氯化锌生产工艺流程图
2020高考化学一轮复习专题2-4 陌生化学方程式的书写(练习)含答案
第二章物质的组成、分类及其变化第四讲陌生化学方程式的书写1、I-可以作为水溶液中SO2歧化反应的催化剂,可能的催化过程如下。
将ii补充完整。
i.SO2+4I-+4H+S↓+2I2+2H2Oii.I2+2H2O+ + +2 I-答案: SO2;SO42−;4H+2、在酸性条件下,将MnO-4氧化Fe2+的离子方程式补充完整:MnO-4+Fe2++___ __=== Mn2++Fe3++。
答案:5;5;8H+;1;5;4H2O3、完成以下氧化还原反应的离子方程式:( )MnO4-+( )C2O42-+ =( )Mn2++( )CO2↑+_答案:2 ; 5 ;_16H+;2;10 ;_8H2O4、高铁酸钾(K2FeO4)是一种强氧化剂,可作为水处理剂和高容量电池材料。
FeCl3和KClO在强碱性条件下反应可制取K2FeO4,其反应的离子方程式为:答案:2Fe(OH)3+3ClO-+4OH- = 2FeO42-+5H2O+3Cl‾5、Na2S2O5可用作食品的抗氧化剂。
在测定某葡萄酒中Na2S2O5残留量时,取50.00 mL葡萄酒样品,用0.01000 mol·L−1的碘标准液滴定至终点,消耗10.00 mL。
滴定反应的离子方程式为答案:;2-25S O+2I2+3H2O 22-4SO+4I-+6H+6、制备NaClO溶液时,若温度超过40 ℃,Cl2与NaOH溶液反应生成NaClO3和NaCl,其离子方程式为;答案:3Cl2+6OH−=5Cl−+ClO3−+3H2O7、用酸性(NH2)2CO水溶液吸收NO x,吸收过程中存在HNO2与(NH2)2CO生成N2和CO2的反应。
写出该反应的化学方程式:。
答案:2HNO 2+(NH2)2CO2N2↑+CO2↑+3H2O8、氧化还原反应是氧化和还原两个过程的对立统一。
现有一个还原过程的反应式如下:NO-3+4H++3e-===NO↑+2H2O(1)下列五种物质中能使上述还原过程发生的是________(填字母)。
氧化锌制备方法
将0.005 mol·L-1的NaOH乙醇溶液缓慢滴加到含有0.005 mol·L-1的Zn(NO3)2·6H2O乙醇溶液中. 将混合溶液转移至高压反应釜中, 在130℃下反应12 h, 将反应产物经二次去离子水、乙醇等洗涤后, 在130 摄氏度下干燥,即可获得纯ZnO纳米棒.在 ZnCl2 溶液 (0.20 mol/L) 中加入一定量的 SDS, 搅拌下于 65 ℃将Na2CO3 溶液滴加到该溶液中 (120 滴/min, n(Na2CO3)/n(ZnCl2) = 2),恒温反应0.5 h. 将反应液倒入聚四氟乙烯罐中, 在150~160 ℃进行水热反应 12 h, 自然冷却后离心分离, 用去离子水洗涤到无水Cl−离子, 再用无水乙醇洗涤 2~3 次, 50 ℃真空干燥 2 h, 300 ℃焙烧 3 h, 即制得 ZnO 纳米管.将0. 1 L0. 1 mo l/ L二水合醋酸锌的乙醇溶液置于带冷凝管和干燥管的0. 5 L 圆底烧瓶中, 在80 ℃搅拌3 h, 不断收集冷凝物, 最后可获得0. 04 L 中间物和0. 06 L 冷凝物. 将中间物迅速用冷的绝对乙醇稀释至0. 1 L, 冷至室温, 得0. 1 mol/ L 中间产物.氨水沉淀法制备纳米氧化锌在水——乙醇介质中用氨水沉淀法制备出了纳米Zn(OH)2和ZnO材料,讨论了介质组成对沉淀产物ZnO微粒的粒径范围及形貌的影响,并研究出由Zn(OH)2分解为纳米ZnO的最佳干燥脱水条件为200℃、2h。
表明本方法不需高温处理就可得到颗粒均匀且分布窄的ZnO纳米材料,粒径可达17~6nm。
一、试剂与仪器主要原料为氯化锌、无水乙醇、氨水等,均为分析纯试剂。
仪器为微型滴定管、磁力搅拌器、恒温干燥烘箱。
二、试验方法以水——乙醇为溶剂,其中醇的体积含量分别为0%(去离子水)、20%、60%、100%。
将氯化锌、氨水配制成不同浓度的溶液(不同浓度是多少?)。
用废锌渣制备氯化锌实验方法的探讨
用废锌渣制备氯化锌实验方法的探讨作者:李萍来源:《科技创新导报》 2015年第1期李萍(锦州市卫生学校辽宁锦州 121000)摘要:用废锌渣制备氯化锌,通过实验确定了盐酸的加入量,得到合格的氯化锌产品,同时得出蒸发时控制碱式氯化锌含量的浓缩温度,确定了有别于传统方法的操作流程。
作为无机盐工业的重要产品之一,它的应用领域及其广泛。
氯化锌易溶于水,不易溶于液氨,有较强的潮解性,能在空气中吸收水分而潮解。
传统方法容易造成形成氯化氢气体挥发,不仅浪费材料,还污染大气环境。
新方法不但降低了盐酸的用量,还对Pb、Cu等进行了回收,有效地避免了上述情况的发生,可以控制好氯化锌成品的纯度。
关键词:废锌渣制备氯化锌实验方法中图分类号:O6-3文献标识码:A 文章编号:1674-098X(2015)01(a)-0090-01①作者简介:李萍,女(1963,12—)辽宁锦州,职称:高级讲师,化学专业,现从事化学教学及化学实验。
氯化锌是一种重要的无机化工产品,为白色结晶粉末或块状、棒状,具有氯化镉型结构。
相对密度2.91。
熔点283℃,沸点732℃,加热烧红或冷却时则为蒸汽升华或针状结晶。
其主要用于有机合成的接触剂、脱水剂及催化剂;石油工业的净化剂;染料工业的媒染剂、丝光剂、上浆剂、增重剂及防腐剂;在医药上用作消炎止痛药的催化剂;还适于电池工业,此外还用于电镀、木材防腐、农药、焊药及颜料等领域[1]。
氯化锌可以由锌或氧化锌与盐酸反应后结晶制得。
在一些冶炼、电镀、电池等工业生产中,会有大量废锌渣等副产品产生,若将其按三废弃掉,这样既浪费又污染了环境,若利用废锌渣制备氯化锌,既避免了浪费,又可以减少污染。
1 实验1.1 实验主要原料废锌渣,工业盐酸(31%),硫酸(92.5%),氯化锌(AR级),双氧水(工业级)1.2 实验设备250ml滴定漏斗,1000ml三口瓶,称量天平,PH计,大烧杯,搅拌器,电炉2 结果与讨论2.1 传统实验过程首先往反应器内加入31%的工业盐酸,然后再把相应量的废锌渣投进来,不断搅拌并调整PH值为3.5-4.0后,放物料于沉淀池,澄清,并在沉淀过程中,继续反应到PH=4.0-4.2,提纯清液,然后加入如高锰酸钾,氯酸钾,双氧水氧化剂以除去Fe,用石灰石中和溶液里未反应的酸,沉淀出铁;如果溶液中还有硫酸根离子,同时加入氯化钡,除去硫酸根离子,溶液澄清,将清液倾析出来;再用锌粉置换铜、锌、铅离子,沉淀。
高中化学微专题17 金属及其化合物制备流程(Zn)-备战2022年高考化学考点微专题(原卷版)
微专题17 金属及其化合物制备流程(Zn)锌:素符号Zn,原子序数30,原子量65.38,外围电子排布3d104s2,位于第四周期ⅡB族。
主要化合价+2。
一、物理性质:银白略带蓝色有光泽金属,硬度2.5,有延展性,良好的传热、导电性,密度为7.14克/厘米3,熔点419.58℃,沸点907℃。
二、化学性质:化学性质比较活泼。
室温时在空气中较稳定。
在潮湿空气中生成一层灰色碱式碳酸锌,可作保护膜。
锌燃烧时有蓝绿色火焰。
高温时跟水蒸汽反应放出氢气。
加热时可跟卤素,硫等反应。
易与酸反应,但高纯锌反应慢,若加入少量硫酸铜溶液,或跟铜、镍、铂等金属接触时,反应加快。
溶于强碱溶液,生成锌酸盐,如:Zn+2NaOH=Na2ZnO2+H2↑溶于氨水和铵盐溶液中,如:Zn+2NH4Cl=Zn(NH3)2Cl2+H2↑三、用途:主要用于制合金、金属表面镀锌,还用于制于电池、焰火、作催化剂和还原剂。
我国明代以前已发现并使用锌。
主要矿物有闪锌矿ZnS、菱锌矿ZnCO3等。
先将矿石煅烧变成氧化锌,再用焦炭还原氧化锌制得。
*最后附有锌的化合物四、工业制备:锌的冶炼方法锌的冶炼有两种工艺:火法冶炼和湿法冶炼。
密闭鼓风炉炼铅锌是世界上最主要的几乎是唯一的火法炼锌方法。
湿法炼锌是当今世界最主要的炼锌方法,其产量占世界总锌产量的85%以上。
近期世界新建和扩建的生产能力均采用湿法炼锌工艺。
火法炼锌在高温下,用碳作还原剂从氧化锌物料中还原提取金属锌的过程被称为火法炼锌。
密闭鼓风炉炼锌工艺流程图如下:湿法炼锌典型湿法炼锌工艺流程有:中性浸出、净化、电解等工序,中性浸出渣处理有回转窑烟化或高温高酸浸出除铁工艺。
对湿法炼锌流程可总结归纳如下图所示。
【专题精练】1.(2020届高考化学二轮复习大题精准训练)氧化锌工业品广泛应用于橡胶、涂料、陶瓷、化工、医药、玻璃和电子等行业,随着工业的飞速发展,我国对氧化锌的需求量日益增加,成为国民经济建设中不可缺少的重要基础化工原料和新型材料。
2020-2021中考化学综合题专练∶流程图附详细答案
一、中考初中化学流程图1.以绿矾(FeSO 4・7H 2O)为原料制备高铁酸钾(K 2FeO 4)的流程如下:(1)“氧化”是将FeSO 4,转化为Fe 2(SO 4)3,该反应的化学方程式为__。
(2)“合成”时发生的反应为Fe 2(SO 4)3+3NaClO +10NaOH=2Na 2FeO 4+3NaCl +3X+5H 2O ,X 的化学式为____。
(3)不同温度和pH 下FeO 42-在水溶液中的稳定性如图所示。
图中纵坐标表示单位体积内FeO 42-离子数目的多少,数值越小,表明FeO 42-离子数目越少,在该条件下越不稳定。
为了提高“合成”时Na 2FeO 4的产率,下列措施可行的是____ A 充分搅拌反应液B 控制反应在60℃左右进行C 控制反应在碱性条件下进行(4)“滤渣”呈红褐色,推测其主要成分为____(填化学式)。
(5)常温下向“过滤”后的滤液中加入饱和KOH 溶液,即可析出K 2FeO 4晶体,由以上信息可知K 2FeO 4的溶解度比Na 2FeO 4的溶解度_______(填“大”或“小”)。
【答案】()4222424232FeSO +H O H SO ++=Fe SO 2H O Na 2SO 4 AC Fe(OH)3 小【解析】【分析】【详解】(1)由图可知,FeSO 4与硫酸、过氧化氢反应生成Fe 2(SO 4)3,根据质量守恒定律,化学反应前后,元素的种类不变,反应物中含铁、硫、氧、氢元素,生成物中含铁、硫、氧元素,故生成物中还应含氢元素,还应有水生成,该反应的化学方程式为:()4222424232FeSO +H O H SO ++=Fe SO 2H O ;(2)根据质量守恒定律,化学反应前后,原子的种类和数目不变,反应物中含2个铁原子、3个硫原子,13个钠原子,3个氯原子,10个氢原子,25个氧原子,生成物中含7个钠原子、2个铁原子、3个氯原子、10个氢原子、13个氧原子,故生成物中还应含有6个钠原子、3个硫原子、12个氧原子,故X 的化学式为:Na 2SO 4;(3)由图可知,温度越高、pH 值越小,FeO 42-离子数目越少,故为了提高“合成”时Na 2FeO 4的产率,应将温度控制在30℃,碱性环境,充分搅拌可以增大反应物之间的接触面积,提高产率。
氯化锌
氯化锌1、氯化锌的物理性质氯化锌,Zinc Chloride,分子式:ZnCl2。
白色六方晶系粒状结晶或粉末,分子量136.295,相对密度 2.91(25/4℃),熔点275℃,沸点756℃,微波照射升温速率 1.39k/s。
氯化锌易溶于水,是固体盐中溶解度最大的,可溶于甲醇、乙醇、甘油、丙酮、乙醚,不溶于液氨。
潮解性强,能自空气中吸收水分而潮解。
具有溶解金属氧化物和纤维素的特性。
熔融氯化锌有很好的导电性能。
灼热时有浓厚的白烟生成。
氯化锌有腐蚀性,有毒。
2、氯化锌主要用途:可以用作有机合成工业的脱水剂、催化剂,以及染织工业的媒染剂、上浆剂和增重剂,也用作石油净化剂和活性炭活化剂,由于氯化锌与丝绸、纤维素等材料的亲和性,它可用作衣料的防火物质,也可用在织物气味洁净剂,氯化锌可以攻击金属氧化物(MO)生成MZnOCl2,这就是它作为金属焊剂的原理。
还用于电池、硬纸板、电镀、医药、木材防腐、农药和焊接等方面。
近年来随着小型电器的不断增多,同时石油、有机合成等工业发展迅猛,需要量也在大量地增加,从而促进了氯化锌工业生产的发展。
3、氯化锌生产工艺:(1)化验工段原料锌灰参与反应前先进行多元素组分化学分析,主要检测锌灰原料中硫酸根、铁等杂质含量,为后序工段原材料的投加提供依据。
(2) 置换锌、去除硫酸根工段经过化验工序后,原料锌灰投放进反应槽中,浓度16~18%稀盐酸通过塑料管道从储罐槽中引入至反应槽,和锌灰在反应槽中混合搅拌,将含有多组分元素的原料锌灰由固相转入液相,其中原料中的大部分金属锌与盐酸发生置换反应:↑+→+2H ZnCl HCl Zn ↑+→+222H FeClHCl Fe在加入盐酸与锌灰的同时,投加氯化钡,利用生成的硫酸钡其溶度积(1.07×10-10)极小这一特性,在反应槽中将硫酸根离子沉淀:--+↓→+ClBaSOBaClSO 24224考虑到除铁工段需在pH 值约为6条件下进行,所以在此反应工段中锌灰过量,未反应完的锌灰留于反应槽中继续参加下一次反应。
高中化学2022年贵州省贵阳一中高考化学适应性试卷(八)
2022年贵州省贵阳一中高考化学适应性试卷(八)一、选择题:本题共7小题,每小题6分.在每小题给出的四个选项中,只有一项是符合题目要求的.A .四氯化碳分子比例模型:B .COS 的电子式是C .次氯酸的结构式为 H -Cl -OD . 188O 2-离子结构示意图:1.(6分)下列有关化学用语表示正确的是( )A .(NH 4)2SO 4和CuSO 4溶液都能使蛋白质沉淀析出B .苯酚与甲醛在酸性条件下生成酚醛树脂的结构简式为:C .醋酸和硬脂酸互为同系物,C 6H 14和C 9H 20也一定互为同系物D .迷迭香酸的结构为它可以发生酯化、水解、加成等反应2.(6分)下列说法不正确的是( )A .AB .BC .CD .D3.(6分)下列操作不能达到实验目的的是( )目的操作A在溶液中将MnO 4-完全转化为Mn 2+向酸性KMnO 4溶液中通入SO 2气体至紫色消失B除去CO 2中少量SO 2将混合气体通入酸性KMnO 4溶液中C 配制980mL 0.1mol /LCuSO 4溶液将25.0gCuSO 4•5H 2O 溶于水配制成1L 溶液D 测定中和热中和热测定时用铜棒代替环形玻璃搅拌棒搅拌,测定反应的最高温度A .已知MgCO 3的K sp =6.82×10-6 mol 2•L -2,则所有含有固体MgCO 3的溶液中,都有c (Mg 2+)=c (CO 32-),且c (Mg 2+)•c (CO 32-)=6.82×10-6 mol 2•L -2B .除去粗盐中含有的MgCl 2杂质,最佳除杂试剂为Na 2CO 3溶液C .将表中三种物质与水混合,加热、灼烧,最终的固体产物相同D .用石灰水处理含有Mg 2+和HCO 3-的硬水,发生的离子反应方程式为Mg 2++2HCO 3-+Ca 2++2OH -═CaCO 3↓+MgCO 3↓+2H 2O4.(6分)下表是3种物质的溶解度(20℃),下列说法中正确的是( )物质MgCl 2Mg (OH )2MgCO 3溶解度(g /100g )740.000 840.015.(6分)下列离子方程式正确的是( )三、非选择题:包括必考题和选考题两部分.第22题-第32题为必考题,每个试题考生都必须作答.第33题-第40题为选考题,考生根据要求作答.(一)必考题(11题,共129分)A .NH 4HCO 3溶液中加入少量稀NaOH 溶液:NH 4++OH -=NH 3•H 2OB .FeBr 2溶液中通入足量的氯气:2Fe 2++2Br -+2Cl 2=2Fe 3++Br 2+4Cl -C .硫酸亚铁溶液中加入用硫酸酸化的双氧水Fe 2++2H ++H 2O 2=Fe 3++2H 2OD .在通入过量SO 2后的NaOH 溶液中加足量的溴水(不考虑SO 2的溶解):HSO 3-+Br 2+H 2O =3H ++2Br -+SO 42-A .滤出的物质为SiO 2B .可求出x 的值C .可求出Al 2O 3的质量分数D .可求出Fe 2O 3的质量分数6.(6分)10克Fe 2O 3、SiO 2、Al 2O 3混合物加入足量的100mL x mol /L 稀硫酸中,过滤,然后加入10mol /L NaOH 溶液,产生沉淀的质量和加入NaOH 溶液体积如右图.以下叙述错误的是( )A .反应过程中,若增大压强能提高SiCl 4的转化率B .若反应开始时SiCl 4为1 mol ,则达平衡时,吸收热量为Q kJC .反应至4 min 时,若HCl 浓度为0.12 mol /L ,则H 2的反应速率为0.03 mol /(L •min )D .反应吸收0.025Q kJ 热量时,生成的HCl 通入100 mL 1 mol /L 的NaOH 溶液中恰好完全反应7.(6分)工业上制备纯硅反应的热化学方程式如下:SiCl 4(g )+2H 2(g )⇌Si (s )+4HCl (g )△H =+QkJ /mol (Q >0)某温度、压强下,将一定量反应物通入密闭容器进行上述反应,下列叙述正确的是( )8.(14分)肼是重要的化工原料.某探究小组利用下列反应制取水合肼(N 2H 4•H 2O ).CO (NH 2)+2NaOH +NaClO =Na 2CO 3+N 2H 4•H 2O +NaCl实验一:制备NaClO 溶液(1)将氯气通入到盛有NaOH 的锥形瓶中,锥形瓶中发生反应的离子方程式是;实验二:制取水合肼(实验装置如图所示)控制反应温度,将分液漏斗中溶液缓慢滴入三颈烧瓶中,充 分反应.加热蒸馏三颈烧瓶内的溶液,收集108~114℃馏分.(已知:N 2H 4•H 2O +2NaClO =N 2↑+3H 2O+2NaCl )(2)分液漏斗中的溶液是(填标号A 或B ); A .NaOH 和NaClO 混合溶液B .CO (NH 2) 2溶液选择的理由是 ;实验三:测定馏分中肼含量水合肼具有还原性,可以生成氮气.测定水合肼的质量分数可采用下列步骤:a .称取馏分5.000g ,加入适量NaHCO 3固体,经稀释、转移、定容等步骤,配制250mL 溶液.b .移取25.00mL 于锥形瓶中,加入10mL 水,摇匀.c .用0.2000mol /L 碘溶液滴定至溶液出现微黄色且半分钟内不消失,滴定过程中,溶液的pH 保持在6.5左右.记录消耗碘的标准液的体积.d .进一步操作与数据处理(3)水合肼与碘溶液反应的化学方程式;滴定过程中,NaHCO 3能控制溶液的pH 在6.5左右,原因是 (4)滴定时,碘的标准溶液盛放在滴定管中(选填:“酸式”或“碱式”);若本次滴定消耗碘的标准溶液为18.00mL ,馏分中水合肼(N 2H 4•H 2O )的质量分数为 (保留三位有效数字);(5)为获得更可靠的滴定结果,步骤d 中进一步操作主要是: .【化学一一选修化学与技术】(共1小题,满分15分)9.(14分)现有五种可溶性物质A 、B 、C 、D 、E ,它们所含的阴、阳离子互不相同,分别含有五种阳离子 Na +、Al 3+、Mg 2+、Ba 2+、Fe 3+和五种阴离子Cl -、OH -、NO 3-、CO 32-、X 中的一种.(1)某同学通过分析,认为无需检验就可判断其中必有的两种物质是 和 (填化学式).(2)为了确定X ,现将(1)中的两种物质记为A 和B ,含X 的物质记C ,当C 与B 的溶液混合时,产生红褐色沉淀和无色无味气体;当C 与A 的溶液混合时也产生红褐色沉淀,向该沉淀中滴入稀硝酸沉淀部分溶解,最后留有白色沉淀不再溶解.则X 为. A .SO 32-B .SO 42-C .CH 3COO -D .SiO 32-(3)B 的水溶液显 性,原因为 .(用离子方程式表示)(4)将0.02molA 与0.01molC 同时溶解在足量的蒸馏水中,充分反应后,最终所得沉淀的物质的量为(保留一位小数) (5)将Cu 投入到装有D 溶液的试管中,Cu 不溶解;再滴加稀H 2SO 4,Cu 逐渐溶解,管口附近有红棕色气体出现.则物质D 一定含有上述离子中的 (填相应的离子符号).有关反应的离子方程式为: .(6)利用上述已经确定的物质,可以检验出D 、E 中的阳离子.请简述实验操作步骤、现象及结论.10.(15分)甲醚(CH 3OCH 3)被称为21世纪的新型燃料,它清洁、高效、具有优良的环保性能,甲醚是一种无色气体,具有轻微的醚香味,其燃烧热为1455kJ /mol ,甲醚可作燃料电池的燃料.(1)写出甲醚燃烧的热化学方程式 ;已知H 2(g )和C (s )的燃烧热分别是285.8kJ •mol -1、393.5kJ •mol -1;计算反应4C (s )+6H 2(g )+O 2(g )═2CH 3OCH 3(g )的反应热为 ;(2)工业上利用H 2和CO 2合成二甲醚的反应如下:6H 2(g )+2CO 2(g )═CH 3OCH 3(g )+3H 2O (g )△H <0①一定温度下,在一个固定体积的密闭容器中进行该反应.下列能判断反应达到化学平衡状态的是(选填编号,注意大小写)a .c (H 2)与c (H 2O )的比值保持不变b .单位时间内有2mol H 2消耗时有1mol H 2O 生成c .容器中气体密度不再改变d .容器中气体压强不再改变②温度升高,该化学平衡移动后到达新的平衡,CH 3OCH 3的产率将(填“变大”、“变小”或“不变”,下同),混合气体的平均式量将 ;(3)以甲醚、空气、氢氧化钾溶液为原料,石墨为电极可构成燃料电池.该电池的负极反应式为; (4)用(3)中的燃料电池为电源,以石墨为电极电解500mL 滴有酚酞的NaCl 溶液,装置如右图所示:请写出电解过程中Y 电极附近观察到的现象 ;当燃料电池消耗2.8LO 2(标准状况下)时,计算此时:NaCl 溶液的pH =(假设溶液的体积不变,气体全部从溶液中逸出).11.(15分)以炼锌烟尘(主要成分为ZnO ,含少量CuO 和FeO )为原料,可以制取氯化锌和金属锌.Ⅰ、制取氯化锌主要工艺如图:下表列出了相关金属离子生成氢氧化物沉淀的pH (开始沉淀的pH 按金属离子浓度为1.0mol •L -1计算).金属离子开始沉淀的pH 沉淀完全的pH Fe 3+1.1 3.2Zn 2+5.26.4Fe 2+ 5.88.8(1)加入H 2O 2溶液发生反应的离子方程式为 .(2)流程图中,为了降低溶液的酸度,试剂X 可以是 (选填序号:a .ZnO ;b .Zn (OH )2;c .Zn 2(OH )2CO 3;d .ZnSO 4);pH 应调整到 . (3)氯化锌能催化乳酸()生成丙交酯(C 6H 8O 4)和聚乳酸,丙交酯的结构简式为,聚乳酸的结构简式为 .Ⅱ、制取金属锌采用碱溶解{ZnO (s )+2NaOH (aq )+H 2O (l )═Na 2[Zn (OH )4](aq )},然后电解浸取液.【化学一一选修物质结构与性质】(共1小题,满分0分)【化学一一选修有机化学基础】(共1小题,满分0分)(4)以石墨作电极电解时,阳极产生的气体为 ;阴极的电极反应为. (5)炼锌烟尘采用碱溶,而不采用酸溶后电解,主要原因是.12.有A 、B 、C 、D 、E 、F 六种元素,A 是周期表中原子半径最小的元素,B 是电负性最大的元素,C 的2p轨道中有三个未成对的单电子,F 原子核外电子数是B 与C 核外电子数之和,D 是主族元素且与E 同周期,E 能形成红色(或砖红色)的E 2O 和黑色的EO 两种氧化物,D 与B 可形成离子化合物其晶胞结构如右图所示.请回答下列问题.(1)E 元素原子基态时的价电子排布式为; (2)A 2F 分子中F 原子的杂化类型是 ;(3)C 元素与氧形成的离子CO 2-的立体构型是 ;写出一种与CO 2-互为等电子体的分子的分子式 ;(4)将E 单质的粉末加入CA 3的浓溶液中,通入O 2,充分反应后溶液呈深蓝色,该反应的离子方程式是; (5)从图中可以看出,D 跟B 形成的离子化合物的化学式为;若离子化合物晶体的密度为ag •cm -3,则晶胞的体积是(写出表达式即可).13.从有机物A 开始有如图所示的转化关系(部分产物略去).A 在NaOH 溶液中水解生成B 、C 和D ,1molF 与足量的新制Cu (OH )2碱性悬浊液加热充分反应可生成2mol 红色沉淀.分析并回答问题:(1)A 中含有的官能团为氯原子(-Cl )和、 ; (2)指出反应类型:A →B 、C 、D; H →I ; (3)写出下列反应的化学方程式:①C →F : ;②E →H :; (4)与E 含有相同官能团的某有机物甲(C 4H 8O 3)有多种同分异构体,在结构中含有酯基和羟基,且水解产物不存在两个羟基连在同一个碳上的同分异构体有 种.。
氯化锌和氢氧化钠合成碱式氯化锌工艺研究
而添 加 剂 中锌 离 子 的活 跃 程度 及 其相 关 的生 物
有效 性 等 因素 直 接 决 定 了锌 饲 料 添 加剂 的应 用 及
推广 。 国 内外 对 各 种锌 添 加剂 的研究 结 果 表 明 . 无 机 锌 源 饲 料 添 加剂 碱 式 氯 化 锌 在 生 物 学 效 价 、 相
由于氯化 锌易 吸潮 难 以实 现 自动化设 备投料 。
图1 碱 式 氯化 锌 试 验 品 的 红外 光 谱 图
本研 究 所 采 用 的碱 式 氯 化 锌 工 艺 为液 体 氯 化
锌 与液 体氢 氧化 钠反 应制 备碱 式氯 化锌 , 由于 液体
2 . 2 . 3 碱 式氯 化锌 的 X衍射 分析
的优 势 【 , 目前 有 很 多 文献 报 导 了碱 式 氯 化锌 的
合 成 工 艺 ,如 廖 蔚 峰 等用 氯 化 锌 与氨 水 采 用 配位 催 化 均 匀沉 淀 法合 成 了碱 式 氯 化锌 『 6 1 , 黄 逸 强 以 氯 化 锌 和 氧 化锌 为 原 料 ,合 成 了碱 式 氯 化 锌 f 7 1 , 但这 些 方 法 有 的无 法 实 现工 业 化 生 产 ,有 的生 产 成本 相 对 较 高 ,越 来 越 难 以满 足 饲 料行 业 对 于 产 品原
氯化 锌价 格 较 固体 氯 化锌低 , 同时该 工艺 不 需要 用 到 氧化 锌 .因此 成 本 相对 其 他 工 艺可 降低 2 0 %以
从 碱 式 氯化 锌 的 x 衍 射 图谱 ( 图2 ) 我们 可 以
看 出, 实验得 到 的碱式 氯化锌 产 品的 X衍 射 图谱 同
上 。另外 , 该 工艺 使用 的原料都 是 液体 易 实现 自动
JOC2001,氯化锌的制备
Efficient Synthesis of Enantiopure Conduritols by Ring-ClosingMetathesisMorten Jørgensen,Erik H.Iversen,Andreas L.Paulsen,and Robert Madsen*Department of Organic Chemistry,Technical University of Denmark,DK-2800Lyngby,Denmarkrm@kemi.dtu.dkReceived February 1,2001Two short synthetic approaches to enantiopure conduritols are described starting from the chiral pool.In both cases,the cyclohexene ring is assembled via ring-closing olefin metathesis.The terminal diene precursers for the metathesis reaction are prepared either from octitols or from tartaric acids.The former route involves a new method for selective bromination of the primary positions in long-chain carbohydrate polyols.Subsequent reductive elimination with zinc then generates the diene.The latter route uses a highly diastereoselective addition of divinylzinc to tartaric dialdehydes for preparation of the dienes.IntroductionCyclohex-5-ene-1,2,3,4-tetrols are an important class of cyclitols known as the conduritols.A total of 10different stereoisomers exist of which six are diastereo-mers (conduritols A -F).1They display diverse biological activities,e.g.,as insulin modulators 2and glycosidase inhibitors.3In addition,many synthetic analogues of the conduritols have attracted significant attention.4Due to the carbocyclic structure,the conduritols are also valu-able starting materials for synthesis of natural products.5Only conduritol A 6and (+)-conduritol F 7have been found in nature and only in small amounts.All 10stereoisomers have been prepared in nonracemic form by chemical synthesis.1,8However,many of the previous synthetic approaches require a significant number of steps,particularly for manipulation of protecting groups,e.g.,benzyl groups.Recently,the method of ring-closing olefin metathesis (RCM)was introduced as a powerful technique for formation of the cyclohexene ring in the conduritols.9Since the pionering catalyst developmentsby Schrock and Grubbs,the area of olefin metathesis has emerged as a very effective new tool for C -C bond formation.10The area of carbohydrate chemistry has also taken advantage of olefin metathesis mainly by the use of catalyst 1.11However,carbohydrate derivatives are generally not very reactive toward metathesis due to the electron-withdrawing oxygen substituents.This problem has very recently been circumvented by the use of newly developed N-heterocyclic carbene catalysts 212and 3,13which are more reactive than 1for metathesis of carbohydrates.9a,b In particular,complex 3appears to be the catalyst of choice as it is more reactive than 2and very recently has become commercially available.14Herein,we report convenient routes to conduritols from higher carbon sugars and tartaric acids by the use of ring-closing metathesis catalyst 3.We also demonstate a new reaction for selective bromination of the terminal posi-tions in carbohydrate polyols.(1)Balci,M.Pure Appl.Chem.1997,69,97.Carless,M.A.J.Tetrahedron :Asymmetry 1992,3,795.Balci,M.;Su ¨tbeyas,Y.;Sec ¸en,H.Tetrahedron 1990,46,3715.(2)Billington,D.C.;Perron-Sierra,F.;Picard,I.;Beaubras,S.;Duhault,J.;Espinal,J.;Challal,S.In Carbohydrate Mimics -Concepts and Methods ;Chapleur,Y.,Ed.;Wiley-VCH:Weinheim,1998;p 433.(3)Legler,G.Adv.Carbohydr.Chem.Biochem.1990,48,319.(4)For recent examples,see:Metha,G.;Ramesh,mun.2000,2429.Angelaud,R.;Babot,O.;Charvat,T.;Landais,.Chem.1999,64,9613.Desjardins,M.;Lallemand,M.-C.;Freeman,S.;Hudlicky,T.;Abboud,K.A.J.Chem.Soc.,Perkin Trans.11999,621.Leung-Toung,R.;Liu,Y.;Muchowski,J.M.;Wu,.Chem.1998,63,3235.(5)For recent examples,see:Trost,B.M.;Patterson,D.E.;Hembre,E.J.J.Am.Chem.Soc.1999,121,10834.Trost,B.M.;Hembre,E.J.Tetrahedron Lett.1999,40,219.Sanfilippo,C.;Putti,A.;Piuttelli,M.;Nicolosi,G.Tetrahedron:Asymmetry 1998,9,2809.Doyle,T.J.;Hendrix,M.;VanDerveer,D.;Javanmard,S.;Haseltine,J.Tetrahedron 1997,53,11153.(6)Kubler,K.Arch.Pharm.(Weinheim,Ger.)1908,246,620.(7)Plouvier,V.C.R.Hebd.Se ´ances Acad.Sci.1962,255,360.(8)For recent examples,see:Cere ´,V.;Mantovani,G.;Peri,F.;Pollicino,S.;Ricci, A.Tetrahedron 2000,56,1225.Honzumi,M.;Hiroya,K.;Taniguchi,T.;Ogasawara,mun.1999,1985.Yoshizaki,H.;Ba ¨ckvall,.Chem.1998,63,9339.Sanfilippo,C.;Patti,A.;Piattelli,M.;Nicolosi,G.Tetrahedron :Asymmetry 1997,8,1569.Innes,J.E.;Edwards,P.J.;Ley,S.V.J.Chem.Soc.,Perkin Trans.11997,795.(9)(a)Hyldtoft,L.;Madsen,R.J.Am.Chem.Soc.2000,122,8444.(b)Ackermann,L.;Tom,D.E.;Fu ¨rstner,A.Tetrahedron 2000,56,2195.(c)Gallos,J.K.;Koftis,T.V.;Sarli,V.C.;Litinas,K.E.J.Chem.Soc.,Perkin Trans.11999,3075.(d)Lee,W.-W.;Chang,S.Tetrahe-dron :Asymmetry 1999,10,4473.(e)Kornienko,A.;d’Alarcao,M.Tetrahedron :Asymmetry 1999,10,827.(10)For recent reviews,see:Trnka,T.M.;Grubbs,R.H.Acc.Chem.Res.2001,34,18.Fu ¨rstner,A.Angew.Chem.,Int.Ed.2000,39,3012.Schrock,R.R.Tetrahedron 1999,55,8141.Wright,.Chem.1999,3,211.(11)Jørgensen,M.;Hadwiger,P.;Madsen,R.;Stu ¨tz,A.E.;Wrod-nigg,.Chem.2000,4,565.Roy,R.;Das,mun.2000,519.(12)Huang,J.;Stevens,E.D.;Nolan,S.P.;Petersen,J.L.J.Am.Chem.Soc.1999,121,2674.Scholl,M.;Trnka,T.M.;Morgan,J.P.;Grubbs,R.H.Tetrahedron Lett.1999,40,2247.Weskamp,T.;Kohl,F.J.;Hieringer,W.;Gleich,D.;Herrmann,W.A.Angew.Chem.,Int.Ed.Engl.1999,38,2416.(13)Scholl,M.;Ding,S.;Lee,C.W.;Grubbs,.Lett.1999,1,953.(14)Bielawski,C.W.;Grubbs,R.H.Angew.Chem.,Int.Ed.2000,39,2903..Chem.2001,66,4630-463410.1021/jo0101297CCC:$20.00©2001American Chemical SocietyPublished on Web 06/01/2001D o w n l o a d e d b y C A L I S C O N S O R T I A C H I N A o n J u l y 11, 2009P u b l i s h e d o n J u n e 1, 2001 o n h t t p ://p u b s .a c s .o r g | d o i : 10.1021/j o 0101297Results and DiscussionRetrosynthesis.Inspection of the carbon skeleton in the conduritols gives rise to the retrosynthetic analysis outlined in Scheme 1.A major task is to find short and efficient methods for preparation of the diene precursers for the RCM reaction.These eight-carbon dienes can originate either from the corresponding octitols by elimi-nation or from four-carbon dialdehydes by addition of two vinyl groups.The octitols can be prepared from higher carbon sugars while the dialdehydes are available from tartaric acids.The higher carbon sugar route is a new approach to conduritols while the tartaric acid route has previously been explored for preparation of a (+)-con-duritol E derivative.9dDienes from Higher Carbon Sugars.The one-pot Wittig/dihydroxylation transformation gives easy access to several higher carbon sugars from simple aldoses.15Subjecting the reaction to D -glucose gives D -erythro -L -galacto -octonolactone,which on reduction with sodium borohydride gives octitol 4(Scheme 2).The same elonga-tion on D -galactose gives D -threo -L -galacto -octonolactone,which on reduction provides octitol 5.It was decided to introduce bromine at the primary positions that would then set the stage for a reductive elimination in the presence of zinc.However,regioselec-tive bromination of the terminal positions in these unprotected polyols is not trivial.Simple reaction with triphenylphosphine and carbontetrabromide 16caused cyclization to derivatives of tetrahydrofuran.Acetyl bromide,which has been developed for bromination of smaller polyols,17was not suitable either due to compet-ing cyclization and epimerization reactions.Tosylation was not sufficiently regioselective to be synthetically useful.To circumvent the problem of an intramolecular cyclization when the primary position is activated,it was decided to tritylate these positions.This was easily achieved in a hot pyridine solution with 2.5equiv of trityl chloride.The same reaction mixture could be used for a subsequent benzoylation of the remaining six secondary hydroxy groups after cooling to room temperature.By pouring the reaction mixture into ethanol -ice,protected octitols 6and 7crystallized in high yields.A saturated solution of hydrogen bromide in acetic acid is a frequently applied brominating agent in carbohy-drate chemistry.18Indeed,direct treatment of 6and 7with this highly acidic mixture affected bromination of the primary positions to give 8and 9.Under these conditions,the trityl groups are cleaved immediately and yellow trityl bromide precipitates.Presumably,1,2-benzoxonium ions are then formed which undergo ring-opening at the least sterically hindered position.Minor byproducts were also isolated containing bromine at a secondary position or acetate at the primary position.The best results were obtained when the reaction was allowed to proceed for 7days apparently because some primary acetate is slowly converted into bromide.This bromina-tion procedure constitutes a new method for the selective introduction of bromine in longer chain alditols.It has the additional advantage that the products are set up directly for a reductive elimination with zinc to give dienes 10and 11in high yields.To further explore the versatility of this bromination reaction,heptitols 1219and 13were also prepared (Scheme 2).Tritylation and benzoylation of these pro-ceeded as described above to give crystalline 14and 15,which on bromination with hydrogen bromide in acetic acid gave dibromides 16and 17.Treatment of these with zinc and deprotection give dienes that we have previously cyclized to trihydroxycyclopentenes by RCM.9a On the other hand,the corresponding acetylated R ,ω-ditrityl heptitols and octitols did not undergo clean bromination at the primary positions with hydrogen bromide in acetic acid.Fairly complex mixtures of epimers were obtained in these cases,presumably due to migration of the 1,2-acetoxonium ions.20Dienes from Tartaric Acids.Preparation of condu-ritols from tartaric acids is a particularly short and efficient strategy.In a recent synthesis of a (+)-conduritol E derivative from protected L -tartaric acid,the first step involved reduction with Dibal-H to the corresponding(15)Jørgensen,M.;Iversen,E.H.;Madsen,.Chem.2001,66,4625.(16)Castro,.React.1983,29,1.(17)Crombez-Robert,C.;Benazza,M.;Fre ´chou,C.;Demailly,G.Carbohydr.Res.1997,303,359.(18)Lundt,I.Top.Curr.Chem.1997,187,118.(19)Wolfrom,M.L.;Thompson,A.Methods Carbohydr.Chem.1963,2,65.(20)For other examples of acetoxonium ion migrations in carbohy-drate chemistry,see:Paulsen,H.Methods Carbohydr.Chem.1972,6,142.Scheme1Scheme 2aaKey:(a)TrCl,pyridine,90°C;then BzCl,rt;(b)HBr in AcOH,rt;(c)Zn,AcOH/EtOAc/H 2O (6:3:1),ultrasound.Synthesis of Enantiopure Conduritols.Chem.,Vol.66,No.13,20014631D o w n l o a d e d b y C A L I S C O N S O R T I A C H I N A o n J u l y 11, 2009P u b l i s h e d o n J u n e 1, 2001 o n h t t p ://p u b s .a c s .o r g | d o i : 10.1021/j o 0101297dialdehyde followed by vinyl Grignard addition.9d The major diastereomer 19was obtained in this case in a ratio of 3:1(19/other two diastereomers).9d However,we ob-served that by using divinylzinc this ratio could be improved to greater than 10:1(Scheme 3).This is in accordance with addition reactions in similar systems where divinylzinc gives significantly better diastereo-selectivity than vinyl Grignard.9a,21Furthermore,vinyl Grignard can act as a reducing agent,and more reduction of the intermediate dialdehyde to alcohol was observed with this reagent than when using divinylzinc.It is important for the chemoselectivity in the Dibal-H reduc-tion that this reaction is carried out at -78°C.This could only be performed with Dibal-H in toluene as severe precipitation occurred when Dibal-H in hexane was used.The reactions could also be performed on meso tartaric acid 20where the diastereoselectivity with divinylzinc was about 3:1.In this case,the vinyl Grignard reagent was rather unselective and gave a quite complex mixture.The structures of 19and 21were verified after the RCM reaction.The formation of these as the major products with divinylzinc is in accordance with the predictions from the Felkin -Anh model.22Ring-Closing Olefin Metathesis.The obtained dienes were then converted into the conduritols by RCM.Initial experiments revealed that benzoylated diene 10or the corresponding unprotected tetrol gave low yields and significant decomposition in the metathesis reaction.Therefore,the benzoyl groups were replaced with acetyl groups to give diene 22,which was well suited for metathesis in accordance with our previous experience.9a As anticipated,9a,10complex 3was the best catalyst for the ring-closure giving a near-quantitative yield of the natural (+)-conduritol F tetraacetate 23(Table 1,entries 1and 2).A similar result was obtained for (+)-conduritol E tetraacetate 25(entry 3).Diene tetraacetate 24is available either from D -galactose (Scheme 2)or from L -tartaric acid (Scheme 3),the latter route being the shortest.Meso diene 21could be cyclized directly to conduritol D acetonide 26without changing the protect-ing group (entry 4)presumably aided by the Thorpe -Ingold effect from the isopropylidene group.23In conclusion,we have developed a convenient synthe-sis of conduritols D -F starting from either higher carbonsugars or tartaric acids.These syntheses complement our previously developed preparation of conduritol B and C using a zinc-mediated tandem reaction.9a In all cases,the cyclohexene ring has been prepared by RCM with cata-lyst 3.Hereby,we have now prepared five of the six diastereomeric conduritols in few steps from the chiral pool.These strategies should also be promising for synthesis of analogues and other natural products.Experimental SectionFor general procedures,see the preceding paper in this issue.15D -erythro -L -galacto -Octitol (4).D -erythro -L -galacto -Octo-nolactone 15(5.36g,22.5mmol)was dissolved in H 2O (100mL),and acidic ion-exchange resin (12mL,Amberlite IR-120-H +)was added.The mixture was cooled in ice and stirred while NaBH 4(1.15g,30.4mmol)was added at such a rate that the pH was maintained around 5.An additional amount of NaBH 4(1.40g,37.0mmol)was then added,increasing the pH to about 9.After the mixture was stirred at 0°C for 1h,more ion-exchange resin (125mL,Amberlite IR-120-H +)was added decreasing the pH to 3.The mixture was stirred overnight.The resin was removed by filtration and washed with H 2O.The filtrate was concentrated and co-concentrated with MeOH (4×100mL)to give a white solid.Recrystallization from EtOH/H 2O yielded 4.01g (74%)of 4.Mp:148-150°C (lit.24mp 153-154°C).13C NMR (D 2O,75MHz):δ74.4,72.7,72.0,70.8,70.4,68.9,64.0,63.3.D -threo -L -galacto -Octitol (5).D -threo -L -galacto -Octono-lactone 15(25.0g)was reduced with NaBH 4as described above to give after recrystallization from H 2O 20.8g (82%)of 5.Mp:216-218°C (lit.25mp 230°C).13C NMR (D 2O,75MHz):δ70.5(2C),69.6(2C),68.5(2C),63.5(2C).D -glycero -D -galacto -Heptitol (13).D -glycero -D -galacto -Heptonolactone 15(17.8g)was reduced with NaBH 4as de-scribed above to give after recrystallization from MeOH/H 2O 15.8g (87%)of 13.Mp:178-182°C (lit.26mp 187-188°C).13C NMR (D 2O,75MHz):δ73.1,72.4,71.4,71.3,70.4,65.4(2C).General Procedure for Tritylation/Benzoylation (Scheme 2).Trityl chloride (7.0g,25.0mmol)was added in(21)Boschetti,A.;Nicotra,F.;Panza,L.;Russo,.Chem.1988,53,4181.(22)Che ´rest,M.;Felkin,H.;Prudent,N.Tetrahedron Lett.1968,2199.Anh,N.T.Top.Curr.Chem.1980,88,145.(23)Forbes,M.D.E.;Patton,J.T.;Myers,T.L.;Maynard,H.D.;Smith,D.W.,Jr.;Schulz,G.R.;Wagener,K.B.J.Am.Chem.Soc.1992,114,10978.(24)Hann,R.M.;Merrill,A.T.;Hudson,C.S.J.Am.Chem.Soc.1944,66,1912.(25)Maclay,W.D.;Hann,R.M.;Hudson,C.S.J.Am.Chem.Soc.1938,60,1035.(26)Richtmyer,N.K.Methods Carbohydr.Chem.1963,2,90.Scheme3Table 1.Formation of Conduritols by RCMaaAll reactions were carried out in CH 2Cl 2at 40°C.b 18%of 22was recovered..Chem.,Vol.66,No.13,2001Jørgensen et al.D o w n l o a d e d b y C A L I S C O N S O R T I A C H I N A o n J u l y 11, 2009P u b l i s h e d o n J u n e 1, 2001 o n h t t p ://p u b s .a c s .o r g | d o i : 10.1021/j o 0101297portions to a slurry of the polyol (10.0mmol)in redistilled pyridine (35mL)at 90°C over 2-5h.The solution was then cooled to 0°C before benzoyl chloride (10.5mL,90.0mmol)was added.After the solution was stirred for 48h at room temperature,the crude product was poured into a mixture of EtOH (60mL)and ice (30mL)and stirred for 2h to provide a solid that was filtered off.2,3,4,5,6,7-Hexa-O -benzoyl-1,8-di-O -triphenylmethyl-D -erythro -L -galacto-octitol (6).R f )0.47(hexane/EtOAc )2:1).Mp:98-100°C (CHCl 3/EtOH).[R ]D :+3.5(c 2,CHCl 3).1H NMR (CDCl 3,300MHz):δ8.25-6.85(m,60H),6.16(dd,J )8.2,4.1Hz,1H),6.09(dd,J )6.6,3.9Hz,1H),6.05(dd,J )6.4,3.0Hz,1H),5.99(t,J )4.0Hz,1H),5.81(ddd,J )8.8,5.8,3.2Hz,1H),5.58(ddd,J )7.7,4.3,2.7Hz,1H),3.40-3.05(m,4H).13C NMR (CDCl 3,75MHz):δ165.1,165.0(2C),164.8(2C),164.6,143.2(6C),132.7-132.5(6C),129.8-126.6(60C),86.8,86.5,71.6,70.9,70.8,70.0(2C),69.2,62.1,61.9.Anal.Calcd for C 88H 70O 14:C,78.21;H,5.22.Found:C,77.99;H,5.24.2,3,4,5,6,7-Hexa-O -benzoyl-1,8-di-O -triphenylmethyl-D -threo -L -galacto-octitol (7).R f )0.51(hexane/EtOAc )2:1).Mp:118-120°C (CHCl 3/EtOH).[R ]D :-12.5(c 2.0,CHCl 3).1H NMR (CDCl 3,300MHz):δ7.89(d,J )7.6Hz,4H),7.82(d,J )7.5Hz,4H),7.68(d,J )7.4Hz,4H),7.49-7.35(m,6H),7.30-7.17(m,24H),7.03-6.98(m,18H),6.04(d,J )5.2Hz,2H),5.98(dd,J )5.2,2.6Hz,2H),5.78(ddd,J )6.4,6.1,2.6Hz,2H),3.27(dd,J )9.4,6.4Hz,2H),3.12(dd,J )9.4,6.1Hz,2H).13C NMR (CDCl 3,75MHz):δ165.0(4C),164.7(2C),143.2(6C),132.8(2C),132.6(2C),132.5(2C),129.9-126.6(60C),86.7(2C),70.8(2C),70.7(2C),70.4(2C),61.6(2C).Anal.Calcd for C 88H 70O 14:C,78.21;H,5.22.Found:C,77.98;H,5.22.General Procedure for Bromination (Scheme 2).The ditrityl compound (1.5mmol)was treated with 32%HBr in AcOH (20mL)in a closed flask for 7days.The mixture was diluted with CH 2Cl 2(50mL)and washed with H 2O (200mL)and 5%aqueous NaHCO 3(3×200mL).The organic phase was dried and concentrated and the residue purified by flash chromatography.2,3,4,5,6,7-Hexa-O -benzoyl-1,8-dibromo-1,8-dideoxy-D -erythro -L -galacto-octitol (8).R f )0.46(hexane/EtOAc )2:1).[R ]D :+5.58(c 1,CHCl 3).1H NMR (CDCl 3,250MHz):δ8.21-7.10(m,30H),6.20-6.00(m,4H),5.68(dt,J )6.4,2.3Hz,1H),5.59(ddd,J )6.9,4.4,4.1Hz,1H),3.71(dd,J )11.5,4.1Hz,1H),3.65-3.38(m,3H).13C NMR (CDCl 3,75MHz):δ165.1,165.0(4C),164.8,133.5,133.2(2C),133.0(3C),130.1-127.8(30C),71.0,70.8(2C),70.6,69.0,68.7,30.1,29.0.Anal.Calcd for C 50H 40O 12Br 2:C,60.50;H,4.06;Br,16.10.Found:C,60.95;H,4.20;Br,15.94.2,3,4,5,6,7-Hexa-O -benzoyl-1,8-dibromo-1,8-dideoxy-D -threo -L -galacto-octitol (9).R f )0.53(hexane/EtOAc )3:1).Mp:152-155°C (hexane/EtOAc).[R ]D :+12.7(c 1.5,CHCl 3).1H NMR (CDCl 3,300MHz):δ7.96-7.83(m,12H),7.54-7.41(m,6H),7.36-7.22(m,12H),6.07(d,J )6.6Hz,2H),6.03(dd,J )6.6,2.6Hz,2H),5.67(ddd,J )6.6,6.2,2.6Hz,2H),3.56(dd,J )10.8,6.2Hz,2H),3.50(dd,J )10.8,6.6Hz,2H).13C NMR (CDCl 3,75MHz):δ165.1(2C),164.9(4C),133.2(4C),133.0(2C),129.8-128.1(30C),71.2(2C),70.7(2C),69.5(2C),28.9(2C).Anal.Calcd for C 50H 40O 12Br 2:C,60.50;H,4.06;Br,16.10.Found:C,60.18;H,4.13;Br,16.05.3,4,5,6-Tetra-O -benzoyl-1,2,7,8-tetradeoxy-D -gulo -octa-1,7-dienitol (10).Dibromide 8(0.33g,0.33mmol)was dissolved in a mixture of EtOAc (3mL),H 2O (1mL),and AcOH (6mL).Activated zinc 9a (1.00g,15.3mmol)was added and the mixture sonicated for 3h.The precipitate was filtered off and washed with H 2O and CH 2Cl 2.The filtrate was diluted with CH 2Cl 2(60mL)and washed with H 2O (25mL)and 5%aqueous NaHCO 3(50mL).The organic layer was dried and concentrated and the residue purified by flash chromatography (hexane/EtOAc )3:1)to provide 0.20g (99%)of 10as a foam.R f )0.35.[R ]D :-27.2(c 1,CHCl 3).1H NMR (CDCl 3,300MHz):δ8.15-7.88(m,8H),7.66-7.27(m,12H),6.09-5.81(m,6H),5.53-5.27(m,4H).13C NMR (CDCl 3,75MHz):δ165.3,165.2,165.1,164.9,133.3,133.1,132.9(2C),131.5,131.2,129.7-128.2(20C),120.9,120.8,73.6,73.4,71.4,71.2.Anal.Calcd for C 36H 30O 8:C,73.21;H,5.12.Found:C,73.36;H,5.47.3,4,5,6-Tetra-O -benzoyl-1,2,7,8-tetradeoxy-L -manno -octa-1,7-dienitol (11).Prepared from dibromide 9as de-scribed above for 10.R f )0.50(hexane/EtOAc )3:1).[R ]D :-80.0(c 2,CHCl 3).1H NMR (CDCl 3,300MHz):δ8.08(dd,J )7.4,0.6Hz,4H),7.96(dd,J )7.3,1.5Hz,4H),7.55(dt,J )7.6,1.5Hz,2H),7.50(dd,J )8.0,0.6Hz,2H),7.41(dd,J )7.6,7.4Hz,4H),7.32(dd,J )8.0,7.3Hz,4H),6.06(ddd,J )17.3,10.4,6.9Hz,2H),5.96(d,J )5.2Hz,2H),5.87(m,2H),5.55(d,J )17.4Hz,2H),5.38(d,J )10.4Hz,2H).13C NMR (CDCl 3,75MHz):δ165.2(2C),165.0(2C),133.1(2C),132.9(2C),131.3(2C),129.7(4C),129.6(6C),129.5(2C),128.3-(4C),128.2(4C),121.0(2C),73.5(2C),70.9(2C).Anal.Calcd for C 36H 30O 8:C,73.21;H,5.12.Found:C,72.86;H,5.00.2,3,4,5,6-Penta-O -benzoyl-1,7-di-O -triphenylmethyl-D -glycero -D -gulo-heptitol (14).R f )0.42(hexane/EtOAc )7:2).Mp:111-112°C (CHCl 3/EtOH).1H NMR (CDCl 3,250MHz):δ7.87-6.96(m,55H),6.33(dd,J )7.6,4.4Hz,2H),5.96(t,J )4.4Hz,1H),5.56(ddd,J )7.6,4.7,3.4Hz,2H),3.45(dd,J )10.5,4.7Hz,2H),3.29(dd,J )10.5,3.4Hz,2H).13C NMR (CDCl 3,75MHz):δ165.0,164.9(2C),164.8(2C),143.2(6C),132.8-126.6(60C),86.6(2C),71.4(2C),69.6(2C),69.5,61.9(2C).Anal.Calcd for C 80H 64O 12:C,78.93;H,5.30.Found:C,78.79;H,5.45.2,3,4,5,6-Penta-O -benzoyl-1,7-di-O -triphenylmethyl-D -glycero -D -galacto-heptitol (15).R f )0.62(hexane/EtOAc )2:1).Mp:173-176°C (CHCl 3/EtOH).[R ]D :+21.4(c 1.7,CHCl 3).1H NMR (CDCl 3,500MHz):δ7.91-7.82(m,10H),7.55-7.42(m,5H),7.35-7.24(m,22H),7.05-6.95(m,18H),6.20(dd,J )7.8,1.8Hz,1H),6.04(dd,J )6.9,1.8Hz,1H),5.94(dd,J )6.9,2.9Hz,1H),5.79(m,1H),5.53(m,1H),3.40(dd,J )10.8,3.2Hz,1H),3.36(dd,J )9.8,6.9Hz,1H),3.24(dd,J )9.9,5.5Hz,1H),3.21(dd,J )10.9,5.3Hz,1H).13C NMR (CDCl 3,75MHz):δ165.1(2C),165.0,164.7,164.5,143.3(6C),132.9,132.8(2C),132.7,132.6,129.8-126.6(55C),86.8,86.6,71.1,70.7,70.1,69.2,69.1,62.0(2C).Anal.Calcd for C 80H 64O 12:C,78.93;H,5.30.Found:C,78.67;H,5.42.2,3,4,5,6-Penta-O -benzoyl-1,7-dibromo-1,7-dideoxy-D -glycero -D -gulo -heptitol (16).R f )0.64(hexane/EtOAc )2:1).Mp:158-160°C (Et 2O).1H NMR (CDCl 3,300MHz):δ7.96-7.82(m,10H),7.56-7.38(m,5H),7.37-7.22(m,10H),6.16-6.04(m,3H),5.68(dd,J )10.9,5.1Hz,2H),3.79(dd,J )11.4,4.4Hz,2H),3.63(dd,J )11.4,5.3Hz,2H).13C NMR (CDCl 3,75MHz):δ165.1,164.9(4C),133.2(5C),129.8(4C),129.7,128.3-128.0(20C),70.9(4C),68.5,30.0(2C).Anal.Calcd for C 42H 34O 10Br 2:C,58.76;H,3.99.Found:C,58.80;H,3.86.2,3,4,5,6-Penta-O -benzoyl-1,7-dibromo-1,7-dideoxy-D -glycero -D -galacto -heptitol (17).R f )0.60(hexane/EtOAc )2:1).Mp:138-142°C (EtOH).[R ]D :+3.3(c 1.7,CHCl 3).1H NMR (CDCl 3,500MHz):δ8.08-7.79(m,10H),7.59-7.19(m,15H),6.08-6.02(m,3H),5.71(dt,J )6.3,2.1Hz,1H),5.64(dt,J )6.1,4.9Hz,1H),3.79(dd,J )11.4,4.5Hz,1H),3.62-3.53(m,3H).13C NMR (CDCl 3,125MHz):δ165.1-164.9(5C),133.5,133.4(2C),133.2,133.1,130.0-128.1(25C),71.1,70.8,70.2,70.0,68.6,29.8,28.9.Anal.Calcd for C 42H 34O 10Br 2:C,58.76;H,3.99;Br,18.61.Found:C,59.02;H,3.83;Br,18.39.4,5-O -Isopropylidene-1,2,7,8-tetradeoxy-L -manno -octa-1,7-dienitol (19).To a solution of L -tartrate 18(2.5g,11.5mmol)in toluene (20mL)at -78°C was added a 1.2M solution of Dibal-H in toluene (22mL,26.4mmol)over 5min.The mixture was stirred at -78°C for 2h followed by dropwise addition of a 0.5M solution of divinylzinc 9a in THF (92mL,46mmol)over 20min.The stirring was continued for 1h at -78°C,and the solution was then allowed to warm to room temperature.The mixture was carefully quenched with H 2O (10mL)followed by addition of a saturated aqueous solution of Rochelle salt (100mL)and EtOAc (100mL).After the mixture was stirred for 30min,the phases were separated and the aqueous phase was extracted with EtOAc (3×100mL).The combined organic phases were dried and concen-trated.The residue was purified by flash chromatography (hexane/EtOAc )2:1)to afford 2.03g (83%)of 19as a syrup.Synthesis of Enantiopure Conduritols.Chem.,Vol.66,No.13,20014633D o w n l o a d e d b y C A L I S C O N S O R T I A C H I N A o n J u l y 11, 2009P u b l i s h e d o n J u n e 1, 2001 o n h t t p ://p u b s .a c s .o r g | d o i : 10.1021/j o 0101297R f )0.50.[R ]D :-44.9(c 2.1,CHCl 3).1H and 13C NMR are in accordance with literature data.9b4,5-O -Isopropylidene-1,2,7,8-tetradeoxy-allo -octa-1,7-dienitol (21).Prepared from meso -tartrate 20as described above for 19.R f )0.50(hexane/EtOAc )2:1).1H NMR (CDCl 3,300MHz):δ6.04(ddd,J )17.4,10.6,5.7Hz,2H),5.39(dt,J )17.4,1.6Hz,2H),5.28(dt,J )10.6,1.4Hz,2H),4.36(ddd,J )7.1,5.7,1.5Hz,2H),4.03(dd,J )7.2,1.5Hz,2H),1.41(s,3H),1.32(s,3H).13C NMR (CDCl 3,75MHz):δ137.8(2C),117.0(2C),109.1,80.4(2C),70.7(2C),28.1,25.7.Anal.Calcd for C 11H 18O 4:C,61.66;H,8.47.Found:C,61.07;H,8.67.3,4,5,6-Tetra-O -acetyl-1,2,7,8-tetradeoxy-D -gulo -octa-1,7-dienitol (22).Diene 10(1.00g,1.69mmol)was dissolved in a mixture of MeOH (10mL)and CH 2Cl 2(1mL).Sodium (25mg)was added and the solution stirred at room temper-ature for 20h.The solvent was removed in vacuo and the residue purified by flash chromatography (Et 2O f acetone)to give 261mg of a syrup.To a solution of this in CH 2Cl 2(25mL)were added Ac 2O (0.85mL,9.0mmol),Et 3N (1.6mL,11.5mmol),and a crystal of DMAP.The mixture was stirred at room temperature for 20h and then concentrated and purified by flash chromatography (hexane/EtOAc )2:1)to afford 438mg (76%)of 22as a syrup.R f )0.55.[R ]D :-16.0(c 2.2,CHCl 3).1H NMR (CD 3OD,300MHz):δ5.80(ddd,J )16.5,10.6,5.1Hz,1H),5.78(ddd,J )15.4,10.6,5.1Hz,1H),5.42-5.20(m,8H),2.06(s,3H),2.06,(s,3H),2.04(s,3H),2.00(s,3H).13C NMR (CD 3OD,75MHz):δ171.4,171.3(2C),171.2,133.1,132.9,121.4,120.3,74.0,73.7,71.9(2C),20.9,20.8,20.7,20.6.Anal.Calcd for C 16H 22O 8:C,56.14;H,6.48.Found:C,56.19;H,6.47.General Procedure for Ring-Closing Olefin Metathe-sis (Table 1).The catalyst was added to a deoxygenated solution of the diene (100mg)in CH 2Cl 2(5mL)under a nitrogen atmosphere.The solution was stirred at 40°C until TLC revealed full conversion (about 4h).The mixture was concentrated and the residue purified by flash chromatogra-phy.(+)-Conduritol F Tetraacetate (23).R f )0.27(hexane/EtOAc )2:1).[R ]D :+47.1(c 1,CHCl 3)(lit.27[R ]25D +45.6(c 1.12,CHCl 3)).1H and 13C NMR are in accordance with literature data.273,4,5,6-Tetra-O -acetyl-1,2,7,8-tetradeoxy-L -manno -octa-1,7-dienitol (24).A solution of diene 19(2.03g,11.4mmol)in 80%aqueous AcOH (50mL)was stirred at 50°C for 22h.The solvent was removed in vacuo to leave a solid.This was treated with Ac 2O (7.2mL,76.3mmol),Et 3N (10.7mL,76.8mmol),and a crystal of DMAP in CH 2Cl 2(75mL)at room temperature for 20h.The mixture was washed with H 2O (50mL)and the aqueous layer extracted with CH 2Cl 2(20mL).The combined organic phases were dried and concentrated,and the residue was purified by flash chromatography (hexane/EtOAc )2:1)to give 2.73g (83%)of 24as a syrup.R f )0.63.[R ]D :-27.0(c 1,CHCl 3).1H NMR (CDCl 3,300MHz):δ5.71(ddd,J )17.0,10.1,7.5Hz,2H),5.38(dd,J )17.0,0.2Hz,2H),5.34(dd,J )10.1,0.2Hz,2H),5.32-5.20(m,4H),2.06(s,6H),2.04(s,6H).13C NMR (CDCl 3,75MHz):δ169.7(2C),169.4(2C),132.3(2C),120.7(2C),71.6(2C),69.5(2C),20.9(2C),20.7(2C).Anal.Calcd for C 16H 22O 8:C,56.14;H,6.48.Found:C,56.20;H,6.43.(+)-Conduritol E Tetraacetate (25).R f )0.26(hexane/EtOAc )2:1).[R ]D :+199.3(c 1,MeOH).1H and 13C NMR are in accordance with literature data.28Conduritol D Acetonide (26).R f )0.49(EtOAc).Mp:123-124°C (hexane/EtOAc).1H NMR (CDCl 3,300MHz):δ5.76(s,2H),4.53(m,2H),4.04(bs,2H),1.41(s,3H),1.38(s,3H).13C NMR (CDCl 3,75MHz):δ131.4(2C),75.4(2C),66.3(2C),26.0,25.0.Anal.Calcd for C 9H 14O 4:C,58.05;H,7.58.Found:C,58.09;H,7.71.Removal of the isopropylidene group with 80%aqueous AcOH gave conduritol D as a syrup with 1H and 13C NMR in accordance with literature data.29Acknowledgment.We thank the Danish Natural Science Research Council for financial support.JO0101297(27)Le Drian,C.;Vionnet,J.-P.;Vogel,P.Helv.Chim.Acta 1990,73,161.(28)Carpintero,M.;Ferna ´ndez-Mayoralas,A.;Jaramillo,.Chem.1997,62,1916.(29)Donohoe,T.J.;Moore,P.R.;Beddoes,R.L.J.Chem.Soc.,Perkin Trans.11997,43..Chem.,Vol.66,No.13,2001Jørgensen et al.D o w n l o a d e d b y C A L I S C O N S O R T I A C H I N A o n J u l y 11, 2009P u b l i s h e d o n J u n e 1, 2001 o n h t t p ://p u b s .a c s .o r g | d o i : 10.1021/j o 0101297。
师范大学附属中学2020_2021学年高一化学上学期期中试题
安徽省安徽师范大学附属中学2020—2021学年高一化学上学期期中试题可能用到的相对原子质量:H 1 C 12 O 16 Na 23第I卷(选择题,共48分)一、选择题(本题包括16小题,每小题只有一个答案符合题意。
每小题3分,共48分)1.2019年诺贝尔化学奖授予约翰·B·古迪纳、斯坦利·惠廷汉和吉野彰,以表彰他们在开发锂离子电池方面做出的卓越贡献。
锂电池正极材料用到的钴酸锂(LiCoO2)属于A.氧化物 B.酸C.碱D.盐2.实验室可利用NaCl溶液和AgNO3溶液制备胶体,也可以反应生成沉淀,图中圆的大小代表分散质粒子的相对大小。
下列说法正确的是A.分散系Ⅰ为浊液B.制备分散系I的离子方程式为Ag++Cl-=AgCl(胶体) C.分散系Ⅱ为胶体D.两分散系的本质区别是是否有丁达尔现象3.下列图示中逻辑关系正确的是A.B.C.D.4.2020年8月初,黎巴嫩贝鲁特港口发生2750吨硝酸铵引起的大规模爆炸.已知爆炸时硝酸铵按下式分解:4NH4NO33N2↑+2NO2↑+8H2O↑,则该反应被氧化和被还原的N原子数之比为A.1∶1 B.1∶2 C.1∶3 D.3∶15.下列离子方程式的书写正确的是( )A.铁片投入稀硫酸中:2Fe+6H+=2Fe3++ 3H2↑B.过量的CO2与澄清石灰水反应:OH—+CO2=HCO3-C.碳酸氢钠溶液与NaOH溶液反应:OH-+H+=H2OD.向Ba(OH)2溶液滴加NaHSO4溶液至Ba2+恰好沉淀:Ba2++2H+ +2OH—+SO42-=BaSO4↓+ 2H2O6.下列关于氯气的实验装置能达到实验目的的是()①可用于氯气的收集②若气球干瘪,证明Cl2可与NaOH反应③可证明氯气具有漂白性④可用于实验室中氯气的尾气吸收A.①② B.①③ C.②③ D.①④7.过氧化钠可作呼吸面具中的供氧剂,实验室可用如图装置制取少量过氧化钠.下列说法错误的是()A.装置X还可以制取H2、CO2等气体B.②中所盛试剂为浓硫酸C.③的作用是除去空气中的水蒸气和二氧化碳D.实验时需先点燃装置Z的酒精灯8.学习化学不是靠一味背诵的,要学会运用合适的方法,如“类推",这样才能事半功倍。
氯化锌用于有机硅的生产工艺流程
氯化锌用于有机硅的生产工艺流程氯化锌是有机硅生产工艺中的重要原料之一。
Zinc chloride is one of the important raw materials in the production process of organic silicon.在有机硅的生产工艺中,氯化锌可以作为催化剂使用。
In the production process of organic silicon, zinc chloride can be used as a catalyst.氯化锌在有机硅生产中起着至关重要的作用。
Zinc chloride plays a crucial role in the production of organic silicon.它可以帮助促进有机硅的反应速度。
It can help to promote the reaction rate of organic silicon.氯化锌还可以提高有机硅的产率。
Zinc chloride can also increase the yield of organic silicon.有机硅生产工艺中添加适量的氯化锌可以提高生产效率。
Adding a proper amount of zinc chloride in the production process of organic silicon can improve the production efficiency.氯化锌对有机硅产品的质量具有重要影响。
Zinc chloride has an important impact on the quality of organic silicon products.它可以改善有机硅的性能特点。
It can improve the performance characteristics of organic silicon.氯化锌可以帮助调控有机硅的分子结构。
生产锌锭车间工艺流程
生产锌锭车间工艺流程
下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!
Download Tip: This document has been carefully written by the editor. I hope that after you download, they can help you solve practical problems. After downloading, the document can be customized and modified. Please adjust and use it according to actual needs. Thank you!
生产锌锭车间工艺流程如下:
①原料准备:采集锌矿石,进行破碎、筛分,确保粒度适合后续加工,并进行水化和焙烧处理,去除杂质,制备成适合冶炼的原料。
②浸出过程:将预处理后的原料与硫酸等化学试剂混合,在适宜条件下进行化学反应,使锌溶解于溶液中,形成含锌的浸出液。
③净化除杂:通过化学或物理方法(如沉淀、过滤)从浸出液中去除铜、铅、铁等杂质,提高锌的纯度。
④电解沉积:将净化后的含锌溶液送入电解槽,在直流电作用下,锌离子在阴极上还原沉积,形成纯锌薄片或锌粉。
⑤铸造成锭:收集电解产生的锌,经过熔化、精炼进一步提升纯度后,倒入模具中冷却凝固,形成锌锭。
⑥冷却与检验:锌锭冷却后脱模,进行质量检验,包括外观、尺寸、成分分析等,确保符合国标或其他特定标准。
⑦打包入库:合格的锌锭进行打包处理,标注相关信息后,入库储存或直接准备出厂销售。
氯化锌清洁生产工艺
氯化锌清洁生产工艺
氯化锌清洁生产工艺
用连续反应装置代替间歇反应装置生产氯化锌,不仅生产能力大,而且无HCl气体逸出,操作环境好,产品质量稳定;用蒸发器代替石墨板蒸发ZnCl2溶液,既节省能量,又可避免蒸气四逸.生产实践证明,该生产方法不仅可以避免污染,还可以获得相当好的经济效益.
作者:卢爱军卢芳仪 Lu Aijun Lu Fangyi 作者单位:南昌大学,环境科学与工程学院,江西,南昌,330029 刊名:化工环保ISTIC PKU 英文刊名:ENVIRONMENTAL PROTECTION OF CHEMICAL INDUSTRY 年,卷(期):2005 25(1) 分类号:X383 关键词:氯化锌连续反应装置清洁生产。
氧化锌生产工艺ppt课件
5 火法(直接法)
以锌精矿为原料,经高温氧化焙烧脱除铅、镉、硫等杂质后,配以还原煤并压制 成团,再在炉内高温还原,挥发出的锌蒸气与炉气中的CO2和引入的空气直接氧化成 氧化锌。直接法产出的氧化锌通常呈针状或棒状结晶,颗粒较粗。产品质量除与所采 用的工艺和锌精矿的质量有关外,还与还原煤的质量有关,因挥发出的锌蒸气直接受 到还原煤燃烧产物的污染。
6 直接法氧化锌生产工艺流程图
锌精矿
含尘烟气
冷却、收尘
沸腾炉焙烧
烟尘 烟气
返回生产次级氧化锌或提镉
接触法制酸
硫酸
烘砂
制团
还原-氧 化
冷却、收粉
布袋、收粉
氧化锌
烘粉
包装
7 火法(间接法)
间接法一般以锌锭为原料,锌锭在石墨坩埚内于1000 °C的高温下转换为锌蒸汽,随后被 鼓入的空气氧化生成氧化锌,并在冷却管后收集得到产品氧化锌颗粒。也可采用锌渣为原料, 不同的锌锭和锌渣原料重金属含量直接影响产物的重金属杂质含量,生产出的氧化锌纯度虽有 区别,但采用间接法工艺生产的氧化锌产品纯度为99.5%--99.7%。直接法工艺氧化锌多以锌矿 石,锌灰、锌精矿为原料,经高温氧化焙烧再加煤还原为锌蒸气,锌蒸气与热空气氧化得氧化锌。 该工艺产品杂质含量高,纯度低一般在75%--95%之间。间接法氧化锌是一种金属氧化物,常温 下为白色六角晶系结晶或粉末,粒径在0.1-10微米左右。难溶于水,可溶于酸和强碱,氨水和 铵盐溶液。无嗅无味,无砂性。受热变为黄色,冷却后重又变为白色,加热至1800℃时升华。 间接法氧化锌可用于橡胶、压敏电阻、油漆、磷化液、薄膜、导热材料等产业。重金属含量低 的产品,还可用于家畜饲料、药品、医疗保健等产业。