航空航天技术概论 第四章(理24)
《航空航天概论》课程教学大纲
![《航空航天概论》课程教学大纲](https://img.taocdn.com/s3/m/a41ad8af49649b6649d7471b.png)
《航空航天概论》课程教学大纲课程编号:B2F050110课程中文名称:航空航天概论课程英文名称:Introduction to Aeronautics and Astronautics开课学期:秋/春季学分/学时:2.0/24+10°先修课程:建议后续课程:适用专业/开课对象:所有专业/全校1年级本科生团队负责人:杨超贾玉红责任教授:执笔人:贾玉红核准院长:一、课程的性质、目的和任务《航空航天概论》是各专业一年级学生的必修课程,主要向学生介绍航空航天技术所涉及学科的基本知识、基本原理及其发展概况。
本课以飞行器(航空器和航天器)为中心,分别介绍了飞行原理、动力系统、机载设备、构造以及地面设备等方面的初步知识、原理和技术,并尽量反映上述学科的最新成就和发展动态。
通过该课程的学习,学生应对航空航天技术所涉及学科的基本知识、基本原理有一个全面和系统的了解,培养学生爱航空航天、学航空航天、投身于航空航天的兴趣和爱好,进一步培养学生的航空航天工程意识,提升国际视野,并为后继课程的学习打下基础。
本课程重点支持以下毕业要求指标点:1.1掌握飞行器设计的基本理论、基本知识1.2飞行器设计的基本能力1.3熟悉航空航天飞行器设计的方针、政策和法规1.4熟悉航空航天的理论前沿、应用前景和发展动态,具备创新意识1.5良好的思想品德、社会公德和职业道德的能力二、课程内容、基本要求及学时分配第一章航空航天发展概况(6学时)1. 航空航天的基本概念(掌握)2. 飞行器的分类、组成与功用(掌握)3. 航空航天发展概况(掌握)4. 我国的航空航天工业(掌握)5. 航空航天技术现状及未来发展趋势(了解)重点支持毕业要求指标点1.3,1.4,1.5第二章飞行环境和飞行原理(8学时)1. 飞行环境(了解)2. 流动气体的基本规律(掌握)3. 飞机上的空气动力作用及原理(掌握)4. 高速飞行的特点(掌握)5. 飞机的飞行性能,操纵性和稳定性(掌握)6. 直升机的飞行原理(掌握)7. 航天器的飞行原理(了解)重点支持毕业要求指标点1.1,1.2第三章飞行器动力系统(3学时)1. 发动机的分类及特点(了解)2. 活塞式航空发动机(掌握)3. 空气喷气发动机(掌握)4. 火箭发动机(掌握)5. 组合发动机(了解)6. 非常规推进系统(了解)重点支持毕业要求指标点1.1,1.2第四章飞行器机载设备(3学时)1. 传感器、飞行器仪表与显示系统(掌握)2. 飞行器导航系统(掌握)3. 飞行器自动控制系统(掌握)4. 其他机载设备(了解)重点支持毕业要求指标点1.1,1.2第五章飞行器的构造(4学时)1. 对飞行器结构的一般要求和常用的结构材料(了解)2. 航空器的构造(掌握)3. 航天器的构造(掌握)4. 火箭和导弹的构造(了解)5. 地面设施和保障系统(了解)重点支持毕业要求指标点1.1,1.2三、教学方法本课程采用理论教学和现场教学相结合的方法,理论教学主要讲授基本原理和基础知识,大比例现场教学让学生对所学内容有更直观的认识,加深对理论知识的学习和理解。
航天技术概论
![航天技术概论](https://img.taocdn.com/s3/m/8e9676c4ad51f01dc381f10b.png)
舵机
弹体
v 重力补偿计算
图4.2 惯性制导原理图
惯性元件 1)加速度计
P k s
a P k s m m
a a
k s k s m
2)陀螺仪
陀螺 + 支撑及辅助装置
4.2 自主式制导系统
4.2.1 惯性制导
定义
惯性制导系统是指利用弹上的惯性元件(陀螺、加速度计),测量 导弹相对于惯性空间的运动参数(如加速度等),并在给定运动的初 始条件的基础上,由制导计算机算出导弹的速度、位置等参数,并将 算出的位置信息与方案计算机的预定值进行比较,形成引导指令,以 导引导弹按预定弹道飞行。
4.1.2制导系统的分类
自主式制导:不需要从目标或制导站获取信息,完全由弹上制导设备 测量周围环境的物理特性产生导引信号,使导弹沿预定 弹道飞向目标的制导。 遥控式制导:是由导弹以外的指挥站向导弹发出引导信息,使导弹飞 向目标的制导方式。 自寻的制导:是由弹上设备直接感受目标辐射或反射的各种信号(声、 光、电、磁、热等)而形成控制指令实现制导。
b ib
沿地理系 加速度分量 姿态矩阵 Cbp
a p ib
导航计算机
姿态矩阵计算
垂直 旋转速率
位置 控制显示 速度 姿态 航向 姿态角计算
bip
方向余弦元素
捷联式惯导制导原理图
惯导系统的优缺点 1)抗干扰能力和隐蔽性强,可提供全球导航能力; 2)误差随时间累计增大,需要初始对准;
4.2.3 地形匹配制导(terrain contour matching—TERCOM)
陀螺
陀螺仪具有定轴性和进动性。
航空航天器技术概论课程教学大纲
![航空航天器技术概论课程教学大纲](https://img.taocdn.com/s3/m/ecbd87751711cc7931b716b2.png)
“航空航天器技术概论”课程教学大纲英文名称:Introduction to Aeronautics & Astronautics课程编号:MACH4262学时:40(理论学时:24学时实践学时:16学时)学分:2适用对象:机械工程及其自动化专业本科四年级学生先修课程:完成机械类专业主干课程学习使用教材及参考书:[1] 谢础,航空航天技术概论(第2版),北京航空航天大学出版社,2008.8[2] 昂海松,童明波、余雄庆,航空航天概论,科学出版社,2008.7一、课程性质和目的性质:专业基础课目的:1.了解各类飞行器的飞行原理、飞行器分类、组成、工作原理、设计制造过程,建立投身航空航天领域所必需的基本概念与知识体系。
2.激发学生投身航空航天事业的热情。
二、课程内容简介航空航天技术是高度综合的现代科学技术,是一个国家科技先进水平的重要标志,对人类社会生活影响最大的科学技术领域之一。
学生通过课堂教学、企业参观、讲座、课程实验方式,对航空航天技术的发展历程、最新成果与未来的发展趋势有一个全面了解,初步建立航空航天工程的基础概念,了解各类飞行器、动力系统、机载设备和地面设备的组成、分类和工作原理,了解航空航天设计、制造过程与相关技术,形成初步的工程意识,为今后从事相关专业的工作和学习奠定一定的基础。
培养学生对航空航天的兴趣和国防意识。
三、教学基本要求1.了解航空器和航天器的分类,航天、航空技术发展历史、现状与未来方向。
2.掌握航空航天的基础概念,了解各类飞行器、动力系统、机载设备和地面设备的组成、工作原理。
3.了解飞机设计、制造总体流程。
四、教学内容及安排 (24学时)第一章:绪论1.1 航空航天的基本概念与范围1.2 航空飞行器发展简史1.3 航空飞行器的主要种类1.4 火箭、导弹与航天器发展简史1.5 航天飞行器的主要种类1.6 火箭与导弹的主要种类1.7 我国的航空航天工业1.8 航空航天技术现状及未来发展趋势教学安排及教学方式第二章:飞机环境与飞行原理2.1 飞行环境2.2 流动气体的基本规律2.3 飞机上的空气动力作用及原理2.4 风洞的功用和典型构造2.5 飞机的飞行性能、稳定性和操纵性2.6 航天器飞行原理作业题目:PPT,飞行器的发展趋势第三章:飞机的主要组成部分及其功能3.1 机翼3.2 机身、尾翼和起落架3.3 飞机的动力装置3.4 飞机飞行控制系统3.5 航空仪表3.6 航空电子系统3.7 其它系统作业题目:参观航空设计、制造企业的感受(3000字左右)。
航天技术概论复习提纲
![航天技术概论复习提纲](https://img.taocdn.com/s3/m/1fa1fd77f4335a8102d276a20029bd64783e62f1.png)
航天技术概论复习提纲第⼀章绪论1、19世纪末,⽕箭运动的基本数学⽅程,并且从理论上证明,⽤多级⽕箭可以推动⼀定的载荷进⼊空间的是前苏联⽕箭之⽗——齐奥尔科夫斯基。
2、开展了⼈类第⼀次液体⽕箭飞⾏试验的是美国的⼽达德博⼠。
3、领导设计了世界上最⼤的⽕箭——⼟星五号⽕箭是冯·布劳恩4、1957年10⽉4⽇,前苏联发射了世界上第⼀颗⼈造卫星。
5、前苏联的尤⾥·加加林是第⼀位进⼊太空并成功返回地球的航天员6、1965年,前苏联的宇航员列昂诺夫乘坐“上升号”载⼈飞船,第⼀次进⾏了⼈类太空⾏⾛。
7、1969年,美国开展了“阿波罗”登⽉计划。
7⽉份,美国阿波罗11号飞船成功登⽉球——静海。
阿姆斯特朗、奥尔德林成为⼈类第⼀个踏上⽉球。
8、1971,前苏联发射了“礼炮⼀号”空间站,“礼炮⼀号”空间站是⼈类第⼀个空间站9、1981年4⽉,美国⼈开创了另外⼀种新型的航天器——航天飞机。
10、1970年4⽉24⽇发射了我国⾸颗卫星——东⽅红⼀号11、2003年10⽉15号,我国神⾈五号飞船第⼀次把宇航员杨利伟送⼊太空。
第⼆章近地空间环境1、深空探测主要包括⼏个⽅⾯?答:深空探测是指脱离地球引⼒场,进⼊太阳系空间和宇宙空间的探测。
主要有两⽅⾯的内容:⼀是对太阳系的各个⾏星进⾏深⼊探测,⼆是天⽂观测。
2、什么是近地空间?近地空间环境包括哪些?答:⼀般指距离地⾯90~65000km(约为10个地球半径)的地球外围空间。
近地空间环境由多种环境要素组成,其中对航天活动存在较⼤影响的环境要素主要包括:太阳电磁辐射、地球辐射带、地⽓辐射、地球电离层、地球磁场、地球引⼒场、地球反照、银河宇宙线、太阳宇宙线、磁层等离⼦体、空间碎⽚、流星体、⾼层⼤⽓、原⼦氧。
(14)第三章航天飞⾏⼒学1、简述卫星有哪些轨道要素及其物理意义,并在下图中标⽰出轨道要素。
卫星轨道6要素:①轨道长半轴(a):轨道长半轴②轨道偏⼼率(e):椭圆两焦点之间的距离与长轴的⽐值③轨道倾⾓(i):轨道平⾯与地球⾚道平⾯的夹⾓④升交点⾚经(Ω):从春分点到升交点的⾓距⑤近地点⾓距():在轨道平⾯上,升交点和近地点⽮径的夹⾓⑥真近点⾓(f):近地点和卫星所在位置⽮径之间的夹⾓升交点是卫星由南向北运⾏时其轨道⾯与地球⾚道⾯的交点。
航空航天技术概论范例
![航空航天技术概论范例](https://img.taocdn.com/s3/m/04c27b66814d2b160b4e767f5acfa1c7ab008275.png)
航空航天技术概论范例随着全球经济的不断发展,民众对物质需求的快速增长,航空业的持续发展需要越来越大的空域容量,因此“最优化可利用空域”的重要性凸显。
在世界航空这样的大背景下,中国民航在经过六十多年的发展,安全水平稳步提高,运输总量快速增长,航路航线不断丰富,保障能力逐渐完善,因此从其中一种意义上来讲中国民航更迫切地需要引进和掌握新航行技术使我国的民航事业更上一个台阶,使我国真正向民航强国迈进。
而把基于性能导航(PBN)这项全球瞩目的航行技术系统化、中国化以及普及化正是当前我国民航推动和发展新技术的一项重要课题。
1 概念介绍传统导航是指航空器依靠地面导航设施(如VOR、NDB、VOR/DME等)所发射的信号进行引导和定位,通过向背台航迹指引进行飞行的一种导航方式。
在这种导航方式下,航空器沿固定的航路飞行(因为传统的航路正是基于地面导航设施位置、逐个连接各导航台点而成的),受地面导航台布局与导航设施性能的制约,传统导航呈现出飞行航迹的精度不高、约束性和局限性日益彰显的现实情况。
基于性能导航(PBN-Performance Based Navigation)是国际民航组织(ICAO)建立在区域导航(RNAV)与所需导航性能(RNP)的基础概念之上,以新航行系统(CNS/ATM)为基本架构,并且参考整合了空域概念后所提出的一种航空运行概念。
区域导航(RNAV)是一种导航方法,允许航空器在相关导航设施的信号覆盖范围内、或在机载自主领航设备能力限度内、或在二者结合下沿所需航路飞行。
从理论上来讲,实行区域导航的航空器,只要能在导航信号覆盖范围内,可以沿任意期望的航迹飞行。
所需导航性能(RNP)的定义为航空器在一个确定的空域、航路或终端区域内运行时所必需的导航性能精度。
RNP不仅对航空器机载导航设备(如FMS)有运行方面的相关要求,还对支持相应RNP类型空域的导航系统(如GPS)也有相应的要求。
在ICAO对RNAV与RNP概念的整合管理之后,我们可以这样来理解:RNP除了具备RNAV的能力外,还增加了自主监视与告警功能。
航空航天概论
![航空航天概论](https://img.taocdn.com/s3/m/9380048fccbff121dd3683d7.png)
航空航天概论《航空航天概论》是1997年10月北京航空航天大学出版社出版的图书,作者是何庆芝。
该书以航空器和航天器为中心,对其学科和各系统进行了全面介绍。
航空航天科学技术是一门高度综合的尖端科学技术,近几十年来发展迅速,对人类社会的影响巨大。
本书是为航空航天院校低年级学生编写的入门教材,使学生初步了解航空航天领域所涉及学科的基本知识、基本原理及其发展概况。
全书共六章。
第一章绪论是一般概述,第二章是飞行器飞行原理,第三章是飞行器的动力系统,第四章是飞行器机载设备,第五章是飞行器构造,第六章是地面设备和保障系统。
原理论述由浅入深、循序渐进,内容丰富、翔实,文字通顺易懂、可读性强。
本书是航空航天院校教材,适合低年级学生学习,也可供相关专业的教学、科技人员参考。
以下是目录参考前言第一章绪论第一节航空与航天的基本内涵第二节飞行器的分类一、航空器二、航天器三、火箭和导弹第三节航空航天发展简史一、航空发展简史二、火箭、导弹发展简史三、航天发展简史第四节飞行环境一、大气飞行环境二、空间飞行环境三、标准大气第二章飞行器飞行原理第一节流体流动的基本知识一、流体流动的基本概念二、流体流动的基本规律三、空气动力学的实验设备――风洞第二节作用在飞机上的空气动力一、飞机的几何外形和参数二、低、亚声速时飞机上的空气动力三、跨声速时飞机上的空气动力四、超声速时飞机上的空气动力第三节飞机的飞行性能,稳定性和操纵性一、飞机的飞行性能二、飞机的稳定性与操纵性第四节直升机的飞行原理一、直升机概况二、直升机旋翼的工作原理第五节航天器飞行原理一、Kepler轨道的性质和轨道要素二、轨道摄动三、几种特殊的轨道四、星下点和星下点轨迹五、航空器姿态的稳定和控制思考题第三章飞行器的动力系统第一节概述第二节发动机分类第三节活塞式航空发动机一、发动机主要机件和工作原理二、发动机辅助系统三、航空活塞式发动机主要性能参数第四节空气喷气发动机一、涡轮喷气发动机二、其他类型的燃气涡轮发动机三、无压气机的空气喷气发动机第五节火箭发动机一、发动机主要性能参数二、液体火箭发动机三、固体火箭发动机四、固-液混合火箭发动机第六节组合式和特殊发动机一、火箭发动机与冲压发动机组合二、涡轮喷气发动机与冲压发动机组合三、特殊发动机思考题第四章飞行器机载设备第一节飞行器仪表、传感器与显示系统一、发动机工作状态参数测量二、飞行状态参数测量三、电子综合显示器第二节飞行器的导航技术一、无线电导航二、卫星导航系统三、惯性导航四、图像匹配导航(制导)技术五、天文导航六、组合导航第三节飞行器自动控制一、自动驾驶仪二、飞行轨迹控制三、自动着陆系统与设备四、电传操纵五、空中交通管理第四节其他机载设备一、电气设备二、通信设备三、雷达设备四、高空防护救生设备思考题第五章飞行器构造和发展概况第一节对飞行器结构的一般要求和所采用的主要材料一、对飞行器结构的一般要求二、飞行器结构所采用的主要材料第二节飞机和直升机构造一、飞机的基本构造二、军用飞机的构造特点和发展概况三、民用飞机的构造特点和发展概况四、特殊飞机五、直升机第三节导弹一、有翼导弹二、弹道导弹三、反弹道导弹导弹系统第四节航天器一、航天器的基本系统二、卫星结构三、空间探测器结构四、载人飞船五、空间站第五节火箭一、探空火箭二、运载火箭第六节航天飞机和空天飞机一、航天飞机二、空天飞机思考题第六章地面设施和保障系统第一节机场及地面保障设施一、机场二、地面保障系统第二节导弹的发射装置和地面设备一、组成和功用二、战略弹道导弹的发射方式三、战略弹道导弹的发射装置和地面设备第三节运载火箭的地面设备与保障系统一、航天基地二、航天器发射场三、中国的航天器发射场和测控中心四、发射窗口思考题。
航天技术导论第四章
![航天技术导论第四章](https://img.taocdn.com/s3/m/4e9f58f6910ef12d2af9e723.png)
第四章 控制系统4.1 概述控制系统是航天器、运载火箭和导弹等飞行器的重要组成部分,是飞行器运动的指挥中枢。
要求飞行器完成飞行任务,就必须对它的运动实施影响。
飞行器的运动包括其质心的运动和绕其质心的角运动两部分。
对这两种运动的影响包括稳定和控制两方面的要求,稳定是指保持原有的状态(位置和姿态),控制是指按预定的目标改变状态。
一般说来,飞行器控制系统的任务就是对飞行器质心运动的轨迹和绕质心角运动的姿态实施控制和稳定。
比如在运载火箭发射和飞行过程中,控制系统的主要任务是控制火箭按预定的轨迹飞行,使有效载荷精确入轨;同时对火箭进行姿态控制,保证在各种干扰条件下稳定飞行;还要控制飞行过程各分系统工作状态变化和信息传递;发射前要对火箭进行检查测试,实施发射控制(简称发控)。
而对于在空间飞行的航天器,控制系统的主要任务包含对航天器姿态的稳定和控制,以及对航天器轨道的控制;还包括温度控制和生命保障系统的控制等。
显然,对于不同种类的飞行器,控制系统的任务是不完全相同的。
它们的作用原理、构成也有相当大的差别。
本章将分别介绍运载火箭、航天器和导弹的控制系统4.2 运载火箭的控制系统前面已经提到,运载火箭控制系统的主要任务是控制火箭按预定的轨迹飞行,使有效载荷精确入轨。
当有效载荷是打击地面固定目标的战斗部时,运载火箭就成为弹道式导弹。
因此,弹道式导弹的控制系统与运载火箭的控制系统有许多相同之处。
为避免重复,本节在介绍运载火箭控制系统的同时,也穿插介绍弹道式导弹的控制系统。
4.2.1 运载火箭控制系统的组成和功能运载火箭的控制系统由制导系统、姿态控制系统、配电系统和测试发控系统等分系统组成。
制导系统的功能是控制火箭的质心沿预定的弹道飞行,并保证卫星、飞船等有效载荷准确入轨。
对弹道式导弹来说,就是控制弹头落点的精度。
姿态控制系统则是控制火箭绕质心的运动,并保证飞行姿态的稳定。
配电系统除完成控制仪器设备的供电外,还根据飞行程序发出时序指令控制各分系统工作状态变化的协调。
航空航天概论课后习题及答案
![航空航天概论课后习题及答案](https://img.taocdn.com/s3/m/8ec62c2bed630b1c59eeb536.png)
航空航天概论课后习题及答案第一章3.国内外第一架飞机为何人何时所制造?1903年美国的莱特兄弟制成世界上第一架动力飞机试飞成功。
1909年中国的冯如自行制成第一架飞机试飞成功。
4.我国第一架飞机,第一架喷气飞机,第一架超声速飞机,第一架自行设计飞机是什么飞机?何时制成?第一架飞机: 初教5 1953年制成第一架喷气飞机:歼5 1956第一架超声速飞机:歼6 1958第一架自行设计飞机:歼教1 19586 活塞式飞机为什么不能实现超声速飞行?A.增加功率就要增加发动机的气缸的容积和数量,导致发动机本身的重力和体积成倍增长,这样不仅会使飞机阻力猛增,还会因为发动机重力过重而使机内部结构无法安排。
B.活塞发动机是靠螺旋桨产生拉力的,当飞行速度和螺旋桨转速进一步提高时,桨叶尖端将会产生激波,是螺旋桨效率大大降低,这也限制了飞机速度的提高。
第二章1. 飞机主要组成部件极其名称和功用?①机身主要用来装载人员,货物,燃油和机载设备,还将机翼,尾翼,起落架,动力装置连接在一起形成一个整体。
②机翼主要功用是产生升力;还使飞机具有横侧安定性和操作性;安装发动机,起落架;放置燃油和其他设备。
③尾翼保持纵向平衡;使飞机具有纵向和横向稳定性和操作性。
④起落架在飞机滑跑,停放和滑行过程中起支撑作用,同时吸收飞机在滑行和着陆是的震动和冲击载荷。
⑤动力装置主要用来产生拉力或推力使飞机前进;3 喷雾器的液体是怎样喷出来的?对于装有液体的喷雾器,其前端喷口是横截面积很小的孔,当向前活塞时,液体被向喷口压缩,根据连续性定理可知:在相同的时间内,流进任意截面的流体质量等于流出另一截面的流体质量,而喷雾器喷口处流体通道较喷雾器主筒小很多,故而液体必然以较大的速度向外喷出。
5 熟记机翼几何参数的符号及意义。
试比较两个翼型的几何平均弦长C G 和翼展长b.(p36)翼展长b 表征机翼左右翼稍之间的最大距离。
外露根弦c0和翼稍弦长c1几何平均弦长(c0 + c1)/ 26 升力是怎样产生的?它和迎角有何关系?产生原理:空气流到机翼前缘时分成流经沿机翼上下表面的两股气流,而在机翼后缘重新汇合后流去。
航空概论课后题答案
![航空概论课后题答案](https://img.taocdn.com/s3/m/60057771fab069dc502201f3.png)
第1章绪论1、什么是航空?什么是航天?航空与航天有何联系?航空是指载人或者不载人的飞行器在地球大气层中的航行活动。
航天是指载人或者不载人的航天器在地球大气层之外的航行活动,又称空间飞行或宇宙航行。
航天不同于航空,航天器主要在宇宙空间以类似于自然天体的运动规律飞行。
但航天器的发射和回收都要经过大气层,这就使航空和航天之间产生了必然的联系。
2、飞行器是如何分类的?按照飞行器的飞行环境和工作方式的不同,可以把飞行器分为航空器、航天器及火箭和导弹三类。
3、航空器是怎样分类的?各类航空器又如何细分?根据产生升力的基本原理不同,可将航空器分为两类,即靠空气静浮力升空飞行的航空器(通常称为轻于同体积空气的航空器,又称浮空器),以及靠与空气相对运动产生升力升空飞行的航空器(通常称为重于同体积空气的航空器)。
(1)轻于同体积空气的航空器包括气球和飞艇。
(2)重于同体积空气的航空器包括固定翼航空器(包括飞机和滑翔机)、旋翼航空器(包括直升机和旋翼机)、扑翼机和倾转旋翼机。
4、航天器是怎样分类的?各类航天器又如何细分?航天器分为无人航天器和载人航天器。
根据是否环绕地球运行,无人航天器可分为人造地球卫星(可分为科学卫星、应用卫星和技术试验卫星)和空间探测器(包括月球探测器、行星和行星际探测器)。
载人航天器可分为载人飞船(包括卫星式载人飞船和登月式载人飞船)、空间站(又称航天站)和航天飞机。
5、熟悉航空发展史上的第一次和重大历史事件发生的时间和地点。
1810年,英国人G·凯利首先提出重于空气飞行器的基本飞行原理和飞机的结构布局,奠定了固定翼飞机和旋翼机的现代航空学理论基础。
在航空史上,对滑翔飞行贡献最大者当属德国的O·李林达尔。
从1867年开始,他与弟弟研究鸟类滑翔飞行20多年,弄清楚了许多飞行相关的理论,这些理论奠定了现代空气动力学的基础。
美国的科学家S·P·兰利博士在许多科学领域都取得巨大成就,在世界科学界久负盛名。
航天概论课件第四章
![航天概论课件第四章](https://img.taocdn.com/s3/m/355703b8fbb069dc5022aaea998fcc22bcd1432a.png)
第四章节标题
接下来,我们将进入本章的学习内容。首先,让我们了解一下本章将要讨论 的内容,并明确本章的学习目标。
载人航天发展历程
早期航天探索
从火箭的发明到第一次载人航天试飞,探索载 人航天的初步阶段。
国际合作与空间站
各国合作建造国际空间站,为长期载人航天任 务做准备。
太空竞赛时期
苏联和美国的太空竞赛,包括尤里·加加林成为 第一个进入太空的宇航员。
载人航天器的发射和返回过程,确保宇
航员的安全。
3
太空任务
载人航天器在太空中执行任务,进行科 学研究和技术实验。
载人航天的意义和挑战
1 科学探索
通过载人航天,我们能够更深入地研究太空 的奥秘,探索宇宙的未知。
2 国际合作
载人航天项目促进了国际合作和科技交流, 推动了世界各国的合作与发展。
3 技术挑战
航天概论课件第四章
本章将介绍载人航天的发展历程、载人航天器类型、载人航天工程以及载人 航天的意义和挑战。通过本章学习,你将深入了解航天领域的重要知识。
课程回顾
我们先来回顾一下之前学过的内容,以加深对航天概论的理解。
上一章内容回顾
让我们回顾一下上一章讨论的内容,确保你对航天概论的基础知识有所掌握。
未来航天的展望
探索更远的太空、建立人类登陆火星目标的计 划。
载人航天器类型
载人航天胶囊
胶囊式载人航天器,用于短期太 空飞行。
航天飞机
可多次使用的航天器,用于长期 太空任务。
空间站
大型太空飞行器,用于长期居住 和科学研究。
载人航天工程
1
设计与建造
航天器设计和建造的过程,需要考虑各
发射与返回
2
种工程挑战。
航空航天技术概论
![航空航天技术概论](https://img.taocdn.com/s3/m/0a282f7ca98271fe910ef932.png)
航空航天技术概论大作业——激光陀螺仪学院:电子信息工程班级:021211学号:02121042姓名:激光陀螺仪前言:激光陀螺仪是迄今为止在惯性领域唯一真正获得了卓有成效的实际应用的非机电式中高精度惯性敏感仪表。
作为一种原理先进的光电式惯性敏感仪表,它无需机电陀螺所必需的高速转子,性能优势相当明显,是新一代高灵敏度、高精度、大动态范围捷联惯导系统的理想传感器。
1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转动中地的转子(rotor),由于它具有惯性,它的旋转轴永远指向一固定方向,他用希腊字 gyro(旋转)skopein(看)两字合为gyro scopei 一字来命名这种仪表。
陀螺仪是一种古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世直到现在,陀螺仪一直在吸引着人们,这是由于它本身具有的特性所决定的。
陀螺仪最主要的基本特性是它的定轴性和进动性。
人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保持与地面垂直,这就反映了陀螺的定轴性。
研究陀螺仪运动特性的理论是绕定点运动刚体动力学的一个分支,它以物体的惯性为基础,研究旋转物体的动力学特性。
一般把陀螺仪分为激光陀螺、光纤陀螺、微机械陀螺和压电陀螺,这些都是属于电子式的,可跟GPS、磁阻芯片以及加速度计一起制造成为惯性导航控制系统。
激光陀螺仪,是一种能够精确地确定运动物体的方位的航空仪器。
它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。
激光于1960 年在世界上首次出现。
1962 年,美、英、法、前苏联几乎同时开始酝酿研制用激光来作为方位测向器,称之为激光陀螺仪。
激光陀螺仪的工作原理是基于 1913 年萨格奈克(Sagnac)阐述的萨格奈克效应,它是以双向行波激光器为核心的量子光学仪表,依靠环行波激光振荡器对惯性角速度进行感测。
所谓萨格奈克效应是指在任意几何形状的闭合光路中,从某一观察点发出的一对光波沿相反方向运行一周后又回到该观察点时,这对光波的相位(或它们经历的光程)将由于该闭合环行光路相对于惯性空间的旋转而不同。
航空航天概论.pdf
![航空航天概论.pdf](https://img.taocdn.com/s3/m/ec1a77b4294ac850ad02de80d4d8d15abe2300a3.png)
第四章飞机飞行的基本原理航空航天概论§4.1§4.2§4.3§4.4§4.7§4.5§4.6§4.8§4.1飞行环境4.1.1 地球4.1.2 地球大气层4.1.3 标准大气回目录页4.1.14.1.1 地球地球是宇宙中的一个天体。
是太阳系中的一颗行星。
它存在着绕自身轴的自转和围绕太阳的公转。
地球为一椭球体,其半长轴为6378.1km,半短轴为6356.8km,扁率约为1/298。
可以近似认为地球是半径为6370km 的球体。
地球的质量为5.977×1021 ton。
4.1.2(1)4.1.2 地球大气层地球大气层指的是在地球引力的作用下,在地球周围所形成的气体包层。
根据大气层的某些特征,可将其分为五层,即:4.1.2(2)※对流层※平流层※中间层※电离层※散逸层对流层→对流层也称为变温层,是最贴近地球表面的一层,其上界随地球纬度和温度等而变化。
→由于地球对大气的引力,对流层包含了所有大气质量的3/4左右,因此该层大气密度最大,大气压力最高。
→在对流层内,气象情况复杂。
平流层→平流层位于对流层顶界的上面,其顶界离地球表面约为30km。
→这一层内的大气质量约占大气总质量的1/4不到一些。
→在平流层内,空气只有水平方向的流动,通常也没有复杂的气象情况。
→在离地球表面25km以下,空气温度几乎不变,所以该层又叫做同温层。
中间层→中间层从离地面30km到80~100km止。
→中间层内含有大量的臭氧,空气非常稀薄,大气质量仅占大气总质量的三千分之一。
→气温随高度的增加先升高而后下降。
电离层→电离层位于中间曾之上至离地面500km 左右。
→这一层里,空气极其稀薄。
→由于太阳辐射的各种射线和宇宙射线使大气分子电离成离子和自由电子,空气处于高度的电离状态,具有很强的导电性。
→在电离层内,温度随高度的增加而升高,故又称为热层或暖层。
航天概论课件第四章
![航天概论课件第四章](https://img.taocdn.com/s3/m/b303bc077cd184254b35351b.png)
度来描述,二者可以通过坐标变换换算。
·影响 轨道运动的外力有变轨发动机的推力和环境
力。发动机工作时称为主动飞行段,发动机不工作
时称为自由飞行段。 ·环境力是指周围环境通过介质接触或场的相互作 用而产生的力,包括天体的引力、辐射压力、磁场 的作用力和空气动力等。
·在航天器运行中,需要对航天器的轨道运动进行 调整、控制和操纵。 ○ 由于不可避免的误差,难以一次达到预定的 准确轨道; ○ 受到环境力的摄动; ○ 需要从一个轨道转移到另一个轨道。
4.2.3
运载火箭的姿态控制系统
姿态控制的任务: 通过测量仪表敏感箭体的姿态信息控制火箭绕质 心的运动,确保在各种外界干扰作用下稳定飞行, 使箭体的姿态保持在允许的范围之内;同时,按飞 行程序和制导系统发出的导引信号,通过改变箭体 姿态来实现制导系统对质心运动的控制。
(1)姿态控制系统的基本原理
4.2
运载火箭的控制系统
运载火箭控制系统的任务:
·控制火箭按预定的轨迹飞行,使有效载荷精确入
轨; ·对火箭进行姿态控制,保证在各种干扰条件下稳 定飞行; ·控制飞行过程各分系统工作状态变化和信息传递; ·发射前对火箭进行检查测试,对发射实施控制。
4.2.1 运载火箭控制系统的组成和功能
组成:
由制导系统、姿态控制系统、配电系统和测试
·制导精度一般采用称为“圆公算偏差”的参数 Cep来表示。它的含意最初是用来表示弹道导弹的命 中精度的,即向一个目标发射多枚导弹,以目标为 圆心,最接近目标的半数弹头击中区域的圆半径。
·制导精度取决于纵向的射程控制精度和横向的偏
离射面的控制精度。
☆ 射程控制 : ·弹道式导弹的射程取
决于主动段关机点的运动参
发控系统等分系统组成。 功能: 制导系统——控制火箭的质心沿预定的弹道飞 行,保证卫星、飞船等有效载荷准确入轨。 姿态控制系统——控制火箭绕质心的运动,并 保证飞行姿态的稳定。
航空航天技术概论第四章 飞行器机载设备
![航空航天技术概论第四章 飞行器机载设备](https://img.taocdn.com/s3/m/d5712c6aee06eff9aff80711.png)
无线电导航系统工作原理: 1)测向无线电设备接收地面导航台信号,确
定自身方位
2)测距无线电设备根据无线电信号的传输时 间,计算距离
3)测距差无线电设备远程导航系统,测量各 个导航台信号的相位差
4)测速无线电设备利用多普勒效应测速
5)通信、导航、识别综合系统
1、侧向无线电导 航系统 1)自动侧向器 (ADF)
4.2.2 惯性导航系统(Inertia Navigation System) 定义:通过测量飞行器的加速度,经运算处
理得到飞行器当时的速度和位置的一种综合性导 航技术。
功能:自动测量飞行器各种导航参数及飞行 控制参数,供飞行员使用或与其他控制系统配合, 完成对飞行器的自动驾驶(控制)。
1、惯性导航系统的组成和工作原理 组成:惯性敏感元件、角度测量设备、数字
测量无线电波 来向与飞行器纵轴 线的夹角。中长波 150KHz~2MHz,作 用距离约300Km
2)全向信标系统 为飞行器提供以导航台北向子午线为基准的方
位角。属高频,108~118MHz, 当飞行器有足够高度时,作用距离可达480Km。
基准相位信号可变相位信号
2、测距无线电导航 1) DME测距机 飞行器发出询问脉冲,导航台接到后发出应答脉
2、导航原理:从原理看,卫星向地面发射的 信息有卫星位置、时钟、发射信息的时刻等高频 信息。 工作频率2200~2300MHz,覆盖全球。
4.2.3 卫星导航系统(Satellite Navigation System) 卫星导航原理
4.2.4 图像匹配导航系统(Image Matching Navigation System)
4.2.1 无线电导航系统(Radio Navigation System) 特点:由于受气候条件限制较少,作用距离
航空航天概论-第4章飞行器导航原理(2学时)
![航空航天概论-第4章飞行器导航原理(2学时)](https://img.taocdn.com/s3/m/f14dc39afd0a79563c1e72aa.png)
13
4.1 无线电导航
• 1、测向无线电导航系统 和设备 • 1)自动测向器(ADF) • 自动测向器是在飞行器 上用方向性天线接收来 自地面导航台发射的无 方向无线电波,并确定 电波来向相对于飞行器 纵轴线的夹角的导航设 备。它一般采用环状天 线系统。
14
4.1 无线电导航 1、测向无线电导航系统 • ADF工作于中长波段(频率在150 和设备 kHz~2 MHz),这一波段的电波 主要靠地波传播,但也受天波影 1)自动测向器(ADF)
24
4.1 无线电导航
罗兰-C 接收机
T.I. 9000
25
罗兰-C 在北美的基站位置
26
罗兰-C 范围
27
4.1 无线电导航
• 4、测速无线电导航设备 • 多普勒效应不仅存在于声波,也存在于其他波动,包括无 线电波中。利用这一效应制成了称为多普勒雷达(doppler radar)的测速无线电导航设备。 • 飞行器安装的多普勒雷达在三至四个方向的很窄范围内向 下发射无线电波(称为三或四个波束),并接收地面反射回来 的电波。接收机测量出不同方向的多普勒频率,通过计算 机计算,可以给出飞行器相对于地面的运动速度——地速 的数值,及地速方向与飞行器纵轴线的夹角——偏流角。 通过其他导航设备如磁罗盘或惯导系统提供的航向基准, 经过对时间的积分就可以不断推算出飞行器经过的航迹。
16
4.1 无线电导航
17
4.1 无线电导航
• 2、测距无线电导航系统 • 频率较高的无线电波在大气或宇宙空间中以光速(约 3×108m/s)直线传播,因此只要测量出飞行器发射的无 线电波往返于地面导航台所需要的时间,就可以确定出飞 行器到地面导航台的斜距。下面以测距机(DME一Distance Measuring Equipment)和无线电高度表为例,介绍这类导 航设备的工作原理。
航空航天概论思考题
![航空航天概论思考题](https://img.taocdn.com/s3/m/8c6fd857f01dc281e53af0b8.png)
第一章 思考题1.什么是航空?什么是航天?航空与航天有何联系?2.飞行器是如何分类的?3.航空器是怎样分类的?各类航空器又如何细分?4.航天器是怎样分类的?各类航天器又如何细分?5.火箭和导弹有哪些相同和不同之处?6.要使飞机能够成功飞行,必须解决什么问题?7.战斗机是如何分代的?各代战斗机的典型技术特征是什么?8.直升机主要以什么技术标准进行分代?9.载人航天的工具或方式有哪几种?它们之间有什么区别?10.巡航导弹和弹道导弹有什么不同?11.航空航天在国防和国民经济中占有什么样的地位?发挥什么样的作用?12.新中国成立以来,我国的航空工业取得了哪些重大成就?13.什么是“两弹一星”?14.我国的运载火箭共有几个系列?多少个型号?各自有什么用途?15.熟悉航空器、航天器、火箭和导弹发展史上的第一次和重大历史事件发生的时间和地点。
16.通过阅读教材中的航天航天技术现状和未来的发展趋势,谈谈你对未来我国航空航天技术发展途径的看法。
第二章 思考题1.大气分几层?各层有什么特点?2.什么是国际标准大气?3.大气的状态参数有哪些?4.什么是大气的粘性?5.何谓声速和马赫数?6.什么是飞机相对运动原理?7.什么是流体的连续性定理和伯努利方程?它们所代表的物理意义是什么?8.低俗气流和超声速气流的流动特点有何不同?9.拉瓦尔喷管中的气流流动特点是什么?10.平板上的空气动力是怎样产生的?11.什么是翼型?什么是迎角?12.升力是怎样产生的?它和迎角有何关系?13.影响升力的因素有哪些?14.简述飞机增升装置的种类和增升原理。
15.飞机在飞行过程中会产生哪些阻力?试说明低速飞机各种阻力的影响因素及减阻措施。
16.为了保证风洞试验结果尽可能与飞行实际情况相符,必须保证飞机和模型之间的哪几个相似?17.什么是雷诺数?18.风洞试验有何作用?19.什么是激波?超声速气流流过正激波时,流动参数有哪些变化?20.什么是正激波和斜激波?二者在流动上有何区别?21.什么是临界马赫数?22.什么是局部激波?23.飞机的动态布局式有哪些?24.机翼的几何参数有哪些?25.试简述超声速飞机的外形特点?如何减小超声速飞机的激波阻力?26.试简述后掠机翼、三角形机翼、小展弦比机翼、变后掠机翼、边条机翼、“鸭”式布局和无尾式布局等飞机各有什么特点?27.低速飞机和超声速飞机在外型上有何区别?28.什么是超声速飞机的声爆和热障?如何消除热障?29.飞机的飞行性能包括哪些指标?30.什么是最小平飞速度?什么是最大平飞速度?什么是巡航速度?31.什么是静升限?32.衡量飞机起飞着陆性能的指标有哪些?如何提高飞机的起飞着陆性能?33.什么是飞机的机动性?什么是飞机的过载?34.什么是飞机的稳定性?飞机包括哪几个方向上的稳定性?35.影响飞机纵向稳定性的因素有哪些?影响飞机横向稳定性的因素有哪些?影响飞机方向稳定性的因素有哪些?36.什么是飞机的操纵性?驾驶员是如何操纵飞机的俯仰、偏航和滚转运动的?37.直升机有何特点?38.试说明直升机旋翼的工作原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硅膜片
高压腔
2、温度传感器。 (1)电阻式温度传感器。 (2)热电偶式温度传感器。 金属1 毫安表
热端
金属2
冷端
3、转速传感器。 电磁脉冲法、光电法等。 4、加速度传感器。
信号器
摆锤 浮子 力矩器
5、迎角传感器。 空速管 垂直叶片 空速管示意图 水平叶片 飞机头部
歼-8Ⅱ
2、电子综合显示 把测得的电信号转换为电子显示器的光电信号 以显示所需的信息,可以是数字式,符号、图形及 其组合形式。特点是:显示界面灵活多样,彩色丰 富;易综合显示,减少仪表数量,精度高,寿命长, 可靠性高。
3、头盔显示系统
显示图象
外部景象
4、显示系统发展趋势 高清晰度,综合体积小,重量轻,省电,可靠 (彩色液晶);头盔显示器,头部转向各方均可见 到信号;大屏幕全景显示器,采用触摸屏操作和语 音指令控制。
◆定轴性:保持其自转轴在惯性空间方向不变的特性。
静止状态
旋转状态
进动性:在外力矩作用下,高速旋转的转子力图使自 转轴矢量沿最短路径转向外力矩矢量。
陀螺仪的组成 外环
内环
转子 底座
2、磁罗盘:利用地球 磁场测量磁航向角
北极 磁偏角
磁南极 磁航向角
真航向角
3、陀螺地平仪:测量俯仰角和滚转角
航向
4.1.5 飞行器显示系统 P199 机械仪表显示和电子综合显示 1、机械仪表显示 由指针,刻度盘,机械计数器,标记和图形等 组成。特点是:简单、清晰;能反映变化过程,精 度低,寿命短,易受振动冲击。不易综合显示。
第四章
机载设备
P184
◆范围: 传感器,仪表,显示系统,导航系统,操纵、 控制、雷达系统、救生系统,电源及电气设备。 ◆功用: 使飞机构成一个整体,以实现安全、可靠及时 和精确地操纵飞行器。保障飞行器的各项功能、战 术技术性能的实现。代替飞行员进行自动飞行控制 和状态监控。
4.1 传感器、飞行器仪表与显示系统
(1) 仪表着陆系统
下滑信标 组成下滑面
跑道
航向信标组成航向面
航向信标:与跑道中心线相垂直的无线电方向航道信号 下滑信标:与跑道成 一定仰角的无线电下滑航道信号 指点信标:提供至跑道端头距离的地标位置信号
航向台
跑道
90Hz
150Hz
外指点信标
中指点信标
内指点信标
1公里 6.44--11.27公里
3、测距差无线电导航 为飞行器提供经纬度位置。 甚低频,10KHz~14KHz,作用距离约1000Km以上。
C
A
B
4.2.2 惯性导航系统 P208 惯性导航是通过安装在飞行器上的加速度计测量 飞行器的加速度经运算处理而获得飞行器当时的速度 和位置的方法进行导航的。 由于不依赖外界信息,所以是完全自主导航。 由于测量误差随时间积累,要求制造精度高,或 加其它方法修正。 平台式惯导: X,Y 两个加速度计安装在陀螺平台上。 优点是陀螺平台不受飞机姿态的影响。 捷联式惯导:在飞机不同部位上安装多个加速度计, 测量轴与机体轴一致,对测量的参数进 行姿态修正后经计算得出导航参数。
V基准相位信号 R可变相位信号
R V
R
V
北 V R
西
V R 南
东
2、测距无线电导航 (1) DME测距机: 飞行器发出询问脉冲,导航台接到后发出应答脉 冲,飞行器测量发出询问脉冲与收到应答脉冲的时间 差,计算出飞行器与导航台间的距离。结合飞行高度 可得到飞行器与导航台间的水平距离。 如果将应答脉冲调制,其相位同VOR可变相位信 号,则可同时完成测距和测向(“塔康”系统)。
分类:测向无线电导航、测距无线电导航、测距差无 线电导航和测速无线电导航。
1、测向无线电导航 B ◆自动测向器(ADF) A 测量无线电波来向与 飞行器纵轴线的夹角。 中长波 150KHz~2MHz 作用距离约300Km
a b a
A 来自导航台
B
c
b
(2) 全向信标系统(VOR) P206 为飞行器提供以导航台北向子午线为基准的方位角。 甚高频,108~118MHz, 当飞行器有足够高度时,作用距离可达480Km。 基准相位信号 可变相位信号
2、数字地图 将地形轮廓转 化为高程数值。 每一格中的数 字是格中高程的平 均值,格的位置表 示平面二维坐标。
3、地形匹配导航 以地形高度轮廓为匹配特征,是一维匹配。
4、景像匹配导航 以区域地形为匹配特征,是二维匹配。
218 利用飞行控制系统来改善飞机的飞行特性或实 现非常规操纵功能。 4.3.1 飞行器飞行操纵系统 1、机械和助力操纵系统
载人飞行器测量的主要参数 ◆飞行参数(速度、高度等)
◆动力系统参数(发动机转速、温度、燃油量等)
◆导航参数(航向、位置等) ◆生命保障系统参数(氧气分压、温度等) ◆飞行员生理参数(脉搏、呼吸、血压等) ◆武器瞄准系统参数(目标类型、速度、高度等)
◆其它系统参数(液压系统、电气系统等)
4.1.1 飞行器参数测量的基本方法 P185 参数分类:压力、温度、转速、流量、油量、电压、 电流、方位和姿态角等物理量。它们通过 各种传感器进行测量。
◆卫星导航原理
z
Si (x i ,y i , z i )
(x ,y , z)
ri y 地心
x
4.2.4 图象匹配导航系统 P213 ◆原图 事先通过各种手段(大地测量、航空摄影、卫星 摄影等)获得的地表三维特征数字化地图。
◆实时图 飞行器飞跃原图区域时,通过探测设备(无线电 高度表、摄像设备等)取得的实际地表特征图象。 1、导航原理 将实时图与预先存储的原图进行比较,由此确定 飞行器实际位置与要求位置的偏差而对飞行器导航。
依不同的基准面,高度分为四种
真实高度
绝对高度
相对高度 标准气压高度
标准气压平面
海平面
气压式高度表示意图
静压
放大装置 指针
刻度盘
外壳
真空 膜盒
2、飞行速度的测量 ◆飞行速度分为空速和地速。飞行状态主要关心空 速。空速可以通过压力、加速度积分和雷达等方法测 量。地速则需要知道大气中风的大小和方向才可与空 速根据矢量计算出来。
2. 微波着陆系统 以很窄的薄片形波束在一定范围内来回扫描, 飞机通过两次收到信号的时间间隔计算出自己的方 位和仰角。
航向扫描
俯仰扫描
4.4 其它机载设备
4.4.1 雷达设备
通过天线发射无线电波并接收被测物体的回波来 确定标的位置和速度。
合成孔径雷达和相控阵雷达。
B
C
D
A
4.4.3 防护和救生系统 1、座舱环境控制系统 座舱通风,温度、气压、氧气含量等控制
舵机
舵面
4.3.2 飞行器自动控制系统 1、 自动驾驶仪
人工指令 操纵 装置 敏感 元件
自动驾驶仪
综合放 大装置 执行 机构 舵 面
飞机姿态 敏感元件:测量飞行的状态参数 综合放大装置:参数的综合放大和处理 执行机构:发出功率,按参数要求操纵舵面偏转
2、 着陆控制系统 P220
30M 进近 下滑 平飞 拉平 飘落 滑跑
4.2.3 卫星导航系统 P211 美国卫星全球定位系统GPS 俄罗斯全球导航卫星网Glonass 欧洲空间局“伽利略”导航卫星系统 中国“北斗”导航定位卫星系统
以Байду номын сангаасPS为例: 1、组成:地面站、卫星系统和飞行器上的接收机。 2、导航原理 从原理看,卫星向地面发射的信息有卫星位置、 时钟、发射信息的时刻等高频信息。 工作频率2200~2300MHz,覆盖全球。
总压孔
气 流
静压孔
4.1.2 主要飞行状态参数的测量 P188 ◆飞行状态参数包括: 线运动参数 飞行高度,速度和加速度 角运动参数 俯仰角、滚转角和航向角 1、飞行高度的测量 ◆高度分为四种:绝对高度、相对高度、真实高度 和标准气压高度。 ◆因为高度与大气压力有固定的函数关系,可以通 过测量大气压力间接地得到高度。也可以通无线电高 度表测量。
2、飞行员个体防护系统 个体防护包括:飞行服、抗过载服、氧气面罩 头盔等设备。
3、弹射救生系统
4、航天救生设备
气压式空速表原理图 总压
静压
放大装置
指针
刻度盘
外壳 开口 膜盒
气压式升降速度表原理图
静压
4.1.3 大气数据系统 P193 通过测量静压、总压、总温以及必要的修正(如 攻角、侧滑角修正),经计算机解算而得到高度、高 度变化率、空速、大气密度等所需的数据。
4.1.4 飞行姿态角度的测量 1、陀螺仪 陀螺仪有机械陀螺、静电陀螺、激光陀螺等多种类型。
地平仪 眼睛 大脑 手 驾驶杆 升降舵
4.3 飞行器飞行控制系统
人工给定 基准
驾驶员
传动系统
飞机姿态
2、电传操纵系统 体积小,质量轻;消除了机械操纵系统的间隙和 弹性变形;易与其它电子设备交联,实现自动控制。 为提高可靠性和生存力大多采用多余度技术,目 前成本较高。
微型 操纵杆
传感器
电指令 信号
信号 处理器
Su30
F-15
4.2
P205 把飞行器从出发地引导到目的地的过程称为导航。 导航参数有位置、方向、速度、高度和航迹等。 导航方式有:无线电导航,卫星导航、惯性导航、 图象匹配导航、天文导航以及它们的 组合。
飞行器导航系统
4.2.1 无线电导航 ◆特点:由于受气候条件限制较少,作用距离远,精 度高,设备简单可靠,得到广泛应用。 ◆原理:借助于无线电波的发射和接收,测定飞行器 相对于导航台的方位、距离等参数,以确定 飞行器的位置、速度、航迹等导航参数。