随机过程-习题-第4章-01-精选.

合集下载

随机过程习题集-第四章马尔可夫过程

随机过程习题集-第四章马尔可夫过程

1第四章 马尔可夫过程内容提要1. 马尔可夫过程的概念 (1)马尔可夫过程给定随机过程{}(),X t t T ∈,如果对122,∀≥∀<<<∈n n t t t T ,有11221111{()|(),(),,()}{()|()}n n n n n n n n P X t x X t x X t x X t x P X t x X t x ----<====<=则称{}(),X t t T ∈为马尔可夫过程。

称(){}:,==∈E x X t x t T 为状态空间。

参数集和状态空间都是离散的马尔可夫过程称为离散参数马氏链. 参数连续、状态空间离散的马尔可夫过程称为连续参数马氏链. (2)k 步转移概率设{}(),0,1,2,=X n n 为离散参数马氏链,称()(),(,){|},0,1=+==≥≥i j p n k P X n k j X n i n k为{}(),0,1,2,=X n n 在时刻n 的k 步转移概率,称(),(,)((,)),P =∈i j n k p n k i j E为{}(),0,1,2,=X n n 在时刻n 的k 步转移概率矩阵. 特别地,当1k =时,在时刻n 的一步转移概率和一步转移概率矩阵分别简记为()ij p n 和()n P . (3)初始分布、绝对分布称((0)),,==∈i p P X i i E 为离散参数马氏链{}(),0,1,2,=X n n 的初始分布,记为0P ,称()(){},,==∈j p n P X n j j E 为马尔可夫链{}0n X n ≥的绝对分布,记为P n . (4)离散参数齐次马氏链设{}(),0,1,2,=X n n 是一离散参数马氏链,如果其一步转移概率()ij p n 恒与起始时刻n 无关,记为ij p ,则称{}(),0,1,2,=X n n 为离散参数齐次马氏链。

若{}(),0,1,2,=X n n2是离散参数齐次马氏链,则其k 步转移概率记为(),i j p k ,一步转移概率矩阵和k 转移概率矩阵分别记为P 和().P k(5) 离散参数齐次马氏链的遍历性离散参数齐次马氏链{X (n ) ,n=0,1,2… },若对一切状态i ,j ,存在与i 无关的极限()()lim 0,ij j n p n i j E →+∞=π>∈则称此马氏链具有遍历性.0,1j j j Ej E ππ∈>∈=∑若且则称{},j j E π∈为离散参数齐次马氏链{X (n ) ,n=0,1,2… }的极限分布,或称为最终分布,记为{},j j E ∏=∈π(6)离散参数齐次马氏链的平稳分布离散参数齐次马氏链{X (n ) ,n=0,1,2… },若存在{v j , j ∈E } 满足条件:1)0,2)13)j jj Ej i iji Ev j E vv v p ∈∈≥∈==∑∑则称此马氏链是平稳的,称 { v j , j ∈E } 为此马氏链的平稳分布。

随机过程第四章

随机过程第四章
n
pii
(n)
1
i
0
证:(1)如i为零常返则i
,由lim n
pii nd
d
i
0
而当n不能被周期d整除时n 0modd ,
必然有pii
(n)
0,故
lim
n
pii
n
0
反之,若lim n
pii
(n)
0,
而i是正常返,
则由lim n
pii (nd )
d
i
0矛盾.
(2) 如i为遍历,即d 1,由上面定理得
即 Tij minn:X m i, X mn j,n 1
而称:
fij (n) P Tij n
P{X mv j,1 v n 1,X mn j / X m i},n 1 为自状态i出发,经n步首次到达状态j的概率, 简称首达概率。
注:由齐次马氏链性质知,首达概率与出发时刻
p3
① q1 q2
p1
③ q3 ②
p2
求从状态1出发经n步转移首次到达各个状态的概率。
f12
(n)qq11p3 p3源自q m1 1m p1,
q3
,
n 2m, n 2m 1,
m 1 m0
同理:
f13 (n)
p1q2 p1q2
p m1 1
m q1,
p2
,
n 2m, n 2m 1,
m 1 m0
互通关系的状态是同一类型.
定理:如果i j, 则
(1) i与j同为常返或非常返,如为常返,则它们
同为正常返或零常返;
(2) i与j有相同的周期。
1证:因为i j,故存在正整数k与m,使
pij (m) 0, p ji (k ) 0

《随机过程》第四章作业解答

《随机过程》第四章作业解答

20. 解:由例 4.8 中的结果可知甲最终赢的概率为:
(1)
P (甲最终赢)
=
(
1−p p
)a

1
(
1−p p
)a+b

1
=
(
2 3
)16
(
2 3
)36
− −
1 ;
1
(2)
P (甲最终赢)
=
(
1−p p
)a

1
(
1−p p
)a+b

1
=
(
2 3
)4

1
(
2 3
)24

1
21. 解:(1) 状态空间可以分为三个等价类:{1, 2}, {3, 4}, {5, 6}。其中 {1, 2} 与 {3, 4} 是常 返的,{5, 6} 是瞬时的,而且状态 {1, 2, 3, 4} 是非周期的。从而由推论 4.1 可知:
不妨记 p11 ≥ p12 ≥ · · · ≥ pn1 ≥ 0,若 p11 > p12 严格成立,从而有:
n
n
p11 = p1ipi1 < p11 p1i = p11
i=1
i=1
得到矛盾,从而有 p11 = p12。类似可证:对 ∀j ≤ n,p11 = p1j 均成立。从而类似可证:
对 ∀i, j ≤ n, p1j = pjj。

19.
解:结合概率转移矩阵画出有向图,可以得到: f1(1n) = a,
n=1 , 从而状态{1}是
0, n > 1
如有疏漏,欢迎指正
4
《随机过程》第四章作业解答

随机过程课后题答案

随机过程课后题答案

第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。

求X 的特征函数,EX 及DX 。

其中01,1p q p <<=-是已知参数。

解()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。

解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 10(())x p p e x dx ∞--Γ=⎰ (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。

(解答)《随机过程》第四章习题

(解答)《随机过程》第四章习题

第四章 二阶矩过程、平稳过程和随机分析 习题解答1、 设∑=-=Nk k k kn U n X 1)cos(2ασ,其中k σ和k α为正常数,)2,0(~πU U k ,且相互独立,N k ,,2,1 =,试计算},1,0,{ ±=n X n 的均值函数和相关函数,并说明其是否是平稳过程。

解:计算均值函数和相关函数如下0)}{cos(2)cos(2}{)(11=-=⎭⎬⎫⎩⎨⎧-==∑∑==Nk k k k N k k k k n X U n E U n E X E n ασασμ∑∑∑∑∑∑======-=--=--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡-=Ni i i N i i i i i i Ni Nj j j i i j i N j j j j N i i i i X m n U m U n E U m U n E U m U n E m n R 12121111)](cos[)}cos(){cos(2)}cos(){cos(2)cos(2)cos(2),(ασαασαασσασασ因此可知,},1,0,{ ±=n X n 是平稳随机过程。

2、 设有随机过程))(cos()(t t A t X πηω+=,其中0>ω为常数,}0),({≥t t η是泊松过程,A 是与)(t η独立的随机变量,且2/1}1{}1{===-=A P A P 。

(1) 试画出此过程的样本函数,并问样本函数是否连续? (2) 试求此过程的相关函数,并问该过程是否均方连续? 解:(1)样本函数不连续。

(2)令:012≥>t t ,下面求相关函数:)(221)(212210)(1212211212121211212212122112221122121121212cos cos )]}(cos[)]({cos[21!)]([)]}(cos[)]({cos[)1(21))]}()(()(cos[))]()(()(2)({cos[21))]}()(()(cos[))]()(()({cos[21))}(cos())({cos(}{))}(cos())(cos({)}()({),(t t t t k t t k kX e t t e t t t t e k t t t t t t t t t t t t t t t E t t t t t t t t E t t t t E A E t t t t A E t X t X E t t R ----∞=--⋅=⋅-++=⋅-⋅-++-=-+-+-+++=-+-++++=++⋅=++==∑λλλωωωωλωωηηπωηηππηωηηπωηηπωπηωπηωπηωπηω因为:t t t R ωξ2cos ),(=因此该过程是均方连续的随机过程。

应用随机过程第4章随机模拟

应用随机过程第4章随机模拟

4.2 随机数的抽样
› 生成大量不重复的seed序列
产生随机数种 子的原理,是 要产生多少个 随机数种子, 就按一定步长 递增多少次, 然后得到一个 随机数作为种 子。 这个宏有个缺 点,就是当步 长*随机数种子 数量>2**31-1 时,可能得不 到要求得到的 随机数种子数 量。
4.2 随机数的抽样
4.2 随机数的抽样
› 标准分布随机数生成,利用SAS生成标准分布 随机数
› 生成大量不重复的seed序列
– 在实际的应用中,我们经常会遇到需要大量随机数 序列的情况,这时候我们就不能靠手工输入随机数 种子。 – 当SEED=0时,我们可以用这个随机种子产生大量的 随机数序列,但是这里产生的随机数序列并不一定 能保证这些随机数序列不重复。 – 这里介绍一个产生不重复的随机数种子的宏
4.2 随机数的抽样
› 标准分布随机数生成
– SAS随机数函数
4.2 随机数的抽样
› 标准分布随机数生成 › 利用SAS生成标准分布随机数一般有两种方法 – 由随机数函数产生随机数序列 其语法为:var = name(seed,<arg>) – CALL子程序产生随机数序列 其语法为:call name(seed,<arg>,var)。 ー 两种方法的主要区别在于: ー 随机数函数产生随机数序列时,其序列的值只由 第一个随机数种子的值决定,而用CALL子程序时, 每一次调用随机函数,都会重新产生新的随机数 种子。
4.2 随机数的抽样
› 标准分布随机数生成 – 伪随机数生成算法 – 在SAS系统中, – 常数a=397,204,094 – m = 2^31-1=2,147,483,647(是一个素数) – c=0 – 种子R(0)必须是一个整数并且其值介于1到m-1之 间。 – 这里c=0的数据生成器被称为multiplicative congruential generator,被广泛地应用。

随机过程第四章作业及参考答案

随机过程第四章作业及参考答案

第四章 马尔科夫过程P2271. 将一颗骰子扔很多次。

记n X 为第n 次扔正面出现的点数,问(){}12X n n = ,,,是马尔科夫链吗?如果是,试写出一步转移概率矩阵。

又记n Y 为前n 次扔正面出现点数的总和,问(){}12Y n n = ,,,是马尔科夫链吗?如果是,试写出一步转移概率。

解: (1)由于(){}12X n n = ,,,的取值只能是{}123456,,,,,,故状态空间为{}123456E =,,,,,。

由于()X n 的取值的概率与()1X n -以前的()X i 的取值完全无关,所以是()X n 是马尔科夫链。

故()(){}116ij p P X n j X n i ==-==. 它的一步转移概率矩阵为:111111666666111111666666111111666666111111666666111111666666111111666666P ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(2)由于前n 次扔正面出现点数的总和()Y n =前1n -次扔正面出现点数的总和+第n 次扔正面出现的点数,而前1n -次扔正面出现点数的总和与第n 次扔正面出现的点数相互独立,因此()Y n 具有无后效性,是马尔科夫链。

它的一步转移概率为:()112616078ij j i i i p n n j i i i j i ⎧=+++⎪+=⎨⎪=++<⎩ ,,,,,,,,,,或 其中16i n n n =+ ,,,;()1261j n n n =+++ ,,,。

2. 一个质点在直线上作随机游动,一步向右的概率为p (01p <<),一步向左的概率为q ,1q p =-。

在0x =和x a =处放置吸收壁。

记()X n 为第n 步质点的位置,它的可能值是(){}012X n n = ,,,,。

试写出一步转移概率矩阵。

解:状态空间为{}012E a = ,,,,。

电子科大 应用随机过程及应用 (陈良均 朱庆棠)第四章作业

电子科大 应用随机过程及应用 (陈良均 朱庆棠)第四章作业

为独立增量过程 Y (n )
∴ Y (n ) 为马氏链
Y (0 ) = 0
Pij (m , k ) = P { Y (m + k ) = j Y (m ) = i } = P{ Y (m + k ) − Y (m ) = j − i Y (m ) − Y (0 ) = i } m+k = P ∑ X (i ) = j − i i= m +1
16 8 ) λ (17 41 , 41 , 41 放在 A 处好
1 1
1 1
习题十三
1 1 2 3 4 5 . . ∞
1 2
习题十四
2
1 1 2 2
3 0
1 1 2 2
4 0 0
1 1 2 2
5 0 0 0
1 1 2 2
6 0 0 0 0
1 2
7 ........

0 0 0 0 0 0
0 0 0 0 0
0 0
1
=
1
2
p
a −1
+
p
a +1
p (a + b ) − p (a + b − 1 ) = p (a + b − 1 ) − p (a + b − 2 ) p (a + b − 1 ) − p (a + b − 2 ) = p (a + b − 2 ) − p (a + b − 3 . p (a . p( 1 ) − p (0
0 0 0
+ + +
0 0 0 0 0 0
1 1 1
3 3 3
× 60 × 10 × 10
7 7 7 30 30 30

《随机过程及其在金融领域中的应用》习题四答案

《随机过程及其在金融领域中的应用》习题四答案

第四章 习题41、对泊松过程{},0t N t ≥(1)证明:当s t <时,{}1,0,1,,kn ks t n s s P N k N n k n k t t -⎛⎫⎛⎫⎛⎫===-= ⎪⎪⎪⎝⎭⎝⎭⎝⎭(2)当2λ=时,试求:()()()112112;1,3;21P N P N N P N N ≤==≥≥(3)设顾客到达某商店是泊松事件,平均每小时以30人的速度到达。

求下列事件的概率:相继到达的两顾客的时间间隔为大于2分钟、小于2分钟、在1分钟到3分钟之间。

答:(1)证明:{}()()()()()()()()()()()()()()()()()()(),,!!!!!!!1!!s t s t s s t s s t t t t n kkt s sk n kn k nk n ktn kk n kk nP N k N n P N k N n k P N k P N n k P N k N n P N n P N n P N n t s s e ek n k s t s n k n k t t t e n n s t s n s s k t k n k t t λλλλλλλλλλ------------====-==-========-⎡⎤⎣⎦--==--⎛⎫⎛⎫⎛⎫==- ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭(2)()()()()()()()()11110121112222201211120!1!2!225P N P N N N e e e e e e e λλλλλλλ-------≤==+=+==++-=++=()()()()12121224111,31,3112224P N N P N N P N P N ee e----=====-=====()()()()()()()()()()111111121112112,122111121011311101P N N P N P N N P N P N P N P N P N e P N P N e --≥≥≥≥≥==≥≥-<-=-=-===-<-=-(3) 解法一:顾客到达事件间隔服从参数为λ的指数分布:()()()30,03030,0x x Z Z f t e x f t e x λλλ--=≥=⇒=≥①()30301111303023030106030x x P Z e dx e e e ∞∞----⎧⎫>===--=⎨⎬-⎩⎭⎰②()11303011303000230301116030x x P Z e dx e e e ----⎧⎫<===--=-⎨⎬-⎩⎭⎰ ③1131133030202022221160601330301606030x x P Z e dx e e e e e ------⎛⎫⎧⎫<<===--=-⎨⎬ ⎪-⎩⎭⎝⎭⎰解法二:()3030==0.560λ∴平均每小时有人到达人/分钟根据齐次Poisson 过程的到达时间间隔{},1,2,n X n =是独立同分布于均值为1λ的指数分布的,故可有: 相继到达的顾客的时间间隔大于2分钟的概率为:()12t n P X e e λ-->== 相继到达的顾客的时间间隔小于2分钟的概率为:()1211t n P X e e λ--<=-=-相继到达的顾客的时间间隔在1分钟到3分钟之间的概率为:()()()()1.50.50.5 1.5133111n n n P X P X P X e e e e ----<<=<-<=---=-2、{},0t N t ≥是强度为λ的泊松过程。

随机过程及应用习题课四

随机过程及应用习题课四

1. 设{(),0,1,2,}X n n =为马氏链,证明12312{(1)|(2),(3),,()}{(1)|(2)}n P X x X x X x X n x P X x X x =======即马氏链的逆序也构成一个马氏链. 2. 如果马氏链的转移概率矩阵为0110P ⎛⎫= ⎪⎝⎭证明:此马氏链不是遍历的马氏链,但具有平稳分布.3. 一个开关有两种状态:开或关,设它现在开着时,经过单位时间(s )后,它仍然开着的概率为12,关上的概率为12;当它现在关着时,经过单位时间(s )后它仍然关着的概率为34,它打开的概率为14. 假设开关的状态转移只在0,1,2,3,…(s )时进行. 设0t =时,开关开着. 求3t =时,开关关着和开关开着的概率.4. 甲乙两人进行比赛,设每局比赛甲胜的概率为p ,乙胜的概率为q ,和局的概率为r ,1p q r ++=,设每局比赛后胜者记“1”,分负者记“-1”分,和局记“0”分. 当两人中有一个获得2分时,结束比赛. 以()X n 表示比赛至第n 局时,甲获得的分数. {(),0,1,2,}X n n =是一个齐次马氏链.(1)写出此马氏链的状态空间; (2)写出状态转移矩阵; (3)计算2步转移矩阵;(4)问在甲获得1分的情况下,再赛2局就结束比赛的概率为多少?5. A 、B 、C 三家公司决定在某一时间推销一新产品. 当时它们各拥有13的市场,然而一年后,情况发生了如下的变化:(1)A 保住40%的顾客,而失去30%给B ,失去30%给C ; (2)B 保住30%的顾客,而失去60%给A ,失去10%给C ; (3)C 保住30%的顾客,而失去60%给A ,失去10%给B .如果这种趋势继续下去,试问第2年底各公司拥有多少份额的市场?(从长远来看,情况又如何?)6. 一质点沿圆周游动,圆周上按顺时针等距排列五个点0,1,2,3,4,把圆周分成五格。

随机过程 第4章 Markov过程

随机过程 第4章  Markov过程

(C-K 方程)
证明:由全概率公式,有:
( m+r ) pij (n) = P{ X n + m + r = j X n = i}
= ∑ P{ X n + m + r = j, X n + m = k X n = i} = ∑ P{ X n + m + r = j X n + m = k , X n = i} ⋅P{ X n + m = k X n = i} = ∑ P{ X n + m + r = j X n + m = k}P{ X n + m = k X n = i}
为齐次马氏链的 m 步转移(概率)矩阵。 显然有:
(m) pij (n) ≥ 0, i , j ∈ I
∑p
j∈I
(m) ij
( n) = 1 , i ∈ I
m = 1 时,即为一步转移矩阵。
规定:
⎧1, (0) pij (n) = δ ij = ⎨ ⎩0,
二、切普曼-柯尔莫哥洛夫(C-K)方程
i= j i≠ j
由01nll相互独立111100nnnnpxixixixi??l111100111100nnnnnnpxixixixipxixixi????ll第四章markov过程611121100011211000?nnnnnnnnnpiiiiiiipiiiii?????????l??l1nnnpii??11??nnnnixixp故210lnxn满足markov性且1100nnijnnkkkkppxjxipji??10nnkknji?pji?ipji?q?二随机游动1无限制的随机游动
性质 5 设{ X n , n ≥ 0 }为马氏链, 其状态空间为 I, 则对任意给定的 n 个整数,

随机过程-习题-第4章-01

随机过程-习题-第4章-01

4.1 设有一泊松过程(){}0,≥t t N ,求:(1)()(){}2211,k t N k t N P ==,用21t t 、的函数表示之; (2)该过程的均值和相关函数。

问该过程是否为平稳过程? (1) 解:首先,{}{}{}1111222211)()()()(,)(k t N P k t N k t N P k t N k t N P ======根据泊松过程的独立增量性质可知{}{})(1212121211221212!)()]([)()()(t t k k ek k t t k k t t N P k t N k t N P -----=-=-===λλ 于是,{}21122!)(!)()(,)(1211122211t k k k k e k k k t t t k t N k t N P λλ----===(2) 解:该过程的均值为[]()()t k t te e k t k t N E k k t k t k λλλλλλ=⎪⎪⎭⎫ ⎝⎛-==∑∑+∞=--+∞=-110!1!)()( 根据泊松过程的独立增量过程性质可得其相关函数为(12t t >)[]()[])]([)]()([)]([)()()()()()(12121112121t N E t N t N E t N E t N t N t N t N E t N t N E +-=+-=其中,)()]()([1212t t t N t N E -=-λ121212)]([t t t N E λλ+=于是,12t t >时的相关函数为[]12121212121221)()()(t t t t t t t t t N t N E λλλλλ+=++-=同理可得21t t >时的相关函数为[]221221)()(t t t t N t N E λλ+=所以,泊松过程的相关函数为[]{}2121221,min )()(t t t t t N t N E λλ+=所以,泊松过程过程不是平稳过程。

随机过程习题四

随机过程习题四

1. (),1,2,X n n =,是相互独立同分布随机变量序列,令1()(),1,2,nk Y n X k n ===∑分别证明下述情形,{(),0,1,2,}Y n n =是齐次马尔科夫过程.(1)()X n 是伯努利随机变量序列,其中{()0}P X n q ==,{()1}P X n p ==,(01,1),1,2,p p q n <<+==(2)2()~(,),1,2,X n N n μσ=2. 设(),1,2,,X n n =是相互独立取非负整数的随机变量序列,令2()[(1)(2)()],1,2,Y n X X X n n =+++=证明:{(),1,2,}Y n n =是马氏链.3. 设{},1n n ε≥是独立同分布随机变量序列,并且()10,,1,k k k P k p k N p ε∞===∈=∑令(){}12min ,,,,n X n εεε=证明(){},1X n n ≥是齐次马氏链,并求其一步转移概率矩阵P 。

4. 设{(),0,1,2,}X n n =为马氏链,证明12312{(1)|(2),(3),,()}{(1)|(2)}n P X x X x X x X n x P X x X x =======即马氏链的逆序也构成一个马氏链.5. 在天气预报问题中,若今日是否下雨依赖于前两天的天气状况,并规定:昨日、今日都下雨,明日有雨的概率为0.7;昨日无雨,今日有雨,明日有雨的概率为0.5;昨日有雨、今日无雨,明日有雨的概率为0.4;昨日、今日均无雨,明日有雨的概率为0.2。

该问题是否可以用一马尔可夫链表示。

若可以,求在星期一、星期二均下雨条件下,星期四下雨的概率。

6. √考虑Bernoulli 过程的移动平均()112n n n Y X X -=+ 其中{}1,2,n X n =是p =1/2的独立Bernoulli 序列。

试证明{}1,2,n Y n =不是一个Markov 过程。

《随机过程》第4章离散部分习题及参考答案

《随机过程》第4章离散部分习题及参考答案

湖南大学本科课程《随机过程》第4章习题及参考答案主讲教师:何松华 教授30.设X(n)为均值为0、方差为σ2的离散白噪声,通过一个单位脉冲响应为h(n)的线性时不变离散时间线性系统,Y(n)为其输出,试证:2[()()](0)E X n Y n h σ=,2220()Y n h n σσ∞==∑证:根据离散白噪声性质,220()[()()]()0X m R m E X n m X n m m σσδ⎧==+==⎨≠⎩()()()()()m Y n X n h n X n m h m ∞==⊗=-∑220[()()]{()()()][()()]()()()()()(0)m m X m m E X n Y n E X n X n m h m E X n X n m h m R m h m m h m h σδσ∞∞==∞∞===-=-===∑∑∑∑12121222112202121221210000[()]{()()()()][()()]()()[()()]()Y m m m m m m E Y n E X n m h m X n m h m E X n m X n m h m h m m m h m h m σσδ∞∞==∞∞∞∞======--=--=-∑∑∑∑∑∑(对于求和区间内的每个m 1,在m 2的区间内存在唯一的m 2=m 1,使得21()0m m δ-≠)1222110()()()m n h m h m h n σσ∞∞====∑∑(求和变量置换) 31.均值为0、方差为σ2的离散白噪声X(n)通过单位脉冲响应分别为h 1(n)=a n u(n)以及h 2(n)=b n u(n)的级联系统(|a|<1,|b|<1),输出为W(n),求σW 2。

解:该级联系统的单位脉冲响应为121211100()()()()()()()1(/)()1/n m m m m mn n n nnn m m n nm m h n h n h n h n m h m a u n m b u m b b a aba b a a u n a b a a b∞∞-=-∞=-∞+++-===⊗=-=---⎛⎫====⎪--⎝⎭∑∑∑∑参照题30的结果可以得到21122222211212000222222222()[()2()()]()2(1)[]()111(1)(1)(1)n n n n n W n n n a b h n a ab b a b a b a ab b ab a b a ab b a b ab σσσσσσ++∞∞∞+++===⎡⎤-===-+⎢⎥--⎣⎦+=-+=-------∑∑∑32.设离散系统的单位脉冲响应为()() (1)n h n na u n a -=>,输入为自相关函数为2()()X X R m m σδ=的白噪声,求系统输出Y(n)的自相关函数和功率谱密度。

随机过程第四章习题解答

随机过程第四章习题解答

第四章习题解答4.1Y1,Y2,···是来自总体Y的随机变量,与X0独立,h(x,y)是实函数.对于n 1,取X n=h(X n−1,Y n).设{X n}的状态空间为I,验证{X n}是马氏链,给出转移概率p ij.解:由题知,Y k与X1,···,X k−1独立,k 1,∀n,i,j,i1,...,i n−1∈I有,P(X n+1=j|X n=i,X n−1=i n−1, (X0)i0)=P(h(i,Y n+1)=j|X n=i,X n−1=i n−1,···,X0=i0)=P(h(i,Y n+1)=j|X n=i)=P(h(i,Y)=j)=P(h(i,Y1)=j|X0=i)=P(X1=j|X0=i).∴X n是马氏链,P ij=P(h(i,Y)=j).4.2设{X i,i 0}是取非负整数值的独立同分布的随机变量序列,V ar(X0)>0.验证以下随机序列是马氏链:(a){X n,n 0};(b){S n,n 0},其中S n=∑ni=0X i;(c){ξn,n 0},其中ξn=∑ni=0(1+X i).解:∀n,i,j,i0,···,i n−1∈N+,(a).P(X n+1=j|X n=i,X n−1=i n−1,···,X0=i0)=P(X n+1=j)= P(X n+1=j|X n=i)=P(X1=j)=P(X1=j|X0=i).1第四章离散时间马尔可夫链第四章离散时间马尔可夫链(b).P(S n+1=j|S n=i,S n−1=i n−1,···,X0=i0)=P(X n+1=j−i|X n=i−i n−1,···,X0=i0)=P(X n+1=j−i)=P(X n+1=j−i,S n=i|S n=i)=P(S n+1=j|S n=i)=P(X1=j−i)=P(X1=j−i|X0=i)=P(S1=j|S0=i).(c).P(ξn+1=j|ξn=i,ξn−1=i n−1,···,ξ0=i0)=P(X n+1=ji −1)=P(X n+1=ji−1|ξn=i)=P(ξn+1=j|ξn=i)=P(X1=ji −1)=P(X1=ji−1|X0=i)=P(ξ1=j|ξ0=i).4.3马氏链的状态空间是I=(1,2,3,4,5),转移概率矩阵P=0.20.80000.50.5000000.50.500.20.3000.500001界定马氏链的状态。

(解答)《随机过程》第四章习题

(解答)《随机过程》第四章习题

(2)如果 X ~ N (0,1) ,问过程 (t) 是否均方可微?说明理由。
解:计算随机过程 (t) 的相关函数:
R (s,t) E{ (s) (t)} E{( X cos 2s Y sin 2s)(X cos 2t Y sin 2t)} cos 2s cos 2tE{X 2} sin 2s sin 2tE{Y 2} [cos 2s sin 2t sin 2s cos 2t]E{XY}
4、 设有随机过程 X (t) 2Z sin(t ) , t ,其中 Z 、 是相互独立的随机 变量,Z ~ N (0,1) ,P( / 4) P( / 4) 1/ 2 。问过程 X (t) 是否均方可积
过程?说明理由。
解:由 Z 、 的相互独立性,计算随机过程 X (t) 的均值函数和相关函数: E{X (t)} E{2Z sin(t )} 2E{Z}E{sin(t )} 0
Y (t) 2X (t) 1, t 0 。试求过程{Y (t), t 0} 的相关函数 RY (s,t) 。
解:由相关函数的定义,有:
RY (s,t) E{Y (s)Y (t)} E{(2X (s) 1)(2X (t) 1)} 4E{X (s) X (t)} 2E{X (s)} 2E{X (t)} 1 4E{X (s) X (t)} 4 1
0
T 2 T T E{X (s) X (u)}dsdu m2 00
T 2
T 0
T 0
R
X
(
s

u
)dsdu

m
2
T 2
T 0
T 0
[C

《随机过程答案》第四章习题

《随机过程答案》第四章习题

第四章 二阶矩过程、平稳过程和随机分析 习题完整答案,请搜淘宝1、 设∑=-=N k k k k n U n X 1)cos(2ασ,其中k σ和k α为正常数,)2,0(~πU U k ,且相互独立,N k ,,2,1 =,试计算},1,0,{ ±=n X n 的均值函数和相关函数,并说明其是否是平稳过程。

2、 设有随机过程))(cos()(t t A t X πηω+=,其中0>ω为常数,}0),({≥t t η是泊松过程,A 是与)(t η独立的随机变量,且2/1}1{}1{===-=A P A P 。

(1) 试画出此过程的样本函数,并问样本函数是否连续?(2) 试求此过程的相关函数,并问该过程是否均方连续?3、 设}0),({≥t t X 是一实的零初值正交增量过程,且),(~)(2t N t X σμ。

令1)(2)(-=t X t Y ,0≥t 。

试求过程}0),({≥t t Y 的相关函数),(t s R Y 。

4、 设有随机过程)sin(2)(Θ+=t Z t X ,+∞<<∞-t ,其中Z 、Θ是相互独立的随机变量,)1,0(~N Z ,2/1)4/()4/(=-=Θ==ΘππP P 。

问过程)(t X 是否均方可积过程?说明理由。

5、 设随机过程t Y t X t 2sin 2cos )(+=ξ,+∞<<∞-t ,其中随机变量X 和Y 独立同分布。

(1) 如果)1,0(~U X ,问过程)(t ξ是否平稳过程?说明理由;(2) 如果)1,0(~N X ,问过程)(t ξ是否均方可微?说明理由。

6、 设随机过程});({+∞<<∞-t t X 是一实正交增量过程,并且0)}({=t X E ,及满足:{}+∞<<∞--=-t s s t s X t X E ,,)]()([2;令:+∞<<∞---=t t X t X t Y ),1()()(,试证明)(t Y 是平稳过程。

随机信号分析基础第四章习题

随机信号分析基础第四章习题
RW ( ) E[W (t)W (t )] E[ A2 X (t) X (t ) ABX (t)Y (t ) ABX (t )Y (t) B2Y (t)Y (t )]
A2RX ( ) B2RY ( ) ABRXY ( ) ABRYX ( )
由维纳辛钦定理可得: GW () A2GX () B2GY () ABGXY () ABGYX ()
4.5 功率谱估值的经典方法 1. 平滑法
将全部数据用来计算出—个周期图,然后在频域将其平滑
G (i )
1 2L 1
iL
Gˆ N
j i L
(
j)
窗口根据实际情况选择
4.5 功率谱估值的经典方法
谱估值的一些实际问题
1.数据采样率 2.每段数据的长度L 3.数据总长度 4.数据预处理 a.把无用的直流分量和周期分量(比如市电干扰)去掉 b.处理前还应去掉信号中的“趋势项”,比如电生理记录
rect( )
2a
a2 2
a
a
a2 ( 0 )2 a2 ( 0 )2
sin2 ( )
2
( )2
2
4.3 功率谱密度的性质
性质1: 非负性, Gx(ω)≥0 性质2: GX(ω)是实函数
性质3: Gx(ω)是偶函数,即 GX () GX ()
性质4: GX ' ( ) 2GX ( )
(2)当平稳过程含有对应于离散频率的周期分量时,该成 分就在频域的相应频率上产生δ-函数。
4.2 功率谱密度与自相关函数之间的关系 典型的傅氏变换
(t)
1
c os0t
sin(t / 2)
2 t / 2
ea
ea cos0
1 , 1

湖南大学《随机过程》课程习题集

湖南大学《随机过程》课程习题集

湖南大学本科课程《随机过程》习题集主讲教师:何松华 教授第一章:概述及概率论复习设一批产品共50个,其中45个合格,5个为次品,从这一批产品中任意抽取3个,求其中有次品的概率。

设一批零件共100个,次品率为10%,每次从其中任取一个零件,取出的零件不再放回,求第3次才取得合格品的概率。

设一袋中有N 个球,其中有M 个红球,甲、乙两人先后各从袋中取出一个球,求乙取得红球的概率(甲取出的球不放回)。

设一批产品有N 个,其中有M 个次品,每次从其中任取一个来检查,取出后再放回,求连续n 次取得合格品的概率。

设随机变量X 的概率分布函数为连续的,且0()00xA Be x F x x λ-⎧+≥=⎨<⎩其中0为常数,求常数A 、B 的值。

设随机变量X 的分布函数为 ()() (-<<)F x A Barctg x x =+∞∞(1) 求系数A 、B ;(2)求随机变量落在(-1,1)内的概率;(3)求其概率密度函数。

已知二维随机变量(X,Y)的联合概率密度分布函数为6(2)0,1(,)0XY xy x y x y f x y elsewhere --≤≤⎧=⎨⎩(1)求条件概率密度函数|(|)X Y f x y 、|(|)Y X f y x ;(2)问X 、Y 是否相互独立已知随机变量X 的概率密度分布函数为22()()]2X X X x m f x σ-=- 随机变量Y 与X 的关系为 Y=cX+b ,其中c ,b 为常数。

求Y 的概率密度分布函数。

设X 、Y 是两个相互独立的随机变量,其概率密度分布函数分别为101()0X x f x elsewhere ≤≤⎧=⎨⎩,0()0y Y e y f y elsewhere-⎧<=⎨⎩ 求随机变量Z=X+Y 的概率密度分布函数。

设随机变量Y 与X 的关系为对数关系,Y=ln(X),随机变量Y 服从均值为m Y 、标准差为Y的正态分布,求X 的概率密度分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1 设有一泊松过程(){}0,≥t t N ,求:(1)()(){}2211,k t N k t N P ==,用21t t 、的函数表示之; (2)该过程的均值和相关函数。

问该过程是否为平稳过程? (1) 解:首先,{}{}{}1111222211)()()()(,)(k t N P k t N k t N P k t N k t N P ======根据泊松过程的独立增量性质可知{}{})(1212121211221212!)()]([)()()(t t k k ek k t t k k t t N P k t N k t N P -----=-=-===λλ 于是,{}21122!)(!)()(,)(1211122211t k k k k e k k k t t t k t N k t N P λλ----===(2) 解:该过程的均值为[]()()t k t te e k t k t N E k k t k t k λλλλλλ=⎪⎪⎭⎫ ⎝⎛-==∑∑+∞=--+∞=-110!1!)()( 根据泊松过程的独立增量过程性质可得其相关函数为(12t t >)[]()[])]([)]()([)]([)()()()()()(12121112121t N E t N t N E t N E t N t N t N t N E t N t N E +-=+-=其中,)()]()([1212t t t N t N E -=-λ121212)]([t t t N E λλ+=于是,12t t >时的相关函数为[]12121212121221)()()(t t t t t t t t t N t N E λλλλλ+=++-=同理可得21t t >时的相关函数为[]221221)()(t t t t N t N E λλ+=所以,泊松过程的相关函数为[]{}2121221,min )()(t t t t t N t N E λλ+=所以,泊松过程过程不是平稳过程。

4.2 设有一个最一般概念的随机电报信号{)(t ξ},它的定义如下:(1) )0(ξ是正态分布的随机变量),0(2σN ; (2) 时间τ内出现电报脉冲的个数服从泊松分布,即λτλττ-=e k k P k !)(},{ (k =1,2,…)(3) 不同时间的电报脉冲幅度服从正态分布N(0,2σ),这个脉冲幅度延伸到下一个电报脉冲出现时保持不变,不同电报脉冲幅度的取值是相互统计独立的,同一电报脉冲内幅度是不变的。

(4) 不同时间间隔内出现电报脉冲的个数是相互统计独立的。

它的样本函数如图4-2。

图4-2(1) 试求它的二元概率密度。

(2) 试问该过程是否平稳?(1) 解:设t 1<t 2,t 1和t 2时刻的脉冲幅度之间的关系有两种情况:① t 1和t 2 处于同一脉冲内;② t 1,和t 2不处于同一脉冲内。

对于情况②,由于不同脉冲内的幅度取值是相互统计独立的,因此两时刻的脉冲幅度间的联合概率密度函数为)()(2)(1)(21x f x f t t ξξ其中,)(1)(1x f t ξ和)(2)(2x f t ξ分别是)(t ξ在t 1和t 2时刻的概率密度函数。

发生情况②的概率就是t 1和t 2两个时刻间的脉冲变化次数大于等于1的概率,即21121,1!)(}Pr{t t e e k t t k k -=-==-∞=-∑τλτλτλτ处于不同脉冲内和显然,t 1和t 2 处于同一脉冲内的概率为λτ-e 。

在这种情况下,两时刻的脉冲幅度间的联合概率密度函数为)()(121)(1x x x f t -δξ因此,t 1和t 2时刻的脉冲幅度的联合概率密度函数为)(2exp 212exp 21]1[),(12221)(222212)(21)()(121221x x x e x x ex x f t t t t t t -⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+--=----δσπσσπσλλξξ (2). 由此可见该过程是平稳过程,并且可以推导其多维PDF 也是只与各时刻间的间隔有关,因此是严平稳过程。

4.3 设1ξ、2ξ为独立同分布随机变量,且均匀分布于(0,1)上,又设有随机过程)(sin )(21t t ξξη=求 (1) )(t η均值; (2) )(t η的相关函数 (1) 解:由于1ξ、2ξ是独立的,因此)]([sin ][)](sin [)]([2121t E E t E t E ξξξξη==1ξ、2ξ都均匀分布于(0,1)上,所以21][1=ξE ttt t E cos 1d )(sin )]([sin 10222-==⎰ξξξ 于是,ttt E 2cos 1)]([-=η (2) 相关函数为)](sin )([sin ][)]()([22122121t t E E t t E ξξξηη=其中31][21=ξE 和⎥⎦⎤⎢⎣⎡++---=+--=⎰21212121122122122212)sin()sin(21d )]}(cos[)]({cos[21)](sin )([sin t t t t t t t t t t t t t t E ξξξξξ 所以,⎥⎦⎤⎢⎣⎡++---=2121212121)sin()sin(61)]()([t t t t t t t t t t E ηη4.4 设)(t ξ是实正态分布平稳随机过程,它的数学期望为0。

如定义⎥⎦⎤⎢⎣⎡+++=|)()(|)()(121)(τξξτξξηt t t t t 试证明[])(cos 1)}({1τπηξk t E -=-其中,2/)()(ξξξσττC k =,)(τξC 代表)(t ξ的协方差函数,)0(2ξξσC =代表)(t ξ的方差。

证明:由给出的)(t η定义式可知它有两种可能的取值,即⎪⎩⎪⎨⎧<+>+=0)()(,00)()(,1)(τξξτξξηt t t t t因为)(t ξ是实正态平稳随机过程,且均值为0,所以联合正态分布为⎥⎥⎦⎤⎢⎢⎣⎡-+---=+)1(22exp 121),(222222)()(r y rxy x r y x f t t σπστξξ 其中,)(/)(2τστξξξk C r ==参考《概率随机变量和随机过程》(西安电子科技大学译本)之第226至229页可以得πατξξ+=>+21}0)()({t t P πατξξ-=<+21}0)()({t t P 其中,r arcsin =α因此,)(t η的均值为)]([cos 1)arccos(121}0)()({0}0)()({1)}({1τππαππτξξτξξηξk r t t P t t P t E -=-=⎪⎭⎫ ⎝⎛+=>+⨯+>+⨯=- 4.5 设有随机过程)(sin )(θξ+=t z t ,)(+∞<<-∞t 。

其中,θ,z 是相互独立的随机变量,21}4{==πθP ,21}4{=-=πθP ,Z 均匀分布于(-1,1)之间。

试证明)(t ξ是宽平稳随机过程,但)(t ξ不满足严平稳的条件(不满足一级严平稳的条件)。

证明:由Z 均匀分布于(-1,1)之间得31][,0][2==z E z E 并且z 和θ相互独立。

所以,)(t ξ的均值为0)]([sin ][)]([=+=θξt E z E t E)(t ξ的相关函数为)(cos 61)(cos )2(cos 21)2(cos 2161)(cos )2(cos 2131)](sin )([sin ][)]()(R[21122121122121221t t t t t t t t t t t t E t t E z E t t -=⎥⎦⎤⎢⎣⎡-+-++++=⎥⎦⎤⎢⎣⎡-+++⨯=++=πππθθξξ由此可见,)(t ξ的均值为常数,相关函数只与时间差12t t -有关。

因此,随机过程)(t ξ是宽平稳随机过程。

证明严平稳可以用特征函数,)(t ξ的一维特征函数为)4sin()]4sin(sin[)4sin()]4sin(sin[d 2121d 2121][21][21][11)4sin(11)4sin()4sin()4sin()sin(ππππππππθ--+++=+=+=⎰⎰---+-++t ju t u t ju t u z e z e eE eE e E t juz t juz t juz Z t juz Z t juz 与时间t 有关(如下图所示),因此)(t ξ不是严平稳。

4.6 设z 为随机变量,θ为另一随机变量,z 与θ相互统计独立,θ均匀分布于)2,0(π间;又设有随机过程)()sin()(+∞<<-∞+=t t z t θωξ其中ω为常数,0>ω,试利用特征函数证明)(t ξ是一严平稳随机过程。

证明:因为特征函数能唯一地确定概率密度函数,若能证明)(t ξ的k 阶特征函数具有时移不变性,即),,,;,,,(),,,;,,,(21212121εεεφφξξ+++=k k k k t t t u u u t t t u u u ΛΛΛΛ则其k 维概率密度函数是时移不变的。

如果对于任意k 都成立,则该过程是严平稳的。

该随机过程中包含z 和θ两个随机变量,且z 与θ相互统计独立。

因此,其特征函数可以分两步求解。

首先,令a z =,对θ求均值,然后再对z 求均值。

由于θ均匀分布于)2,0(π间,即πθθ21)(=f ,于是θπθωεωεξπθd t a u j a z t u j E i ki i i ki i 21)]sin(exp[})]({exp[2011⎰∑∑++==+== 令βθωε=+。

则βπβωεξπωεωεθd t a u j a z t u j E i ki i i ki i 21)]sin(exp[})]({exp[211⎰∑∑+==+==+ 上式中的被积函数是β的周期函数,周期为π2。

因此,})]({exp[21)]sin(exp[})]({exp[12011a z t u j E d t a u j a z t u j E i ki i i ki i i ki i ==+==+∑⎰∑∑===ξβπβωεξθπθ 所以,}})]({exp[{}})]({exp[{11z t u j E E z t u j E E i ki i Z i k i i Z ξεξθθ∑∑===+即)]}({exp[)]}({exp[11i ki i i k i i t u j E t u j E ξεξ∑∑===+由此可见,)(t ξ的k 阶特征函数具有时移不变性,即)(t ξ为严平稳随机过程。

相关文档
最新文档