2016经济数学基础形考任务3答案
(完整版)经济数学基础形成性考核册答案
电大经济数学基础形成性核查册及参照答案(一)填空题 1. limx sin x__________ _________ .答案: 0x 0x2. 设 f ( x) x 2 1, x0 0 处连续,则 k________ .答案: 1k ,x,在 x3. 曲线 yx 在 (1,1) 的切线方程是.答案: y1 x 12 24. 设函数 f ( x 1) x 2 2x 5 ,则 f ( x)__________ __ .答案: 2x5. 设 f ( x)x sin x ,则 f ( π __________ . 答案:π) 22(二)单项选择题1. 函数 y x 1的连续区间是(D )x 2x 2A . (,1) (1, )B . ( , 2) ( 2,)C . ( , 2) ( 2,1) (1,)D . (, 2)( 2, ) 或( ,1) (1, )2. 以下极限计算正确的选项是(B )x1B. limx1A. limx xxx 011D. lim sin x 1C. lim x sinxxxx3. 设 ylg2 x ,则 d y( B ).A .1dxB .1 dx C .ln10dxD .1dx2xx ln10xx4. 若函数 f ( x)在点 x 0 处可导,则 (B )是错误的.A .函数 f (x)在点 x 0 处有定义B . limf ( x)A,但A f (x 0 )xx 0C .函数 f (x) 在点 x 0 处连续D .函数 f (x) 在点 x 0 处可微5. 当 x0 时,以下变量是无量小量的是(C) .A . 2xB . sin xC . ln(1x) D . cos xx ( 三)解答题 1.计算极限( 1) limx 22 3x21x 1x12原式 lim( x1)( x 2)x 1( x 1)( x 1)limx2 x 1 x1 12( 2) lim x25x 6 1 x 2x26x 8 2原式 = lim(x - 2)(x - 3) x 2(x - 2)(x - 4)limx3 x2x 4 12( 3)lim1 x 11x2x原式 =lim(1 x 1)( 1 x 1) xx( 1 x 1)1= limx 01 x 11 =2x 23x5 1 ( 4) lim2x3x 2x4 31 351xx 2原式 == 3 3 4 3x x 2( 5)limsin 3x3 xsin 5x53sin 3x3lim 3x原式 =sin 5x=5 x55xx 2 44( 6) limx2sin( x 2)原式 =limx 22)x2sin( xx 2lim ( x 2)x 2= 4=lim sin( x 2)x 2x 2x sin1b, x 02.设函数 f (x)xx 0 ,a,sin xx 0x问:(1)当 a, b 为何值时,f ( x) 在 x 0处有极限存在?(2)当 a, b 为何值时, f ( x) 在x0处连续 .解: (1) limf ( x) b , lim f ( x)1xx当a b 1时,有 lim f(x)f(0) 1x(2). 当ab 1时, 有lim f(x)f(0) 1x函数 f(x) 在 x=0 处连续 .3.计算以下函数的导数或微分:( 1)yx22xlog 2 x22 ,求 y答案: y2x 2 x ln 21x ln 2( 2)yax bcx ,求 yd答案:ya(cx d )c(ax b) ad bc (cxd) 2(cx d )2( 3)y1,求 y3x 53(3x3答案: y5) 22( 4) yx xe x ,求 y答案:y 1 (e x xe x ) = 1 e x xe x2 x 2 x( 5)y eax sin bx ,求 dyy (e ax ) (sin bx e ax (sin bx)答案:∵ax axae sin bx be cosbxe ax (sin bx bcosbx)∴ dy e ax (a sin bx bcosbx)dx 1( 6)y e x x x ,求 dy1 1 3答案:∵ y e x xx2 2( 311∴ dy x e x )dx2 x2( 7)y cos x e x2 ,求 dy答案:∵ y sin x ( x) e x 2 (= sin x 2xe x22 x∴ dy ( sin x 2xe x2 )dx2 x( 8)y sin n x sin nx ,求 y答案: y nsin n 1 x cos x n cosnx ( 9)y ln( x 1 x2 ) ,求y答案: y 1 ( x 1 x 2 )x 1 x 2=1 1 x2 x=x2 x 2x 1 1cot 1 1 3 x 2 2x( 10)y 2 x ,求 yx x 2 )=1 (1 x )1 x2 1 x2x11x2111 1cos( x 2 x 6y 2xln 2 (cos ) 2) 答案:x12 cos11 112 x ln 2 sinxx 2x 3 6 x 54.以下各方程中y 是 x 的隐函数,试求 y 或dy(1) 方程两边对 x 求导:2x 2 y y y xy 3 0(2 y x) yy 2x 3所以 dyy 2x3dx2y x(2) 方程两边对 x 求导:cos(x y)(1 y ) e xy ( y xy )4[cos(x y)xe xy ] y4 cos(x y) ye xy所以y4 cos(x y) ye xy cos(x y)xe xy5.求以下函数的二阶导数:( 1)yln(1x 2 ) ,求 y答案: (1)y2x1 x2y 2(1 x 2 ) 2x 2x2 2x 2(1 22(1 22x )x )(2)y (xy3x41 11 x 2x 2 )25 321x 243 21 1x 223 1 1y (1)4 4作业(二)(一)填空题1.若f (x)dx 2 x 2x c ,则 f ( x) __________ _________ .答案: 2x ln 2 22.(sinx) dx ________.答案: sin x c3. 若f ( x) dxF ( x) c ,则 xf (1 x 2 )dx.答案:1F (1 x 2 ) cd24.设函数eln(1 x 2)dx ___________ .答案: 0dx 15. 若 P(x) 01dt ,则 P ( x) __________ .答案:1x 2x1 t 21 (二)单项选择题1. 以下函数中,( D2)是 xsinx的原函数.A .1cosx 2B .2cosx 2C .- 2cosx2D . -1cosx 2222. 以低等式成立的是(C ).A . sinxdxd(cosx)B . ln xdxd( 1)xC . 2 xdx1 d(2 x )D .1 dx d xln 2x3. 以下不定积分中,常用分部积分法计算的是(C ).A . cos(2x1)dx ,B .x 1 x 2 dxC . xsin 2xdxD .x 2 dx1 x4. 以下定积分计算正确的选项是(D).12 d216B .dx15x x11C .23D . sin d( xx )dx 0x x5. 以下无量积分中收敛的是( B ).A .1(三)解答题1dx B .112dx C .e x dxD .sinxdxxx 011.计算以下不定积分3x( 1) 3xdx 原式 =3 x dx = (e )c3x ce x(e ) ln 3e x (ln 3 1)e( 2)(1x) 213dx 答案:原式 = (x 2 2 x x 2 )dxx=14 32 5 c2x 23 x 2x 25x 24 (x 2)dx1 x 22x c( 3)dx 答案:原式 =( 4)1 1 dx答案:原式 = 1 d (1 2x)1ln 1 2x c 2x 2 1 2x 21 13( 5)x 2 x2dx答案:原式 = 2 x 2 d (2 x 2 ) = ( 2 x2) 2 c2 3( 6)sinxdx 答案:原式=2 sin xd x 2 cos x c x( 7)xdx xsin2答案:∵ (+) x sinx2(-) 1 2 cosx2(+) 0 4 sinx2∴原式 = 2x cosx4 sinxc2 2(8) ln( x 1)dx答案:∵ (+) ln( x 1) 1(-)1x x 1∴原式 = x ln( x 1) x dxx 1= x ln( x 1) (1 1 )dxx 1 = x ln( x 1) x ln( x 1) c 2.计算以下定积分2xdx( 1) 111x)dx 2 1)dx = 2 ( 1x2 x)12 2 5 9答案:原式 = (1 (x1 12 2 212e x( 2) x2 dx11112e xx 2)d112答案:原式 =2 ( = ex e e 21xxe3( 3)1dx1x 1 ln xe3x d(1 ln x) = 2 1 ln xe 3 答案:原式 =1 ln x 21x1( 4)2x cos2xdx答案:∵ (+) xcos2x (-)11sin 2x2(+)01cos2x4∴ 原式 = (1x sin 2x1cos2x) 0224=1 1 1442e( 5) x ln xdx 1答案:∵ (+)ln xx(-)1x 2x21 2ln x e1e∴ 原式 =x 12 xdx21 =e 2 1 x 21e1 (e2 1)2 444 xxx(1( 6)答案:∵原式 = 44 xe xdx(-)1 -e x (+)0e x4e x ) 04∴xe xdx ( xex 0=5e 4 1故:原式 =55e4作业三(一)填空题10 4 51.设矩阵 A32 32 ,则 A 的元素 a 23 __________ ________ .答案: 321612.设 A, B 均为 3 阶矩阵,且 A B3,则2AB T = ________. 答案: 723. 设 A, B 均为 n 阶矩阵,则等式 ( AB) 2 A 2 2 ABB 2 成立的充分必要条件是.答案: AB BA4. 设 A, B 均为 n 阶矩阵, ( IB) 可逆,则矩阵 A BXX 的解 X__________ ____ .答案:( IB) 1 A1 01 0 0 5. 设矩阵 A020 ,则 A1__________ .答案:A0 10 0 032 10 03(二)单项选择题1. 以下结论或等式正确的选项是( C ).A .若 A,B 均为零矩阵,则有 A B B .若 AB AC ,且 A O ,则 BCC .对角矩阵是对称矩阵D .若 AO, B O ,则 AB O2. 设 A 为 34 矩阵, B 为5 2矩阵,且乘积矩阵 ACB T 有意义,则 C T 为(A )矩阵.A . 2 4B . 4 2C . 3 5D . 533. 设 A, B 均为 n 阶可逆矩阵,则以低等式成立的是(C ).`A . ( A B) 1A 1B 1 ,B . ( A B) 1 A 1 B 14. 以下矩阵可逆的是(A).1 2 31 01 A .2 3 B .10 1 0 0 3123C .1 11 1 0 0D .222 2 25. 矩阵 A3 3 3 的秩是(B ).4 44A . 0B . 1C .2D .3三、解答题 1.计算2 1 0 1 1 2( 1)3 1 0 =553( 2)( 3)2.计算0 2 1 1 0 0 03 0 00 0312 5 4= 0121 2 3 1 2 4 2 4 51 2 2 1 4 3 6 1 01 32 23 1 3 2 71 2 3 1 2 4 2 4 5 7 19 7 2 4 5 解1 221 4 3 6 17 12 0 6 1 013 223132 7 0 4 732 7515 2 =1 11 032142 31 12 33.设矩阵 A111 , B 1 12 ,求 AB 。
国开【形考】《经济数学基础》形考任务1-4答案
国开【形考】《经济数学基础》形考任务1-4答案形考任务一题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目1:函数的定义域为().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调增加的是().答案:题目2:下列函数在指定区间上单调减少的是().答案:题目3:设,则().答案:题目3:设,则().答案:题目3:设,则=().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是().答案:题目4:当时,下列变量为无穷小量的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目5:下列极限计算正确的是().答案:题目6:().答案:0题目6:().答案:-1题目6:().答案:1题目7:().答案:题目7:().答案:().题目7:().答案:-1题目8:().答案:题目8:().答案:题目8:().答案:().题目9:().答案:4题目9:().答案:-4题目9:().答案:2题目10:设在处连续,则().答案:1题目10:设在处连续,则().答案:1题目10:设在处连续,则().答案:2题目11:当(),()时,函数在处连续.答案:题目11:当(),()时,函数在处连续.答案:题目11:当(),()时,函数在处连续.答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目12:曲线在点的切线方程是().答案:题目13:若函数在点处可导,则()是错误的.答案:,但题目13:若函数在点处可微,则()是错误的.答案:,但题目13:若函数在点处连续,则()是正确的.答案:函数在点处有定义题目14:若,则().答案:题目14:若,则().答案:1题目14:若,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目15:设,则().答案:题目16:设函数,则().答案:题目16:设函数,则().答案:题目16:设函数,则().答案:题目17:设,则().答案:题目17:设,则().答案:题目17:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目18:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目19:设,则().答案:题目20:设,则().答案:题目20:设,则().答案:题目20:设,则().答案:题目21:设,则().答案:题目21:设,则().答案:题目21:设,则().答案:题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得().答案:题目22:设,方程两边对求导,可得().答案:题目23:设,则().答案:题目23:设,则().答案:题目23:设,则().答案:-2题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目24:函数的驻点是().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目25:设某商品的需求函数为,则需求弹性().答案:题目25:设某商品的需求函数为,则需求弹性().答案:形考任务二题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目1:下列函数中,()是的一个原函数.答案:题目2:若,则(). 答案:题目2:若,则().答案:题目2:若,则(). 答案:题目3:(). 答案:题目3:().答案:题目3:(). 答案:题目4:().答案:题目4:().答案:题目4:().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目5:下列等式成立的是().答案:题目6:若,则(). 答案:题目6:若,则().答案:题目6:若,则(). 答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目7:用第一换元法求不定积分,则下列步骤中正确的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目8:下列不定积分中,常用分部积分法计算的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目9:用分部积分法求不定积分,则下列步骤中正确的是().答案:题目10:(). 答案:0题目10:().答案:0题目10:(). 答案:题目11:设,则(). 答案:题目11:设,则().答案:题目11:设,则(). 答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目12:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目13:下列定积分计算正确的是().答案:题目14:计算定积分,则下列步骤中正确的是().答案:题目14:().答案:题目14:().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目15:用第一换元法求定积分,则下列步骤中正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目16:用分部积分法求定积分,则下列步骤正确的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目17:下列无穷积分中收敛的是().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目18:求解可分离变量的微分方程,分离变量后可得().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是答案:题目19:根据一阶线性微分方程的通解公式求解,则下列选项正确的是().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:题目20:微分方程满足的特解为().答案:形考任务三题目1:设矩阵,则的元素().答案:3题目1:设矩阵,则的元素a32=().答案:1题目1:设矩阵,则的元素a24=().答案:2题目2:设,,则().答案:题目2:设,,则()答案:题目2:设,,则BA =().答案:题目3:设A为矩阵,B为矩阵,且乘积矩阵有意义,则为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目3:设为矩阵,为矩阵,且乘积矩阵有意义,则C为()矩阵.答案:题目4:设,为单位矩阵,则()答案:题目4:设,为单位矩阵,则(A - I )T =().答案:题目4:,为单位矩阵,则A T–I =().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目5:设均为阶矩阵,则等式成立的充分必要条件是().答案:题目6:下列关于矩阵的结论正确的是().答案:对角矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:数量矩阵是对称矩阵题目6:下列关于矩阵的结论正确的是().答案:若为可逆矩阵,且,则题目7:设,,则().答案:0题目7:设,,则().答案:0题目7:设,,则().答案:-2, 4题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目8:设均为阶可逆矩阵,则下列等式成立的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目9:下列矩阵可逆的是().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目10:设矩阵,则().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目11:设均为阶矩阵,可逆,则矩阵方程的解().答案:题目12:矩阵的秩是().答案:2题目12:矩阵的秩是().答案:3题目12:矩阵的秩是().答案:3题目13:设矩阵,则当()时,最小.答案:2题目13:设矩阵,则当()时,最小.答案:-2题目13:设矩阵,则当()时,最小.答案:-12题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.答案:题目14:对线性方程组的增广矩阵做初等行变换可得则该方程组的一般解为(),其中是自由未知量.选择一项:A.B.C.D.答案:题目15:设线性方程组有非0解,则().答案:-1 题目15:设线性方程组有非0解,则().答案:1题目15:设线性方程组有非0解,则().答案:-1题目16:设线性方程组,且,则当且仅当()时,方程组有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组没有唯一解.答案:题目16:设线性方程组,且,则当()时,方程组有无穷多解.答案:题目17:线性方程组有无穷多解的充分必要条件是().答案:题目17线性方程组有唯一解的充分必要条件是().:答案:题目17:线性方程组无解,则().答案:题目18:设线性方程组,则方程组有解的充分必要条件是().答案:题目18:设线性方程组,则方程组有解的充分必要条件是().答案:题目18:设线性方程组,则方程组有解的充分必要条件是()答案:题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组无解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有无穷多解.答案:且题目19:对线性方程组的增广矩阵做初等行变换可得则当()时,该方程组有唯一解.答案:题目20:若线性方程组只有零解,则线性方程组()答案:解不能确定题目20:若线性方程组有唯一解,则线性方程组().答案:只有零解题目20:若线性方程组有无穷多解,则线性方程组().答案:有无穷多解形考任务四一、计算题(每题6分,共60分) 1.解:y ′=(e −x 2)′+(cos 2x)′=(−x 2)′·e −x 2−2sin 2x =−2xe −x 2−2sin 2x综上所述,y ′=−2xe −x 2−2sin 2x2.解:方程两边关于x 求导:2x +2yy ′−y −xy ′+3=0 (2y −x)y ′=y −2x −3 , dy =y−3−2x 2y−xdx3.解:原式=∫√2+x 2d(12x 2)=12∫√2+x 2d(2+x 2)=13(2+x 2)32+c 。
经济学基础形考任务3答案
形考任务3(第十章至第十三章)任务说明:本次形考任务包含填空题(22道,共20分),选择题(15道,共20分),判断题(15道,共20分),计算题(3道,共10分),问答题(3道,共30分)。
任务要求:下载任务附件,作答后再上传,由教师评分。
任务成绩:本次形考任务成绩占形成性考核成绩的20%,任务附件中题目是百分制。
教师在平台中录入的成绩=百分制成绩*20%一、填空题(22道,共20分)1.国内生产总值的计算方法主要有支出法、收入法以及部门法。
2.GDP-折旧= NDP。
3.名义国内生产总值是指按当年价格计算的国内生产总值。
4.物价水平普遍而持续的上升称为通货膨胀。
5.长期中的失业是指自然失业,短期中的失业是指周期性失业。
6.经济增长的源泉是资源的增加,核心是技术进步。
7.生产一单位产量所需要的资本量被称为资本—产量比率。
8.根据新古典经济增长模型,决定经济增长的因素是资本的增加、劳动的增加和技术进步。
9.根据货币数量论,在长期中通货膨胀发生的惟一原因是货币量增加。
10.摩擦性失业是经济中由于正常的劳动力流动而引起的失业。
11.效率工资是指企业支付给工人的高于市场均衡工资的工资。
12.总需求曲线是一条向右下方倾斜的曲线,短期总供给曲线是一条向右上方倾斜的线。
13.在影响总需求的财产效应、利率效应和汇率效应中,利率效应最重要。
14.在短期,价格的粘性引起物价与总供给同方向变动。
15.根据总需求-总供给模型,总供给不变时,总需求减少,均衡的国内生产总值减少,物价水平下降。
16.平均消费倾向与平均储蓄倾向之和等于1 ,边际消费倾向与边际储蓄倾向之和等于 1 。
17.消费函数图中的45°线表示在这条线上任何一点都是收入等于消费,在简单的凯恩斯主义模型中,45°线上表示任何一点都是总支出等于总供给。
18.净现值是指一笔投资未来所带来的收益的现值与现在投入的资金现值的差额。
19.加速原理表明投资的变动取决于产量变动率。
《经济数学基础12》形考作业3参考答案
经济数学基础形考作业3参考答案单项选择题(每题5分,共100分)1、1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=121623235104A ,则A 的元素a 32=( ). A .3 B .2 C .1 D .2- 答案:C1、2.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=121623235104A ,则A 的元素a 24=( ). A .-2 B .1 C .2 D .3 答案: C1、3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素23a =( ). A .1 B .2 C .3 D .2- 答案:C 2、1.设2153A -⎡⎤=⎢⎥⎣⎦,0110B ⎡⎤=⎢⎥⎣⎦,则BA =( ). A .2513-⎡⎤⎢⎥⎣⎦ B .5321⎡⎤⎢⎥-⎣⎦ C .3512⎡⎤⎢⎥-⎣⎦ D .1235-⎡⎤⎢⎥⎣⎦答案:B 2、2.设2153A -⎡⎤=⎢⎥⎣⎦,0110B ⎡⎤=⎢⎥⎣⎦,则AB =( ). A .2513-⎡⎤⎢⎥⎣⎦ B .5321⎡⎤⎢⎥-⎣⎦ C .3512⎡⎤⎢⎥-⎣⎦ D .1235-⎡⎤⎢⎥⎣⎦答案:D2、3.设2153A -⎡⎤=⎢⎥⎣⎦,0110B ⎡⎤=⎢⎥⎣⎦,则AB =( ). A .1235-⎡⎤⎢⎥⎣⎦ B .5321⎡⎤⎢⎥-⎣⎦ C .3512⎡⎤⎢⎥-⎣⎦ D .2513-⎡⎤⎢⎥⎣⎦答案:A3、1.设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵TACB 有意义,则C 为( )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯答案:B3、2.设A 为25⨯矩阵,B 为43⨯矩阵,且乘积矩阵TACB 有意义,则C 为( )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯答案:A3、3.设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵TACB 有意义,则TC 为( )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯答案:A4、1.设1324A ⎡⎤=⎢⎥-⎣⎦,I 为单位矩阵,则A T – I =( ). A .3230-⎡⎤⎢⎥-⎣⎦ B .0233⎡⎤⎢⎥--⎣⎦ C .0323-⎡⎤⎢⎥-⎣⎦ D .0233-⎡⎤⎢⎥⎣⎦答案:D4、2.设1324A ⎡⎤=⎢⎥-⎣⎦,I 为单位矩阵,则(A - I )T =( ). A .0233-⎡⎤⎢⎥⎣⎦B .0233⎡⎤⎢⎥--⎣⎦C .0323-⎡⎤⎢⎥-⎣⎦ D .3230-⎡⎤⎢⎥-⎣⎦答案:A 4、3.设1324A ⎡⎤=⎢⎥-⎣⎦,I 为单位矩阵,则T()I A -=( ). A .0233⎡⎤⎢⎥--⎣⎦ B .0233-⎡⎤⎢⎥⎣⎦C .0323-⎡⎤⎢⎥-⎣⎦ D .3230-⎡⎤⎢⎥-⎣⎦答案:A5、1.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A ++=+成立的充分必要条件是( ).A .AB = B .B A ,均为对称矩阵C .A O =或B O =D .AB BA = 答案:D5、2.设B A ,均为n 阶矩阵,则等式2222)(B AB A A B +-=-成立的充分必要条件是( ).A .AB = B .AB BA =C .A O =或B O =D .B A ,均为对称矩阵 答案:B5、3.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是( ).A .AB = B .B A ,均为对称矩阵C .A O =或B O =D .AB BA = 答案:D6、1.下列关于矩阵,,A B C 的结论正确的是( ).A .若A O ≠,B O ≠,则O AB ≠ B .若B A ,均为零矩阵,则有B A =C .若A 为可逆矩阵,且AC AB =,则C B =D .对角矩阵是反对称矩阵 答案:C6、2.下列关于矩阵,,A B C 的结论正确的是( ).A .若A O ≠,B O ≠,则O AB ≠ B .若AC AB =,且O A ≠,则C B = C .数量矩阵是对称矩阵D .若B A ,均为零矩阵,则有B A = 答案:C6、3.下列关于矩阵,,A B C 的结论正确的是( ).A .若B A ,均为零矩阵,则有B A = B .若AC AB =,且O A ≠,则C B = C .对角矩阵是对称矩阵D .若A O ≠,B O ≠,则O AB ≠ 答案:C7、1.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=101110011A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=110110002B ,则AB =( ). A .2 B .0 C .2- D .4 答案:B7、2.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100110111A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=110110002B ,则AB =( ). A .2 B .0 C .2- D .4 答案: D7、3.设200011011A ⎡⎤⎢⎥=⎢⎥-⎢⎥⎣⎦,110011101B ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,则AB =( ).A .2B .0C .2-D .4 答案:B8、1.设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ).A .111)(---⋅=⋅A B B A B .T T T )(B A AB =C .B A B A +=+D .111)(---+=+B A B A答案:A8、2.设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ).A .B A AB = B . 111)(---⋅=⋅B A B A C .BA AB = D .111)(---+=+B A B A答案:A8、3.设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ).A .111)(---+=+B A B A B .BA AB =C .111)(---⋅=⋅B A B A D .BA AB =答案:D9、1.下列矩阵可逆的是( ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡030320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101 C .⎥⎦⎤⎢⎣⎡2211 D .⎥⎦⎤⎢⎣⎡0011 答案:A9、2.下列矩阵可逆的是( ).A .⎥⎦⎤⎢⎣⎡2310 B .⎥⎦⎤⎢⎣⎡2010 C .⎥⎦⎤⎢⎣⎡2211 D .⎥⎦⎤⎢⎣⎡0011答案:A9、3.下列矩阵可逆的是( ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101 C .⎥⎦⎤⎢⎣⎡0011 D .⎥⎦⎤⎢⎣⎡2211 答案:A10、1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=200030002A ,则=--1)(A I ( ).A .123-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦B .321-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C .11213⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦ D . 11213⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦答案:C10、2.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=300020001A ,则1A -=( ).A .123-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦B .321-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C .11213⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦ D . 11213⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦答案:C10、3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则1A -=( ).A .123-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦B .321-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C .11213⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦ D .11213⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦答案:C11、1.设B A ,均为n 阶矩阵,()I B -可逆,则矩阵方程X XB A =+的解X =( ). A .A B I 1)(-- B .1()A I B --C .1()A I B -- D .1()I B A --答案:B11、2.设B A ,均为n 阶矩阵,)(B I +可逆,则矩阵方程X BX A =-的解X =( ).A .1)(-+B I A B .A B I 1)(-+ C .)(1B I A +- D .1)(-+A B I答案:B11、3.设B A ,均为n 阶矩阵,()I B -可逆,则矩阵方程X BX A =+的解X =( ).A .1()A I B -- B .A B I 1)(--C .1()A I B -- D .1()I B A --答案:B12、1.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=311120111A 的秩是( ). A .0 B .1 C .2 D .3 答案:D12、2.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=331102111A 的秩是( ).A .0B .1C .2D .3 答案:D12、3.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=431102111A 的秩是( ). A .0 B .1 C .2 D .3 答案:C13、1.设矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=λ121842421A ,则当λ=( )时,)(A r 最小.A .2-B .0C .1D .2答案:A13、2.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=λ63842421A ,则当λ=( )时,)(A r 最小.A .12B .8C .4D .-12答案:D13、3.设矩阵124248112A λ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,则当λ=( )时,)(A r 最小.A .0B .1C .2D .2-答案:C14、1. 对线性方程组⎪⎩⎪⎨⎧=--=++-=--04831252123321321321x x x x x x x x x 的增广矩阵做初等行变换可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=000032108401048312521231 A则该方程组的一般解为( ),其中3x 是自由未知量.A .13234823x x x x =-⎧⎨=-⎩B .13234823x x x x =+⎧⎨=+⎩C .13234823x x x x =--⎧⎨=--⎩ D .13234823x x x x =-+⎧⎨=-+⎩答案:C14、2. 对线性方程组⎪⎩⎪⎨⎧-=++-=---=--12520483123321321321x x x x x x x x x 的增广矩阵做初等行变换可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------=000032108401125204831231 A则该方程组的一般解为( ),其中3x 是自由未知量.A .13234823x x x x =-⎧⎨=-⎩ B .13234823x x x x =--⎧⎨=--⎩C .13234823x x x x =+⎧⎨=+⎩ D .13234823x x x x =-+⎧⎨=-+⎩答案:D14、3. 对线性方程组12312312332138402521x x x x x x x x x --=⎧⎪--=⎨⎪-++=⎩的增广矩阵做初等行变换可得132110483840012325210000A ---⎡⎤⎡⎤⎢⎥⎢⎥=--→→-⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦则该方程组的一般解为( ),其中3x 是自由未知量. A .13234823x x x x =-⎧⎨=-⎩ B .13234823x x x x =--⎧⎨=--⎩C .13234823x x x x =+⎧⎨=+⎩ D .13234823x x x x =-+⎧⎨=-+⎩答案:B15、1.设线性方程组⎩⎨⎧=+=+002121x x x x λ有非0解,则λ=( ).A .1-B .0C .1D .1±答案:C15、2.设线性方程组⎩⎨⎧=+-=+02121x x x x λ有非0解,则λ=( ).A .1-B .0C .1D .1± 答案:A15、3.设线性方程组⎩⎨⎧=+=-02121x x x x λ有非0解,则λ=( ).A .1-B .0C .1D .1± 答案:A16、1.设线性方程组b AX =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→010*********t A ,则当( )时,方程组有无穷多解.A .t = 2B .1t =C .t =0D .1t =- 答案:B16、2.设线性方程组b AX =⎥⎥⎥⎦⎤⎢⎣-01003284t ,则当( )时,方程组没有唯一解.A .1t =-B .1t =C .t =0D .t ≠1 答案:B16、3.设线性方程组b AX =,且111601320010A t ⎡⎤⎢⎥→-⎢⎥+⎢⎥⎣⎦,则当且仅当( )时,方程组有唯一解.A .1t ≠B .1t =-C .1t =±D .1t ≠- 答案:D17、1.线性方程组b X A n m =⨯有唯一解的充分必要条件是( ).A .m A r A r ==)()(B .n A r <)(C .n m <D .n A r A r ==)()(答案:D17、2.线性方程组b X A n m =⨯有无解,则( ).A .m A r A r ==)()(B .n A r <)(C .)()(A r A r <D .n A r A r ==)()( 答案:C17、3.线性方程组b X A n m =⨯有无穷多解的充分必要条件是( ).A .m A r A r <=)()(B .n A r <)(C .n m <D .n A r A r <=)()( 答案:D18、1.设线性方程组⎪⎩⎪⎨⎧-=++=+=+33212321212a x x x a x x a x x ,则方程组有解的充分必要条件是( ). A .0321=++a a a B .0321=+--a a a C .0321=+-a a a D .0321=++-a a a 答案:A18、2.设线性方程组12123212332x x a x x a x x x a +=⎧⎪+=⎨⎪++=⎩,则方程组有解的充分必要条件是( ).A .0321=++a a aB .0321=+--a a aC .0321=+-a a aD .0321=++-a a a 答案:B18、3.设线性方程组12123212332x x a x x a x x x a +=⎧⎪+=⎨⎪++=⎩,则方程组有解的充分必要条件是( ).A .0321=++a a aB .0321=+-a a aC .0321=-+a a aD .0321=++-a a a 答案:C19、1.对线性方程组1231231231223x x x x x x x x ax b --=⎧⎪+-=⎨⎪++=⎩的增广矩阵做初等行变换可得1111111111220*********A a b a b ----⎡⎤⎡⎤⎢⎥⎢⎥=-→→-⎢⎥⎢⎥+-⎢⎥⎢⎥⎣⎦⎣⎦则当( )时,该方程组有无穷多解.A .3a ≠-且3b ≠B .3a =-且3b ≠C .3a =-且3b =D .3a ≠-且3b = 答案:C19、2.对线性方程组1231231231223x x x x x x x x ax b --=⎧⎪+-=⎨⎪++=⎩的增广矩阵做初等行变换可得1111111111220*********A a b a b ----⎡⎤⎡⎤⎢⎥⎢⎥=-→→-⎢⎥⎢⎥+-⎢⎥⎢⎥⎣⎦⎣⎦则当( )时,该方程组有唯一解.A .3a =-且3b ≠B .3a =-且3b =C .3a =-D .3a ≠- 答案:D19、3.对线性方程组1231231231223x x x x x x x x ax b --=⎧⎪+-=⎨⎪++=⎩的增广矩阵做初等行变换可得1111111111220*********A a b a b ----⎡⎤⎡⎤⎢⎥⎢⎥=-→→-⎢⎥⎢⎥+-⎢⎥⎢⎥⎣⎦⎣⎦则当( )时,该方程组无解.A .3a =-且3b =B .3a =-且3b ≠C .3a ≠-且3b =D .3a ≠-且3b ≠ 答案:B20、1.若线性方程组AX b =有无穷多解,则线性方程组AX O =( ). A .只有零解 B .有无穷多解 C .无解 D .解不能确定答案:B20、2.若线性方程组AX b =有唯一解,则线性方程组AX O =( ). A .只有零解 B .有无穷多解 C .无解 D .解不能确定 答案:A20、3.若线性方程组AX O =只有零解,则线性方程组AX b =( ). A .有唯一解 B .有无穷多解 C .无解 D .解不能确定 答案:D。
经济数学基础作业(三)部分答案
《经济数学基础》作业(三)部分答案一、填空题⒈⎰bax x p d )(⒉3.0 ⒊512-x ⒋10⒌b X aE +)(,)(2X D a三、单项选择题⒈A ⒉B ⒊C ⒋B ⒌C三、解答题⒈解 ⑴∵110125210321>=++,∴不能作为概率分布.⑵∵181814121=+++,∴可以作为概率分布.⒉解 61)1(==Y P2163)3()2(====>Y P Y P656362)3()2()55.1(=+==+==≤≤Y P Y P Y P656362)3()2()2(=+==+==>Y P Y P Y P⒊解 已知)(π~λX ,所以)0;,2,1,0(e !)(>===-λλλk k k X P k,由λλλ--====e e !04.0)0(0X P得4.0ln -=λ.)2(1)2(<-=≥X P X P )]1()0([1=+=-=X P X P 4.0!14.011⨯--=λ4.0ln 4.06.0+=⒋解 ⑴∵1321198d )1(3234d )(30302-≠=+⋅-=+=⎰⎰∞+∞x x x x x f∴)(x f 不是密度函数.⑵∵1)355(2503)35(2503)d 10(2503d )(335032502-=-=-=-=⎰⎰∞+∞x x x x x x x f又∵)5,0(0)5(1253)210(2503)(∈>-=-='x x x x f 可知)(x f 在]5,0[上单调增加,由此得0)0()(=>f x f∴)(x f 是密度函数.⒌解 由密度函数的性质知122d d )(1210-====⎰⎰∞+∞Ax Ax Ax x x f 得2=A .25.0d 2d )()5.00(5.0025.005.00====<<⎰⎰x x x x x f X P 9375.0d 2d )()225.0(125.02125.0225.0====≤<⎰⎰x x x x x f X P⒍解 ⑴设Z 的密度函数为)(x f ,则⎪⎩⎪⎨⎧<<=其它,0100,101)(x x f ⑵密度函数)(x f 的曲线为⑶103d 101d )()3(303===<⎰⎰∞-x x x f Z P 52104d 101d )()6(1066====≥⎰⎰∞+x x x f Z P21105d 101d )()83(8383====≤<⎰⎰x x x f Z P ⒎解 ⑴设X 的密度函数为)(x f ,则⎩⎨⎧≤>=-0,00,e 001.0)(001.0x x x f x ⑵⎰⎰-∞-==≤1000001.01000d e 001.0d )()1000(x x x f X P xe11e 10000001.0-=-=-x⒏解 由数学期望的定义得⎰⎰∞+∞--∞+∞-==x x x x xf X E xd e 21d )()( 由于被积函数是奇函数,所以0)(=X E⒐解 11)201842(101)(=++++=X E )201842(101)(22222++++=X E 154101540)400324164(101==++++= 3311154)]([)()(222=-=-=X E X E X D⒑解 0d )1(d )1(d )()(101=-++==⎰⎰⎰-∞+∞-x x x x x x x x xf X E61)43(2d )1(2d )()(104310222=-=-==⎰⎰∞+∞-x x x x x x x f x X E61061)]([)()(22=-=-=X E X E X D ⒒解 1359.08413.09772.0)1()2()21(=-=-=<<ΦΦX P1)1(2)]1(1[)1()1()1()11(-=--=--=<<-ΦΦΦΦΦX P6826.018413.02=-⨯=⒓解 已知)3,8(~2N X ,所以)1,0(~38N X - )36.538()384.238()4.2(->-=->-=>X P X P X P)36.5(1)36.538(1--=-≤--=ΦX P 9693.0)36.5(==Φ⒔解 已知)4,5(~N X ,所以)1,0(~25N X - 90.0)25()2525()(=-=-<-=<a a X P a X P Φ查表得28.125=-a ,由此得出56.7=a .⒕解 已知)10,65(~2N X ,所以)1,0(~1065N X -)21065()1065851065()85(>-=->-=>X P X P X P0228.09772.01)2(1)21065(1=-=-=≤--=ΦX P由此可知数学成绩在85分以上的学生约占该大学新生的%28.2.⒖解 由分布列的性质得出)322323(])32()32(32[332232+⨯+⨯=++c c 1)2738(==c 由此得出3827=c . 1933194319621991)(=⨯+⨯+⨯=Y E 1969194319621991)(2222=⨯+⨯+⨯=Y E 361222)1933(1969)]([)()(222=-=-=Y E Y E Y D ⒗解 ⑴ 由密度函数的性质知1383d d )(23202-====⎰⎰∞+∞A x Ax Ax x x f 得83=A . ⑵015625.08d 83d )()5.02(5.0035.0025.02====<<-⎰⎰-xx x x x f X P⑶23323d 83d )()(20423====⎰⎰∞+∞-x x x x x xf X E 512403d 83d )()(252422====⎰⎰∞+∞-x x x x x f x X E 20349512)]([)()(22=-=-=X E X E X D ⒘解 ⑴ 由密度函数的性质知122d d )(121-====⎰⎰∞+∞cx cx cx x x f得2=c .⑵4.0d 2d )()7.03.0(7.03.027.03.07.03.0====<<⎰⎰x x x x x f X P⑶3232d 2d )()(10312====⎰⎰∞+∞-x x x x x xf X E 2121d 2d )()(141322====⎰⎰∞+∞-x x x x x f x X E 1819421)]([)()(22=-=-=X E X E X D ⒙解 a xa x x a x x xf X E aa2323d 3d )()(2333=-===+∞∞+∞+∞-⎰⎰23232233d 3d )()(a x a x x a x x f x X E aa=-===+∞∞+∞+∞-⎰⎰2222243493)]([)()(a a a X E X E X D =-=-=由期望和方差的性质得到02332)(32)32(=-⋅=-=-a a a X E a X E 222314394)(94)()32()32(a a X D X D a X D =⋅===- ⒚解 已知)6.0,1(~2N X ,所以)1,0(~6.01N X -)6.016.01()6.0106.01()0(->-=->-=>X P X P X P)67.1(1)6.016.01(1--=-≤--=ΦX P9525.0)67.1(==Φ)6.018.16.016.012.0()8.12.0(-<-<-=<<X P X P )346.0134(<-<-=X P )33.1()33.1(--=ΦΦ )]33.1(1[)33.1(ΦΦ--=8164.019082.021)33.1(2=-⨯=-=Φ。
经济数学基础答案
电大在线【经济数学基础】形考作业一答案:(一)填空题 1.___________________sin lim=-→xxx x .0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f 2π-(二)单项选择题1. 函数+∞→x ,下列变量为无穷小量是( C ) A .)1(x In + B .1/2+x xC .21xe - D .xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.若x xf =)1(,则()('=x f B )A .1/ 2xB .-1/2xC .x 1D .x1- (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x (3)2111lim 0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim 22=--→x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
电大【经济数学基础】形成性考核册答案(附题目)
电大在线【经济数学基础】形考作业一答案:(一)填空题 1.___________________sin lim=-→xxx x .0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f 2π-(二)单项选择题1. 函数+∞→x ,下列变量为无穷小量是( C ) A .)1(x In + B .1/2+x xC .21xe - D .xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.若x xf =)1(,则()('=x f B )A .1/ 2xB .-1/2xC .x 1D .x1- (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x (2)218665lim 222=+-+-→x x x x x (3)2111lim 0-=--→x x x (4)3142353lim 22=+++-∞→x x x x x (5)535sin 3sin lim 0=→x x x (6)4)2sin(4lim 22=--→x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
经济数学基础形成性考核册参考答案
经济数学基础形成性考核册参考答案经济数学基础作业1一、填空题: 1、0; 2、1;3、x -2y +1=0;4、2x ;5、-2π;二、单项选择题: 1、D ; 2、B ; 3、B ; 4、B ; 5、B ; 三、解答题 1、计算极限(1)解:原式=1lim→x )1)(1()2)(1(+---x x x x=1lim→x 12+-x x=21(2)解:原式=2lim→x )4)(2()3)(2(----x x x x=2lim→x 43--x x=-21(3)解:原式=0lim→s xx x )11(11+---=lim →s 111+--x=-21(4)解:原式=∞→s lim 22423531xx x x +++-=21(5)解:∵x 0→时,xx sm x x sm 5~53~3∴0lim→x xsm xsm 53=0lim→x xx53=53(6)解:2lim→x )2sin(42--x x =2lim →x 242--x x=2lim→x (x+2)=4 2、设函数: 解:0lim →x f(x)=0lim →x (sin x1+b)=b+→0lim x f(x)=+→0lim x xxsin 1≤(1)要使f(x)在x=0处有极限,只要b=1, (2)要使f(x)在x=0处连续,则-→0lim x f(x)=+→0lim x =f(0)=a即a=b=1时,f(x)在x=0处连续 3、计算函数的导数或微分: (1)解:y '=2x +2xlog 2+2log1x(2)解:y '=2)()()(d cx cb ax d cx a ++-+=2)(d cx bc ad +-(3)解:y '=[)53(21--x ]'=-21)53(23--x ·(3x-5)' =-23)53(23--x(4)解:y '=x21-(e x+xe x)=x21-e x -xe x(5)解:∵y '=ae ax sinbx+be ax cosbx =e ax (asmbx+bcosbx) ∴dy=e ax (asmbx+bcosbx)dx(6)解: ∵y '=-21xe x1+23x 21∴dy=(-21xex1+23x)dx(7)解:∵y '=-x21+sin x +xex22-∴dy=(xex22--x21 sin x )dx(8)解:∵y '=nsin n -1x+ncosnx∴dy=n(nsin n -1+ cosnx)dx(9)解:∵y '=)1221(1122xx xx ++++=211x+∴dxxdy 211+=(10)解:xxxxxotxxxxy y 652321cot226121116121ln 1csc1222--+-⋅='-++=4、(1)解:方程两边对x 求导得 2x+2yy '-y-xy '+3=0 (2y-x)y '=y -2x -3 y '=xy x y ---232∴dy=dxxy x y ---232(2)解:方程两边对x 求导得:Cos(x+y )·(1+y ')+e xy (y+xy ')=4 [cos(x+y)+xe xy ]y '=4-cos(x+y)-ye xy y '=xyxey x yexy y x ++-+-)cos()cos(45.(1)解:∵y '=22212)1(11Xx x x+='+∙+2222)1(22)1(1)12(X XX X XX Y +∙-+='+=''=222)1()1(2X X +-(2)解:)()1(2121'-='-='-xxxx xy=x x21212123----)(212122'-=''---xx yx x41432325--+14143)1(=+=''y经济数学基础作业2一、填空题:1、2x ln 2+2 2、sinx+C3、-C x F +-)1(2124、ln(1+x 2)5、-211x+二、单项选择题: 1、D 2、C 3、C 4、D 5、B三、解答题:1、计算下列不定积分: (1)解:原式=⎰dx e x )3(= Cee x +3ln )3(=Cx e +-13ln )3((2)解:原式=dxXXXX X)21(2⎰++=Cxxx +++523422221(3)解:原式=⎰++-dxx x x 2)2)(2(=⎰-dx x )2( =Cx x+-222(4)解:原式=-⎰--)21(21121x d x=-x 21ln 21-+C (5)解原式=⎰+2212)2(21dxx=⎰++)2()2(212212x d x=C x ++232)2(31(6)解:原式=Z ⎰xd x sin=-2cos C x + (7)解:原式=-2⎰2cos x xd=-2xcos ⎰+dxx x 2cos 22 =-2xcos Cx smx ++242(8)解:原式=⎰++)1()1ln(x d x=(x+1)ln(x+1)-⎰++)1ln()1(x d x =(x+1)ln(x+1)-x+c2、计算下列积分 (1)解:原式=⎰⎰-+--dx x dx x )1(12)1(11=(x-12)2(11)222x xx-+-=2+21=25(2)解:原式=⎰-xde x 1121=121xe -=e e -(3)解:原式=⎰+x d xeln ln 1113=⎰++-)1(ln )ln 1(1213x d x e=1)ln 1(2321ex +=4-2 =2(4)解:原式=xxdsm 22102⎰π=⎰-xdxsm xxsm 2021022122ππ=02cos 412πx=21-(5)解:原式=⎰xx xde2ln 1=dxxx e e xx⎰--12211ln 22=⎰-dx xe e 2122=14222exe-=)414(222--ee=412+e(6)解:原式=⎰⎰-+dxxedx x404=4+⎰--x xde 04=⎰-----)(0444x d exexx=04444xee----=14444+----e e =455--e经济数学基础作业3一、填空题: 1. 3 2. -723. A 与B 可交换4. (I-B )-1A5. 3100210001-二、单项选择题:1.C2.A3.C4.A5.B三、解答题 1、解:原式=⎥⎦⎤⎢⎣⎡⨯+⨯⨯+⨯⨯+⨯-⨯+⨯-0315130501121102 =⎥⎦⎤⎢⎣⎡53212、解:原式=⎥⎦⎤⎢⎣⎡⨯-⨯⨯-⨯⨯+⨯⨯+⨯0310031002100210 =⎥⎦⎤⎢⎣⎡00003、解:原式=[]24)1(50231⨯+-⨯+⨯+⨯- =[]02、计算:解:原式=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--142301215427401277197=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-------7724300012675741927 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423012121553、设矩阵:解:222321013211023210132)2(21)1(110111132=--=--+---=A011211321==B0=∙=∴B A AB4、设矩阵:解:A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0110214742101112421λλ要使r (A )最小。
经济数学基础形成性考核参(全)
经济数学基础形成性考核册及参考答案作业(一)(一)填空题 1..答案:0 2.答案:1 3.答案:2121+=x y 4..答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1.2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =l g 2,则d y =( ).答案:B A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos(三)解答题 1.计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim 1+-→x x x = 21-(2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = )4(3lim 2--→x x x = 21(3)x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x =)11(lim+--→x x x x =21)11(1lim 0-=+--→x x(4)=+++-∞→42353lim 22x x x x x 31423531lim 22=+++-∞→xx x x x (5)=→x x x 5sin 3sin lim 0535sin 33sin 5lim 0x x x x x →=53 (6)=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
经济数学基础形考答案
经济数学基础形考答案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】电大【经济数学基础】形成性考核册参考答案《经济数学基础》形成性考核册(一)一、填空题 1.___________________sin lim=-→xxx x .答案:1 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案1 3.曲线x y =+1在)1,1(的切线方程是 . 答案:y=1/2X+3/2 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案x 25.设x x x f sin )(=,则__________)2π(=''f .答案: 2π-二、单项选择题1. 当+∞→x 时,下列变量为无穷小量的是( D )A .)1ln(x +B . 12+x xC .21x e - D . xxsin2. 下列极限计算正确的是( B ) A.1lim=→xx x B.1lim 0=+→xx x C.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.若x x f =)1(,则=')(x f ( B ).A .21xB .21x- C .x 1 D .x 1-三、解答题 1.计算极限本类题考核的知识点是求简单极限的常用方法。
它包括: ⑴利用极限的四则运算法则; ⑵利用两个重要极限;⑶利用无穷小量的性质(有界变量乘以无穷小量还是无穷小量) ⑷利用连续函数的定义。
经济数学基础形成性考核册及参考答案作业(三)
经济数学基础形成性考核册及参考答案作业(三)(一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:3 2.设B A ,均为3阶矩阵,且3-==B A ,则TAB 2-=________. 答案:72-3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵X BX A =+的解______________=X . 答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( ).A .若B A ,均为零矩阵,则有B A =B .若AC AB =,且O A ≠,则C B = C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠答案C2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯ 答案A3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ).A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B AC .BA AB =D .BA AB = 答案C4. 下列矩阵可逆的是( ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101C .⎥⎦⎤⎢⎣⎡0011 D .⎥⎦⎤⎢⎣⎡2211 答案A 5. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( ). A .0 B .1 C .2 D .3 答案B三、解答题 1.计算(1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321 (2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 (3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。
《经济数学基础12》形考作业3参考答案
经济数学基础形考作业3参考答案特别说明:供同学们参考,请同学们一定注意网上题目是随机的,不同学生的题目可能是不同的,同一人第二次做与第一次做也会不一样,务必看清楚再选择,不能照搬照抄。
单项选择题(每题5分,共100分)1、1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=121623235104A ,则A 的元素a 32=( ). A .3 B .2 C .1 D .2- 答案:C1、2.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=121623235104A ,则A 的元素a 24=( ). A .-2 B .1 C .2 D .3 答案: C1、3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素23a =( ). A .1 B .2 C .3 D .2- 答案:C 2、1.设2153A -⎡⎤=⎢⎥⎣⎦,0110B ⎡⎤=⎢⎥⎣⎦,则BA =( ). A .2513-⎡⎤⎢⎥⎣⎦ B .5321⎡⎤⎢⎥-⎣⎦ C .3512⎡⎤⎢⎥-⎣⎦ D .1235-⎡⎤⎢⎥⎣⎦答案:B 2、2.设2153A -⎡⎤=⎢⎥⎣⎦,0110B ⎡⎤=⎢⎥⎣⎦,则AB =( ).13⎢⎥⎣⎦21⎢⎥-⎣⎦C .3512⎡⎤⎢⎥-⎣⎦ D .1235-⎡⎤⎢⎥⎣⎦答案:D 2、3.设2153A -⎡⎤=⎢⎥⎣⎦,0110B ⎡⎤=⎢⎥⎣⎦,则AB =( ). A .1235-⎡⎤⎢⎥⎣⎦ B .5321⎡⎤⎢⎥-⎣⎦ C .3512⎡⎤⎢⎥-⎣⎦ D .2513-⎡⎤⎢⎥⎣⎦答案:A3、1.设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵TACB 有意义,则C 为( )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯答案:B3、2.设A 为25⨯矩阵,B 为43⨯矩阵,且乘积矩阵T ACB 有意义,则C 为( )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯答案:A3、3.设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵TACB 有意义,则TC 为( )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯答案:A 4、1.设1324A ⎡⎤=⎢⎥-⎣⎦,I 为单位矩阵,则A T – I =( ).30⎢⎥-⎣⎦33⎢⎥--⎣⎦ C .0323-⎡⎤⎢⎥-⎣⎦ D .0233-⎡⎤⎢⎥⎣⎦答案:D 4、2.设1324A ⎡⎤=⎢⎥-⎣⎦,I 为单位矩阵,则(A - I )T =( ). A .0233-⎡⎤⎢⎥⎣⎦B .0233⎡⎤⎢⎥--⎣⎦C .0323-⎡⎤⎢⎥-⎣⎦ D .3230-⎡⎤⎢⎥-⎣⎦答案:A 4、3.设1324A ⎡⎤=⎢⎥-⎣⎦,I 为单位矩阵,则T()I A -=( ). A .0233⎡⎤⎢⎥--⎣⎦ B .0233-⎡⎤⎢⎥⎣⎦C .0323-⎡⎤⎢⎥-⎣⎦ D .3230-⎡⎤⎢⎥-⎣⎦答案:A5、1.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A ++=+成立的充分必要条件是( ).A .AB = B .B A ,均为对称矩阵C .A O =或B O =D .AB BA = 答案:D5、2.设B A ,均为n 阶矩阵,则等式2222)(B AB A A B +-=-成立的充分必要条件是( ).A .AB = B .AB BA =C .A O =或B O =D .B A ,均为对称矩阵 答案:B5、3.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是( ).A .AB = B .B A ,均为对称矩阵C .A O =或B O =D .AB BA = 答案:D6、1.下列关于矩阵,,A B C 的结论正确的是( ).A .若A O ≠,B O ≠,则O AB ≠ B .若B A ,均为零矩阵,则有B A =C .若A 为可逆矩阵,且AC AB =,则C B =D .对角矩阵是反对称矩阵 答案:C6、2.下列关于矩阵,,A B C 的结论正确的是( ).A .若A O ≠,B O ≠,则O AB ≠ B .若AC AB =,且O A ≠,则C B = C .数量矩阵是对称矩阵D .若B A ,均为零矩阵,则有B A = 答案:C6、3.下列关于矩阵,,A B C 的结论正确的是( ).A .若B A ,均为零矩阵,则有B A = B .若AC AB =,且O A ≠,则C B = C .对角矩阵是对称矩阵D .若A O ≠,B O ≠,则O AB ≠ 答案:C7、1.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=101110011A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=110110002B ,则AB =( ). A .2 B .0 C .2- D .4 答案:B7、2.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100110111A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=110110002B ,则AB =( ). A .2 B .0 C .2- D .4 答案: D7、3.设200011011A ⎡⎤⎢⎥=⎢⎥-⎢⎥⎣⎦,110011101B ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,则AB =( ).A .2B .0C .2-D .4 答案:B8、1.设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ).A .111)(---⋅=⋅A B B A B .T T T )(B A AB =C .B A B A +=+D .111)(---+=+B A B A答案:A8、2.设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ).A .B A AB = B . 111)(---⋅=⋅B A B A C .BA AB = D .111)(---+=+B A B A答案:A8、3.设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ).A .111)(---+=+B A B A B .BA AB =C .111)(---⋅=⋅B A B A D .BA AB =答案:D9、1.下列矩阵可逆的是( ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡030320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101 C .⎥⎦⎤⎢⎣⎡2211 D .⎥⎦⎤⎢⎣⎡0011 答案:A9、2.下列矩阵可逆的是( ).A .⎥⎦⎤⎢⎣⎡2310 B .⎥⎦⎤⎢⎣⎡2010C .⎥⎦⎤⎢⎣⎡2211 D .⎥⎦⎤⎢⎣⎡0011 答案:A9、3.下列矩阵可逆的是( ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101 C .⎥⎦⎤⎢⎣⎡0011 D .⎥⎦⎤⎢⎣⎡2211 答案:A10、1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=200030002A ,则=--1)(A I ( ).A .123-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦B .321-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C .11213⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦ D . 11213⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦答案:C10、2.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=300020001A ,则1A -=( ).A .123-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦B .321-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C .11213⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦ D . 11213⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦答案:C10、3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则1A -=( ). A .123-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ B .321-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C .11213⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦ D .11213⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦答案:C11、1.设B A ,均为n 阶矩阵,()I B -可逆,则矩阵方程X XB A =+的解X =( ).A .AB I 1)(-- B .1()A I B --C .1()A I B -- D .1()I B A --答案:B11、2.设B A ,均为n 阶矩阵,)(B I +可逆,则矩阵方程X BX A =-的解X =( ).A .1)(-+B I A B .A B I 1)(-+ C .)(1B I A +- D .1)(-+A B I答案:B11、3.设B A ,均为n 阶矩阵,()I B -可逆,则矩阵方程X BX A =+的解X =( ).A .1()A I B -- B .A B I 1)(--C .1()A I B -- D .1()I B A --答案:B12、1.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=311120111A 的秩是( ). A .0 B .1 C .2 D .3答案:D12、2.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=331102111A 的秩是( ). A .0 B .1 C .2 D .3 答案:D12、3.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=431102111A 的秩是( ). A .0 B .1 C .2 D .3 答案:C13、1.设矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=λ121842421A ,则当λ=( )时,)(A r 最小.A .2-B .0C .1D .2答案:A13、2.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=λ63842421A ,则当λ=( )时,)(A r 最小.A .12B .8C .4D .-12答案:D13、3.设矩阵124248112A λ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,则当λ=( )时,)(A r 最小.A .0B .1C .2D .2-答案:C14、1. 对线性方程组⎪⎩⎪⎨⎧=--=++-=--04831252123321321321x x x x x x x x x 的增广矩阵做初等行变换可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=000032108401048312521231 A则该方程组的一般解为( ),其中3x 是自由未知量. A .13234823x x x x =-⎧⎨=-⎩ B .13234823x x x x =+⎧⎨=+⎩C .13234823x x x x =--⎧⎨=--⎩D .13234823x x x x =-+⎧⎨=-+⎩答案:C14、2. 对线性方程组⎪⎩⎪⎨⎧-=++-=---=--12520483123321321321x x x x x x x x x 的增广矩阵做初等行变换可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------=000032108401125204831231 A则该方程组的一般解为( ),其中3x 是自由未知量. A .13234823x x x x =-⎧⎨=-⎩ B .13234823x x x x =--⎧⎨=--⎩C .13234823x x x x =+⎧⎨=+⎩ D .13234823x x x x =-+⎧⎨=-+⎩答案:D14、3. 对线性方程组12312312332138402521x x x x x x x x x --=⎧⎪--=⎨⎪-++=⎩的增广矩阵做初等行变换可得132110483840012325210000A ---⎡⎤⎡⎤⎢⎥⎢⎥=--→→-⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦则该方程组的一般解为( ),其中3x 是自由未知量.A .13234823x x x x =-⎧⎨=-⎩ B .13234823x x x x =--⎧⎨=--⎩C .13234823x x x x =+⎧⎨=+⎩ D .13234823x x x x =-+⎧⎨=-+⎩答案:B15、1.设线性方程组⎩⎨⎧=+=+002121x x x x λ有非0解,则λ=( ).A .1-B .0C .1D .1± 答案:C15、2.设线性方程组⎩⎨⎧=+-=+02121x x x x λ有非0解,则λ=( ).A .1-B .0C .1D .1± 答案:A15、3.设线性方程组⎩⎨⎧=+=-02121x x x x λ有非0解,则λ=( ).A .1-B .0C .1D .1± 答案:A16、1.设线性方程组b AX =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→010*********t A ,则当( )时,方程组有无穷多解.A .t = 2B .1t =C .t =0D .1t =- 答案:B16、2.设线性方程组b AX =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→010*********t A ,则当( )时,方程组没有唯一解.A .1t =-B .1t =C .t =0D .t ≠1 答案:B16、3.设线性方程组b AX =,且111601320010A t ⎡⎤⎢⎥→-⎢⎥+⎢⎥⎣⎦,则当且仅当( )时,方程组有唯一解.A .1t ≠B .1t =-C .1t =±D .1t ≠- 答案:D17、1.线性方程组b X A n m =⨯有唯一解的充分必要条件是( ).A .m A r A r ==)()(B .n A r <)(C .n m <D .n A r A r ==)()( 答案:D17、2.线性方程组b X A n m =⨯有无解,则( ).A .m A r A r ==)()(B .n A r <)(C .)()(A r A r <D .n A r A r ==)()( 答案:C17、3.线性方程组b X A n m =⨯有无穷多解的充分必要条件是( ).A .m A r A r <=)()(B .n A r <)(C .n m <D .n A r A r <=)()( 答案:D18、1.设线性方程组⎪⎩⎪⎨⎧-=++=+=+33212321212a x x x a x x a x x ,则方程组有解的充分必要条件是( ). A .0321=++a a a B .0321=+--a a a C .0321=+-a a a D .0321=++-a a a 答案:A18、2.设线性方程组12123212332x x a x x a x x x a +=⎧⎪+=⎨⎪++=⎩,则方程组有解的充分必要条件是( ).A .0321=++a a aB .0321=+--a a aC .0321=+-a a aD .0321=++-a a a 答案:B18、3.设线性方程组12123212332x x a x x a x x x a +=⎧⎪+=⎨⎪++=⎩,则方程组有解的充分必要条件是( ).A .0321=++a a aB .0321=+-a a aC .0321=-+a a aD .0321=++-a a a 答案:C19、1.对线性方程组1231231231223x x x x x x x x ax b --=⎧⎪+-=⎨⎪++=⎩的增广矩阵做初等行变换可得1111111111220*********A a b a b ----⎡⎤⎡⎤⎢⎥⎢⎥=-→→-⎢⎥⎢⎥+-⎢⎥⎢⎥⎣⎦⎣⎦则当( )时,该方程组有无穷多解.A .3a ≠-且3b ≠B .3a =-且3b ≠C .3a =-且3b =D .3a ≠-且3b = 答案:C19、2.对线性方程组1231231231223x x x x x x x x ax b --=⎧⎪+-=⎨⎪++=⎩的增广矩阵做初等行变换可得1111111111220*********A a b a b ----⎡⎤⎡⎤⎢⎥⎢⎥=-→→-⎢⎥⎢⎥+-⎢⎥⎢⎥⎣⎦⎣⎦则当( )时,该方程组有唯一解.A .3a =-且3b ≠B .3a =-且3b =C .3a =-D .3a ≠- 答案:D19、3.对线性方程组1231231231223x x x x x x x x ax b --=⎧⎪+-=⎨⎪++=⎩的增广矩阵做初等行变换可得1111111111220*********A a b a b ----⎡⎤⎡⎤⎢⎥⎢⎥=-→→-⎢⎥⎢⎥+-⎢⎥⎢⎥⎣⎦⎣⎦则当( )时,该方程组无解.A .3a =-且3b =B .3a =-且3b ≠C .3a ≠-且3b =D .3a ≠-且3b ≠ 答案:B20、1.若线性方程组AX b =有无穷多解,则线性方程组AX O =( ).A .只有零解B .有无穷多解C .无解D .解不能确定 答案:B20、2.若线性方程组AX b =有唯一解,则线性方程组AX O =( ). A .只有零解 B .有无穷多解 C .无解 D .解不能确定 答案:A20、3.若线性方程组AX O =只有零解,则线性方程组AX b =( ). A .有唯一解 B .有无穷多解 C .无解 D .解不能确定 答案:D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业三
(一)填空题
1.设矩阵⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:3 2.设B A ,均为3阶矩阵,且3-==B A ,则T AB 2-=________. 答案:72-
3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件
是 .答案:BA AB =
4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵X BX A =+的解______________=X .
答案:A B I 1
)(-- 5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题
1. 以下结论或等式正确的是( ).
A .若
B A ,均为零矩阵,则有B A =
B .若A
C AB =,且O A ≠,则C B =
C .对角矩阵是对称矩阵
D .若O B O A ≠≠,,则O AB ≠答案C
2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则T C 为( )矩阵.
A .42⨯
B .24⨯
C .53⨯
D .35⨯ 答案A
3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ). `
A .111)(---+=+
B A B A , B .111)(---⋅=⋅B A B A
C .BA AB =
D .BA AB = 答案C
4. 下列矩阵可逆的是( ).
A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321
B .⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡--321101101 C .⎥⎦⎤⎢⎣⎡0011 D .⎥⎦
⎤⎢⎣⎡2211 答案A 5. 矩阵⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡---=421102111A 的秩是( ). A .0 B .1 C .2 D .3 答案B
三、解答题
1.计算
(1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦
⎤⎢⎣⎡-5321 (2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢
⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 (3)[]⎥⎥⎥⎥
⎦
⎤⎢⎢⎢⎢⎣⎡--21034521=[]0
2.计算⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321 解 ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321 =⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡---142301112155 3.设矩阵⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。
解 因为B A AB =
22122)1()1(010*******
101111
32
32=--=-=--=+A 01
101-1-03
21110211321B === 所以002=⨯==B A AB
4.设矩阵⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=01112421λA ,确定λ的值,使)(A r 最小。
答案: 当4
9=λ时,2)(=A r 达到最小值。
5.求矩阵⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡----=32
114024713458512352A 的秩。
答案:2)(=A r 。
6.求下列矩阵的逆矩阵: (1)⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡---=111103231A 答案 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-9437323111
A (2)I+A=⎪⎪⎪
⎭
⎫ ⎝⎛-021501310 ()=+I A I ⎪⎪⎪⎭
⎫ ⎝⎛-100021010501001310 −−→−↔②①⎪⎪⎪⎭
⎫ ⎝⎛-100021001310010501 −−−→−+-③)①(1⎪⎪⎪⎭
⎫ ⎝⎛---110520001310010501
−−→−+③②2⎪⎪⎪⎭
⎫ ⎝⎛-112100001310010501 −−−→−+-+-②
)③(①)③(35⎪⎪⎪⎭⎫ ⎝⎛-----1121003350105610001 所以()⎪⎪⎪⎭
⎫ ⎝⎛-----=+-11233556101A I 7.设矩阵⎥⎦
⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=3221,5321B A ,求解矩阵方程B XA =. 答案:X = ⎥⎦
⎤⎢⎣⎡-1101 四、证明题
1.试证:若21,B B 都和A 可交换,则21B B +,21B B 也和A 可交换。
提示:证明)()(2121B B A A B B +=+,2121B AB A B B =
2.试证:对于任意方阵A ,T A A +,A A AA T
T ,是对称矩阵。
提示:证明T T T )(A A A A +=+,A A A A AA AA T
T T T T T )(,)(== 3.设B A ,均为n 阶对称矩阵,则AB 对称的充分必要条件是:BA AB =。
提示:充分性:证明AB AB =T
)(
必要性:证明BA AB =
4.设A 为n 阶对称矩阵,B 为n 阶可逆矩阵,且T B B =-1,证明AB B 1-是对称矩阵。
提示:证明T
1)(AB B -=AB B 1-。