热电阻测温特性实验(精)

合集下载

实验四 热电阻测温特性实验

实验四  热电阻测温特性实验

实验四热电阻测温特性实验(请先仔细阅读温控仪操作说明)一、实验目的:了解热电阻的测温原理与特性。

二、基本原理:热电阻用于测温时利用了导体电阻率随温度变化这一特性,对于热电阻要求其材料电阻温度系数大,稳定性好、电阻率高,电阻与温度之间最好有线性关系。

常用的有铂电阻和铜电阻,热电阻Rt与温度t的关系为:R t=R0(1+A t+B t2)本实验采用的是Pt100铂电阻,它的R0=100Ω,A t=3.9684×10-2/℃,B t=5.847×10-7/℃2,铂电阻采用三线连接法,其中一端接二根引线主要为了消除引线电阻对测量的影响。

三、仪器设备:K型热电偶、Pt100铂热电阻、温度控制仪、温度传感器实验模板。

四、实验步骤:图4-1 Pt100热电阻测温接线图1、按图4-1接线,将Pt100铂电阻的三根线分别接入温度实验模板上“Rt”输入端的a、b 点,用万用表欧姆档测量Pt100三根线,其中短接的二根线接b点,另一端接a点。

这样Pt100与R3、R1、Rw1、R4组成一直流电桥,它是一种单臂电桥。

Rw1滑动端与R6相接,Pt100的b点接R5。

2、按下模块上的电源按钮,将R5、R6端同时接地,接上电压表(2V档),调节Rw3,使V02=0V。

3、恢复图4-1连接,调节Rw1再次使V02=0V(此时电桥平衡,即桥路输出端b和RW1滑动端之间在室温下输出电压为零)。

4、将热电偶插到温控仪两个传感器插孔中任意一个插孔中,(K型、E型已装在一个护套内),K型热电偶的自由端接到温控仪面板上的EK端,用它作为标准传感器,配合温控仪用于设定温度,注意识别K型、E型引线标记及正极、负极不要接错。

5、将Pt100插入温度控制器的另一传感器插孔中,设定温控仪温度值为50℃,当温度稳定50℃时,记录下电压表读数,重新设定温度值为50℃+n·Δt,建议Δt=5℃,n=1……10,每隔1n读出数显表指示的电压值与温度表指示的温度值,并将结果填入下表4-1。

PT100温度测量试验

PT100温度测量试验

内燃机测试技术试验实验PT100热电阻温度测量试验实验学时:2实验类型:基础型实验对象:本科生一.实验目的:1.了解热电阻温度测量基本原理。

2.了解PT100热电阻温度特性。

3.掌握PT100热电阻恒流温度测量电路实现和关键参数计算。

二.实验原理及设备说明1.热电阻温度测量基本原理热电阻是中低温区最常用的一种温度检测器。

它的主要特点是测量精度高,性能稳定。

其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

金属热电阻的感温元件有石英套管十字骨架结构,麻花骨架结构得杆式结构等。

金属热电阻常用的感温材料种类较多,最常用的是铂丝。

工业测量用金属热电阻材料除铂丝外,还有铜、镍、铁、铁—镍、钨、银等。

薄膜热电阻是利用电子阴极溅射的方法制造,可实现工业化大批量生产。

其中骨架用陶瓷,引线采用铂钯合金。

热电阻材料热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。

热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。

金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即Rt=Rt0[1+α(t-t0)]式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。

半导体热敏电阻的阻值和温度关系为Rt=AeB/t式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。

相比较而言,热敏电阻的温度系数更大,常温下的电阻值更高(通常在数千欧以上),但互换性较差,非线性严重,测温范围只有-50~300℃左右,大量用于家电和汽车用温度检测和控制。

金属热电阻一般适用于-200~500℃范围内的温度测量,其特点是测量准确、稳定性好、性能可靠,在程控制中的应用极其广泛。

工业上常用金属热电阻从电阻随温度的变化来看,大部分金属导体都有这个性质,但并不是都能用作测温热电阻,作为热电阻的金属材料一般要求:尽可能大而且稳定的温度系数、电阻率要大(在同样灵敏度下减小传感器的尺寸)、在使用的温度范围内具有稳定的化学物理性能、材料的复制性好、电阻值随温度变化要有间值函数关系(最好呈线性关系)。

Pt100铂电阻测温特性实验.

Pt100铂电阻测温特性实验.

实验三十Pt100铂电阻测温特性实验一、实验目的:在实验二十九的基础上了解P t100热电阻—电压转换方法及P t100热电阻测温特性与应用。

二、基本原理:利用导体电阻随温度变化的特性,可以制成热电阻,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。

常用的热电阻有铂电阻(500℃以内)和铜电阻(150℃以内)。

铂电阻是将0.05~0.07mm的铂丝绕在线圈骨架上封装在玻璃或陶瓷内构成,图30—1是铂热电阻的结构。

在0~500℃以内,它的电阻R t与温度t的关系为:R t=R o(1+At+Bt2),式中: R o系温度为0℃时的电阻图30—1铂热电阻的结构值(本实验的铂电阻R o=100Ω)。

A=3.9684×10-3/℃,B=-5.847×10-7/℃2。

铂电阻一般是三线制,其中一端接一根引线另一端接二根引线,主要为远距离测量消除引线电阻对桥臂的影响(近距离可用二线制,导线电阻忽略不计)。

实际测量时将铂电阻随温度变化的阻值通过电桥转换成电压的变化量输出,再经放大器放大后直接用电压表显示,如图30—2所示。

图30—2热电阻信号转换原理图图中△V=V1-V2;V1=[R3/(R3+R t)]V c;V2=[R4/(R4+R1+R W1)]V c;-V2={[R3/(R3+R t)]-[R4/(R4+R1+R W1)]}V c;△V=V1所以Vo=K△V= K{[R3/(R3+R t)]-[R4/(R4+R1+R W1)]}V c。

式中R t随温度的变化而变化,其它参数都是常量,所以放大器的输出Vo与温度(R t)有一一对应关系,通过测量Vo可计算出R t:Rt=R3[K(R1+R W1)V c-(R4+R1+R W1)V o]/[KV c R4+(R4+R1+R W1)V o]。

P t100热电阻一般应用在冶金、化工行业及需要温度测量控制的设备上,适用于测量、控制<600℃的温度。

PT100铂热电阻测温实验

PT100铂热电阻测温实验

PT100铂热电阻测温实验PT100铂热电阻测温实验一、实验目的1.了解PT100铂热电阻的测温原理;2.掌握PT100铂热电阻的测温方法;3.学会使用数据采集仪进行温度测量。

二、实验原理PT100铂热电阻是一种利用铂金电阻随温度变化的特性来测量温度的传感器。

其基本原理是:在0℃时,PT100铂热电阻的阻值为100Ω,随着温度的升高,其阻值按一定规律增加。

通过测量PT100铂热电阻的阻值,可以推算出相应的温度值。

PT100铂热电阻的阻值与温度之间的关系可以用斯特曼方程表示:R(T) = R0(1 + AT + BT^2 + CT^3(1 - T0))其中,R(T)为温度T时的阻值,R0为0℃时的阻值,A、B、C为斯特曼系数,T0为参考温度(通常为0℃)。

在本实验中,我们只需要知道R0和A的值即可进行温度测量。

根据国际电工委员会(IEC)标准,PT100铂热电阻的R0为100Ω,A 为3.9083×10^-3℃。

三、实验步骤1.将PT100铂热电阻接入数据采集仪的输入通道;2.打开数据采集仪软件,设置采样率和采样时间;3.将数据采集仪与计算机连接,启动数据采集软件;4.将PT100铂热电阻放入恒温槽中,设置恒温槽的温度;5.等待恒温槽温度稳定后,记录数据采集仪显示的温度值;6.重复步骤4和5,改变恒温槽的温度,记录多个温度值;7.将实验数据整理成表格,进行分析和处理。

四、实验结果与分析实验数据如下表所示:根据实验数据,我们可以得出以下结论:1.PT100铂热电阻的测温精度较高,相对误差在±0.5%以内;2.随着温度的升高,PT100铂热电阻的阻值逐渐增大,与斯特曼方程的描述相符;3.数据采集仪能够准确地采集PT100铂热电阻的温度信号,并将其转换为数字量输出。

五、实验总结与体会通过本次实验,我们了解了PT100铂热电阻的测温原理和方法,并掌握了使用数据采集仪进行温度测量的技能。

热电阻实验报告

热电阻实验报告

现代测控系统集成设计报告——热电阻型测温系统的集成设计与实现姓名:赵明学号:3112079008班级:硕2022专业:测试计量技术与仪器报告日期:2012年12月23日目录设计要求 (1)一、系统总体框架设计 (2)二、系统的详细设计 (2)1、Pt100热电阻 (2)2、调理电路 (3)3、数据采集系统 (5)4、PC显示 (5)5、系统各环节参数设计 (5)6、各软件模块的设计 (6)(1)电压采集、电阻与温度转换 (6)(2)PT100热电阻一阶阶跃响应特性的数据采集与显示 (7)(3)一阶系统时间常数τ的测量 (8)(4)用数字滤波法对一阶系统频带进行扩展 (9)三、系统的测试 (11)1、测温仪的功能测试 (11)2、一阶阶跃响应及时间常数τ的测量 (12)3、用数字滤波器实现频带扩展 (13)四、实验中产生的误差的原因及解决方法 (15)1、测温仪的误差 (15)2、一阶系统阶跃响应曲线误差 (15)设计要求设计热电阻型测温系统(包括2部分:Pt100热电阻和测温仪)1.设计测温仪:要求:(1)与Pt100热电阻配用(用一电阻箱模拟热电阻的输出值);(2)测温仪的测温范围不小于0~200℃,有效分辨力为0.2℃(3)具有虚拟面板,其功能如下:输出显示类控件主显参量:被测温度值,最低有效位数为0.1℃副显参量:热电阻的电阻值、热电阻两端的电压值输入控制类控件按钮控件:信号采集停止2.组建测温系统:要求:(1)硬件设计:连接Pt100热电阻和测温仪构成测温系统(2)软件设计:计算该测温系统的时间常数τ值(3)具有虚拟面板,其功能如下:(在测温仪面板的基础上)输出显示类控件测温系统的时间常数τ值;波形显示该测温系统(一阶系统)的阶跃响应曲线 。

输入控制类控件按钮控件:按下此键,仪器开始对Pt100热电阻传感器R T 两端信号进行数据采集。

数字控件1:采样间隔设置数字控件2:“初始点数”,观察采样波形,输入波形正常后(即去掉畸形采样点)的起始点序数测温仪——与Pt100热电阻配用Pt100热电阻测温系统结构框图统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试一、系统总体框架设计一个完整测量系统由传感器、调理电路、A/D 转换和计算机组成,对于热电阻型测温系统来说,该系统由Pt100热电阻、调理电路、数据采集和计算机构成。

温度检测试验试验指导

温度检测试验试验指导

实验1 铂热电阻温度特性测试一、实验目的:了解铂热电阻的特性与应用。

二、实验仪器:智能调节仪、PT100(2只)、温度源、温度传感器实验模块。

三、实验原理:利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。

当温度变化时,感温元件的电阻值随温度而变化,这样就可将变化的电阻值通过测量电路转换电信号,即可得到被测温度。

四、实验内容与步骤1.学会用智能调节仪来控制温度:1)在控制台上的“智能调节仪”单元中“输入”选择“Pt100”,并按图1-1接线。

将“+24V输出”经智能调节仪“继电器输出”,接加热器风扇电源,打开调节仪电源。

图1-1 智能调节仪温度控制接线图2)按键,进入智能调节仪设置菜单,仪表靠上的窗口显示“”,靠下窗口显示待设置的设定值。

按“”可改变小数点位置,按或键可修改靠下窗口的设定值。

再按回到初始状态。

2.调节智能调节仪,将温度控制在500C,在另一个温度传感器插孔中插入另一只铂热电阻温度传感器PT100。

3.将±15V直流稳压电源接至温度传感器实验模块。

温度传感器实验模块的输出Uo2接实验台直流电压表。

4.将温度传感器模块上差动放大器的输入端Ui短接,调节电位器Rw4使直流电压表显示为零。

5按图2-2并将PT100的3根引线插入温度传感器实验模块中Rt两端(其中颜色相同的两个接线端是短路的)。

图2-2 铂热电阻测试5.拿掉短路线,将R6两端接到差动放大器的输入Ui,记下模块输出Uo2的电压值。

6.改变温度源的温度每隔50C记下Uo2的输出值。

直到温度升至1200C。

并将实验结果填入下表。

三、实验报告根据表1实验数据,作出U O2-T曲线,分析PT100的温度特性曲线,计算其非线性误差。

实验2 K型热电偶测温实验一、实验目的:了解K型热电偶的特性与应用二、实验仪器:智能调节仪、PT100、K型热电偶、温度源、温度传感器实验模块。

Cu50铜热电阻测温特性实验

Cu50铜热电阻测温特性实验

Cu50铜热电阻测温特性实验一、实验目的:了解铜电阻测温原理与应用。

二、基本原理:铜电阻测温原理与铂电阻一样,利用导体电阻随温度变化的特性。

常用铜电阻Cu50在-50~+150℃以内,电阻Rt与温度t的关系为: R t=Ro(1+αt) 式中:Ro系温度为0℃时的电阻值(Cu50在0℃时的电阻值为Ro=50Ω)。

α是电阻温度系数,α=4.25~4.28×10-3/℃。

铜电阻是用直径为0.1mm的绝缘铜丝绕在绝缘骨架上,再用树脂保护。

铜电阻的优点是线性好、价格低、α值大,但易氧化,氧化后线性度变差。

所以铜电阻检测较低的温。

铜电阻与铂电阻测温接线方法相同,一般也是三线制。

三、需用器件与单元:主机箱中的智能调节器单元、电压表、转速调节0~24V电源、±15V直流稳压电源、±2V~±10V(步进可调)直流稳压电源;温度源、P t100热电阻(温度控制传感器)、Cu50热电阻(实验传感器)、温度传感器实验模板;压力传感器实验模板(作1位数显万用表(自备)。

为直流mV信号发生器)、42四、实验步骤:将实验三十中的实验温度传感器P t100铂电阻换成Cu50铜电阻,在温度传感器实验模板的桥路电阻R1两端并联一根100Ω的专用连线,实验温度范围为室温~150℃。

具体实验接线、实验方法和步骤与实验三十相同(注意2点:1、实验温度传感器P t100铂电阻换成Cu50铜电阻;2、在温度传感器实验模板的桥路电阻R1两端并联一根100Ω的专用连线)。

将实验数据填写到表31。

表31 Cu50铜热电阻测温实验数据7、表31中的R t数据值根据V o、V c值计算:Rt=R3[K(R1+R W1)V c-(R4+R1+R W1)V o]/[KV c R4+(R4+R1+R W1)V o]。

式中:K=10;R3=5000Ω;R4=5000Ω;R1+R W1=50Ω;V c =4V;V o为测量值。

热电阻特性实验报告

热电阻特性实验报告

一、实验目的1. 了解热电阻的基本原理和测温原理。

2. 学习使用惠斯通电桥测量热电阻的电阻值。

3. 掌握热电阻的温度特性曲线测量方法。

4. 分析热电阻的温度系数及其影响因素。

二、实验原理热电阻是一种温度敏感元件,其电阻值随温度变化而变化。

根据温度系数的不同,热电阻可分为正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)。

本实验主要研究NTC热电阻的特性。

热电阻的电阻值与温度之间的关系可以用以下公式表示:\[ R(T) = R_0 \cdot e^{\beta \cdot (1/T - 1/T_0)} \]其中,\( R(T) \) 为温度为 \( T \) 时的电阻值,\( R_0 \) 为参考温度\( T_0 \) 时的电阻值,\( \beta \) 为温度系数。

实验中,我们通过改变环境温度,测量不同温度下的热电阻电阻值,并绘制温度-电阻曲线,从而分析热电阻的温度特性。

三、实验仪器与材料1. 热电阻(NTC)2. 惠斯通电桥3. 直流稳压电源4. 温度计5. 导线6. 数据采集器四、实验步骤1. 将热电阻接入惠斯通电桥的测量电路中。

2. 调节直流稳压电源,使电路中的电流稳定。

3. 读取温度计的温度值,并记录。

4. 读取电桥的输出电压值,并记录。

5. 根据输出电压值,计算热电阻的电阻值。

6. 改变环境温度,重复步骤3-5,得到一系列温度-电阻数据。

7. 绘制温度-电阻曲线。

五、实验结果与分析根据实验数据,绘制了温度-电阻曲线,如图1所示。

图1 温度-电阻曲线从图1可以看出,热电阻的电阻值随温度升高而降低,符合NTC热电阻的特性。

在实验温度范围内,热电阻的温度系数约为 \( \beta = -0.005 \)。

此外,我们还分析了以下影响因素:1. 温度范围:实验结果表明,在-20℃至80℃的温度范围内,热电阻的温度特性较为稳定。

2. 环境温度:环境温度的变化会影响热电阻的测量精度,因此在实验过程中应尽量保持环境温度稳定。

热敏电阻和热电偶的温度特性测量

热敏电阻和热电偶的温度特性测量

热敏电阻和热电偶的温度特性研究(FB203型多档恒流智能控温实验仪)热敏电阻是阻值对温度变化非常敏感的一种半导体电阻,它有负温度系数和正温度系数两种,负温度系数它的电阻率随着温度的升高而急剧下降(一般是按指数规律),而正温度系数电阻率随着温度的升高而急剧升高(一般是按指数规律),金属的电阻率则是随温度的升高而缓慢地上升。

热敏电阻对于温度的反应要比金属电阻灵敏得多,热敏电阻的体积也可以做得很小,用它来制成的半导体温度计,已广泛地使用在自动控制和科学仪器中,并在物理、化学和生物学研究等方面得到了广泛的应用。

【实验目的】1.研究热敏电阻、铜电阻;铂电阻、热电偶的温度特性。

2.掌握利用直流单臂电桥与控温实验仪测量热敏元件在不同温度下电阻值的方法。

【实验原理】温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。

常用的温度传感器的类型、测温范围和特点各不相同,本实验将通过测量几种常用的温度传感器的特征物理量随温度的变化,来了解这些温度传感器的工作原理。

1.热敏电阻温度特性原理:在一定的温度范围内,半导体的电阻率ρ和温度T 之间有如下关系:/1B TAe ρ= (1) 式中1A 和B 是与材料物理性质有关的常数,T 为绝对温度。

对于截面均匀的热敏电阻,其阻值T R 可用下式表示:T lR Sρ= (2) 式中T R 的单位为Ω,ρ的单位为cm Ω,l 为两电极间的距离,单位为cm ,S 为电阻的横截面积,单位为2cm 。

将(1)式代入(2)式,令1l A A S=,于是可得:/B TT R Ae = (3)对一定的电阻而言,A 和B 均为常数。

对(3)式两边取对数,则有:1l n l n T R B A T=+ (4)T R ln 与T1成线性关系,在实验中测得各个温度T 的T R 值后,即可通过作图求出B 和A 值,代入(3)式,即可得到T R 的表达式。

式中T R 为在温度)K (T 时的电阻值)(Ω,A 为在某温度时的电阻值)(Ω,B 为常数)K (,其值与半导体材料的成分和制造方法有关。

热电阻热电偶温度传感器校准实验

热电阻热电偶温度传感器校准实验

大学实验指导书课程名称:实验类型:实验名称:热电阻热电偶温度传感器校准实验学生:学号:专业:指导老师:实验日期:年月日一、实验目的1.了解热电阻和热电偶温度计的测温原理2.学会热电偶温度计的制作与校正方法3.了解二线制、三线制和四线制热电阻温度测量的原理4.掌握电位差计的原理和使用方法5.了解数据自动采集的原理6.应用误差分析理论于测温结果分析。

二、实验原理1.热电阻(1) 热电阻原理热电阻是中低温区最常用的一种温度检测器。

它的主要特点是测量精度高,性能稳定。

其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。

热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。

热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。

常用铂电阻和铜电阻,铂电阻在0—630.74℃以,电阻Rt与温度t的关系为:Rt=R0(1+At+Bt2)R0系温度为0℃时的电阻,铂电阻部引线方式有两线制,三线制,和四线制三种,两线制中引线电阻对测量的影响最大,用于测温精度不高的场合,三线制可以减小热电阻与测量仪之间连接导线的电阻因环境温度变化所引起的测量误差。

四线制可以完全消除引线电阻对测量的影响,用与高精度温度检测。

本实验是三线制连接,其中一端接二根引线主要是消除引线电阻对测量的影响。

(2) 热电阻的校验热电阻的校验一般在实验室中进行,除标准铂电阻温度计需要作三定点,(水三相点,水沸点和锌凝固点)校验外,实验室和工业用的铂或铜电阻温度计的校验方法有采用比较法两种校验方法。

比较法是将标准水银温度计或标准铂电阻温度计与被校电阻温度计一起插入恒温水浴中,在需要的或规定的几个稳定温度下读取标准温度计和被校验温度计的示值并进行比较,其偏差不超过最大允许偏差。

在校验时使用的恒温器有冰点槽,恒温水槽和恒温油槽,根据所校验的温度围选取恒温器。

比较法虽然可用调整恒温器温度的方法对温度计刻度值逐个进行比较校验,但所用的恒温器规格多,一般实验室多不具备。

Pt 热电阻测温实验报告

Pt 热电阻测温实验报告

������������
=
√∑(������������ − ������̅)2 ������ − 1
由表 1 实验数据可计算出各温度下六次测量数据的平均值������̅,再根据标准偏
差公式计算出 S,即可求得粗大误差范围,如表 2 所示
表 2 标准偏差及粗大误差范围
T
50
55
60
65
70
75
80
8.48 2.4033%
Δ6 -0.1306 -0.1124 0.1057 0.0938 0.0619 -0.2200 0.0882 -0.1037 -0.0556 -0.2675 -0.2675
8.25 -3.2424%
求六次测量线性度的平均值最终可得到该传感器的线性度δL=3.6567%
4、静态灵敏度
表 5 正返程差与迟滞误差
温度
△1
△2
△3
50
-0.11
-0.21
-0.04
55
0.03
-0.09
0.15
60
0.14
-0.21
0.05
65
0.11
-0.06
0.11
70
0.18
0.19
0.11
75
0.38
-0.54
0.39
80
0.2
-0.21
0.05
85
0.19
-0.19
0.19
90
-0.18
0.02
量程������������������的百分比来表示重复性指标,即
δR
=
±
∆������������������ ������������������

热电阻测温特性实验及其数据分析

热电阻测温特性实验及其数据分析

热电阻测温特性实验及其数据分析热电阻是一种常用的测量温度的电阻元件,它的电阻值随着温度的变化而变化。

在这个实验中,我们将使用一个热电阻传感器来测量不同温度下的电阻值,并通过数据分析来研究它的测温特性。

一、实验原理热电阻的电阻值随温度的变化可以用以下公式表示:R = R0(1 + αΔT)其中,R0是热电阻在参考温度下的电阻值,α是热电阻的温度系数,ΔT是热电阻测量温度与参考温度之间的温度差。

1. 将热电阻传感器放置在测试温度下,等待传感器温度稳定。

2. 记录热电阻传感器的电阻值和温度。

3. 重复第1和第2步,直到测量到足够多的数据点。

4. 通过上述公式计算热电阻的温度系数和参考温度。

二、实验步骤材料:热电阻传感器、实验仪器(示波器、数字万用表等)、恒温水浴装置、温度计、冰水等。

三、数据分析通过实验数据可以得到不同温度下的热电阻的电阻值,因此可以计算出热电阻的温度系数和参考温度。

1. 计算温度系数以热电阻在冰水中的数据为例,假设R0为100Ω,测量得到的电阻值和温度如下:温度(℃)电阻(Ω)0 95.60 95.80 95.60 95.70 95.60 95.70 95.60 95.70 95.60 95.8计算得到平均电阻值为95.69Ω,温度差ΔT为0℃,所以:α = (95.69 - 100)/100×0 = -0.031以实验数据为例,热电阻在不同温度下的电阻-温度关系如下:通过对上述数据进行拟合,可以得到以下曲线:根据以上曲线,可以得到热电阻的参考温度为21.7℃。

四、实验结论1. 热电阻的电阻值随温度的变化呈线性关系,可以通过计算温度系数来确定它的线性关系。

3. 热电阻的温度系数和参考温度对测量温度的准确性有一定影响,需要根据实际应用场景来确定合适的参考温度和温度系数。

Pt100热电阻测温实验报告

Pt100热电阻测温实验报告

的斜率代替,因此可得
5、迟滞误差
8.6675 − 0.2806 K = 95 − 50 = 0.186376 mv/℃
迟滞指正反行程中输出—输入特性曲线的不重合程度,用最大输出差值
∆max 与满量程输出������������������的百分比来表示,即
δH
=
±
1 2
·
∆������������������ ������������������
60
60
60
60
∑ ������������ = 4350 , ∑ ������������ = 268.44 , ∑ ������������������������ = 21768.3 , ∑ ������������2 = 54625
������=1
������=1
������=1
������=1
所示。
图 1 Pt100 测温模块输出-输入校准曲线
电压/mv
9.00
8.50
8.00
7.50
7.00
6.50
6.00
5.50
5.00
4.50
4.00
3.50
3.00
2.50
2.00
1.50
1.00
0.50
0.00
50
55
60
1正行程
1反行程
65
70
75
80
85
温度/℃
2正行程
2反行程
3正行程
90
95
0.08
95
0.08
0.18
0.19
△max
0.38
-0.54
0.39

热电阻测温特性实验及其数据分析

热电阻测温特性实验及其数据分析

热电阻测温特性实验及其数据分析热电阻测温特性实验是研究热电阻温度计的实验之一,它主要探究热电阻的电阻值与温度之间的关系。

在这个实验中,我们通常会使用热电阻温度计来测量不同温度下的电阻值,并通过对这些数据的分析,得出热电阻的测温特性。

一、实验准备在实验前,我们需要准备以下设备和材料:1.热电阻温度计2.恒温水槽3.数字万用表4.电脑或数据采集器5.实验数据处理软件二、实验步骤1.将热电阻温度计置于恒温水槽中,确保水槽温度稳定。

2.将数字万用表与热电阻温度计连接,测量其在不同温度下的电阻值。

3.将测量数据记录在实验记录表中。

4.通过电脑或数据采集器将测量数据传输到实验数据处理软件中。

5.利用实验数据处理软件对数据进行处理和分析。

三、数据分析在数据分析阶段,我们需要对实验中得到的电阻值和温度之间的关系进行拟合,得出热电阻的测温特性。

以下是一种常见的拟合方法:1.将实验数据以温度为横坐标,电阻值为纵坐标绘制成散点图。

2.对散点图进行线性拟合,得出电阻值与温度之间的线性关系式。

如果拟合结果不符合线性关系,可以采用多项式拟合或者指数拟合等方法。

3.根据拟合结果计算出测温系数和测温误差等参数。

测温系数是指温度每升高1℃,热电阻电阻值的增加量,测温误差是指实际温度与测量温度之间的最大偏差。

4.对实验结果进行分析和讨论。

如果测温误差在可接受范围内,则认为该热电阻温度计可以用于实际测温;如果测温误差较大,则需要对实验过程进行检查和分析,找出误差产生的原因并重新进行实验。

四、结论总结通过热电阻测温特性实验及其数据分析,我们可以得出以下结论:1.热电阻温度计的电阻值与温度之间存在一定的关系,可以通过实验得出其测温特性。

2.在实验过程中要保证恒温水槽的温度稳定,避免温度波动对测量结果的影响。

3.通过线性拟合、多项式拟合或指数拟合等方法可以得出热电阻的测温特性方程,并计算出测温系数和测温误差等参数。

4.根据分析结果可以判断该热电阻温度计是否适用于实际测温,并对测温误差较大的情况进行分析和讨论。

热电阻测温特性实验及其数据分析

热电阻测温特性实验及其数据分析

热电阻测温特性实验及其数据分析1.实验目的热电阻是一种常见的温度传感器,本实验旨在通过实验测量研究热电阻的温度特性,并分析数据得出相关的线性关系。

2.实验原理热电阻的温度特性是指其电阻值随温度的变化关系。

一般情况下,热电阻的电阻值随温度的升高而增加,这种关系可以通过线性化公式R=R0(1+α(T-T0))来描述,其中R为热电阻的电阻值,R0为参考温度T0下的电阻值,T为待测温度,α为温度系数。

3.实验设备和材料1)热电阻传感器2)温度控制器3)数显万用表4)电源5)连接电缆4.实验步骤1)将热电阻传感器连接到温度控制器,确保传感器固定在恒温槽内。

2)将温度控制器与电源连接,设置控制器的温度范围。

3)打开电源,设置温度控制器达到稳定状态。

4)使用数显万用表测量热电阻的电阻值,并记录下相应的温度值。

5)调节温度控制器,分别取多组数据,包括不同温度下的电阻值。

5.数据分析1)将实验数据记录在数据表格中,并绘制电阻值-温度的散点图。

2)根据散点图,使用线性回归分析方法,拟合出最佳的线性关系曲线,得到回归方程。

3)根据回归方程,计算出热电阻的温度系数α。

4)将拟合曲线与实验数据进行比较,评估拟合程度的好坏。

5)根据实验和分析结果,分析热电阻的温度特性,探讨实验误差和改进方向。

6.实验注意事项1)在进行实验时,注意安全操作,避免电源和设备的故障。

2)保持实验环境的稳定,减小外界温度对实验结果的影响。

3)实验过程中要仔细操作,减小仪器误差,确保数据的准确性。

4)实验结束后,注意清理和归位实验设备,保持实验室的整洁。

通过以上实验步骤和数据分析,我们可以得到热电阻的温度特性,并通过线性回归分析得到热电阻的温度系数。

这些结果对于温度测量和控制方面有着重要的应用价值。

同时,我们也可以通过分析实验误差和改进方向,提高实验的准确性和可靠性。

金属热电阻特性实验报告

金属热电阻特性实验报告

金属热电阻特性实验报告本实验旨在研究金属热电阻的特性。

金属热电阻是一种利用金属材料热电效应的传感器。

它通过金属导体材料引起的电动势变化来检测温度。

通过本实验了解金属热电阻的基本原理和工作特性,为热电阻在实际应用中的使用提供参考。

实验装置本实验中使用的装置包括:一个温度控制器,一个铂电阻,一个测温仪。

实验步骤1. 将铂电阻连接在测温仪上,打开电源;2. 调整控制器的温度,待温度达到设定值时记录测温仪的读数;3. 将温度控制器的温度逐步升高,记录铂电阻的电阻值;4. 分别将温度控制器的温度降至1℃时,记录铂电阻的电阻值;5. 对铂电阻的电阻值与温度进行相关分析,并制作回归分析曲线。

实验数据和分析实验数据如下:控制器温度(℃)铂电阻电阻值(Ω)50 3.82100 7.48150 11.20200 14.85250 18.50300 22.23将以上数据作图,并通过回归分析得到三个参数:a、b、r2,分别为回归方程的截距、斜率和相关系数。

回归方程为:y = a + bx。

图1:铂电阻电阻值与控制器温度关系图通过回归方程,我们可以得到:a = -0.239b = 0.0743r2 = 0.9999从图1的回归分析曲线可以看出,铂电阻电阻值与控制器温度呈正比关系。

在温度从50℃增加到300℃的过程中,铂电阻的电阻值从3.82Ω增加到22.23Ω。

结论本实验结果表明,金属热电阻的电阻值与温度呈线性关系。

并且,通过回归分析得到的相关系数r2非常接近1,说明回归方程可以很好地描述两者之间的关系。

综上所述,本实验成功研究了金属热电阻的特性,为热电阻在实际应用中的使用提供了可靠的参考。

Pt100铂电阻测温特性实验.

Pt100铂电阻测温特性实验.

实验三十Pt100铂电阻测温特性实验一、实验目的:在实验二十九的基础上了解P t100热电阻—电压转换方法及P t100热电阻测温特性与应用。

二、基本原理:利用导体电阻随温度变化的特性,可以制成热电阻,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。

常用的热电阻有铂电阻(500℃以内)和铜电阻(150℃以内)。

铂电阻是将0.05~0.07mm的铂丝绕在线圈骨架上封装在玻璃或陶瓷内构成,图30—1是铂热电阻的结构。

在0~500℃以内,它的电阻R t与温度t的关系为:R t=R o(1+At+Bt2),式中: R o系温度为0℃时的电阻图30—1铂热电阻的结构值(本实验的铂电阻R o=100Ω)。

A=3.9684×10-3/℃,B=-5.847×10-7/℃2。

铂电阻一般是三线制,其中一端接一根引线另一端接二根引线,主要为远距离测量消除引线电阻对桥臂的影响(近距离可用二线制,导线电阻忽略不计)。

实际测量时将铂电阻随温度变化的阻值通过电桥转换成电压的变化量输出,再经放大器放大后直接用电压表显示,如图30—2所示。

图30—2热电阻信号转换原理图图中△V=V1-V2;V1=[R3/(R3+R t)]V c;V2=[R4/(R4+R1+R W1)]V c;-V2={[R3/(R3+R t)]-[R4/(R4+R1+R W1)]}V c;△V=V1所以Vo=K△V= K{[R3/(R3+R t)]-[R4/(R4+R1+R W1)]}V c。

式中R t随温度的变化而变化,其它参数都是常量,所以放大器的输出Vo与温度(R t)有一一对应关系,通过测量Vo可计算出R t:Rt=R3[K(R1+R W1)V c-(R4+R1+R W1)V o]/[KV c R4+(R4+R1+R W1)V o]。

P t100热电阻一般应用在冶金、化工行业及需要温度测量控制的设备上,适用于测量、控制<600℃的温度。

热电阻测温实验报告

热电阻测温实验报告

热电阻测温实验报告热电阻测温实验报告引言:温度是一个在日常生活和科学研究中非常重要的物理量。

准确测量温度对于工业生产、医学诊断、环境监测等方面都至关重要。

在这个实验中,我们将使用热电阻来测量温度,并研究其原理和应用。

实验目的:1. 了解热电阻的基本原理和工作原理;2. 掌握使用热电阻测温的方法和技巧;3. 研究热电阻的特性曲线,探索其在不同温度下的响应。

实验器材和方法:1. 实验器材:热电阻、温度控制装置、数字温度计、电压表、电流表、电源等;2. 实验方法:a. 将热电阻连接到电路中,确保电路连接正确;b. 设置温度控制装置的温度,并等待温度稳定;c. 使用数字温度计测量温度,同时记录热电阻的电阻值;d. 改变温度控制装置的温度,重复步骤c,记录多组数据;e. 根据测得的数据,绘制热电阻的特性曲线。

实验结果与分析:通过实验,我们得到了一组热电阻在不同温度下的电阻值数据,并绘制成特性曲线。

从曲线上可以看出,热电阻的电阻值随着温度的升高而增加,呈现出一定的线性关系。

这是因为热电阻的电阻值与其材料的电阻温度系数有关,随着温度的升高,材料的电阻温度系数导致电阻值增加。

根据测得的数据,我们还可以计算出热电阻的温度系数。

通过选择两个温度点,计算出其对应的电阻值和温度差,并代入公式中,可以得到热电阻的温度系数。

这个系数可以用来校正热电阻的测温误差,提高测温的准确性。

除了测量温度,热电阻还可以用于温度控制。

通过将热电阻连接到温度控制装置中,可以实现对温度的精确控制。

当温度超过设定值时,热电阻的电阻值会发生变化,从而改变电路中的电流和电压,进而控制温度的升降。

这种温度控制方法在实际应用中具有广泛的应用前景。

实验结论:通过本次实验,我们深入了解了热电阻的原理和应用。

热电阻可以通过测量其电阻值来间接测量温度,具有简单、精确、稳定的特点。

热电阻的特性曲线可以帮助我们了解其响应特性和温度系数。

此外,热电阻还可以用于温度控制,具有广泛的应用前景。

热电阻测温特性实验(精)

热电阻测温特性实验(精)

热电阻测温特性实验一、实验目的:了解热电阻的特性与应用。

二、基本原理:利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。

常用铂电阻和铜电阻在0-630.74℃以内,电阻Rt与温度t的关系为:R t=R0(1+A t+B t2)R0系温度为0℃时的电阻。

本实验R0=100℃,A t=3.9684×10-2/℃,B t=-5.847×10-7/℃2,铂电阻现是三线连接,其中一端接二根引线主要为消除引线电阻对测量的影响。

三、需用器件与单元:加热源、K型热电偶(红+,黑-)、P t100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表。

四、实验步骤:1、注意:首先根据实验台型号,仔细阅读“温控仪表操作说”,学会基本参数设定。

2、将热电偶插入台面三源板加热源的一个传感器安置孔中。

将K型热电偶自由端引线插入主控面板上的热电偶EK插孔中,红线为正极,黑色为负极,注意热电偶护套中已安置了二支热电偶,K型和E型,它们热电势值不同,从热电偶分度表中可以判别K型和E型(E型热电势大)热电偶。

E型(蓝+,绿-);k型(红+,黑-)3、将加热器的220V电源插头插入主控箱面板上的220V控制电源插座上。

4、将主控箱的风扇源(24V)与三源板的冷风扇对应相连,电机转速电压旋至最大。

5、将P t100铂电阻三根线引入“R t”输入的a、b上:用万用表欧姆档测出P t100三根线中其中短接的二根线(蓝,黑)接b端。

这样R t与R3、R1、R w1、R4组成直流电桥,是一种单臂电桥工作形式。

R w1中心活动点与R6相接,见图11-5。

图11-5 热电阻测温特性实验3、在端点a与地之间加直流源2V,合上主控箱电源开关,调R w1使电桥平衡,即桥路输出端b和中心活动点之间在室温下输出为零。

4、加±15V模块电源,调R w3使V02=0,接上数显单元,拨2V电压显示档,使数显为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热电阻测温特性实验
一、实验目的:了解热电阻的特性与应用。

二、基本原理:利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。

常用铂电阻和铜电阻在0-630.74℃以内,电阻Rt与温度t的关系为:
R t=R0(1+A t+B t2)
R0系温度为0℃时的电阻。

本实验R0=100℃,A t=3.9684×10-2/℃,B t=-5.847
×10-7/℃2,铂电阻现是三线连接,其中一端接二根引线主要为消除引线电阻对
测量的影响。

三、需用器件与单元:加热源、K型热电偶(红+,黑-)、P t100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表。

四、实验步骤:
1、注意:首先根据实验台型号,仔细阅读“温控仪表操作说”,学会基本参
数设定。

2、将热电偶插入台面三源板加热源的一个传感器安置孔中。

将K型热电偶自由端引线插入主控面板上的热电偶EK插孔中,红线为正极,黑色为负极,注意热电偶护套中已安置了二支热电偶,K型和E型,它们热电势值不同,从热电偶分度表中可以判别K型和E型(E型热电势大)热电偶。

E型(蓝+,绿-);k型(红+,黑-)
3、将加热器的220V电源插头插入主控箱面板上的220V控制电源插座上。

4、将主控箱的风扇源(24V)与三源板的冷风扇对应相连,电机转速电压旋至最大。

5、将P t100铂电阻三根线引入“R t”输入的a、b上:用万用表欧姆档测出
P t100三根线中其中短接的二根线(蓝,黑)接b端。

这样R t与R3、R1、R w1、
R4组成直流电桥,是一种单臂电桥工作形式。

R w1中心活动点与R6相接,见图
11-5。

图11-5 热电阻测温特性实验
3、在端点a与地之间加直流源2V,合上主控箱电源开关,调R w1使电桥平衡,即桥路输出端b和中心活动点之间在室温下输出为零。

4、加±15V模块电源,调R w3使V02=0,接上数显单元,拨2V电压显示档,使数显为零。

5、设定温度值50℃将PT100探头插入加热源另一个插孔中开启加热开关,待温度控制在50℃,时记录下电压表读数值,重新设定温度值为50℃+n·Δt,建议Δt=5℃,n=1……10,每隔1n读出数显表输出电压与温度值,将结果填入下表11-2。

6、根据表11-2值计算其非线性误差。

五、思考题:
如何根据测温范围和精度要求选用热电阻?。

相关文档
最新文档