新人教版七年级下册第六章实数全章教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1.1平方根(第一课时)】
知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;
过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。
情感态度与价值观:通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。
教学重点:算术平方根的概念和求法。 教学难点:算术平方根的求法。 一、情境引入:
问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为225dm 的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?
二、探索归纳: 1.探索:
学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为dm 5。 接下来教师可以再深入地引导此问题: 如果正方形的面积分别是1、9、16、36、
25
4
,那么正方形的边长分别是多少呢?学生会求出边长分别是1、3、4、6、5
2
,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什
么呢?这个问题学生可能总结不出来,教师需加以引导。上面的问题,实际上是已知一个正数的平方,求这个正数的问题。
2.归纳:
⑴算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a 那么这个正数x 叫做a 的算术平方根。⑵算术平方根的表示方法:a 的算术平方根记为a ,读作“根号a ”或“二次很号a ”,a 叫做被开方数。
三、应用:
例1、 求下列各数的算术平方根: ⑴100 ⑵
6449 ⑶9
7
1 ⑷0001.0 ⑸0 注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算;
②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;③0的算术平方根是0。由此例题教师可以引导学生思考如下问题:
你能求出-1,-36,-100的算术平方根吗?任意一个负数有算术平方根吗?
归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。 即:只有非负数有算术平方根,如果a x =有意义,那么0,0≥≥x a 。
注:0≥a 且0≥a 这一点对于初学者不太容易理解,教师不要强求,可以在以后的教学中慢慢渗透。
例2、 求下列各式的值: (1)4 (2)
81
49
(3)2)11(- (4)26 分析:此题本质还是求几个非负数的算术平方根。 解:(1)24= (2)
9
7
8149= (3)1111)11(22==- (4)662= 例3、 求下列各数的算术平方根: ⑴23 ⑵34 ⑶2)10(- ⑷
6
101
解:根据学生的学习能力和理解能力可进行如下总结: 1、由332=,662=,可得)0(2≥=a a a
2、由11)11(2=-,10)10(2=-,可得)0(2≤-=a a a 教师需强调0=a 时对两种情况都成立。
四、随堂练习:1、算术平方根等于本身的数有_____。 2、求下列各式的值:
1,
25
9
, 25, 2)7(- 3、求下列各数的算术平方根:
0025.0, 121, 24, 2)21(-,16
9
1
4、已知,011=-++b a 求b a 2+的值。 五、课堂小结
1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根 6.1.3平方根(第三课时)
教学重点: 了解开方和乘方互为逆运算,弄懂平方根与算术平方根的区别和联系。教学难点:平方根与算术平方根的区别和联系。
一、情境导入如果一个数的平方等于9,这个数是多少?
讨论:这样的数有两个,它们是3和-3.注意()932
=-中括号的作用.
又如:25
4
2=
x ,则x 等于多少呢? 二、探索归纳:
1、平方根的概念:如果一个数的平方等于a ,那么这个数就叫做a 的平方根.即:如果2x =a ,那么x 叫做a 的平方根.
求一个数的平方根的运算,叫做开平方.
例如:±3的平方等于9,9的平方根是±3,所以平方与开平方互为逆运算. 2、观察:课本P45的图6.1-2.
图6.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.并根据这个关系说出1,4,9的平方根.
例4 求下列各数的平方根。 (1) 100 (2)
16
9
(3) 0.25 3、按照平方根的概念,请同学们思考并讨论下列问题:
正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?
一个是正数有两个平方根,即正数进行开平方运算有两个结果,一个是负数没有平方根,即负数不能进行开平方运算,符号:正数a 的算术平方根可用a 表示;正数a 的负的平方根可用-a 表示.
例5 求下列各式的值。
(1)144, (2)-81.0, (3)196
121±
(4)256,
()2
56
归纳:平方根和算术平方根两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。
四、小结:1、什么叫做一个数的平方根? 2、正数、0、负数的平方根有什么规律?
3、怎样求出一个数的平方根?数a 的平方怎样表示? 6.2 立方根
教学重点:立方根的概念和求法教学难点:立方根的求法。 一、情景引入:
要制作一种容积为327m 的正方体形状的包装箱,这种包装箱的边长应该是多少?二、探索归纳: 1.探索:设这种包装箱的边长为xm ,则273=x ,