化工原理干燥

合集下载

化工原理(下)干燥

化工原理(下)干燥


t↑→PS↑→φ↓,但H不变 (在没达到饱和之前无水凝出) 所以空气预热可提高载湿能力.

计算: 空气向纱布表面的传热速率为:

湿纱布中水向空气的传质速率为 :

因湿球温度处的热量达平衡状态: 空气向湿纱布表面的传热速率 等于水分汽化所需的热量,即:


而当
P=101.33 kPa t≥100℃时 Ps≥P φ= Pw/P ,Pw= φP ∴ H = 0.622 Pw/(P-Pw) = 0.622 φ/(1-φ)
此时φ只取决于 与温度无关,
H,
此时φ值均等于t=100℃时
的φ值,所以t>100℃后
的φ线⊥向上,与H线平行。



∵ 30℃时,PS = 4.25 kpa ∴ HS = 0.622 pS /(P - pS) = 0.622×4.25 /(101.33-4.25) = 0.0272 kg/kg φ = pw /pS = 2.33 / 4.25 = 0.548


(2)50℃时,PS = 12.33 kpa H不变 φ= pw /pS = 2.33 / 12.33 = 0.189 Q = IH50℃ - IH30℃ =[( 1.01+1.88H ) t50+ r0H ] - [(1.01+1.88H) t30+ r0H ]
Байду номын сангаас


3、湿空气在温度308K和总压 1.52Mpa 下,已知其湿度H为 0.0023Kg水/Kg绝干空气, 则其比容υH应为多少? 解: υH = (0.772+1.244H) ×(T/273)(1.013×105/P)

化工原理下干燥-1

化工原理下干燥-1

r
t t as ( H H )
as
c
as
H
tW
t

kH rW h
(HW
H)
(1)共同点:
① 湿球温度和绝热饱和温度都不是湿气体本身的温度, 但都和湿气体的温度和湿度有关,都表达了气体入口 状态已确定时与之接触的液体温度的变化极限。
② 对于空气和水的系统,两者在数值上近似相等。
空气和水的系统,
湿物料中的水分的质量 X 湿物料绝干物料的质量
换算关系
X w 1 w
w X 1 X
kg/kg干物料
9.3.2 水分在气、固之间的平衡及干燥平衡曲线
温度一定,对于一定的湿物料,长时间接触湿空气,达平 衡状态时:
平衡蒸气压:平衡状态下湿物料表面的蒸气压。 平衡含水量:平衡状态下物料的含水量。
④ 绝热饱和(冷却)线(等湿球温度线)
H as
H


c H
t t r
as
as
示意图
⑤ 湿比热容线
c c c H 1.011.88H
H
a
V
示意图
⑥ 比体积线
干空气比体积线 0.773 273 t
a
273
饱和湿比体积线 (0.773 1.244H ) 273 t
▲ 恒定干燥条件 空气的状态恒定及与湿物料的接触状态不变。 少量湿物料与大量湿空气相接触。 恒定干燥条件下的干燥过程一般是间歇操作过程
▲ 干燥曲线及干燥速率曲线 干燥曲线: X ~ τ 关系。 干燥速率曲线: R ~ X 之间的关系
注意:干燥曲线或干燥速率曲线是在恒定的空气条件下 获得的,对指定的物料,空气的温度、湿度不同,速率曲线的

化工原理干燥实验

化工原理干燥实验

化工原理干燥实验化工原理中,干燥是一项重要的工艺过程,在化工生产中具有广泛的应用。

干燥是指将物料中的水分蒸发或者挥发出去的过程,以达到降低物料含水量的目的。

干燥实验是化工原理课程中的重要实践环节,通过干燥实验,可以了解不同干燥方法的原理和特点,掌握干燥过程中的关键参数及其影响规律,为工业生产中的干燥操作提供理论依据和实践指导。

一、实验目的。

本次干燥实验的目的是通过对不同物料进行干燥实验,掌握不同干燥方法的原理和特点,了解干燥过程中的关键参数及其影响规律,提高学生对化工原理的理论认识和实践操作能力。

二、实验原理。

干燥是通过热量传递,使物料中的水分蒸发或者挥发出去的过程。

常见的干燥方法包括自然风干、日晒干、空气干燥、真空干燥、喷雾干燥等。

不同的干燥方法适用于不同的物料和工艺要求,具有各自的特点和适用范围。

三、实验步骤。

1. 准备不同物料样品,如粉状物料、颗粒状物料、纤维状物料等。

2. 分别采用自然风干、日晒干、空气干燥、真空干燥、喷雾干燥等不同干燥方法进行实验,记录每种干燥方法的操作步骤和关键参数。

3. 观察并记录不同干燥方法下物料的干燥效果,包括干燥时间、干燥后的含水量、物料的外观和质地等。

4. 分析比较各种干燥方法的优缺点,总结不同干燥方法适用的物料范围和工艺要求。

四、实验数据记录与分析。

在实验中,我们记录了不同干燥方法下物料的干燥效果数据,并进行了分析比较。

通过实验数据的记录与分析,我们可以得出不同干燥方法的优缺点,了解不同干燥方法适用的物料范围和工艺要求,为工业生产中的干燥操作提供理论依据和实践指导。

五、实验结论。

通过本次干燥实验,我们掌握了不同干燥方法的原理和特点,了解了干燥过程中的关键参数及其影响规律。

同时,我们也对不同干燥方法的优缺点有了更深入的理解,可以根据物料的特性和工艺要求选择合适的干燥方法。

这对于化工生产中的干燥操作具有重要的指导意义。

六、实验注意事项。

1. 在进行干燥实验时,应严格按照操作规程进行,注意安全防护。

化工原理干燥概念的理解

化工原理干燥概念的理解

化工原理干燥概念的理解
干燥是将湿物质中的水分去除,使其达到一定的干燥程度的过程。

化工原理中的干燥通常通过热风、真空、压缩空气等方式进行。

在干燥过程中,湿物质中的水分会被蒸发并转化为水蒸气,然后通过不同的方式将水蒸气从湿物质中分离出来。

干燥的目的是降低湿物质的水分含量,可以提高其质量稳定性、延长保存期限、改善物质的加工性能等。

干燥的方式可以根据具体的工艺要求和物质特性来选择。

常见的干燥方式包括:
1. 热风干燥:通过提供热风,使湿物质中的水分蒸发,然后将水蒸气带走。

热风干燥常用于湿物质的表面干燥,如烘干机、烘箱等设备。

2. 真空干燥:在低压环境下进行干燥,可以降低水分的沸点,快速将水分转化为水蒸气并抽走。

真空干燥适用于对热敏物质的干燥,如药品、食品等。

3. 压缩空气干燥:通过经过冷凝和膨胀等处理,使湿空气中的水分冷凝成水,并将其分离出来。

压缩空气干燥广泛应用于工业生产中对空气质量的要求,如气体净化、压缩空气干燥等。

化工干燥过程中的关键参数包括干燥温度、湿物质的水分含量和湿物质的性质等。

不同的物质要求不同的干燥方式和工艺参数,以达到最佳的干燥效果。

(整理)化工原理—干燥.

(整理)化工原理—干燥.

第九章干燥本章学习要求1.熟练掌握的内容湿空气的性质及其计算;湿空气的湿度图及其应用;连续干燥过程的物料衡算与热量衡算;恒定干燥条件下的干燥速率与干燥时间计算。

2.理解的内容湿物料中水分的存在形态及其;水分在气-固两相间的平衡关系;干燥器的热效率;各种干燥方法的特点;对干燥器的基本要求。

3.了解的内容常用干燥器的主要结构特点与性能;干燥器的选用。

* * * * * * * * * * * *§9.1 概述干燥是利用热能除去固体物料中湿分(水分或其它液体)的单元操作。

在化工、食品、制药、纺织、采矿、农产品加工等行业,常常需要将湿固体物料中的湿分除去,以便于运输、贮藏或达到生产规定的含湿率要求。

例如,聚氯乙烯的含水量须低于0.2%,否则在以后的成形加工中会产生气泡,影响塑料制品的品质;药品的含水量太高会影响保质期等。

因为干燥是利用热能去湿的操作,能量消耗较多,所以工业生产中湿物料一般都采用先沉降、过滤或离心分离等机械方法去湿,然后再用干燥法去湿而制得合格的产品。

一、固体物料的去湿方法除湿的方法很多,化工生产中常用的方法有:1.机械分离法。

即通过压榨、过滤和离心分离等方法去湿。

耗能较少、较为经济,但除湿不完全。

2.吸附脱水法。

即用干燥剂(如无水氯化钙、硅胶)等吸去湿物料中所含的水分,该方法只能除去少量水分,适用于实验室使用。

3.干燥法。

即利用热能使湿物料中的湿分气化而去湿的方法。

该方法能除去湿物料中的大部分湿分,除湿彻底。

干燥法耗能较大,工业上往往将机械分离法与干燥法联合起来除湿,即先用机械方法尽可能除去湿物料中的大部分湿分,然后再利用干燥方法继续除湿而制得湿分符合规定的产品。

干燥法在工业生产中应用最为广泛,如原料的干燥、中间产品的去湿及产品的去湿等。

二、干燥操作方法的分类1、按操作压强分为常压干燥和真空干燥。

真空干燥主要用于处理热敏性、易氧化或要求产品中湿分含量很低的场合。

2、按操作方式分为连续操作和间歇操作。

化工原理第十三章干燥

化工原理第十三章干燥
2024/2/8
第十三章 干燥 Drying
13.2.1 湿空气的性质
13.2.2 湿度图及其应用
第二节 湿空气的性质和湿度图
2024/2/8
13.2.1 湿空气的性质
1、湿含量H( humidity)
单位质量干空气中所含水汽的质量 ,又称湿含量。
湿空气中水汽的质量 H 湿空气中绝干空气的质量
气中汽化
温增湿
焓 不 变
tas
饱和
一般情况下,绝热增湿过程可看视为等焓过程,即 空气释放的显热与水分汽化带回的潜热相等:
cH (t tas ) (Has H )ras
Has H cH 1.011.88H
tas t
ras
ras
Has、ras是tas的函数,cH是H的函数
2024/2/8
不饱和空气:t tas(t ) td
饱和空气: t tas (t ) td
2024/2/8
13.2.2 湿度图及其应用
1、H-t图
•F=2-1+2=3,总压P一定,则F=2.
•6条线
-等t线 –等H线 –等相对湿度线 –等CH线 –VH线 – tas线
2024/2/8
2、湿度图的应用
1)由测出的参数确定湿空气的状态 a)水与空气系统,已知空气的干球温度t和湿球温度tw,确 定该空气的状态点A(t,H)。 b)水与空气系统中,已知t和td,求原始状态点A(t,H)。 c)水与空气系统中,已知t和φ,求原始状态点A的位置 2)已知湿空气某两个可确定状态的独立变量,求该湿空气 的其他参数和性质
tM1)
qL
cwtM1
物料升温所需热量
2024/2/8
l
(I2

化工原理实验报告干燥

化工原理实验报告干燥

化工原理实验报告干燥化工原理实验报告:干燥概述:干燥是化工过程中常见的一种操作,用于除去物料中的水分或其他溶剂,以提高产品质量或满足后续工艺的需要。

本实验旨在探究干燥的原理及其在化工工艺中的应用。

一、干燥的原理干燥是通过将物料暴露在适当的条件下,使水分或其他溶剂从物料中蒸发出来,达到去除水分的目的。

常见的干燥方法包括自然干燥、加热干燥、真空干燥等。

1. 自然干燥自然干燥是将物料暴露在自然环境下,利用自然界的温度、湿度和风力等因素,使水分逐渐蒸发。

这种方法操作简单,但速度较慢,且受环境因素的影响较大。

2. 加热干燥加热干燥是通过加热物料,提高其表面温度,使水分蒸发。

常见的加热干燥方法包括烘箱干燥、喷雾干燥等。

烘箱干燥是将物料放入烘箱中,利用热空气对物料进行加热,使水分蒸发。

喷雾干燥是将物料以液滴形式喷入热空气中,通过瞬间蒸发的方式进行干燥。

3. 真空干燥真空干燥是在低压条件下进行干燥,通过降低环境压力,使水分在较低温度下蒸发。

真空干燥适用于对热敏性物料的干燥,能够避免物料的热分解或变质。

二、干燥在化工工艺中的应用干燥在化工工艺中具有广泛的应用,以下是几个常见的例子:1. 化工产品的干燥在化工生产中,很多产品需要经过干燥操作,以去除其中的水分或其他溶剂。

例如,某些化工产品在含水状态下容易发生反应或降解,因此需要进行干燥以提高稳定性和保存性。

2. 溶剂的回收在溶剂回收过程中,通常需要对溶剂进行干燥,以去除其中的水分或其他杂质。

通过干燥,可以提高溶剂的纯度和再利用率,减少资源的浪费。

3. 催化剂的干燥在催化反应中,催化剂的活性往往与其表面的水分有关。

因此,在使用催化剂之前,通常需要对其进行干燥,以提高催化剂的活性和稳定性。

4. 原料的干燥在某些化工工艺中,原料的水分含量会影响反应的速率和产物的质量。

因此,在反应之前,需要对原料进行干燥,以确保反应的顺利进行和产物的质量。

结论:干燥是化工过程中常见的一种操作,通过去除物料中的水分或其他溶剂,提高产品质量或满足后续工艺的需要。

化工原理干燥现象的原理

化工原理干燥现象的原理

化工原理干燥现象的原理
干燥是指将湿物质中的水或其他溶剂除去的过程。

化工原理中的干燥现象主要涉及到物质传质、热传导和质量平衡等原理。

1. 物质传质:湿物质中的水分子存在着与固体或其他溶质之间的相互作用力。

在干燥过程中,水分子需要克服这些相互作用力,才能从湿物质中逸出到气相中,实现传质过程。

传质通常是由高浓度到低浓度的方向进行,即从湿物质表面到气相中。

2. 热传导:在干燥过程中,通过向湿物质提供热量,可以提高物质的温度,促进水分子的蒸发和传质过程。

热传导的速度取决于热传导系数、温度梯度和物质的热容等因素。

3. 质量平衡:在干燥过程中,湿物质中的水分子通过蒸发从湿物质中逸出,同时空气中的水分子通过扩散等方式进入湿物质。

这种水分子的进出平衡使得湿物质中的水分子的含量逐渐减少,直到达到物料表面的饱和度。

综上所述,干燥现象主要是通过物质传质、热传导和质量平衡等原理来实现湿物质中水分子的从湿物质中蒸发并逸出的过程。

化工原理知识点总结干燥

化工原理知识点总结干燥

化工原理知识点总结干燥干燥是指将含水物质中的水分除去的过程,广泛应用于化工、冶金、食品、药品、农业等行业中。

干燥工艺可以提高产品质量,延长产品保存期限,增加产品附加值。

本文将从干燥的基本原理、传热传质机理、常见的干燥设备和干燥过程中的控制因素等方面对干燥做出总结。

一、基本原理1.1水分除去过程干燥的基本原理是将物质中的水分除去,水分从物质中逸出,物质变得更干燥。

水分除去的方式分为蒸发和挥发两种。

蒸发是指物质表面的水分被热能所吸收,转化为水蒸气散发出去;挥发是指水分通过物质内部的孔隙、裂缝等介质被蒸发并逸出。

1.2干燥速率干燥速率是指在干燥过程中,单位时间内从物质中脱除的水分量。

干燥速率受温度、湿度、空气流速等因素的影响。

1.3干燥曲线干燥曲线是指在干燥过程中,物质含水量随着时间变化的曲线。

常见的干燥曲线有初始下降期、常速期和末速期。

二、传热传质机理2.1传热机理干燥中传热主要通过对流传热和辐射传热两种方式实现。

对流传热是指通过对流换热将热量传递给物质表面,将水分蒸发出去;辐射传热是指通过辐射换热将热能传递给物质表面,促使水分蒸发。

2.2传质机理干燥中传质主要通过扩散传质实现,即水分从物质内部向外部扩散传递。

传质速率受物质的性质、温度、湿度、压力等因素的影响。

三、常见的干燥设备3.1流化床干燥流化床干燥是指将物料通过气体流化,使得气体均匀地穿透物质,从而提高传热传质效率。

流化床干燥适用于颗粒状、粉末状的物料。

3.2喷雾干燥喷雾干燥是指通过将液态物料雾化成细小颗粒,然后与热空气接触,使得水分蒸发,从而实现干燥。

喷雾干燥适用于液态物料的干燥。

3.3真空干燥真空干燥是指在低压条件下进行的干燥过程。

通过减压降低水的沸点,从而实现水分的除去。

真空干燥适用于对热敏感物料的干燥。

3.4离心干燥离心干燥是指将物料通过高速旋转的离心机,使得水分被甩出物料的表面,从而达到干燥的目的。

离心干燥适用于颗粒状、液态的物料。

化工原理--干燥公式总结

化工原理--干燥公式总结

1、湿空气的水汽分压 s p p φ= 相对湿度 * 饱和蒸汽压2、湿度绝干气绝干气总kg kg 03230.0kg kg 936.4100936.4622.0622.0=-⨯=-=p p p H3、密度 湿空气湿空气33HH m kg 06.1m kg 9737.00323.011=+=+=υρH湿空气的比体积()Pt H 5H 10013.1273273244.1772.0⨯⨯+⨯+=υ0.9737= m 3湿空气/kg 绝干气4、湿空气的H –I 图由180t =℃、100.009H H ==kg/kg 绝干气在H -I 图上确定空气状态点,由该点沿等I 线向右下方移动与80%φ=线相交,交点为离开干燥器时空气的状态点,由该点读出空气离开干燥器时的湿度20.027H =kg/kg 绝干气。

故1 m 3原空气获得的水分量为:原湿空气原湿空气33H12m kg 0214.0m kg 84.0009.0027.0=-=-υH H5、空气的焓 湿基物料的焓 ()11s 1187.4θX c I +=' 6、两混合气中绝干气的质量比为1:3,则 02m 134H H H +=02m 134I I I +=7、1 kg 绝干空气在预热器中焓的变化为:()绝干气绝干气kg kJ 61kg kJ 4310401=-=-=∆I I I1 m 3原湿空气焓的变化为:湿空气湿空气33Hm kJ 6.72m kJ 84.061==∆υI()00001.01 1.882490I H t H =+⨯+8、干基含水量绝干料绝干料kg kg 25.0kg kg 20100201111=-=-=w w X w 湿物料的湿基含水量绝干料绝干料kg kg 05263.0kg kg 510051222=-=-=w w X绝干物料()()hkg 800h kg 2.011000111=-=-=绝干料w G G蒸发水量 ()()hkg 9.157h kg 05263.025.080021水水=-=-=X X G W绝干空气用量 20()L H H W -= h kg 8.5444h kg 005.0034.09.15702绝干气绝干气=-=-=H H W L新鲜空气用量 L 0=()h kg 5472h kg 005.18.544410新鲜气新鲜气=⨯=+H L 9、预热器的加热量P 010(1.01 1.88)()Q L H t t =+-()01P I I L Q -=10、干燥器的热效率 ()2W 2490 1.88t Qη+=11、对干燥器做热量衡算得:12、恒速段干燥速率''1122L LI GI LI GI Q +=++''D 2121L ()()0Q L I I G I I Q =-+-+=c w tw()U t t αγ=-13、恒速干燥阶段干燥时间:14、降速段干燥时间:前提:降速干燥阶段干燥速率与物料的自由含水量(X —*X )成正比,因此,临界点处:15、总干燥时间:●9. 在一常压逆流的转筒干燥器中,干燥某种晶状的物料。

化工原理中干燥原理的应用

化工原理中干燥原理的应用

化工原理中干燥原理的应用1. 简介干燥是在化工过程中广泛应用的一种技术。

它通过去除物料中的水分来达到干燥效果,从而提高物料的质量和稳定性。

干燥原理是化工工程中的重要内容之一。

本文将介绍干燥原理及其在化工过程中的应用。

2. 干燥原理干燥是将湿物料中的水分蒸发或吸附掉的过程。

常见的几种干燥原理包括:热风干燥、真空干燥、冷冻干燥和喷雾干燥等。

2.1 热风干燥热风干燥是指利用热空气将物料中的水分蒸发掉的干燥方法。

其工作原理是将热空气通过干燥设备送入物料中,从而加速水分的蒸发。

2.2 真空干燥真空干燥是指在低压下进行干燥的一种方法。

通过减小干燥环境中的压力,使水分在较低温度下蒸发,从而达到干燥的目的。

2.3 冷冻干燥冷冻干燥是指将物料冷冻后,利用真空条件下将冰直接转化为水蒸气的干燥方法。

冷冻干燥的主要优点是可以在低温下进行干燥,保持物料的活性、颜色和形状。

2.4 喷雾干燥喷雾干燥是指将液体物料喷雾成小液滴,并通过热风将其迅速干燥的一种方法。

该方法适用于水分含量较高的物料,可以在短时间内完成干燥过程。

3. 干燥原理的应用干燥原理在化工过程中有着广泛的应用。

下面列举了几个常见的应用场景:3.1 化工工艺中的固体物料干燥在化工工艺中,经常需要对固体物料进行干燥处理。

例如,在制药过程中,需要将湿粉末干燥为粉末药物,以提高药物的稳定性和保存期限。

干燥原理可以应用于各类固体物料的干燥处理,提高产品质量。

3.2 化工产品的包装与储存干燥原理也可以应用于化工产品的包装与储存过程中。

在化工产品的包装之前,通常需要对产品进行干燥,以减少包装过程中产生的水分对产品质量的影响。

此外,干燥也可以提高产品的储存稳定性,延长产品的使用寿命和维持产品性能。

3.3 催化剂的制备在催化剂的制备过程中,经常需要对固体物料进行干燥。

干燥可以去除催化剂中的水分或其他杂质,提高催化剂的活性和稳定性。

同时,在催化剂的储存和运输过程中,干燥也是必要的,以避免杂质的污染和催化剂的失效。

化工原理干燥

化工原理干燥

化工原理干燥化工原理干燥是指利用热能将物料中的水分或其他挥发性成分蒸发或挥发出来的过程,是化工生产中常见的一种操作。

干燥是化工生产中非常重要的一环,它直接影响产品的质量和生产效率。

在化工生产中,干燥通常用于固体物料的处理,比如粉末、颗粒、块状物料等。

干燥的原理主要是通过加热,使物料中的水分或其他挥发性成分蒸发或挥发出来,从而使物料变得干燥。

在干燥过程中,除了加热外,通常还会利用空气或其他气体来帮助传递热量,加快物料中水分的蒸发速度。

化工原理干燥的方法有很多种,常见的有自然干燥、空气干燥、真空干燥、喷雾干燥、流化床干燥等。

每种干燥方法都有其适用的范围和特点,根据不同的物料和生产要求,选择合适的干燥方法非常重要。

在进行化工原理干燥时,需要考虑一些关键因素,比如物料的性质、干燥温度、干燥时间、干燥介质、干燥设备等。

物料的性质包括其初始水分含量、粒度、形状等,这些都会影响干燥的效果。

干燥温度和时间是直接影响干燥效果的因素,合理的温度和时间可以提高干燥效率,同时也要考虑避免物料过热或过干。

选择合适的干燥介质和干燥设备也是非常重要的,不同的介质和设备对干燥效果有着不同的影响。

化工原理干燥在化工生产中有着广泛的应用,比如在食品加工、药品生产、化肥生产、化工原料生产等领域都需要进行干燥操作。

通过合理选择干燥方法和控制干燥参数,可以提高产品的质量,降低生产成本,提高生产效率。

在进行化工原理干燥时,需要严格遵守操作规程,确保操作安全。

同时,也需要定期对干燥设备进行检查和维护,保持设备的正常运转。

只有在严格遵守操作规程和保持设备良好状态的情况下,才能保证干燥操作的顺利进行,确保产品质量和生产效率。

总之,化工原理干燥是化工生产中非常重要的一环,它直接影响产品的质量和生产效率。

通过合理选择干燥方法和控制干燥参数,可以提高产品的质量,降低生产成本,提高生产效率。

同时,严格遵守操作规程和保持设备良好状态也是确保干燥操作顺利进行的关键。

化工原理干燥的基本原理

化工原理干燥的基本原理

化工原理干燥的基本原理干燥是去除物质中水分的过程,它是化工生产过程中非常重要的一环。

干燥的基本原理是利用各种干燥设备将物质与饱和蒸气接触,以增加物质表面的蒸发面积,使水分从物质中转移到蒸汽中,从而实现物质的干燥。

在干燥过程中,需要注意物质的热传导、质量传递以及能量转移等过程。

首先,热传导是干燥过程中的重要环节。

干燥设备通常会提供热能,用于加热物质和水分,使水分蒸发出来。

热能通过物质的热传导,从外部传导到物质内部,使水分的温度升高。

在干燥设备中,通过提供热源、调整温度和温差,可以控制物质的热传导速度,从而实现物质的干燥。

其次,质量传递也是干燥过程中的关键步骤。

在接触到饱和蒸汽的过程中,物质表面的水分会与蒸汽发生质量传递。

水分从物质中转移到蒸汽中,从而实现物质的干燥。

质量传递的速率取决于物质与饱和蒸汽之间的浓度差异、温度差异、相对湿度差异等因素。

通过调整干燥设备的操作条件,可以改变物质内部的水分传递速率,从而实现干燥效果的控制。

最后,能量转移是干燥过程中的另一个重要方面。

在干燥设备中,通过外部提供能量,使水分从物质中蒸发。

能量的转移涉及到物质和水分的热量吸收和释放、温度和湿度的变化等过程。

通过调整干燥设备的供热方式、温度控制和湿度控制等参数,可以实现水分从物质中的蒸发过程。

此外,干燥过程还会受到一些其他因素的影响。

例如,物质的物理性质、化学性质、形状和尺寸等都会对干燥过程产生影响。

不同的物质具有不同的干燥特性,需要根据物质的特点选择合适的干燥方式和设备。

同时,干燥过程也受到环境条件的影响,如温度、湿度、压力等。

总之,化工干燥的基本原理是利用干燥设备提供的热能、质量传递和能量转移过程,将物质中的水分转移到蒸汽中,实现物质的干燥。

干燥过程涉及热传导、质量传递和能量转移等多个方面,也受物质和环境条件的影响。

通过合理控制干燥设备的操作条件,可以实现物质干燥的控制和优化。

化工原理下 第十二章 干燥

化工原理下 第十二章 干燥

湿空气的饱和湿度是温度的函数。
12.2.1 湿空气的性质
2.相对湿度 在一定总压下,湿空气中水汽分压p与同温度下纯水的饱 和蒸汽压ps之比,称为相对湿度,用 φ表示,即
相对湿度代表空气中水汽含量的相对大小。当p=0时,φ=0, 表示湿空气中不含水分,为绝干空气。当p=ps时,φ=1, 表示湿空气被水汽饱和,为饱和湿空气,这种湿空气不能用 作干燥介质。可见,φ越小,空气的吸湿能力越大。
12.2.1 湿空气的性质
一、湿空气中水蒸汽含量的表示方法 在干燥过程中,湿空气中水蒸汽含量的表示方法有两种: 1.湿度 又称湿含量,是湿空气中水汽的质量与绝干空气质量之比 (质量比),用H表示,单位kg水汽/kg干空气。
12.2.1 湿空气的性质

当湿空气中的水汽分压p等于该空气温度下纯水的饱和 蒸汽压ps时,湿空气再不能吸收水分,此时湿空气达到饱和 状态,其湿度称为饱和湿度,用Hs表示:
12.2.2 湿空气的湿度图
对于不饱和湿空气,组分数C为2,相数φ为1,根据相 率,可知其自由度:F = C-φ+2 = 2-1+2 = 3 在总压一定的条件下,只要再任意规定两个任意参数, 湿空气的状态即被唯一确定。这两个任意参数一般定为:湿 空气的温度和湿度。 湿度图包括五种线: 1、等干球温度线 3、等相对湿度线
12.1 概述
干燥法去湿的分类: 1、按供热方式分: (1)传导干燥 热能通过传热壁面以传导的方式传给物料,产生的湿分 蒸汽被气相(又称干燥介质)带走。如:纸制品铺在热滚筒上 进行干燥。 (2)辐射干燥 由辐射器产生的辐射能以电磁波的形式到达物料表面, 被物料吸收而重新变为热能,从而使湿份气化。如:红外线 干燥自行车表面油漆。 (3)介电加热干燥 将需要干燥的物料置于高频电场中,电能在物料中转变 成热能,使液体很快升温而气化。这种加热过程发生在物料 内部,故干燥速率较快。如:微波炉

化工原理-干燥

化工原理-干燥
18
湿球温度计工作原理分析 湿球温度是大量的未饱和空气 (t,H)高速通过湿球温度计湿 纱布表面时,湿纱布表面汽化 湿纱布表面汽化 水分所需的传热率等于空气传 入湿纱布的传热速率时的湿纱 布中水分稳定温度。此温度并 不代表空气的真实温度,但由 于此温度由湿空气的温度、湿 度所决定,故称它为湿空气的 湿球温度,以tw表示。
由上式可见,湿容积随其温度和湿度的增加而增大 由上式可见 湿容积随其温度和湿度的增加而增大。
14
4.比热容c 4.比热容cH [kJ/kg干气•℃] 比热容 在常压下, 干空气和其所带有的H 定义:在常压下,将1kg干空气和其所带有的 干空气和其所带有的 kg水汽升高(或降低)温度1℃所需的热量。 水汽升高(或降低)温度 ℃所需的热量。 水汽升高

pv < ps,湿空气未达饱和,可作为干燥介质。 湿空气未达饱和,可作为干燥介质。

pv = 0,湿空气中不含水分,为绝干空气。 ,湿空气中不含水分,为绝干空气。 ϕ 越小,干燥能力越大。 结论: 只能表示出水汽含量的绝对值, 结论:湿度 H 只能表示出水汽含量的绝对值, 而相对湿度却能反映出湿空气吸收水汽的能力。 而相对湿度却能反映出湿空气吸收水汽的能力。
2
干燥过程的分类: 干燥过程的分类:
操作压力 常压 真空
操作方式 连续 间歇
传热方式(或组合 传热方式 或组合) 或组合 导热 对流 辐射 介电加热
传导干燥(间接加热干燥) 传导干燥(间接加热干燥):
热能通过壁面以传导方式加热物料。
对流干燥(直接加热干燥) 对流干燥(直接加热干燥):
干燥介质与湿物料直接接触,并以对 流方式加热湿物料。
在与外界绝热情况下, 空气 在与外界绝热情况下 , 与大量水经过无限长时间接触后, 与大量水经过无限长时间接触后 , 空气温度与水温相等, 称这一稳 空气温度与水温相等, 定的温度为湿空气的绝热饱和温 定的温度为湿空气的 绝热饱和温 表示。 度,用tas表示。

化工原理干燥

化工原理干燥

化工原理干燥
在化工原理中,干燥是一种常见的操作过程,用于去除物料中的水分或其他溶剂。

干燥的目的是提高物料的质量和稳定性,同时也有助于后续的加工和储存。

干燥的原理可以根据物料和工艺的不同而有所区别。

常见的干燥方法包括热风干燥、真空干燥、喷雾干燥、冷冻干燥等。

在热风干燥中,通过加热空气并将其送入干燥室,物料与热空气进行热交换,从而使物料中的水分蒸发。

这种干燥方法适用于水分含量较高的物料,可以快速去除大部分的水分。

真空干燥是在低压下进行的干燥过程。

通过降低环境压力,使物料中的水分在较低温度下蒸发,从而减少热量对物料的影响。

真空干燥适用于对温度敏感的物料,可以保持其原有的质量和活性。

喷雾干燥是将物料以细小颗粒的形式喷雾进入干燥室,通过热空气的作用使水分蒸发,从而干燥物料。

这种方法适用于对颗粒度要求较高的物料,可以获得均匀的干燥效果。

冷冻干燥是在低温条件下进行的干燥过程。

物料先被冷冻,然后通过升温使水分从固态直接转变为气态,从而干燥物料。

冷冻干燥适用于对物料品质要求较高的情况,可以保持原有的味道、香气和营养成分。

除了选择适当的干燥方法外,干燥过程中还需要注意一些关键
参数,如温度、湿度、干燥时间等。

恰当地控制这些参数可以避免物料过热或过干,从而保证产品质量。

总之,干燥作为一种重要的化工操作过程,在化工原理中发挥着关键作用。

选择适当的干燥方法和优化干燥参数对于提高产品质量和工艺效果至关重要。

化工原理-干燥

化工原理-干燥
的,即在一定的气-固接触方式下,固定气体的温度、湿 度和流过物料表面的速度进行实验。 ➢ 为保证恒定干燥条件,采用大量空气干燥少量物料,以使 气体的温度、湿度和流速在干燥器中恒定不变。实验为间 歇操作,物料的温度和湿含量随时间连续变化。
干燥曲线和干燥速率曲线
干燥曲线:物料湿含量 X 与干燥时间 的关系曲线。
ps
19.92
湿比容H (Humid volume) 或干基湿比容 (m3/kg绝干气体)
1kg 绝干气体及所含湿份蒸汽所具有的体积
vH
1 29
H 18
22.4
t
273 101.325
273
P
(0.287 0.462H ) t
273 P
常压下(P=1013.25kN/m2) : vH (0.002835 0.004557 H )(t 273)
显热项
汽化潜热项
对于空气-水系统: IH (1.005 1.884 H )t 2491 .27H
干燥过程的基本规律
物料湿分的表示方法
湿物料是绝干固体与液态湿分的混合物。
湿基湿含量 w:单位质量的湿物料中所含液态湿分的质量。
w
物料所含液态湿份的质量 湿物料的质量
WT Gc WT
干基湿含量 X:单位质量的绝干物料中所含液态湿分的质量。
对于空气-水系统:
H 0.622 ps P ps
H 0.622 pv P pv
相对湿度(Relative humidity)
➢ 若 t < 总压下湿份的沸点,0 100%;
➢ 若 t >总压下湿份的沸点,湿份 ps> P,最大 (气体全为湿
份蒸汽) < 100%。故工业上常用过热蒸汽做干燥介质;

化工原理干燥实验原理

化工原理干燥实验原理

化工原理干燥实验原理
干燥实验是一种将湿润或含水物质转化为干燥状态的过程。

在化工工艺中,干燥是一项重要的操作,它可以用于去除物质中的水分或其他挥发性成分,以改变物质的性质和应用。

干燥可以通过多种方法实现,如加热、通风、压缩等。

干燥的原理主要涉及湿润物质中水分或其他挥发性成分的蒸发和扩散。

当湿润物质受热后,水分或其他挥发性成分会转化为气态,并从物质中逸出。

而通过通风或压缩,可以加速气态成分的扩散和远离物质表面,从而降低物质的湿度。

干燥实验的目的是通过实验方法验证和确定最佳的干燥条件。

这些条件可以包括温度、湿度、通风速度、压力等。

通常,实验中会通过称量、加热、定时等方法来监测物质在不同条件下的干燥过程。

通过比较实验结果,可以确定最佳的干燥条件,以提高干燥效率和质量。

实验中还可能涉及到干燥曲线的绘制。

干燥曲线是指在不同时间下,物质湿度与干燥时间之间的关系曲线。

通过绘制干燥曲线,可以更好地了解物质在不同条件下的干燥特性,并为工业生产提供参考和指导。

总之,干燥实验是一种用于确定最佳干燥条件和了解物质干燥特性的重要方法。

通过实验验证,可以为化工工艺提供基础数据和参考,以实现高效、质量优良的干燥操作。

化工原理第七章干燥

化工原理第七章干燥

W G1 w1 G2 w2 1000 0.2 824 .7 0.03 175 .3
(4) L0 L(1 H0 ) 3506 (1 0.001) 3510kg湿空气/ h
二、热量衡算
第四节 物料的平衡含水量与干燥速率 一.湿物料中水分的性质
1.结合水分与非结合水分 根据水分干燥的难易程度,可以将湿物 pw 料中的水分划分为结合水分与非结合水分。 S 非结合水分:机械附着水分和大毛细管 p s 水分,易于干燥; 结合水分:与物料借化学力或物理化学 pw 力结合的水分,小毛细管水分等,难于干燥; X X* XS 当湿空气 =100%时的物料平衡含水量 pw- X*关系示意图 * 为结合水分,其余为非结合水分。
一、物料衡算
1.湿基含水量( w):
w
kg水 分
kg湿 物 料
100%
2.干基含水量( X ):
X
kg水 分 kg绝 干 料
100%
X w 1 X
w X 1 w
1.干燥后的产品量( L2 ):
Lc : 绝干物料的流量
G : 绝干空气的流量
Lc L1 (1 w1 ) L2 (1 w2 )
③比热容
C H 1.01 1.88H
1.01 1.88 0.014673 1.038kJ
(kg绝干气。 ) C
④ 焓
I (1.01 1.88H )t 2491H
(1.01 1.88 0.014673 20 2491 0.014673 )
57.29 kJ kg绝干气
100%时 的 等 线 称 为 饱 和 空 气 线 。
水蒸汽分压( p )线
HP p p H 0.622 0.622 H P p
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.3.2水分在气-固两相间的平衡
一、结合水与非结合水 1、结合水:借化学力或物理化学力与固体相结 合的水。包括:结晶水、毛细管水和吸附水。 难通过干燥去除。 2、非结合水:水分只是机械地附着于固体表面或 颗粒堆积层的大空隙中的水。易通过干燥去除。 基本区别:表现的平衡蒸汽压pe不同。 非结合水: pe= ps →(pe – p水汽)大 结合水:pe< ps →(pe – p水汽)小
a.饱和气体:H = Hs,tw = t,即饱和空气的干、湿球温 度相等。 b.不饱和气体:H < Hs,tw < t。
7.2.1 湿空气的性质
湿球温度的测定 湿球温度计测定湿球温度 的条件是保证纯对流传热, 即气体应有较大的流速和不 太高的温度,否则,热传导 或热辐射的影响不能忽略, 测得的湿球温度会有较大的 误差。 通过测定气体的干球温度 和湿球温度,可以计算气体 的湿度: H H c H (t t w )
湿气体 V, H0, t0, i0
7.4.2干燥过程的热量衡算
(1)预热器热衡
Q V I1 I 0 VC P H1 t1 t0
(2)干燥器热衡
VI GCC pm11 Q补 VI1 GCC pm22 Q损
其中:Cpm湿物料比热容。
C pm C ps C pL X t
7.4 干燥过程的计算
7.4.1 干燥过程的物料衡算 7.4.2干燥过程的热量衡算 7.4.3 干燥系统的热效率 7.4.4 干燥空气出口状态的确定
7.4.1 干燥过程的物料衡算
目的:求水分蒸发量;空气消耗量V鼓风机型号。以 干燥器为控制体,对水作物衡。 水分蒸发量:
W G1 G2 Gc ( X 1 X 2 ) V ( H 2 H1 )
7.4.2干燥过程的热量衡算
3、物衡与热衡联立求解 (1)物料出口温度2估算(一般由实验测定) (2)设计型 已知:GC、X1、X2、H1=H0、Q损(估计),选t1、t2 求:V、H2、 Q 4、连续干燥过程的热效率
H
传热:t> өi(物料表面温度өi低
于气流温度t):气体固体
t өi pi
M
q
传质: P水汽< Pi(气流中的水
汽分压P水汽<固体表面水分的 分压Pi):湿物料内部的水 表面气相。 特点:热、质反向传递过程。
W
P水汽
7.1 概述
4、对流干燥流程及经济性
(1)对流干燥流程: 间歇:湿物料被成批放入 干燥器内,特干燥到指定 的含湿要求后一次取出。 连续:湿物料被连续地加入与排出(并流与逆 流)。 经济性:主要取决于能耗和热的利用率。
ps H 0.622 p ps
7.2.1 湿空气的性质
(5)若 t < 总压下湿空气的沸点,0 100%; (6)若 t >总压下湿空气的沸点,湿份 ps> P,最大 (空气全为水汽) < 100%。故工业上常用过热蒸 汽做干燥介质; (7)若 t > 湿份的临界温度,气体中的湿份已是真 实气体,此时 =0,理论上吸湿能力不受限制。
7.3.2水分在气-固两相间的平衡
二、平衡蒸汽压曲线
相对湿度 1.0
结合水分 非结合 水分
pe ps
非结合水 1 结合水
1
0.5
平衡水分 自由水分
0
X*
X
h
湿含量 X
三、平衡水分与自由水分 平衡水分:物料在指定的空气条件下,不能被除 去的那部分水分。 自由水分:能被指定状态的空气带走的水分,也 称自由含水量X。
7.2.1 湿空气的性质 4、四种温度 (1)干球温度 t :湿空气的真实温度,简称温度 (℃ 或 K)。将温度计直接插在湿空气中即可测量。 (2) 空气的湿球温度t w(Wet-bulb temperature) 定义 液滴 当热、质传递达平衡时, 对流传热 q 表面 气膜 气体对液体的供热速率恰 h tw , H w 等于液体汽化的需热速率 气体 液滴 时: t, H kH kH tw t rw ( H w H ) 对流传质 N
tas t w
7.2.1 湿空气的性质 结论: 对于Air-H2O系统 不饱和空气:t>tw(或tas)>td 饱和空气: t=tw(或tas)=td 二、与过程计算有关的参数 1、湿空气的焓I 定义:湿空气的焓为每kg干空气及其所带kg 水汽所具有的焓,kJ/kg 。 以0℃的气体为基准,水汽的焓以0℃的液态 水为基准,故有
7.1 概述
③ 热能去湿-去湿彻底,但能耗大
向物料供热以汽化其中的水分。这种利用 热能除去固体物料中湿分和单元操作称为干燥 (drying)。 2、物料的干燥方法
(1)传导干燥,热能以传导方式通过传热壁面
加热物料,使其中的湿分汽化。
(2)对流干燥,干燥介质与湿物料直接接触,
以对流方式给物料供热使湿分汽化。
第7章 固体干燥 solid drying
7.1 概述 7.2 湿空气的性质 7.3 固体物料的干燥平衡
7.4 干燥器过程的计算
7.5 干燥速率与干燥时间
7.6干燥器
7.7固体干燥过程的强化与展望
化工原理
第7章 固体干燥
1、掌握的内家 干燥过程原理、目的及实施;湿空气性质及计算、 湿度图构成及应用;水分在气-固相间的平衡; 干燥过程的物料衡算;干燥过程中空气状态的确 定;结合水分、平衡水分和临界水分的概念及相 互关系;恒速干燥与降速干燥的特点。 2、熟悉的内容 干燥过程的热量衡算;干燥器的热效率及提高干 燥过程经济性的途径;恒定干燥条件下干燥速率 与干燥时间计算;干燥过程的强化途径。
绝干空气消耗量
湿废气体 V , H2
干燥产品 G2 , w2
湿物料 G1 , w1
GC X 1 X 2 W V H 2 H1 H 2 H1
热空气 V , H1
7.4.1 干燥过程的物料衡算
干燥空气消耗量V与新鲜空气V/的关系:
V V H0V V 1 H0
2、等压冷却 P=const,ps(t)↓ (1) P水汽 < ps(t) ,H不变, AC线。
·
(2) P水汽 = ps(t) ,t=td,D点
(3)t↓<td→ ps(t) ↓→ H↓,DE线。
7.2.2 湿空气湿度图及其应用
三、绝热增湿过程:Q损=0 空气给水的显热全部变为水分汽化的潜热 返回空气,称为绝热增湿过程。 工程上,常将等焓线近似地看成既是绝热 增湿线,又是等湿球温度线。
s ,t w
t
tw 气体
rw
7.2.1 湿空气的性质
(3)绝热饱和冷却温度tas 大量水与空气长期接触,气温变化的极限温 度称为绝热饱和温度。
ras t as t ( H as H ) cH
注:lewis规则:对于Air-H2O系统
cH

kH
tw t
rtw
kH
( H s ,t w H )
7.1 概述
(3)辐射干燥,热能以电磁波形式由辐射器发射
到湿物料表面,被物料吸收并转化为热能,使
湿分汽化。
(4)介电加热干燥,将需要干燥的物料置于高 频电场中,利用高频电场的交变作用将湿物料 加热,并汽化湿分。 本章讨论以空气为干燥介质,湿分为水的对
流干燥过程。
7.1 概述
3、对流干燥过程的特点
Q加 Q利用 Q废 Q固温升 Q损
7.2 湿空气的性质与湿度图
7.2.1 湿空气的性质
7.2.2 湿空气的湿度图及其应用
7.2.1 湿空气的性质
一、空气中水分含量的表示方法 1、水汽分压p水汽与露点td 在总压p=const,将水汽分压为p的空气等湿 冷却至饱和状态,此时的温度称为露点td
7.3.2水分在气-固两相间的平衡
X X t X * ( X t X max ) ( X max X * )
小结: 1、比较 (1)在一定温度下,物料结合水分与非结合水分的划分只 取决于物料本身的特点,而与空气的状态无关。 (2)平衡水与自由水的划分不仅与物料的性质有关,而且 取决于空气的状态。 2、关系 非结合水+结合水=自由水+平衡水 自由水=可除去的全部非结合水+可除去的部分结合水 返回 平衡水=不可除去的部分结合水
7.3 固体物料的干燥平衡
7.3.1 物料中水分含量的表示方法
7.3.2水分在气-固两相间的平衡
7.3.1 物料中水分含量的表示方法
(1)湿基含水量w
湿物料中水分的质量 w 湿物料总质量
(2)干基含水量Xt
湿物料中水分的质量 X 湿物料中绝干料的质量 w X 两者关系: X w 1 w 1 X
第7章 固体干燥
3、了解内容 常用干燥器的性能特点及选用原则;各种干燥 方法的基本原理、特点及应用。
7.1 概述
1、物料去湿的方法 (1)干燥工程目的:去湿——去除固体物料中 含有的湿分(水或有机溶剂) (2)去湿方法 ①机械去湿:离心过滤、压滤、抽滤等 ②吸附去湿 用某种平衡水汽分压很低的干燥剂(如 CaCl2、硅胶等)与湿物料并存,使物料种的水 分相继经气相而转入干燥剂内。
当ps p
ps p水汽 当ps p p

p水汽
7.2.1 湿空气的性质
说明: (1)值说明湿空气偏离饱和空气或绝干空气的程 度, 值越小吸湿能力越大; (2) = 0 ,p=0时,表示湿空气中不含水分,为 绝干空气。 (3) = 1 ,p=ps时,表示湿空气被水汽所饱和, 不能再吸湿。 (4)对于空气-水系统
7.2.1 湿空气的性质 湿球温度是大量空气与少量水长期接触后 水面的温度(水温变化的极限温度)。 结论: tw = f (t, H) ,气体的 t 和 H 一定,tw 为定值。 当t不太高,流速>5m/s时,Air-H2O系统
相关文档
最新文档