2.2.2对数函数及其性质(2)
人教版高中数学课件-对数函数及其性质(二)
∴由複合函數的單調性得到函數 f x=log1 (-x2+2x) 在(0,1)上是減函數,
2
在(1,2)上是增函數.
解析答案
類型二 對數型複合函數的奇偶性 2-x
例 2 判断函数 f(x)=ln 2+x的奇偶性.
反思與感悟
解析答案
跟踪训练 2 判断函数 f(x)=lg( 1+x2-x)的奇偶性.
第二章 2.2 對數函數
2.2.2 對數函數及其性質(二)
學習目標
1.掌握對數型複合函數單調區間的求法及單調性的判定方法; 2.掌握對數型複合函數奇偶性的判定方法; 3.會解簡單的對數不等式; 4.瞭解反函數的概念及它們的圖象特點.
問題導學
題型探究
達標檢測
問題導學
新知探究 點點落實
知識點一 y=logaf (x)型函數的單調區間
∴11- -aaxx> <01, -a. 即aaxx< >1a, . ∴0<x<1. ∴不等式的解集為(0,1).
反思與感悟
解析答案
log2x,x>0,
跟踪训练 3
已知函数
f(x)=log
1 2
-x,x<0,
若 f(a)>f(-a),则实数
a 的取值范围是( )
A.(-1,0)∪(0,1)
B.(-∞,-1)∪(1,+∞)
解析答案
類型三 對數不等式 例3 已知函數f(x)=loga(1-ax)(a>0,且a≠1).解關於x的不等式: loga(1-ax)>f(1). 解 ∵f(x)=loga(1-ax),∴f(1)=loga(1-a). ∴1-a>0.∴0<a<1. ∴不等式可化為loga(1-ax)>loga(1-a).
答案
一般地,對於底數a>1的對數函數,在(1,+∞)區間內,底數越大越 靠近x軸;對於底數0<a<1的對數函數,在(1,+∞)區間內,底數越小 越靠近x軸.
高一数学对数函数及其性质2(2019年11月整理)
D.b>c>a
【解析】
a = log3π>1 , b = log2
3
=
1 2
log23∈21,1, c=log3 2=12log32∈0,12,
故有 a>b>c.故选 A.
【答案】 A
(1)已知 loga13>1,求 a 的取值范围; (2)已知 log132a<log13(a-1),求 a 的ห้องสมุดไป่ตู้值范围.
∴log4125>log481,即3log45>2log23. (4)由对数函数性质知,
Log1/30.3>0,log20.8<0, ∴log1/30.3>log20.8.
1.(2009 年全国卷)设 a=log3π,b=log2 3,
c=log3 2,则( ) A.a>b>c
B.a>c>b
C.b>a>c
已知y=loga(2-ax)在[0,1]上是关于x的减函数,则a的取值范围是( )
A.(0,1)
B.(1,2)
C.(0,2) D.(2,+∞)
【思路点拨】 由题目可以获取以下主要信息:
①函数y=loga(2-ax)在[0,1]有意义, ②函数在[0,1]上是减函数.
解决本类问题应注意复合函数单调性的判定方法.
保山市高空车出租:/ ; 昭通市高空车租赁:/ ; 普洱市云梯车出租:/ ; 临沧市云梯车租赁:/ ; 楚雄州登高车出租:/ ; 红河州登高车租赁:/ ; 文山州升降车出租:/ ; 普洱市升降车租赁:/ ; 版纳州路灯车出租:/ ; 大理州路灯车租赁:/ ; 德宏州桥检车出租:/ ; 丽江市桥检车租赁:/ ; 怒江州升降平台出租:/ ; 迪庆州升降平台租赁:/ ; 临沧市桥梁检测车出租:/ ; 呈贡区桥梁检测车租赁:/ ; 盘龙区路桥检测车出租:/ ; 五华区路桥检测车租赁:/ ; 官渡区路灯维修车出租:/ ; 西山区吊人车出租:/ ; 东川区吊人车租赁:/ ; 安宁市举高车出租:/ ; 晋宁县举高车租赁:/ ; 富民县高空作业车出租:/ ; 宜良县高空作业车租赁:/ ; 嵩明县路灯维修车租赁:/ ; 石林彝族自治县监控维修车出租:/ ; 禄劝彝族苗族自治县监控维修车租赁:/ ; 寻甸回族彝族自治县隧道检测车出租:/ ; 麒麟区隧道检测车租赁:/ ; 宣威区直臂车出租:/ ; 马龙县直臂车租赁:/ ;
2.2.2对数函数及其性质(二)
练习
1995年我国人口总数是 亿,如果人口的自然增长率 年我国人口总数是12亿 年我国人口总数是 控制在1.25%,问哪一年我国人口总数将大约等于 亿? 控制在 ,问哪一年我国人口总数将大约等于14亿 解: 年后人口总数超过14亿 设 X年后人口总数超过 亿,依题意得 年后人口总数超过 12.(1+0.0125)X=14 即 1.0125X=14/12,两边取常用对数, ,两边取常用对数, 得:X.lg1.0125=lg14-lg12 即:X= (lg14-lg12)/ lg1.0125≈12.4 年后, 年我国人口总数将大约等于14亿 答:12年后,即2007年我国人口总数将大约等于 亿。 年后 年我国人口总数将大约等于
基本初等函数( 第二章 基本初等函数(Ⅰ)
§2.2.2 对数函数及其性质(二) 对数函数及其性质(
复习: 复习:对数函数 y = log a x 的图象与性质 a>1
3
3 2.5
0<a<1
2.5 2 1.5
2
1.5
图 象 函 数 性 质
1
-1
1
1
1
1
0.5
0.5
0
-0.5
1
2
3
4
5
6
7
8
-1
0
1
-0.5
课堂回顾: 课堂回顾:
1.如何利用对数函数的单调性比较大小? 如何利用对数函数的单调性比较大小? 2.如何构建对数函数模型,解决生活中的实 如何构建对数函数模型, 际问题? 际问题? 3.怎样理解同底的指数函数与对数函数互为 反函数? 反函数?
例5:已知函数 f ( x) = log 2 (3x − 1), 若 f ( x) < 0, 求 x 的 取 值 范围 .
《对数函数及其性质》第二课时参考课件
当a , b 0, a 1时, 有 (1) log a b 0 (a 1)( b 1) 0; ( 2) log a b 0 (a 1)( b 1) 0;
能力测试(比一比)
4.设f ( x) 2
x 2 2 x
( x 1),求反函数f ( x).
1
5.求函数y log1 ( x 2 3 x 2)的单调增区间 .
6.已知函数y loga ( x 2) 3, (a 0, a 1)不论a为 何值都经过一个定点 , 则这个定点坐标为______.
2 2 例2.已知(loga ) 1, 求a的取值范围 3
2 3 (0, ) ( ,) __________ _. 3 __________ 2
2
例3.解不等式logx (2 x x ) 0
1 5 解集为: { x | 1 x }. 2
能力测试(比一比)
1.已知f ( x 6 ) l og2 x , 那么f (8)等于( 4 1 A. B .8 C .18 D. 3 2 2
解: (2) 当 [ H ] 10 时,pH lg10 7. 即纯净水的 pH是7. 国家规定,饮用纯净水 的pH应该在 5.0 ~ 7.0之间 .
7
7
例题分析:
例1. l og( a 1) ( 2 x 1) l og( a 1) ( x 1)则( C ) A. x 0, a 0 B . x 1, a 1 C . x 1, a 2 D. x 1,1 a 2
1 解 : (1)根据对数的运算性质得pH lg[H ] lg[H ] lg , [H ]
1
第二章 2.2.2 第2课时 对数函数及其性质(二)
第2课时 对数函数及其性质(二)学习目标 1.掌握对数型复合函数单调区间的求法及单调性的判定方法.2.会解简单的对数不等式.3.了解反函数的概念及它们的图象特点.知识点一 不同底的对数函数图象的相对位置一般地,对于底数a >1的对数函数,在(1,+∞)区间内,底数越大越靠近x 轴;对于底数0<a <1的对数函数,在(1,+∞)区间内,底数越小越靠近x 轴. 知识点二 反函数的概念一般地,像y =a x 与y =log a x (a >0,且a ≠1)这样的两个函数互为反函数.(1)y =a x 的定义域R 就是y =log a x 的值域;而y =a x 的值域(0,+∞)就是y =log a x 的定义域. (2)互为反函数的两个函数y =a x (a >0,且a ≠1)与y =log a x (a >0,且a ≠1)的图象关于直线y =x 对称.(3)互为反函数的两个函数的单调性相同.但单调区间不一定相同.1.y =log 2x 2在(0,+∞)上为增函数.( √ )2.212log y x 在(0,+∞)上为增函数.( × )3.ln x <1的解集为(-∞,e).( × )4.y =a x 与x =log a y 的图象相同.( √ )题型一 比较大小例1 (1)若a =log 0.23,b =log 0.22.5,c =log 0.20.3,则( ) A.a >b >c B.c >b >a C.a >c >b D.c >a >b答案 B解析 因为0.3<2.5<3,且y =log 0.2x 在(0,+∞)上是减函数,所以c >b >a . (2)比较下列各组数的大小:①log 534与log 543;②1135log 2log 2与;③log 23与log 54.解 ①方法一 对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.方法二 因为log 534<0,log 543>0,所以log 534<log 543.②由于1321log 21log 3=,1521log 21log 5=,又对数函数y =log 2x 在(0,+∞)上是增函数,且0<15<13<1,所以0>log 213>log 215,所以1log 213<1log 215,所以3151l 2log 2og <.③取中间值1,因为log 23>log 22=1=log 55>log 54,所以log 23>log 54. 反思感悟 比较对数值大小时常用的四种方法 (1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化. (3)底数和真数都不同,找中间量.(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论.跟踪训练1 (1)设a =log 2π,12log πb =,c =π-2,则( )A.a >b >cB.b >a >cC.a >c >bD.c >b >a 答案 C解析 a =log 2π>1,12log π0b <=,c =π-2∈(0,1),所以a >c >b .(2)比较下列各组值的大小: ①2233log 0.5,log 0.6;②log 1.51.6,log 1.51.4;③log 0.57,log 0.67;④log 3π,log 20.8.解 ①因为函数23log y x =是减函数,且0.5<0.6,所以2233log 0.5log 0.6>.②因为函数y =log 1.5x 是增函数,且1.6>1.4, 所以log 1.51.6>log 1.51.4.③因为0>log 70.6>log 70.5,所以1log 70.6<1log 70.5,即log 0.67<log 0.57. ④因为log 3π>log 31=0,log 20.8<log 21=0,所以log 3π>log 20.8. 题型二 对数不等式的解法 例2 (1)7171lo lo g (g 4)x x >- ;(2)log a (2x -5)>log a (x -1). 解 (1)由题意可得⎩⎪⎨⎪⎧x >0,4-x >0,x <4-x ,解得0<x <2.所以原不等式的解集为{x |0<x <2}.(2)当a >1时,原不等式等价于⎩⎪⎨⎪⎧ 2x -5>0,x -1>0,2x -5>x -1.解得x >4.当0<a <1时,原不等式等价于⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5<x -1,解得52<x <4.综上所述,当a >1时,原不等式的解集为{x |x >4};当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪52<x <4. 反思感悟 对数不等式的三种考查类型及解法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况进行讨论.(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式(b =log a a b ),再借助y =log a x 的单调性求解.(3)形如log f (x )a >log g (x )a (f (x ),g (x )>0且不等于1,a >0)的不等式,可利用换底公式化为同底的对数进行求解,或利用函数图象求解.跟踪训练2 (1)求满足不等式log 3x <1的x 的取值集合; (2)若log a 25<1(a >0,且a ≠1),求实数a 的取值范围.解 (1)因为log 3x <1=log 33,所以x 满足的条件为⎩⎪⎨⎪⎧x >0,log 3x <log 33,即0<x <3.所以x 的取值集合为{x |0<x <3}. (2)log a 25<1,即log a 25<log a a .当a >1时,函数y =log a x 在定义域内是增函数, 所以log a 25<log a a 总成立;当0<a <1时,函数y =log a x 在定义域内是减函数, 由log a 25<log a a ,得a <25,即0<a <25.所以实数a 的取值范围为⎝⎛⎭⎫0,25∪(1,+∞).题型三 对数型复合函数的单调性命题角度1 求单调区间例3 求函数212log (1)y x =-的单调区间.解 要使212log (1)y x =-有意义,则1-x 2>0,所以x 2<1,所以-1<x <1, 因此函数的定义域为(-1,1). 令t =1-x 2,x ∈(-1,1).当x ∈(-1,0]时,x 增大,t 增大,y =12log t 减小.所以当x ∈(-1,0]时,212log (1)y x =-是减函数;同理可知,当x ∈[0,1)时,212log (1)y x =-是增函数.即函数212log (1)y x =-的单调递减区间是(-1,0],单调递增区间为[0,1).反思感悟 求形如y =log a f (x )的函数的单调区间的步骤 (1)求出函数的定义域.(2)研究函数t =f (x )和函数y =log a t 在定义域上的单调性. (3)判断出函数的增减性求出单调区间.跟踪训练3 求函数f (x )=log 2(1-2x )的单调区间.解 因为1-2x >0,所以x <12.又设u =1-2x ,则y =log 2u 是(0,+∞)上的增函数. 又u =1-2x ,则当x ∈⎝⎛⎭⎫-∞,12时,u (x )是减函数, 所以函数f (x )=log 2(1-2x )的单调递减区间是⎝⎛⎭⎫-∞,12. 命题角度2 已知复合函数单调性求参数范围例4 已知函数212log ()y x ax a =-+在区间(-∞,2)上是增函数,求实数a 的取值范围.考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围解 令g (x )=x 2-ax +a ,g (x )在⎝⎛⎦⎤-∞,a 2上是减函数,∵0<12<1,∴12log ()y g x =是减函数,而已知复合函数212log ()y x ax a =-+在区间(-∞,2)上是增函数,∴只要g (x )在(-∞,2)上单调递减,且g (x )>0在x ∈(-∞,2)上恒成立, 即⎩⎪⎨⎪⎧2≤a 2,g (2)=(2)2-2a +a ≥0,∴22≤a ≤2(2+1),故所求a 的取值范围是[22,22+2].反思感悟 若a >1,则y =log a f (x )的单调性与y =f (x )的单调性相同,若0<a <1,则y =log a f (x )的单调性与y =f (x )的单调性相反.另外应注意单调区间必须包含于原函数的定义域. 跟踪训练4 若函数f (x )=log a (6-ax )在[0,2]上为减函数,则a 的取值范围是( ) A.(0,1) B.(1,3) C.(1,3] D.[3,+∞) 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围 答案 B解析 函数由y =log a u ,u =6-ax 复合而成,因为a >0,所以u =6-ax 是减函数,那么函数y =log a u 就是增函数,所以a >1,因为[0,2]为定义域的子集,所以当x =2时,u =6-ax 取得最小值,所以6-2a >0,解得a <3,所以1<a <3.故选B.1.不等式log 2(x -1)>-1的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x >23 B.{x |x >2}C.{x |x >1}D.⎩⎨⎧⎭⎬⎫x ⎪⎪x >32 答案 D解析 ∵log 2(x -1)>-1=log 212,∴x -1>12,即x >32.2.函数f (x )=-2x +5+lg(2-x -1)的定义域为( )A.(-5,+∞)B.[-5,+∞)C.(-5,0)D.(-2,0) 答案 C解析 由⎩⎪⎨⎪⎧x +5>0,2-x -1>0,∴⎩⎪⎨⎪⎧ x >-5,2-x >20,∴⎩⎪⎨⎪⎧x >-5,x <0,∴-5<x <0,故选C.3.如果2121l log og 0x y <<,那么( )A.y <x <1B.x <y <1C.1<x <yD.1<y <x 考点 对数不等式 题点 解对数不等式 答案 D4.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=________. 考点 函数的反函数 题点 求函数的反函数 答案 log 2x5.函数f (x )=ln x 2的单调减区间为____________. 考点 对数函数的单调性 题点 对数型复合函数的单调区间 答案 (-∞,0)1.与对数函数有关的复合函数的单调区间、奇偶性、不等式问题都要注意定义域的影响.2.y =a x 与x =log a y 的图象是相同的,只是为了适应习惯用x 表示自变量,y 表示因变量,把x =log a y 换成y =log a x ,y =log a x 才与y =a x 关于直线y =x 对称,因为点(a ,b )与点(b ,a )关于直线y =x 对称.一、选择题1.函数y =log 3(2x -1)的定义域为( ) A.[1,+∞) B.(1,+∞) C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,1考点 对数不等式 题点 解对数不等式 答案 A解析 要使函数有意义,需满足⎩⎪⎨⎪⎧log 3(2x -1)≥0,2x -1>0,∴⎩⎪⎨⎪⎧2x -1≥1,2x -1>0,∴x ≥1, ∴函数y =log 3(2x -1)的定义域为[1,+∞). 2.若log a 2<log b 2<0,则下列结论正确的是( ) A.0<a <b <1 B.0<b <a <1 C.a >b >1 D.b >a >1答案 B解析 因为log a 2<0,log b 2<0, 所以0<a <1,0<b <1, 又log a 2<log b 2, 所以a >b , 故0<b <a <1.3.函数f (x )=12log x 的单调递增区间是( )A.⎝⎛⎦⎤0,12 B.(0,1] C.(0,+∞) D.[1,+∞)答案 D解析 f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).4.函数y =15log (1-3x )的值域为( )A.RB.(-∞,0)C.(0,+∞)D.(1,+∞) 答案 C解析 因为3x >0,所以-3x <0, 所以1-3x <1.又y =15log t (t =1-3x )是关于t 的减函数,所以y =15log t >15log 1=0.5.已知log a 12<2,那么a 的取值范围是( )A.0<a <22B.a >22C.22<a <1 D.0<a <22或a >1 考点 对数不等式 题点 解对数不等式 答案 D解析 当a >1时,由log a 12<log a a 2得a 2>12,故a >1;当0<a <1时,由log a 12<log a a 2得0<a 2<12,故0<a <22. 综上可知,a 的取值范围是0<a <22或a >1. 6.函数y =13log (-3+4x -x 2)的单调递增区间是( )A.(-∞,2)B.(2,+∞)C.(1,2)D.(2,3) 答案 D解析 由-3+4x -x 2>0,得x 2-4x +3<0,得1<x <3. 设t =-3+4x -x 2,其图象的对称轴为x =2. ∵函数y =13log t 为减函数,∴要求函数y =13log (-3+4x -x 2)的单调递增区间,即求函数t =-3+4x -x 2,1<x <3的单调递减区间, ∵函数t =-3+4x -x 2,1<x <3的单调递减区间是(2,3),∴函数y =13log (-3+4x -x 2)的单调递增区间为(2,3),故选D.7.已知函数f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减,则a 的取值范围为( ) A.(-∞,4] B.[4,+∞ ) C.[-4,4] D.(-4,4] 答案 D解析 令g (x )=x 2-ax +3a ,∵f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减, ∴函数g (x )在区间[2,+∞)上单调递增,且恒大于0, ∴12a ≤2且g (2)>0, ∴a ≤4且4+a >0,∴-4<a ≤4, 故选D.8.已知指数函数y =⎝⎛⎭⎫1a x,当x ∈(0,+∞)时,有y >1,则关于x 的不等式log a (x -1)≤log a (6-x )的解集为( ) A.⎣⎡⎭⎫72,+∞ B.⎝⎛⎦⎤-∞,72 C.⎝⎛⎦⎤1,72 D.⎣⎡⎭⎫72,6答案 D解析 ∵y =⎝⎛⎭⎫1a x 在x ∈(0,+∞)时,有y >1, ∴1a>1,∴0<a <1. 于是由log a (x -1)≤log a (6-x ), 得⎩⎪⎨⎪⎧x -1≥6-x ,x -1>0,6-x >0,解得72≤x <6,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪72≤x <6.故选D. 二、填空题9.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点⎝⎛⎭⎫32,23,则a =________. 考点 函数的反函数 题点 反函数的图象与性质 答案2解析 因为点⎝⎛⎭⎫32,23在y =f (x )的图象上,所以点⎝⎛⎭⎫23,32在y =a x 的图象上,则有32=23a , 即a 2=2,又因为a >0,所以a = 2. 10.函数y =log 2(x 2-1)的增区间为________. 考点 对数函数的单调性 题点 对数型复合函数的单调区间 答案 (1,+∞)解析 由x 2-1>0得函数的定义域为{x |x <-1或x >1},又y =log 2x 在定义域上单调递增,y =x 2-1在(1,+∞)上单调递增,∴函数的增区间为(1,+∞).11.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x -1)<f (2-x )的解集是________. 答案 {x |1<x <2} 解析 ∵f (2)>f (3), ∴f (x )=log a x 是减函数,由f (2x -1)<f (2-x ),得⎩⎪⎨⎪⎧2x -1>0,2-x >0,2x -1>2-x ,∴⎩⎪⎨⎪⎧x >12,x <2,x >1,∴1<x <2. 三、解答题12.已知函数f (x )=log 2(x +1)-2. (1)若f (x )>0,求x 的取值范围; (2)若x ∈(-1,3],求f (x )的值域. 解 (1)函数f (x )=log 2(x +1)-2, ∵f (x )>0,即log 2(x +1)-2>0, ∴log 2(x +1)>2,∴x +1>4,∴x >3. 故x 的取值范围是x >3. (2)∵x ∈(-1,3], ∴x +1∈(0,4],∴log 2(x +1)∈(-∞,2], ∴log 2(x +1)-2∈(-∞,0], 故f (x )的值域为(-∞,0]. 13.已知f (x )=12log (x 2-ax -a ).(1)当a =-1时,求f (x )的单调区间及值域;(2)若f (x )在⎝⎛⎭⎫-∞,-12上为增函数,求实数a 的取值范围. 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围解 (1)当a =-1时,f (x )=12log (x 2+x +1),∵x 2+x +1=⎝⎛⎭⎫x +122+34≥34, ∴12log (x 2+x +1)≤123log 4=2-log 23, ∴f (x )的值域为(-∞,2-log 23].∵y =x 2+x +1在⎝⎛⎦⎤-∞,-12上单调递减,在⎝⎛⎭⎫-12,+∞上单调递增,y =12log x 在(0,+∞)上单调递减,∴f (x )的单调增区间为⎝⎛⎦⎤-∞,-12, 单调减区间为⎝⎛⎭⎫-12,+∞. (2)令u (x )=x 2-ax -a =⎝⎛⎭⎫x -a 22-a 24-a , ∵f (x )在⎝⎛⎭⎫-∞,-12上为单调增函数, 又∵y =12log u (x )为单调减函数,∴u (x )在⎝⎛⎭⎫-∞,-12上为单调减函数,且u (x )>0在⎝⎛⎭⎫-∞,-12上恒成立. ⎝⎛⎭⎫提示:⎝⎛⎭⎫-∞,-12⊆⎝⎛⎭⎫-∞,a 2 因此⎩⎨⎧ a 2≥-12,u ⎝⎛⎭⎫-12≥0,即⎩⎪⎨⎪⎧a ≥-1,14+a 2-a ≥0, 解得-1≤a ≤12. 故实数a 的取值范围是⎣⎡⎦⎤-1,12.14.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为________.考点 对数函数的综合问题题点 与单调性有关的对数函数综合问题答案 12解析 当a >1时,y =a x 与y =log a (x +1)在[0,1]上是增函数, ∴f (x )max =a +log a 2,f (x )min =a 0+log a 1=1,∴a +log a 2+1=a ,∴log a 2=-1,a =12(舍去); 当0<a <1时,y =a x 与y =log a (x +1)在[0,1]上是减函数,∴f (x )max =a 0+log a (0+1)=1,f (x )min =a +log a 2,∴a +log a 2+1=a ,∴a =12. 综上所述,a =12. 15.已知函数f (x )=lg(1+x )-lg(1-x ).(1)求函数f (x )的定义域,并证明f (x )是定义域上的奇函数;(2)用定义证明f (x )在定义域上是增函数;(3)求不等式f (2x -5)+f (2-x )<0的解集.(1)解 由对数函数的定义得⎩⎪⎨⎪⎧ 1-x >0,1+x >0,得⎩⎪⎨⎪⎧x <1,x >-1, 即-1<x <1,∴函数f (x )的定义域为(-1,1).∵f (-x )=lg(1-x )-lg(1+x )=-f (x ),∴f (x )是定义域上的奇函数.(2)证明 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=lg(1+x 1)-lg(1-x 1)-lg(1+x 2)+lg(1-x 2)=lg (1+x 1)(1-x 2)(1+x 2)(1-x 1). ∵-1<x 1<x 2<1,∴0<1+x 1<1+x 2,0<1-x 2<1-x 1,于是0<1+x 11+x 2<1,0<1-x 21-x 1<1, 则0<(1+x 1)(1-x 2)(1+x 2)(1-x 1)<1,∴lg (1+x 1)(1-x 2)(1+x 2)(1-x 1)<0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),即函数f (x )是(-1,1)上的增函数.(3)解 ∵f (x )在(-1,1)上是增函数且为奇函数,∴不等式f (2x -5)+f (2-x )<0可转化为f (2x -5)<-f (2-x )=f (x -2),∴⎩⎪⎨⎪⎧ -1<2x -5<1,-1<x -2<1,2x -5<x -2,解得2<x <3.∴不等式的解集为{x |2<x <3}.。
高考数学第一轮复习:2.2.2 第2课时 对数函数及其性质的应用
学习目标 1.进一步理解对数函数的性质(重点).2.能运用对数 函数的性质解决相关问题(重、难点).
课堂互动
课堂反馈
题型二 与对数函数有关的值域和最值问题
【例 2】 (1)函数 f(x)=log1 (x2+2x+3)的值域是________.
2
(2)若函数 f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值
课堂互动
课堂反馈
方向3 与对数函数有关的复合函数的单调性
【例 3-3】 (1)求函数 y=log0.3(3-2x)的单调区间; (2)函数 f(x)=log1 (3x2-ax+7)在[-1,+∞)上是减函数,
3
求实数 a 的取值范围. 解 (1)由 3-2x>0,解得 x<32,设 t=3-2x,x∈-∞,32, ∵函数 y=log0.3t 是减函数,且函数 t=3-2x 是减函数, ∴函数 y=log0.3(3-2x)在-∞,32上是增函数,即函数 y= log0.3(3-2x)的单调递增区间是-∞,32,没有单调递减区间.
课堂反馈
规律方法 1.两类对数不等式的解法 (1)形如logaf(x)<logag(x)的不等式. ①当0<a<1时,可转化为f(x)>g(x)>0; ②当a>1时,可转化为0<f(x)<g(x). (2)形如logaf(x)<b的不等式可变形为logaf(x)<b=logaab. ①当0<a<1时,可转化为f(x)>ab; ②当a>1时,可转化为0<f(x)<ab.
A.(-∞,-2)
B.(-∞,1)
C.(1,+∞)
D.(4,+∞)
高一数学 《对数函数及其性质(2)》公开课教案(教学反思、点评)
对数函数及其性质(2)一、教学内容分析函数是高中数学的主体内容——变量数学的主要研究对象之一,是中学数学的重点知识,研究函数的一般理论和基本方法,用函数的思想方法解决实际问题,是函数教学的主要目标。
本节课教学是学生在学过正比例函数、一次函数、二次函数、反比例函数和指数函数的基础上进一步学习的一种新函数,对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。
为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。
二、学情与教材分析对数函数是高中引进的第二个初等函数,是本章的重点内容。
学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=log a x(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。
最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。
三、设计思想在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。
通过对底数a的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。
四、教学目标1、通过对对数函数概念的学习,培养学生实践能力,使学生理解对数函数的概念,激发学生的学习兴趣。
2.2.2 对数函数及其性质
第一课时 对数函数的概念、图象与性质
学习目标
1. 理解对数函数的概念;
2. 掌握对数函数的图象与性质; 3. 对数函数的图象与性质应用.
北京青年报曾报道:潮 白河底挖出冰冻古树可 能是山杨,专家经过检 测可推断树的埋藏时 间.
• 你知道专家是根据什 么推断树的埋藏时间 的吗?
y
描 点
2
1 11
42
0 1 23 4
连 -1
线
-2
2 4 ….. 1 2…
x
作y=log0.5x图像
列
x
1/4 1/2 1 2 4
表 y log 2 x -2 -1 0 1 2
y log 1 x
2
1 0 -1 -2
y
2
描
2
点
1 11
42
0 1 23 4
x 这两个函
连
-1
线
-2
数的图象 有什么关
系呢?
关于x轴对称
(3)根据对称性(关于x轴对称)已知 f (x) log3 x
的图象,你能画出 f (x) log 1 x
3
y
的图象吗?
1
o
1
x
(4)当 0<a<1时与a>1时的图象又怎么画呢?
对数函数y=logax (a>0,且a≠1) 的图象与性质
a>1 图
0<a<1
象
定义域 : 值域:
3.已知对数函数过点(16,4)则函数解析式为—
2. 对数函数:y = loga x (a>0,且a≠ 1)
图象与性质
在同一坐标系中用描点法画出对数函数
y log2 x和y log 1 x 的图象。
2.2.2对数函数及其性质(2)
(3)已知 a>0,且 a≠1,函数 y=ax 与 y=loga(-x)的图像只 能是图中的( )
[答案] B
[解析] 函数 y=loga(-x)的定义域是{x|x<0},图像只能在 y 轴 左侧,故排除 A,C.再看单调性,y=ax 的单调性与 y=loga(- x)的单调性正好相反,又排除 D.
【变式】 函数 f(x)=ln(x2+1)的图像大致是(
)
[答案] A
[解析] 因为 f(-x)=ln[(-x)2+1]=ln(x2+1)=f(x),排除选 项 C,又 f(0)=0,排除选项 B,D,故选 A.
拓展
函数 f(x)=1+log2x 与 g(x)=2-x+1 在同一坐标 )
系下的图像大致是(
∴此函数不具备奇偶性.
拓展 已知函数 f(x)=lg(ax +2x+1). (1)若 f(x)的定义域为 R,求实数 a 的取值范围; (2)若 f(x)的值域为 R, 求实数 a 的 取值范围.
2
解:(1)若 f(x)的定义域为 R,则关于 x 的不等式 ax2+2x+ 1>0 的解集为 R. 1 当 a=0 时,x>- ,这与 x∈R 矛盾,所以 a≠0. 2 当 a≠0
f(x),∴f(x)=log2|x|为偶函数. 1-x 1+x 1-x -1 1-x (2)设 f(x)=lg ,f(-x)=lg =lg( ) =-lg 1+x 1-x 1+x 1+x 1-x =-f(x),∴y=lg 为奇函数. 1+x
x-1>0 (3)由于 x+1>0
,∴x>1,定义域不关于原点对称.
a>0, 时,由题意得 解得 Δ = 4 - 4 a <0 ,
2019A新高中数学必修第一册:2.2.2 对数函数及其性质(第2课时)
(1) 根据对数函数性质及上述 pH 的计算公式, 说明溶液酸
碱度与溶液中氢离子的浓度之间的变化关系;
(2) 已知纯净水中氢离子的浓度为 [H+]=10-7摩尔/升, 计算
纯净水的 pH.
解:
(1)
公式化为
pH
=
lg[H+]-1 =
lg
1 [H
, ]
此对数函数是 (0, ∞) 上的增函数,
当[H+]增大时,
当 I=10-12 W/m2 时,
LI =10lg(1100--1122 ) =10lg1 =0.
∴人听觉的声强级范围是 0 到 120 dB.
3. 声强级 LI (单位: dB) 由公式 LI =10lg(10I-12 )
给出, 其中 I 为声强 (单位: W/m2).
(1) 一般正常人听觉能忍受的最高声强为 1 W/m2, 能
y = logax (a>0, a≠1). 即 指数函数与对数函数互为反函数.
一般地, 求一个函数的反函数, 就是将函数中 的自变量 x 表示成 y 的函数, 其定义域是原函数的 值域.
由于习惯用 x 表示自变量, 所以将变换后函数 中的字母 x, y 相交换.
如: y=log3x,
用 y 表示 x: x=3y,
5. (1) 试着举几个满足 “对定义域内任意实数 a、 b, 都有 f(a·b)=f(a)f(b)” 的函数例子, 你能说出这些 函数具有哪些共同性质吗?
(2) 试着举几个满足 “对定义域内任意实数 a、b, 都有 f(ab)=f(a)·f(b)” 的函数例子, 你能说出这些函 数具有哪些共同性质吗?
函数中的字母 x, y 相交换得
y=g(x), 指数函数与对数函数互为反函数. 如果两函数互为反函数, 则它们的图象关 于直线 y=x 即称.
2.2.2对数函数及其性质
y
x
…
1 2
1
2
4
8
…
y
…
1
0
-1
-2
-3
…
-1 -2 -3
3 2 1
y=log2x
●
0
这两个图象 又有何关系?
●
1 2 3 4 5
● ●
6 7
8
x
y = log 1 x
●
2
探索研究:
log 2 x (2)y log 1 x
(1) y
在同一坐标系中画出下列对数函数的图象; y
..........
反函数
复习引入
函数的定义
如果在某个变化过程中有两个变量X和Y,并且对
于X在某个范围内的每一个确定的值,按照某个对应
法则,Y都有唯一确定的值和它对应,那么Y就是X的函
数,X就叫做自变量,X的取值范围称为函数的定义域, 和X的值对应的Y的值叫做函数值,函数值的集合叫做 函数的值域。 记为: y=f(x)
(3)log0.50.4
log20.7 (4)loga0.4 loga0.7
同步练习
例2:比较下列各式中两个值的大小 (1)log3π
1 (2) log 2 2
log3e log2(a2+a+1)
(3)log2.11.7
(4)log67
log0.37
log76
(5)log35
(6)log56
log45
同步练习 1.若函数y=f(x)是函数y=ax(a>0,且a≠1)的反函 数,且f(2)=1,则f(x)=
对数函数的应用
例1 若函数f(x)=ax+loga(x+1)上的最大值和最小值 之和为a,则a=( ) ) )
2.2.2对数函数及其性质(2)
(x)
(log2
x 2 )(log2
x )
4
(
2 x 8)
函数的奇偶性
例3、函数 y log 2 (x x2 1)(x R)的奇偶性为
()
A.奇函数而非偶函数 C.非奇非偶函数
B.偶函数而非奇函数 D.既奇且偶函数
虽然课相较线下面对面课堂,缺失一定的互动性和及时反馈,但希沃录播的回放功能,则在一定程度上弥补了课的诸多不足 直播的课程会自动上传到后台,学生可以根据自身学习情况进行回放复习,2019年 11月9日,由北京教育科学研究院与清华大学生态文明研究中心合作举办的第六届北京教育论坛在北京召开,国家教育咨询委员会秘书长张力、联合国教科文组织中国可持续发展教育全国工作委员会执 行主任史根东等人分别做了主题报告,写作素材 https://,但电商购、在线教育、在线文娱、移动办公等宅经济迅速崛起,智能制造、无人配送、医疗健康等新兴产业表现抢眼,创办 的童模星,是首家少儿模特形体礼仪专业机构,立志让世界瞩目邯郸学步让所有孩子彻底告别驼背、抠胸、内外八、O 型腿,激发孩子潜在气场,提升孩子们的气质及自信心,变成走路带风、自信快 乐的孩子!亲爱的宝爸宝妈们如果您的宝宝还不会走路,或者正在学习走路,请远离学步车,别让孩子养成不良的走路习惯,等一等,请让他放慢脚步&;&;亲爱的宝爸宝妈们,美育童优正在组织家长课堂, 期待和大家在课堂上见面,做儿童教育,我们是专业的,更是认真的、用心的,在AI+VR+5G环境下,未来的智慧教育在自主学习、个性赋能和千人千面上会发生质变
二 函数的单调性
例4
1.求函数 y log2 (x2 2x)
2018-2019学年高中数学人教A版必修一:2.2.2 对数函数及其性质 第二课时 对数函数的图象及性质的应用
眼皮蹦跳跳专业文档眼皮蹦跳跳专业文
2019/8/14
档
14
即时训练2-1:(1)(2017·北京高一月考)已知f(x)=log3x,f(a)>f(2),那么a的取值范 围是( )
(A){a|a>2} (B){a|1<a<2}
(C){a|a> 1 } (D){a| 1 <a<1}
2
2
(2)函数 y= log1 3x 4 1 的定义域是
2
3
2
32
答案:(1)A (2)( 4 , 3 ]
32
眼皮蹦跳跳专业文档眼皮蹦跳跳专业文
2019/8/14
档
15
题型三 对数型复合函数的单调性
【例 3】 (2018·唐山高一期末)函数 f(x)= log1 (x2-2x-3)的单调递增区间是( )
(A)(-∞,-1)
(B)(-∞,1)
2
(C)(1,+∞)
眼皮蹦跳跳专业文档眼皮蹦跳跳专业文
2019/8/14
档
22
即时训练4-1:已知f(x)=loga(1-x)+loga(x+3)(a>0且a≠1). (1)求函数f(x)的定义域、值域; (2)若函数f(x)有最小值为-2,求a的值.
解:(1)因为
1 x 0, x 3 0,
所以
定义域为{x|-3<x<1}.
眼皮蹦跳跳专业文档眼皮蹦跳跳专业文
2019/8/14
档
2
新知探求 课堂探究
眼皮蹦跳跳专业文档眼皮蹦跳跳专业文
2019/8/14
档
3
新知探求·素养养成
自我检测
第二章 2.2.2对数函数及其性质(2)
答案:A
返回
3.不等式 log 1 (2x+1)>log 1 (3-x)的解集为_____________.
2 2
2x+1>0, 解析:由题意3-x>0, 2x+1<3-x 1 2 ⇒-2<x<3.
1 2 答案:{x|-2<x<3}
1 x>-2, ⇒x<3, 2 x< 3
-
1 3
.
返回
取得最小值时 x= 2
1 - 3 - 2 3
= 2<2,
这时 x [2,8],舍去. 32 1 1 若2loga8+2 -8=1, 1 则 a=2,此时取得最小值时
1- 3 x=2 2 =2
2∈[2,8]符合题意,
1 ∴a=2.
=(log2x-1)(log2x-2)
返回
=(log2x)2-3log2x+2,(6 分) 令 t=log2x. ∵x∈[ 2,8],
1 ∴t∈2,3,(8
分)
利用换元法解决问题时, 一定要求出换元后的变 量的取值范围,即新 函数的定义域.
求此类函数的最值,应 借助函数的图象求解, 此处极易将两端点处的 函数值作为最值,从 而导致解题错误.
返回
[随堂即时演练]
1.设 a=log54,b=log53,c=log45,则 A.a<c<b C.a<b<c B.b<c<a D.b<a<c ( )
解析:由于 b=log53<a=log54<1<log45=c,故 b< a<c.
答案:D
返回
2.函数
f(x)=lg
1 的奇偶性是 2 x +1+x
高中数学 2.2.2 对数函数及其性质 第2课时 对数函数性质的应用课件 新人教A版必修1
x∈(0,1)⇒y∈_(_-__∞_,__0_) ; x∈(0,1)⇒y∈_(_0_,__+__∞_);
x∈[1,+∞)
x∈[1,+∞)
⇒y∈__[_0,__+__∞_)__
⇒y∈__(_-__∞_,__0_]_
第九页,共48页。
新知导学 1.对数复合函数的单调性 复合函数y=f[g(x)]是由y=f(x)与y=g(x)复合而成,若f(x) 与g(x)的单调性相同,则其复合函数f[g(x)]为_增__函__数___;若f(x) 与g(x)的单调性相反,则其复合函数f[g(x减)]为函数__(_h_á_n_sh_ù_). 对于对数型复合函数y=logaf(x)来说,函数y=logaf(x)可看 成是y=logau与u=f(x)两个简单函数复合而成的,由复合函数单 调性“同增异减”的规律即可判断(pànduàn).另外,在求复合 函数的单调性时,首先要考虑函数的定义域.
第二十八页,共48页。
(2)设 u=3+2x-x2,
则 u=-(x-1)2+4≤4.
∵u>0,∴0<u≤4.
又 y=log1 u 在(0,+∞)上是减函数,
2
∴log1 u≥log1 4=-2,
2
2
∴y=log1 (3+2x-x2)的值域为{y|y≥-2}.
2
第二十九页,共48页。
规律总结(zǒngjié):求复合函数y =f[g(x)]值域的方法设y=f(t),t=g(x),先求t=g(x)的值域再求 y=f(x)的值域.
第二十页,共48页。
③因为 0>log0.23>log0.24,所以log10.23<log10.24,即 log30.2 <log40.2.
④因为函数 y=log3x 是增函数,且 π>3,所以 log3π>log33 =1.
2.2.2_对数函数及其性质(2)_课件(人教A版必修1)
• (1)若y=f(u),u=g(x)在给定区间上的单调性相同, 则函数y=f[g(x)]是增函数;
• (2)若y=f(u),u=g(x)在给定区间上的单调性相反, 则函数y=f[g(x)]是减函数.
[解] 由 3x2-2x-1>0 得函数定义域为{x|x>1 或 x<-13}.
• 解:(1)当a>1时,原不等式等价于
a2a+1<3a,解得a 2a+1>0
(2)当 0<a<1 时,
原不等式等价于20a<+a 1>3a, 3a>0
解得 0<a<1. 综上所述,a 的范围是 0<a<1 或 a>1.
• 类型二 对数型函数的单调性问题
• [例2] 讨论函数f(x)=loga(3x2-2x-1)的单调性. • [分析] 本题考查复合函数单调性的判定方法.一般
若 a∈(1,+∞),当 x∈[0,1]时,u 是 x 的减函数, 函数 y=logau 是 u 的增函数,那么函数 y=loga(2-ax) 在[0,1]上是减函数,且 2-ax>0;当 x∈[0,1]时必须恒
2.2 对数函数
2.2.2 对数函数及其性质
第2课时 对数函数的性质应用
目标了然于胸,让讲台见证您的高瞻远瞩
1.要借助函数图象掌握对数函数的性质,这是本节 内容的重点.
2.要会利用对数函数的性质解决相关问题,这也 是本节的一个难点内容.
3.理解指数函数和对数函数的互为反函数的关系.
研习新知
• 新知视界
解:先求函数的定义域 2-ax>0,有 ax<2. ∵a 是对数的底数,故有 a>0, ∴函数的定义域为{a|x<a}. 设 u=2-ax,若 a∈(0,1),当 x∈[0,1]时,u 是 x 的减函数,而 y=logau 是 u 的减函数,那么函数 y=loga(2-ax)在[0,1]上是增函数,不合题意;
2.2.2对数函数及其性质(2)
y=log a x y=log b x
0
1
x
y=log c x y=log d x
答:b>a>1>d>c
例2 若图象C1,C2,C3,C4对应 y=logax,y=logbx,y=logcx,y=logdx,则( ) A.0<a<b<1<c<d B.0<b<a<1<d<c C.0<d<c<1<b<a D.0<c<d<1<a<b
2. 对数函数的性质 a>1
3
0<a<1
3 2.5 2 1.5
2.5
2
1.5
图 象
1
-1
1
1
1
1
0.5
0.5
0
-0.5
1
2
3
4
5
6
7
8
-1
0
1
-0.5
1
2
3
4
5
6
7
8
-1
-1
-1.5
-1.5
-2
-2
-2.5
-2.5
定义域:
(0,+∞)
( , )
y0
y 0
x ( 0 ,1)
·2007·
王新敞
奎屯
新疆
log ∴从小到大的排列是: 1.10.9 log0.7 0.8 1.10.9
类比指数函数图象和性质的研究研究对数函数的性质:
思考:底数a是如何影图象对应的对数函数的底数逐渐变大.
Ⅰ Ⅱ
Ⅳ
Ⅲ
练一练: 比较a、b、c、d、1的大小。
2.2.2对数函数及其性质
2.2.2对数函数及其性质
第一课时
一.熟悉背景
导入新课
t log
5730
P 1
2
某种细胞分裂时,由1个分裂成2 个,2个分裂成4个……依此类推, 1个这样的细胞分裂y次后,得 到的细胞个数x与y的关系为 x=2y.如果知道了细胞个数x, 怎么用x表示分裂次数y呢?
1.用描点法在同一坐标系中画出函数 y log2 x (二)对数函数的图象与性质 和y log1 x 的图象
x y log2 x y log 1 x … ……
1 4
2
图
y
象
……
2
1 2
2 1
-2 -1 0 1
1 2 4 8 16
0
-1
-2
-3 -4
2
3 4 ……
O
1
x
… ……
探究1:在同一坐标系中作出函数 y log3 x 和 y log1 x 的图象.
3
y
y=log 2 x
y=log 3 x
1
O
x
y=log 1/3 x
y=log 1/2 x
探究2:选取底数a(a>0且a≠1) 的若干个 不同的值,在同一坐标系内作出 相应的图象.
探究3:观察所画图象,以小组为单位 讨论它们有哪些共同特征?
探究4:归纳总结对数函数 y log a x (a 0 且a 1 ) 的图象和性质:
5 .1 5 . 9
上是增函数 ,且
当 0 a 1 因为函数 时,
y loga x
,所以 loga 5.1< loga 5. 9 在 (0,)
5.1 5.9,所以 log 5.1 > log 5. . 上是减函数 ,且 a 9 a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y=ax (a > 0,且 a 1互) 为反函数。
Байду номын сангаас
(5) 在(0,+∞)上是增函数 (5)在(0,+∞)上是减函数
溶液酸碱度的测量。
溶液酸碱度是通过pH刻画的。pH的计算公式 为pH=-lg[H+],其中[H+]表示溶液中氢离子 的浓度,单位是摩尔/升。
(1)根据对数函数性质及上述pH的计算公式, 说明溶液酸碱度与溶液中氢离子的浓度之间的 变化关系;
2.2.2 对数函数及其性质(二)
对数函数y=log a x (a>0, a≠1)
a>1
0<a<1
图
y
y
象
o (1, 0)
(1, 0) xo
x
(1) 定义域: (0,+∞)
性 (2) 值域:R
(3) 过点(1,0), 即x=1 时, y=0
(4) 0<x<1时, y<0;
质 x>1时, y>0
(4) 0<x<1时, y>0; x>1时, y<0
(2)已知纯净水中氢离子的浓度为[H+]=107摩尔/升,计算纯净水的pH。
探究
在指数函数y=2x中,x为自变量,y为因变量。 如果把y当成自变量,x当成因变量,则x是y的函 数吗? 若是,对应关系是什么?
此时,对数函数y = log2x (x∈(0,+∞))是指数函数
y=2x(x∈R)的反函数(inverse function)。