2 -x1 i’ x B
P为光线的入射点(x,y,0)
由费马原理求光程的极值得:
AP nl 1 n PB nl y x
2
( x x1 ) ( x x2 )
2
y y
2
z1 1
2
n
2
2
z2 2
2
( nl 1 nl ( nl 1 nl
2
(4)单色光:具有单一波长的光。 (5)复色光:不同波长的单色光混合而成的光。 2、光线 (1)光源(发光体):能够辐射光能的物体。如日光灯、太阳、白炽灯、 碘钨灯、钠灯、激光器等。当光源的大小与它的作用距离相比可忽略时, 此光源可称为点光源或称为发光点。 (2)光线:由发光点发出的光抽象为许多携带能量并带有方向的几何线。 3、波面:由发光点发出的光波向四周传播时,在某一时刻其振动位相相同 的各点构成的曲面。 4、光束:与波面对应的法线束。 5、光波的分类:平面波、球面波(发散光波和汇聚光波)、任意曲面波
S2 若1=2、位相差不随时间变化, 且不是垂直相交此区内的光强分布将呈
现为相干分布。
5
3、反射定律和折射定律
反射定律: (1)入射光线、反射光线和分界面上入射点的法线三者在同一平面内
(2)入射角和反射角的绝对值相等而符号相反,即入射光线和反射光线
位于法线的两侧,即: I = - I" 折射定律: (1)入射光线、折射光线和分界面上入射点的法线三者在同一平面内。 (2)入射角的正弦与折射角的正弦之比和入射角的大小无关,只与两种 介质的折射率有关。折射定律可表示为:
表述三:物点及其像点之间任意两条光路的光程相等。
三、物(像)的虚实
实像:由实际光线相交形成。
虚像:由光线的延长线相交形成。
实物、实像
虚物、实像
实物、虚像
虚物、虚像 15
§1.3
光路计算与近轴光学系统
一、基本概念与符号规则
设在空间存在如下一个折射球面:
n
n
E
'
I
I
h
'
A
-U
o
φ
c
U'
A
'
r
L
L
'
16
非同心光束
发散光束
会聚光束 平行光束
3
二、几何光学的基本定律
1、光的直线传播定律 在各向同性的均匀介质中,光是沿直线传播的。
4
2、光的独立传播定律
从不同光源发出的光线,以不同的方向经过某点时,各光线独立传播
着,彼此互不影响。 S1 2
一般情况下,在交汇区总光 强是两束光单独存在时光强 之和。
I=I1+I2 1
r:折射球面曲率半径
o:顶点
L:物方截距 L':像方截距 u:物方孔径角 u':像方孔径角 符号规则: 光线方向自左向右 (1)沿轴线段:以顶点O为原点,光线到光轴交点或球心,顺光线为正,逆光线
为负。
(2)垂轴线端:光轴以上为正,光轴以下为负。 (3)光线与光轴夹角:由光轴转向光线锐角,顺时针为正,逆时针为负。 (4)光线与折射面法线的夹角:由光线经锐角转向法线,顺时针为正,逆时针 为负。 (5)光轴与法线的夹角:有光轴经锐角转向法线,顺时针为正逆时针为负。 (6)折射面间隔:d有前一面顶点到后一面顶点方向,顺光线方向为正,逆光线
n' ( 1 r 1 l' ) n( 1 r 1 l h r n' l' n l n ' n r (9) (8) ) Q (7)
(6)
n ' u ' nu ( n ' n )
(7)式中Q称为阿贝不变量,对于单个折射球面物空间与像空间的Q相等。 (8)式表明了物、像孔径角的关系。
14
二、完善成像条件
表述一:入射波面是球面波时,出射波面也是球面波。 表述二:入射是同心光束时,出射光也是同心光束。
n1A10 + n1001 + n20102 +…+ n’k0k0’ + n’k0’Ak
= n1A1E + n1EE1 + n2E1E2 +…+ n’kEkE’ + n’kE’A’k = C
0.05m 0.38 0.76 2.0 10 500
几何光学的基本定律
一、光波与光线
(m )
紫外
可见
近红外
中红外
远红外
红外
(2)可见光波长λ 为380nm—760nm。对于不同波长的光,人们感受到的 颜色不同。 (3)光在真空中的传播速度c为:2.99792458×108米/秒,在介质中的传 播速度小于c,且随波长的不同而不同。