八年级数学上册轴对称知识点总结 好
8年级上册数学第三单元《第十三章 轴对称》知识点总结
![8年级上册数学第三单元《第十三章 轴对称》知识点总结](https://img.taocdn.com/s3/m/10ed4db6de80d4d8d05a4f77.png)
第十三章轴对称一、概念1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
这时我们也说这个图形关于这条直线(成轴)对称。
2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点3、让学生知道轴对称图形(一个图形,有一条或多条对称轴)和轴对称(两个图形,只有一条对称轴)的区别与联系4.轴对称的性质①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.点(x, y)关于x轴对称的点的坐标为(x,- y).点(x, y)关于y轴对称的点的坐标为(-x, y).注意:像类似点(x,y)关于X=1对称的题目要学会做法2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等注意:知道角平分线交点(到边相等)和垂直平分线交点(到点相等)的区别四、等腰三角形1.等腰三角形的性质①.等腰三角形的两个底角相等。
(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(等角对等边)注意:三线合一不能直接来判定等腰三角形,需要证明全等。
八年级数学复习考点1 轴对称及轴对称图形的意义
![八年级数学复习考点1 轴对称及轴对称图形的意义](https://img.taocdn.com/s3/m/9cd9f51704a1b0717ed5dd1a.png)
ABCDP八年级数学复习考点1 轴对称及轴对称图形的意义一、考点讲解:1.轴对称:两个图形沿着一条直线折叠后能够互相重合,我们就说这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点,对应线段叫做对称线段.2.如果一个图形沿某条直线对折后,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.3.轴对称的性质:如果两个图形关于某广条直线对称,那以对应线段相等,对应角相等,对应点所连的线段被对称轴垂直平分,对应点的连线互相平行或在同一条直线上,对应的线段(或其延长线)相交,交点在对称轴上。
4.简单的轴对称图形:线段:有两条对称轴:线段所在直线和线段中垂线. 角:有一条对称轴:该角的平分线所在的直线. 等腰(非等边)三角形:有一条对称轴,底边中垂线. 等边三角形:有三条对称轴:每条边的中垂线. 等腰梯形:过两底中点的直线 正n 边形有n 条对称轴 圆有无数条对称轴。
二、基本图形:1.已知:点A 、B 分别在直线l 的同侧,在直线l 上找一点P ,使PA+PB 最短。
变形1:正方形ABCD 中,点E 是AB 边上的一点,在对角线AC 上找一点P ,使PA+PB 最短。
变形2:已知点A (1,6)、点B (6,4),在x 轴和y 轴上各找一点C 、D ,使四边形ACDB 的周长最短。
三、经典考题剖析:1.(2006无锡市3分)在下面四个图案中,如果不考虑图中的文字和字母,那么不是轴对称图形的是( )2.(2006 山西省3分)下列图形中是轴对称图形的是( )。
3.(2006河南省3分)下列图形中,是轴对称图形的有( )ABABlB A CDA.4个B.3个C.2个D.1个4.(2006鸡西市3分)在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )(A) (B) (C) (D)5.(2006苏州市3分)如图,如果直线m 是多边形ABCDE 的对称轴,其中∠A=1300, ∠B=1100.那么∠BCD 的度数等于 ( ) A. 400B.500C .60D.7006.(2006梅州市3分)小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的( )7.(2006 湛江市6分)如图5,请你画出方格纸中的图形关于点O 的中心对称图形,并写出整个图形的对称轴的条数.四、针对性训练:1.(2006宜昌市3分)从汽车的后视镜中看见某车车牌的后5位号码是 ,该车的后5位号码实际是 。
八年级上数学轴对称知识点
![八年级上数学轴对称知识点](https://img.taocdn.com/s3/m/45cd443991c69ec3d5bbfd0a79563c1ec5dad7fc.png)
八年级上数学轴对称知识点数学中的轴对称是一个重要的概念,它在几何学中有着特殊的地位。
轴对称是一种在几何上对称性的表示,就是说经过此类对称变换后,物体会维持原来的形状。
轴对称广泛应用于数学的各个领域,从简单的平面图形到三维几何图形,都可以应用轴对称进行变形。
而在八年级上数学的学习中,轴对称是数学中一个重要的知识点。
接下来,本文将为大家详细介绍八年级上数学轴对称的知识点。
一、轴对称的定义及性质1.定义:平面上的轴对称是指当一个点绕着轴旋转180度后,仍能落在原来的位置上的变换。
2.性质:若点P和点P'在轴对称的图形上位于同一位置,则它们在轴上的距离相等,且轴垂直于P和P'之间的连线。
二、轴对称的应用1.轴对称可以应用于平面图形的构造,如圆,矩形,三角形等。
2.轴对称可以帮助我们求出平面图形的对称中心,并用这个对称中心得到一些图形的性质。
3.轴对称可以用于解题,如对称图形的面积、图形重心的求解等。
三、轴对称与对称中心的求解1.对称中心的定义:一个平面图形可以有很多对称中心,但每个对称中心都必须满足:通过这个对称中心,将图形分为对称的两部分,且分割的两部分的对应点在图形轴对称的位置上。
2.求解对称中心的方法:通过找到轴对称图形上的对称关系,确定对称直线的位置,然后在对称直线上作垂线,交点即为对称中心。
四、轴对称的练习1.练习一:如图,在平面直角坐标系中,直线l是x轴的正半轴,正方形ABCD经过轴对称后,变为图形A'B'C'D',点C、C'、E在同一直线上,且EE'的坐标为(7,4),求正方形ABCD的边长。
解:通过图形的观察,我们可以得出以下结论:1)正方形ABCD在x轴上的对称点是A’B’C’D’,因为它们的横坐标相等,纵坐标互为相反数。
2)点C、C’、E在同一直线上,因此点E的坐标应该是在点C和C’连线上的,可以算出点C(x,y)的坐标后,求出点C’的坐标,再连通C’E’的直线,求出其上与x轴交点的坐标即可求出正方形的边长。
八年级上册数学轴对称知识点总结
![八年级上册数学轴对称知识点总结](https://img.taocdn.com/s3/m/9dcf4389db38376baf1ffc4ffe4733687e21fca4.png)
八年级上册数学轴对称知识点总结
八年级上册数学轴对称的知识点总结如下:
1. 轴对称图形:如果一个图形可以折叠成两半,使得两半完全重合在一起,则这个图形是轴对称的。
轴对称图形具有轴对称轴,也称为镜像轴。
2. 轴对称图形的性质:
- 图形的每个点关于轴对称轴对应有另一个点。
- 图形的每一对对称点与轴对称轴的距离相等。
- 图形的任意两点关于轴对称轴的连线垂直于轴对称轴。
3. 轴对称图形的判断方法:
- 观察图形是否可以折叠成两半,使得两半完全重合。
- 观察图形是否和它自己的镜像一样。
4. 轴对称图形的绘制方法:
- 给出轴对称轴,沿着轴对称轴将图形折叠。
- 给定部分图形的对称点,通过连接对称点来绘制完整的轴对称图形。
5. 轴对称图形的性质的应用:
- 可以通过找到轴对称图形的对称点来绘制完整的图形。
- 可以通过轴对称图形的性质来解决有关对称点的问题,如求解距离、面积等。
这些都是八年级上册数学轴对称的知识点的总结,希望对你有所帮助!。
人教版八年级数学上册第13章 轴对称 小结与复习
![人教版八年级数学上册第13章 轴对称 小结与复习](https://img.taocdn.com/s3/m/2edbd8940408763231126edb6f1aff00bed57097.png)
则 1=2= 1 BAC. 2
∵ AB = AC,∴ AE⊥BC.
∴∠2 +∠C = 90°.
A
∵ BD⊥AC,∴∠DBC +∠C = 90°. ∴∠2 =∠DBC.
12 D
∴∠BAC = 2∠DBC.
B
E
C
方法总结
在涉及等腰三角形的有关计算和证明中,常见 的辅助线的作法是作顶角的平分线(或底边上的高、 中线),然后利用等腰三角形“三线合一”的性质,实 现线段或角之间的相互转化.
A D
6. 如图,已知等边△ABC 中,点 D、E B
分别在边 AB、BC 上,把△BDE 沿直线
DE 翻折,使点 B 落在 B1 处,DB1,EB1 D
分别交边 AC 于 M、H 点. 若∠ADM =
50°,则∠HEC 的度数为 70° .
B
AC M B1 H
EC
7. 如图,在△ABC 中,AD 是角平分线,AC = AB + BD.
一、轴对称的相关定义和性质 1.定义 (1) 如果一个平面图形沿一条直线折叠,直线两旁的 部分能够互相重合,这个图形就叫做_轴__对__称__图__形___, 这条直线就是它的__对__称__轴___.
(2) 将一个平面图形沿一条直线折叠,如果它能够与另 一个图形重合,那么就说这两个图形关于这条直线对
2. 如图,∠3 = 30°,为了使白球反弹后能将黑球直接
撞入袋中,那么击打白球时,必须保证∠1 的度数为
__6_0_°__.
考点二 关于坐标轴对称的点的坐标
例2 按要求完成作图:
y
(1) 作△ABC 关于 y 轴对称的
△A1B1C1; (2) 在 x 轴上找出点 P,使 PA
八年级轴对称数学知识点
![八年级轴对称数学知识点](https://img.taocdn.com/s3/m/85a6af780a4c2e3f5727a5e9856a561253d32156.png)
八年级轴对称数学知识点
轴对称是数学中比较基础的概念之一,对数学学习的深入和有效应用有很大帮助。
在初中数学学习中,八年级轴对称是一个非常重要的知识点。
本文将就八年级轴对称这个知识点进行详细的介绍。
一、什么是轴对称
轴对称是指图形对某条直线具有对称性。
具体的表现形式是:图形关于某一直线对称之后,在原图形的基础上能“翻转”到副本的位置,并且重叠相拼即可得到。
二、轴对称的性质
1、轴对称图形的对称轴是唯一的。
2、轴对称图形中的任意一点,关于对称轴的对称点必然满足在对称轴同侧。
3、轴对称图形的内部点对称于对称轴上的点,整体上左右对称。
三、常见八年级轴对称问题类型
1、求轴对称的轴线:当给出轴对称图形时,需要从图形上分
析出轴对称的轴线。
2、用轴对称复制图形:当给出了一个图形和它的对称轴时,
需要求出轴对称的图形。
3、判断轴对称图形:当给出来了几个图形时,需要判断哪些
是轴对称图形。
4、证明轴对称性:当给出一个轴对称图形时,需要证明这个
图形具有轴对称性。
四、轴对称的应用
1、绘画:许多艺术作品都运用了轴对称的特性,如某些建筑物、雕塑等,能够更加精确和美观的呈现在人们面前。
2、工程:在设计一些具有轴对称性质的工程中能够更好地满
足实际需求,如建筑、桥梁等。
3、其他学科:在生物、化学等学科中都涉及到轴对称的概念。
五、本章小结
八年级轴对称是一个相对比较基础且重要的知识点,对于学习几何以及正方形、矩形、圆等问题都有着一定的应用。
掌握了轴对称的性质及应用,能够更好地促进数学的学习效果,提高学生的综合素质。
八年级数学上册轴对称知识点总结(好)
![八年级数学上册轴对称知识点总结(好)](https://img.taocdn.com/s3/m/01cc95c931126edb6e1a10ba.png)
轴对称知识点总结1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分可以完整重合。
这条直线叫做对称轴。
相互重合的点叫做对应点。
2、轴对称:两个图形沿一条直线对折,此中一个图形可以与另一个图形完整重合。
这条直线叫做对称轴。
相互重合的点叫做对应点。
3、轴对称图形与轴对称的差别与联系:(1)差别。
轴对称图形议论的是“一个图形与一条直线的对称关系” ;轴对称议论的是“两个图形与一条直线的对称关系” 。
(2)联系。
把轴对称图形中“对称轴两旁的部分看作两个图形” 即是轴对称;把轴对称的“两A'HID D'J B'K C'个图形看作一个整体”即是轴对称图形。
4、轴对称的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连接“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线相互平行。
5、线段的垂直均分线:( 1)定义。
经过线段的中点且与线段垂直的直线,叫做线段的垂直均分线。
m 如图2,图 1∵ CA=CB ,直线 m⊥ AB 于 C,∴直线 m 是线段 AB 的垂直均分线。
A BC图 2 ( 2)性质。
线段垂直均分线上的点与线段两头点的距离相等。
m图 3如图 3,PA BC ∵CA=CB ,直线 m⊥AB 于 C,点 P 是直线 m 上的点。
∴ PA=PB 。
( 3)判断。
与线段两头点距离相等的点在线段的垂直均分线上。
如图 3,∵ PA=PB,直线 m 是线段 AB 的垂直均分线,∴点 P 在直线 m 上。
6、等腰三角形:(1)定义。
有两条边相等的三角形,叫做等腰三角形。
相等的两条边叫做腰。
第三条边叫做底。
顶两腰的夹角叫做顶角。
腰角腰腰与底的夹角叫做底角。
说明:顶角 =180°- 2 底角底角底角底角 =180 顶角 1 顶角底边90 - 图 42 2可见,底角只好是锐角。
( 2)性质。
等腰三角形是轴对称图形,其对称轴A是“底边的垂直均分线” ,只有一条。
八年级上册数学轴对称知识点
![八年级上册数学轴对称知识点](https://img.taocdn.com/s3/m/dc6165f98ad63186bceb19e8b8f67c1cfad6eeb0.png)
八年级上册数学轴对称知识点在初中数学中,轴对称是一个非常重要的知识点。
轴对称是指在一个平面上,如果有一条直线,把这个平面分成两个对称的部分,那么我们就说这个平面是轴对称的。
八年级上册的数学课程中,轴对称被涉及到了,下面我们来详细地探讨一下轴对称的相关知识点。
一、轴对称的定义和性质轴对称的定义如上所述,即沿着一条直线进行对称,这条直线就称为轴线或者对称轴。
在轴对称的情况下,通过轴对称得到的镜像图形和原图形完全重合,这也就是轴对称的性质。
轴对称有如下的性质:(1)轴对称图形共有或自成一类轴对称得到的镜像图形和原图形完全重合,因此当把某个图形做轴对称后,得到的图形和原图形形状相同,只是位置不同。
所以,轴对称得到的镜像图形和原图形共有或自成一类。
(2)轴对称的两个对称图形的距离等于轴到这两个图形的距离我们知道,轴对称的求法是以轴线为轴进行对称,而轴线到对称位置不同的点的距离不同,因此,轴对称的两个对称图形的距离等于轴到这两个图形的距离。
(3)轴对称保持长度、角度不变轴对称能够保持长度和角度不变的原因是,轴对称的两个对称图形都是完全重合的,所以它们的长度和角度是相同的。
二、轴对称的基本步骤下面我们来看轴对称的基本步骤:(1)确定轴对称的轴线首先,要确定轴对称的轴线,它必须是平面内的一条直线。
(2)确定轴对称的中心点确定轴对称的中心点,这个点一般都在轴线上,它是轴线的中点。
(3)确定轴对称的象限确定轴对称的象限,即确定轴对称得到的镜像图形和原图形的位置关系。
(4)确定轴对称的顺序确定轴对称的顺序,从哪一端开始进行对称。
一般情况下,我们可以从离中心点近的位置开始对称。
三、轴对称的应用轴对称的应用十分广泛,下面我们来看一下轴对称在实际生活中的应用:(1)轮子的轴对称自行车、汽车等车辆的轮子都采用了轴对称的原理。
(2)建筑物的轴对称建筑物在建造过程中也采用了轴对称的方法,比如古希腊罗马建筑中的神殿、半圆形壳体建筑等。
八年级数学上册《轴对称》讲义
![八年级数学上册《轴对称》讲义](https://img.taocdn.com/s3/m/6bbff226bb4cf7ec4bfed06a.png)
轴对称知识点一、轴对称图形轴对称图形的定义:一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.知识点二、轴对称1.轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称图形与轴对称的区别:轴对称是指两个图形,而轴对称图形是一个图形.知识点三、轴对称与轴对称图形的性质轴对称的性质:若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的性质:轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.知识点四、线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.性质:性质1:线段垂直平分线上的点到线段两端点的距离相等;性质2:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.要点诠释:三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.类型一、轴对称变换1.如图,在平面直角坐标系中,ABC ∆三个顶点坐标分别为(1,6)A -,(5,3)B -,(3,1)C -.(1)ABC ∆关于y 轴对称的图形△111A B C (其中1A ,1B ,1C 分别是A ,B ,C 的对称点),请写出点1A ,1B ,1C 的坐标;(2)若直线l 过点(1,0),且直线//l y 轴,请在图中画出ABC ∆关于直线l 对称的图形△222A B C (其中2A ,2B ,2C 分别是A ,B ,C 的对称点,不写画法),并写出点2A ,2B ,2C 的坐标.类型二、线段垂直平分线知识点① 线段垂直平分线的性质2. 如图,已知ABC ∆,AB 、AC 的垂直平分线的交点D 恰好落在BC 边上.(1)判断ABC ∆的形状;(2)若点A 在线段DC 的垂直平分线上,求AC BC的值.知识点② 线段垂直平分线的判定3. 如图所示,在ABC ∆中,AB AC =,BE CD =,且BD 与CE 相交于点O ,求证:点O 在线段BC 的垂直平分线上.类型三、利用轴对称的性质求图形的面积4. 在ABC ∆中,90BAC ∠=︒,点A 关于BC 边的对称点为A ',点B 关于AC 边的对称点为B ',点C 关于AB 边的对称点为C ',若1ABC S ∆=,求A B C S '''.类型四、“将军饮马”问题5. 如图,点P、Q为MON内两点,分别在OM与ON上找点A、B,使四边形PABQ的周长最小.类型五、角平分线与线段垂直平分线的综合6. 如图,在△ABC中,AD是∠BAC平分线,线段AD的垂直平分线分别交AB于点F,交BC的延长线于E(1)在图①中,连接DF,证明DF//AC(2)在图①中,连接AE,证明∠EAC=∠B(3)如图②,若线段CD上存在一点M,使∠MPD=∠ACD,AM与EF交于点P,连接DP 并延长与AC交于点N,求证:AN=DM.①②【复习巩固】一.选择题(共7小题)1.如图,ABC ∆中,D 点在BC 上,将D 点分别以AB 、AC 为对称轴,画出对称点E 、F ,并连接AE 、AF .根据图中标示的角度,求EAF ∠的度数为何?( )A .113︒B .124︒C .129︒D .134︒2.如图所示,在四边纸片ABCD 中,//AD BC ,//AB CD ,将纸片沿EF 折叠,点A ,D 分别落在A ',D '处,且A D ''经过点B ,FD '交BC 于点G ,连接EG ,若EG 平分FEB ∠,//EG A D '',80D FC '∠=︒,则A ∠的度数是( )A .65︒B .70︒C .75︒D .80︒3.如图,直线MN 是四边形AMBN 的对称轴,点P 是直线MN 上的点,下列判断错误的是( )A .AM BM =B .AP BN =C .M AP M BP ∠=∠D .ANM BNM ∠=∠4.如图,在ABC ∆中,AB 边的中垂线DE ,分别与AB 边和AC 边交于点D 和点E ,BC 边的中垂线FG ,分别与BC 边和AC 边交于点F 和点G ,又BEG ∆周长为16,且1GE =,则AC 的长为( )A .13B .14C .15D .165.如图,50∠的平分线BE交AD于点E,连接∠=︒,AD垂直平分线段BC于点D,ABCABC∠的度数是()EC,则AECA.115︒B.75︒C.105︒D.50︒6.如图,四边形ABCD中,AB AD=,点B关于AC的对称点B'恰好落在CD上,若110∠=︒,BAD则ACB∠的度数为()A.40︒B.35︒C.60︒D.70︒7.如图,P是AOB∠两边上的点,点P关于OA的对称点Q恰∠外的一点,M,N分别是AOB好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若 2.5PN=,PM=,3 MR=,则线段QN的长为()7A.1 B.1.5 C.2 D.2.5二.解答题(共3小题)8如图,点A、B在直线l同侧,请你在直线l上画出一点P,使得PA PB+的值最小,画出图形并证明.9.如图,OBC ∆中,BC 的垂直平分线DP 交BOC ∠的平分线于D ,垂足为P .(1)若60BOC ∠=︒,求BDC ∠的度数;(2)若BOC α∠=,则BDC ∠= (直接写出结果).10.如图,ABC ∆中,BD 平分ABC ∠,BC 的中垂线交BC 于点E ,交BD 于点F ,连接CF .(1)若60A ∠=︒,24ABD ∠=︒,求ACF ∠的度数;(2)若5BC =,:5:3BF FD =,10BCF S ∆=,求点D 到AB 的距离.。
人教八年级数学上册《全等三角形》、《轴对称》知识要点归纳
![人教八年级数学上册《全等三角形》、《轴对称》知识要点归纳](https://img.taocdn.com/s3/m/2a284064ae45b307e87101f69e3143323968f5d4.png)
第十一章《全等三角形》知识要点归纳一、知识网络二、基础知识梳理 1、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;(3)全等三角形周长、面积相等。
2、全等三角形的判定方法 (1)三边对应相等的两个三角形全等。
(2)两边和它们的夹角对应相等的两个三角形全等。
(3)两角和它们的夹边对应相等的两个三角形全等。
⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理A B C D E F 中和在DEF ABC ∆∆⎪⎩⎪⎨⎧===DF AC EF BC DEAB DEF(SSS) ABC ∆∆∴≌ A B C D EF中和在DEF ABC ∆∆⎪⎩⎪⎨⎧=∠=∠=EF BC E B DE AB DEF(SAS) ABC ∆∆∴≌ AB CDE F中和在DEF ABC ∆∆⎪⎩⎪⎨⎧∠=∠=∠=∠E B DE AB D A(4)两角和其中一角的对边对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
注意:①全等三角形问题中,找准对应点,对应边,对应角。
(突出对应) ②题中已知平移、翻折、旋转相当已知全等;③判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
④要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
⑤要善于灵活选择适当的方法判定两个三角形全等。
其中:一般三角形有四 种判定方法 。
直角三角形有五 种判定方法。
3、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上DEF(ASA)ABC ∆∆∴≌ A B C DE F中和在DEF ABC ∆∆⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC E B D A DEF(AAS)ABC ∆∆∴≌ A C BEFD中和在DEF Rt ABC Rt ∆∆⎩⎨⎧==DF AC DE AB )HL (DEF Rt ABC Rt ∆∆∴ ≌ ·ADP COB角平分线的性质)平分PD(PC OAPD OB PC AOB OP =∴⊥⊥∠ ·ADP CBAOB∠∠=∠∴=⊥⊥平分或:角平分线的判定)OP BOP(AOP PD PC OA PD OB PC注:①性质与判定都是由三个条件推出一个结论,要正确应用; ②会用尺规做一个角的平分线,依据为“边边边”。
八年级数学上册轴对称知识点总结
![八年级数学上册轴对称知识点总结](https://img.taocdn.com/s3/m/084c3c8087c24028905fc381.png)
轴对称知识点总结1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
3、轴对称图形与轴对称的区别与联系:(1)区别。
轴对称图形讨论的是“一个图形与一条直线的对称关系” ;轴对称讨论的是“两个图形与一条直线的对称关系”。
(2)联系。
把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
4、轴对称的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
5、线段的垂直平分线:(1)定义。
经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。
如图2,∵CA=CB ,直线m ⊥AB 于C ,∴直线m 是线段AB 的垂直平分线。
(2)性质。
线段垂直平分线上的点与线段两端点的距离相等。
如图3,∵CA=CB ,直线m ⊥AB 于C , 点P 是直线m 上的点。
∴PA=PB 。
(3)判定。
与线段两端点距离相等的点在线段的垂直平分线上。
如图3,∵PA=PB ,直线m 是线段AB 的垂直平分线, ∴点P 在直线m 上 。
6、等腰三角形:(1)定义。
有两条边相等的三角形,叫做等腰三角形。
①相等的两条边叫做腰。
第三条边叫做底。
②两腰的夹角叫做顶角。
③腰与底的夹角叫做底角。
说明:顶角=180°- 2底角底角=顶角顶角21-902180︒=-︒ 可见,底角只能是锐角。
(2)性质。
①等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线” ,只有一条。
②等边对等角。
如图5,在△ABC 中 ∵AB=AC∴∠B=∠C 。
③三线合一。
(3)判定。
①有两条边相等的三角形是等腰三角形。
如图5,在△ABC 中, ∵AB=AC∴△ABC 是等腰三角形 。
八年级上册数学第十三章 轴对称 知识点总结
![八年级上册数学第十三章 轴对称 知识点总结](https://img.taocdn.com/s3/m/39422020cd1755270722192e453610661ed95ab3.png)
第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P (x, y) 关于x 轴对称的点的坐标为P ' (x, y) .②点P (x, y) 关于y 轴对称的点的坐标为P " ( x, y) .⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1 条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3 条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.。
八年级上册数轴对称知识点
![八年级上册数轴对称知识点](https://img.taocdn.com/s3/m/f6fab63cbfd5b9f3f90f76c66137ee06eef94e4d.png)
八年级上册数轴对称知识点数轴对称是数学中的一个重要概念,它不仅在初中阶段的数学学习中起到了基础作用,而且在高中数学和大学数学中都有着广泛的应用。
本文将详细介绍八年级上册数轴对称的知识点,帮助初中学生更好地掌握这一概念。
1. 数轴对称的定义数轴是由一条无限长的、直线型的线段构成的,这条线段上的每个点都被赋予了一个特定的坐标值。
在数轴上,选取一个点O 作为轴心,如果对数轴上的任意一点A,都可以找到点A'使得OA=OA',那么称点A关于点O对称。
2. 数轴对称的性质数轴对称有以下几个基本性质:(1) 对称轴上的点与它的对称点重合;(2) 对称不改变两点之间的距离;(3) 对称是一种一一对应的变换;(4) 任何点都可以有关于对称轴的对称点。
3. 数轴上的点的位置关系(1) 在对称轴上的点关于对称轴对称,即O在对称轴上,O对称于自身;(2) 在对称轴同侧的点的对称点分别在对称轴的另一侧;(3) 在对称轴异侧的点的对称点互相对称。
4. 数轴上的点的坐标对称对坐标轴上的一个点关于原点对称时,其坐标的值正负相反。
例如,对于数轴上的点A(3),其关于原点的对称点为A'(-3)。
5. 判断一条线段是否经过对称若线段AB的中点C在对称轴上,则线段AB经过对称。
如果线段AB不经过对称,那么它的中点C不在对称轴上。
6. 对称性质的应用数轴对称性在数学学科中有着广泛的应用。
在几何学中,通过对称关系可以实现复杂图形的简化和对称图形的分类。
在代数学中,对称性的应用广泛涉及了函数的性质、方程的解法、矩阵的相关计算等。
总之,数轴对称是数学中基础而又重要的概念,是后续数学学习的基石。
学生们需要认真对待这一知识点,加强对它的理解掌握,从而在后续的学习中获得更好的成绩。
八年级上册数学轴对称知识点总结
![八年级上册数学轴对称知识点总结](https://img.taocdn.com/s3/m/d0e00507b207e87101f69e3143323968001cf455.png)
八年级上册数学轴对称知识点总结一、引言数学作为一门基础学科,其所包含的内容广泛而深刻。
在八年级上册中,轴对称作为其中的一个重要知识点,对学生来说具有一定的挑战性。
在本文中,我们将以八年级上册数学轴对称知识点为主题,进行全面的评估和总结,帮助学生更好地理解和掌握这一知识点。
二、基本概念1. 关于轴对称轴对称是指平面上存在一条直线,使得图形关于这条直线对称。
一个图形如果可以分成两部分,且其中一部分经过旋转、翻转或平移后可以和另一部分完全重合,那么这个图形就是关于这条直线对称的。
2. 轴对称的性质- 轴对称的图形关于对称轴是对称的。
- 轴对称的图形的对称中心在对称轴上。
- 轴对称的图形的每一点经过对称轴的对称变换后都能恰好在图形上。
三、基本题型在八年级上册数学中,关于轴对称的题型主要包括:1. 判断图形是否轴对称2. 找出图形的对称中心和对称轴3. 根据轴对称的性质,解决相关的计算题目四、实例分析以具体的实例来分析轴对称的知识点:题目:如图,判断图形是否关于虚线对称。
[图片]解析:根据图形可以看出,通过对折可以发现,图形A和图形B可以重合,因此该图形是关于虚线对称的。
又如,若已知一个三角形的对称轴为边AC,对称中心为边BC的中点O,求证△ABC是个等腰三角形。
解析:根据轴对称的性质,可以证明线段BO和OA相等,从而得到△ABC为等腰三角形。
五、拓展应用除了基本的题型和实例分析,八年级上册数学中的轴对称知识点还涉及到一些拓展应用,在真实生活中也是有一定的应用场景的。
在建筑设计中,轴对称的思想可以帮助设计师更好地进行建筑设计和规划,保证建筑物的整体美观和稳定性。
在工程制图和艺术设计中,轴对称也扮演着重要的角色。
六、总结与展望通过对八年级上册数学轴对称知识点的全面评估和总结,我们更深入地理解了轴对称的基本概念、基本题型和实例分析,以及在拓展应用中的意义。
在今后的学习中,我们应该更加注重轴对称知识点的理解和应用,结合实际情况进行综合训练,提高解决问题的能力和思维方式,为未来的学习和生活打下坚实的基础。
八年级数学上册第十三章轴对称知识点总结归纳(带答案)
![八年级数学上册第十三章轴对称知识点总结归纳(带答案)](https://img.taocdn.com/s3/m/dfe7706111661ed9ad51f01dc281e53a59025171.png)
八年级数学上册第十三章轴对称知识点总结归纳单选题1、如图,将△ABC沿AC所在的直线翻折得到△AB′C,再将△AB′C沿AB′所在的直线翻折得到△AB′C′,点B,B′,C′在同一条直线上,∠BAC=∠α,则∠CB′B=()A.2αB.αC.90°−αD.90°−2α答案:A分析:由翻折的性质可得∠B′AC′=∠B′AC=∠BAC=∠α,∠AB′C′=∠AB′C,再根据角的和差解答即可.解:由翻折的性质可知:∠B′AC′=∠B′AC=∠BAC=∠α,∠AB′C′=∠AB′C,∴∠AB′B=90°−∠B′AC=90°−∠α,∴∠AB′C′=180°−∠AB′B=180°−(90°−∠α)=90°+∠α,∴∠AB′C=90°+∠α,∴∠CB′B=∠AB′C−∠AB′B=90°+∠α−(90°−∠α)=2∠α,∴∠CB′B=2∠α.故选:A.小提示:本题考查了翻折变换,直角三角形的两个锐角互余,解决本题的关键是掌握翻折的性质.2、如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A的坐标是(m,n),经过2020次变换后所得的点A的坐标是()A.(﹣m,n)B.(﹣m,﹣n)C.(m,﹣n)D.(m,n)答案:D分析:观察图形可知每四次对称为一个循环组依次循环,用2020除以4,然后根据商的情况确定出变换后的点A所在的象限,然后解答即可.解:点A第一次关于y轴对称后在第一象限,点A第二次关于x轴对称后在第四象限,点A第三次关于y轴对称后在第三象限,点A第四次关于x轴对称后在第二象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2020÷4=505,∴经过第2020次变换后所得的A点与第一次变换的位置相同,在第一象限,其坐标为(m,n).故选:D.小提示:本题考查了轴对称的性质,点的坐标变换规律,读懂题目信息,观察出每四次对称为一个循环组依次循环是解题的关键,也是本题的难点.3、下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.答案:C分析:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选C.小提示:此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4、过直线l外一点P作直线l的垂线PQ.下列尺规作图错误的是( )A.B.C.D.答案:C分析:根据线段垂直平分线的逆定理及两点确定一条直线一一判断即可.A、如图,连接AP、AQ、BP、BQ,∵AP=BP,AQ=BQ,∴点P在线段AB的垂直平分线上,点Q在线段AB的垂直平分线上,∴直线PQ垂直平分线线段AB,即直线l垂直平分线线段PQ,本选项不符合题意;B、如图,连接AP、AQ、BP、BQ,∵AP= AQ,BP =BQ,∴点A在线段PQ的垂直平分线上,点B在线段PQ的垂直平分线上,∴直线AB垂直平分线线段PQ,即直线l垂直平分线线段PQ,本选项不符合题意;C、C项无法判定直线PQ垂直直线l,本选项符合题意;D、如图,连接AP、AQ、BP、BQ,∵AP= AQ,BP =BQ,∴点A在线段PQ的垂直平分线上,点B在线段PQ的垂直平分线上,∴直线AB垂直平分线线段PQ,即直线l垂直平分线线段PQ,本选项不符合题意;故选:C.小提示:本题考查作图-复杂作图,线段垂直平分线的逆定理及两点确定一条直线等知识,读懂图像信息是解题的关键,属于中考常考题型.5、在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点A1(1,2),则点A2的坐标是()A.(−2,1)B.(−2,−1)C.(−1,2)D.(−1,−2)答案:D分析:直接利用关于x,y轴对称点的性质分别得出A,A2点坐标,即可得出答案.解:∵点A1的坐标为(1,2),点A与点A1关于x轴对称,∴点A的坐标为(1,-2),∵点A与点A2关于y轴对称,∴点A2的坐标是(-1,﹣2).故选:D.小提示:此题主要考查了关于x,y轴对称点的坐标,正确掌握关于坐标轴对称点的性质是解题关键.6、一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C在海岛在海岛A 的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C的距离是()A.15海里B.20海里C.30海里D.60海里答案:C分析:根据题意画出图形,根据三角形外角性质求出∠C=∠CAB=42°,根据等角对等边得出BC=AB,求出AB 即可.解:∵根据题意得:∠CBD=84°,∠CAB=42°,∴∠C=∠CBD-∠CAB=42°=∠CAB,∴BC=AB,∵AB=15海里/时×2时=30海里,∴BC=30海里,即海岛B到灯塔C的距离是30海里.故选C.小提示:本题考查了等腰三角形的性质和判定和三角形的外角性质,关键是求出∠C=∠CAB,题目比较典型,难度不大.7、如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条B.4条C.6条D.8条答案:B分析:根据轴对称的性质即可画出对称轴进而可得此图形的对称轴的条数.解:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有4条.故选:B.小提示:本题考查了正方形的性质、轴对称的性质、轴对称图形,解决本题的关键是掌握轴对称的性质.8、山东省第二十五届运动会将于2022年8月25日在日照市开幕,“全民健身与省运同行”成为日照市当前的运动主题.在下列给出的运动图片中,是轴对称图形的是()A.B.C.D.答案:D分析:根据轴对称图形的概念,对各选项分析判断即可得解;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意.故选:D.小提示:本题考查了轴对称图形,正确掌握相关定义是解题关键.9、下列四种图形中,对称轴条数最多的是()A.等边三角形B.圆C.长方形D.正方形答案:B分析:分别求出各个图形的对称轴的条数,再进行比较即可.解:因为等边三角形有3条对称轴;圆有无数条对称轴;长方形有2条对称轴;正方形有4条对称轴;经比较知,圆的对称轴最多.故选:B.小提示:此题考查了轴对称图形对称轴条数的问题,解题的关键是掌握轴对称图形对称轴的定义以及性质.10、如图,直线m,l相交于点O,P为这两直线外一点,且OP=1.3.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.2B.3C.4D.5答案:A分析:连接OP1,OP2,P1P2,点P关于直线l,m的对称点分别是点P1,P2,即得OP1=OP=1.3,OP=OP2=1.3,根据OP1+OP2>P1P2,可知0<P1P2<2.6,即可得答案.连接OP1,OP2,P1P2,如图:∵点P关于直线l,m的对称点分别是点P1,P2,∴OP1=OP=1.3,OP=OP2=1.3,∵OP1+OP2>P1P2,∴0<P1P2<2.6,故选:A.小提示:本题考查了轴对称的性质和三角形三边之间的关系,熟练掌握这两个性质是解题的关键.填空题11、如图,点P为∠AOB内一点,分别作出P点关于OA,OB的对称点P1,P2,连结P1P2交OA于M,交OB于N,若线段P1P2的长为12cm,则△PMN的周长为______cm.答案:12分析:根据轴对称的性质可得PM=P1M,PN=P2N,然后求出△PMN的周长=P1P2.解:∵P点关于OA、OB的对称点P1,P2,∴NP=NP2,MP=MP1,∴△PMN的周长=PN+MN+MP=P2N+NM+MP1=P1P2=12cm,所以答案是:12.小提示:本题考查了轴对称的性质,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等.12、如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO,下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中不正确结论的序号是____.答案:④×180°=90°,分析:根据全等三角形的性质可得∠AOB=∠AOD,根据平角的定义可得∠AOB=∠AOD=12即可判断①,根据全等三角形的性质得出AB=AD,BO=DO,结合①可得AC是BD的垂直平分线,即可判断②,根据SSS即可证明③,不能得出结论④.解:∵△ABO≌△ADO,∴∠AOB=∠AOD,AB=AD,BO=DO∵四边形ABCD的对角线AC、BD相交于点O,∴∠AOB=∠AOD=1×180°=90°,2∴①AC⊥BD正确;∵AB=AD,BO=DO∴AC是BD的垂直平分线,∴②CB=CD正确;∵AB=AD,BC=DC,AC=AC,∴③△ABC≌△ADC正确;由已知条件不能判断④DA=DC.所以答案是:④.小提示:本题考查了全等三角形的性质与判定,垂直平分线的性质与判定,掌握以上知识是解题的关键.13、在△ABC中,AB=AC,点D是△ABC内一点,点E是CD的中点,连接AE,作EF⊥AE,若点F在BD的垂直平分线上,∠BAC=α,则∠BFD=_________.(用α含的式子表示)答案:180°﹣α.分析:根据全等三角形的性质得到∠EAC=∠EMD,AC=DM,根据线段垂直平分线的性质得到AF=FM,FB=FD,推出△MDF≌△ABF(SSS),得到∠AFB=∠MFD,∠DMF=∠BAF,根据角的和差即可得到结论.解:延长AE至M,使EM=AE,连接AF,FM,DM,∵点E是CD的中点,∴DE=CE,在△AEC与△MED中,{AE=EM∠AEC=∠DEMCE=DE,∴△AEC≌△MED(SAS),∴∠EAC=∠EMD,AC=DM,∵EF⊥AE,∴AF=FM,∵点F在BD的垂直平分线上,∴FB=FD,在△MDF与△ABF中,{AB=DMBF=DF AF=FM,∴△MDF≌△ABF(SSS),∴∠AFB=∠MFD,∠DMF=∠BAF,∴∠BFD+∠DFA=∠DFA+∠AFM,∴∠BFD=∠AFM=180°﹣2(∠DMF+∠EMD)=180°﹣(∠FAM+∠BAF+∠EAC)=180°﹣∠BAC=180°﹣α,所以答案是:180°﹣α.小提示:本题考查了全等三角形的判定和性质,线段垂直平分线的性质,正确的作出辅助线构造全等三角形是解题的关键.14、如图,∠A=∠C=90°,且AB=AC=4,D,E分别为射线AC和射线CF上两动点,且AD=CE,当BD+ BE有最小值时,则ΔBDE的面积为________.答案:6分析:延长AC,以点C为圆心,AC为半径,作圆弧交延长线于点G,得AC=CG.连接AE、GE、BG,ΔADB≅ΔCEA≅ΔCEG,得BD=AE=GE,当点B,E,G三点在一条直线,BD+BE=GE+BE距离最短.过点E′作E′H∥AC交BA于点H,得ΔBHE′≅ΔE′CG,得BH=E′C=AH,BE′=E′G,D′,E′为中点时BD+BE值最小.又根据S△BD′E′=S△BAG−S△BAD′−S△D′E′G,即可求出ΔBDE的面积.延长AC,以点C为圆心,AC为半径,作圆弧交延长线于点G,连接AE、GE、BG∴AC=CG,AD=CE又∵AD=CE,BA=AC=CG∴RtΔADB≅RtΔCEA≅RtΔCEG∴BD=AE=GE∴BD+BE=GE+BE由图可知,当点B,E,G在一条直线上,距离最短过点E′作E′H∥AC交BA于点H∴E′H∥AC∴∠BE′H=∠E′GC又∵AC=HE′=CG,∠BHE′=∠E′CG=90°∴ΔBHE′≅ΔE′CG∴CE′=BH=AH=12AB=2∴S△BD′E′=S△BAG−S△BAD′−S△D′E′G∴S△BD′E′=12×8×4−12×4×2−12×6×2=6所以答案是:6.小提示:本题考查动点距离问题,平行线之间的距离相等,三角形全等知识点;熟练掌握动点距离最短,三角形全等是解题的关键.15、如图,CD垂直平分线段AB,且垂足为点M,则图中一定相等的线段有________对.答案:3分析:由CD垂直平分线段AB,根据线段垂直平分线的性质:垂直平分线商店的点到线段两端点的距离相等,可得AC=BC,AM=BM,AD=BD,从而求得答案.∵CD垂直平分线段AB,∴AC=BC,AM=BM,AD=BD.∴图中一定相等的线段有3对.所以答案是:3.小提示:此题考查了线段垂直平分线的性质,掌握其性质并能灵活运用是解题关键.解答题16、△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA+PB= PC(或PA+PC=PB)成立;请证明.(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.答案:(1)证明见解析(2)图②结论:PB=PA+PC,证明见解析(3)图③结论:PA+PB=PC分析:(1)由△ABC是等边三角形,得AB=AC,再因为点P与点A重合,所以PB=AB,PC=AC,PA=0,即可得出结论;(2)在BP上截取BF=CP,连接AF,证明△BAD≌△CAE(SAS),得∠ABD=∠ACE,再证明△CAP≌△BAF(SAS),得∠CAP=∠BAF,AF=AP,然后证明△AFP是等边三角形,得PF=AP,即可得出结论;(3)在CP上截取CF=BP,连接AF,证明△BAD≌△CAE(SAS),得∠ABD=∠ACE,再证明△BAP≌△CAF(SAS),得出∠CAF=∠BAP,AP=AF,然后证明△AFP是等边三角形,得PF=AP,即可得出结论:PA+PB=PF+CF=PC.(1)证明:∵△ABC是等边三角形,∴AB=AC,∵点P与点A重合,∴PB=AB,PC=AC,PA=0,∴PA+PB=PC或PA+PC=PB;(2)解:图②结论:PB=PA+PC证明:在BP上截取BF=CP,连接AF,∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵AC=AB,CP=BF,∴△CAP≌△BAF(SAS),∴∠CAP=∠BAF,AF=AP,∴∠CAP+∠CAF=∠BAF+∠CAF,∴∠FAP=∠BAC=60°,∴△AFP是等边三角形,∴PF=AP,∴PA+PC=PF+BF=PB;(3)解:图③结论:PA+PB=PC,理由:在CP上截取CF=BP,连接AF,∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°∴∠BAC+∠BAE=∠DAE+∠BAE,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE,∵AB=AC,BP=CF,∴△BAP≌△CAF(SAS),∴∠CAF=∠BAP,AP=AF,∴∠BAF+∠BAP=∠BAF+∠CAF,∴∠FAP=∠BAC=60°,∴△AFP是等边三角形,∴PF=AP,∴PA+PB=PF+CF=PC,即PA+PB=PC.小提示:本题考查等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质、全等三角形的判定与性质是解题的关键.17、已知:△ABC的高AD所在直线与高BE所在直线相交于点F,过点F作FG∥BC,交直线AB于点G.(1)如图1,若△ABC为锐角三角形,且∠ABC=45°.求证:①△BDF≌△ADC;②FG+DC=AD;(2)如图2,若∠ABC=135°,直接写出FG、DC、AD之间满足的数量关系.答案:(1)①见解析;②见解析(2)FG=DC+AD分析:(1)①可以证明△ABD为等腰直角三角形,得到AD=BD,再利用ASA判定三角形全等即可;②由上一小问中三角形全等可知DF=DC,再去证明FA=FG,则FG+DC=FA+DF=AD;(2)易知△ABD、△AGF为等腰直角三角形,BD=AD,FG=AF=AD+DF,再证明△BDF≌△ADC,得到DF=DC,则得到FG=DC+AD.(1)①证明:∵∠ADB=90°,∠ABC=45°,∴∠BAD=∠ABC=45°,∴AD=BD,∵∠BEC=90°,∴∠CBE+∠C=90°又∵∠DAC+∠C=90°,∴∠CBE=∠DAC,∵∠FDB=∠CDA=90°,∴△FDB≌△CDA(ASA)②∵FDB≌△CDA,∴DF=DC;∵GF∥BC,∴∠AGF=∠ABC=45°,∴∠AGF=∠BAD,∴FA=FG,∴FG+DC=FA+DF=AD.(2)FG、DC、AD之间的数量关系为:FG=DC+AD.理由:∵∠ABC=135°,∴∠ABD=45°,△ABD、△AGF皆为等腰直角三角形,∴BD=AD,FG=AF=AD+DF,∵∠FAE+∠DFB=∠FAE+∠DCA=90°,∴∠DFB=∠DCA,又∵∠FDB=∠CDA=90°,BD=AD,∴△BDF≌△ADC(AAS),∴DF=DC,∴FG、DC、AD之间的数量关系为:FG=DC+AD.小提示:本题综合考查了三角形全等的判定和性质,利用三角形全等证明线段相等是经常使用的重要方法,注意熟练掌握.18、已知四边形ABCD,AC是四边形ABCD的对角线,用无刻度的直尺和圆规完成下列作图.(保留作图痕迹,不写作法)(1)如图①,在对角线AC上求作一点M,使BM=CM;(2)如图②,AB=CD,在对角线AC上求作一点N,使△ABN和△CDN的面积相等.答案:(1)见解析(2)见解析分析:(1)作BC的垂直平分线交AC于M点,根据线段垂直平分线的性质可判断M点满足条件;(2)延长BA、CD,它们相交于点P,再作∠BPC的平分线交AC于N,利用角平分线的性质得到N点到AB和CD的距离相等,则根据三角形面积公式得到△ABN和△CDN的面积相等.(1)解:点M即为所求;(2)如图,点N即为所求.小提示:此题考查了线段垂直平分线的作图,角平分线的作图,正确理解线段垂直平分线的性质及角平分线的性质是解题的关键.。
八年级数学上册“第十三章轴对称”必背知识点
![八年级数学上册“第十三章轴对称”必背知识点](https://img.taocdn.com/s3/m/825d5f9b59f5f61fb7360b4c2e3f5727a4e92445.png)
八年级数学上册“第十三章轴对称”必背知识点一、轴对称与轴对称图形的定义1. 轴对称:如果两个图形关于某一条直线对称,那么这两个图形就叫做关于这条直线的轴对称图形,这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点。
2. 轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
二、轴对称的性质1. 对应点性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
2. 对应线段与对应角:轴对称图形上对应线段相等、对应角相等。
三、线段的垂直平分线1. 定义:经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)。
2. 性质:线段垂直平分线上的点与这条线段两个端点的距离相等。
与一条线段两个端点距离相等的点,在线段的垂直平分线上。
四、坐标表示轴对称1. 关于x轴对称:点(x, y)关于x轴对称的点的坐标为(x, -y)。
2. 关于y轴对称:点(x, y)关于y轴对称的点的坐标为(-x, y)。
五、等腰三角形与等边三角形的性质1. 等腰三角形:性质:等腰三角形的两个底角相等 (等边对等角);顶角平分线、底边上的中线、底边上的高互相重合 (三线合一)。
判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
2. 等边三角形:性质:等边三角形的三个角都相等,并且每一个角都等于60°;等边三角形具有等腰三角形所有的性质。
判定:三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形。
六、特殊线段的性质1. 三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。
三角形的中位线平行于第三边,并且等于它的一半。
2. 三角形三条边的垂直平分线:三角形的三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。
八年级数学上册知识点:轴对称
![八年级数学上册知识点:轴对称](https://img.taocdn.com/s3/m/ecb4fd0991c69ec3d5bbfd0a79563c1ec5dad744.png)
八年级数学上册知识点:轴对称1轴对称:把一个图形沿着某一条直线折叠,若是它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2轴对称图形:若是一个图形沿着一条直线折叠,直线两旁的部份能够相互重合,那么那个图形叫做轴对称图形,这条直线确实是它的对称轴。
注意:对称轴是直线而不是线段3轴对称的性质:关于某条直线对称的两个图形是全等形;若是两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;两个图形关于某条直线对称,若是它们的对应线段或延长线相交,那么交点在对称轴上;若是两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4线段垂直平分线:概念:垂直平分一条线段的直线是这条线的垂直平分线。
性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:依照线段垂直平分线的这一特性能够推出:三角形三边的垂直平分线交于一点,而且这一点到三个极点的距离相等。
角的平分线:概念:把一个角分成两个相等的角的射线叫做角的平分线性质:①在角的平分线上的点到那个角的两边的距离相等②到一个角的两边距离相等的点,在那个角的平分线上注意:依照角平分线的性质,三角形的三个内角的平分线交于一点,而且这一点到三条边的距离相等6等腰三角形的性质与判定:性质:对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合;等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除“三线合一”外,三角形中的要紧线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。
人教版八年级数学上册 第十三章 轴对称 知识点归纳
![人教版八年级数学上册 第十三章 轴对称 知识点归纳](https://img.taocdn.com/s3/m/1402a501f61fb7360a4c65bf.png)
人教版八年级数学上册第十三章轴对称知识点归纳13.1轴对称如果一个平面图形沿着一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形。
这条直线叫做对称轴。
如果一个平面图形沿着一条直线折叠,能与另一个图形重合,那么就说这两个图形关于这条直线成轴对称。
这条直线叫做对称轴,折叠后重合的点是对应点,也叫做对称点。
轴对称图形与轴对称的区别:①轴对称图形是一个具有对称关系的图形;轴对称是两个图形的位置关系。
②轴对称图形可以有多条对称轴;两个图形成轴对称,则只有一条对称轴。
经过线段中点,且垂直于这条线段的直线,叫做这条直线的垂直平分线。
也叫做中垂线。
垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等。
垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
轴对称的性质:①如果两个图形关于一条直线对称,那么它们肯定是全等的。
但两个图形全等,它们却不一定成轴对称。
②如果两个图形关于一条直线对称,那么对称轴是对称点连线的垂直平分线。
轴对称图形的性质:①轴对称图形的对称轴两侧的部分是全等的。
②轴对称图形的对称轴是连接两个对称点的线段的垂直平分线。
尺规作图:作一条线段的垂直平分线已知线段AB,求作线段AB的垂直平分线画法:分别以A、B两点为圆心,以大于1AB的长为半径作弧,两弧交于C、D两点2作直线CD,则直线CD为所求已知点O是直线l上的一点,求作过点O的直线PQ⊥l画法:以O为圆心,适当长度为半径画圆弧,交l与A、B两点分别以A、B两点为圆心,大于1AB的长为半径画弧,两弧交于P、Q两点2作直线PQ,则直线PQ为所求已知点P是直线l外的一点,求过点P作直线PQ⊥l画法:以点P为圆心,适当长度为半径画圆弧,交l与A、B两点分别以A、B两点为圆心,大于1AB的长为半径画弧,两弧交于P、Q两点2作直线PQ,则直线PQ为所求13.2画轴对称图形画轴对称图形的步骤:①找出关键点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册轴对称
知识点总结好
Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#
轴对称知识点总结1、轴对称图形:
一个图形沿一条直线对折,直线两旁的部分能够完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:
两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
3、轴对称图形与轴对称的区别与联系:(1)区别。
轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。
(2)联系。
把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
4、轴对称的性质:
(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂
直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
5、线段的垂直平分线:
(1)定义。
经过线段的中点且与线段垂
直的直线,叫做线段的垂直平分线。
如图2,
∵CA=CB,
直线m⊥AB于C,
∴直线m是线段
AB的垂直平分线。
(2)性质。
线段垂直平分线上的点与线
段两端点的距离相等。
如图3,
∵CA=CB,
直线m⊥AB于C,
点P是直线m上的点。
∴PA=PB 。
(3)判定。
与线段两端点距离相等的点在线段的垂
直平分线上。
如图3,∵PA=PB,
m
C
A B
图2
图3
直线m 是线段AB
∴点P 在直线m 上 。
6、等腰三角形:
(1做等腰三角形。
相等的两条边叫做腰。
第三条边叫做底。
两腰的夹角叫做顶角。
腰与底的夹角叫做底角。
说明:顶角=180°- 2底角
底角=顶角21-902180︒=-︒可见,底角只能是锐角。
(2)性质。
线” ,只有一条。
等边对等角。
如图5,在△ABC 中
∵AB=AC ∴∠B=∠C 。
3)判定。
5,在△ABC 中, ∵AB=AC ∴△ABC 是等腰三角形 。
5,在△ABC 中 ∵∠B=∠C ∴△ABC 是等腰三角形 。
1)定义。
三条边都相等的三角形,叫
2)性质。
,有三条。
D'D
C'B'A'K J
I
H
B 图5
三条边上的中线、高线及三个内角平分线都相交于一点。
等边三角形的三个内角都等于60°。
如图6,在△ABC中
∵AB=AC=BC
∴∠A=∠B=∠C=60°。
(3)判定。
三条边都相等的三角形是等边三角形。
如图6,在△ABC中
∵AB=AC=BC
∴△ABC是等边三角形。
三个内角都相等的三角形是等边三角形。
如图6,在△ABC中
∵∠A=∠B=∠C
∴△ABC是等边三角形。
有一个内角是60°的等腰三角形是等边三角形。
如图6,在△ABC中
∵AB=AC(或AB=BC,AC=BC)
∠A=60°(∠B=60°,∠C=60°)
∴△ABC是等边三角形。
(4)重要结论。
在Rt△中,30°角所对直角边等于斜边的一半。
如图7,
∵在Rt△ABC中,
∠C=90°,∠A=30°
∴BC=
2
1
AB
或AB=2BC
8、平面直角坐标系中的轴对称:
说明:要作出一个图形关于坐标轴(或直线)成轴对称的图形,只需根据作出各顶点的对称点,再顺次连结各对称点。
对称点的作法见11(1)。
9、对称轴的画法:
在一个轴对称图形或成轴对称的两个图形中,连结其中一对对应点并作出所得线段的垂直平分线。
注意:有的轴对称图形只有一条对称轴,有的不止一条,要画出所有的对称轴。
成轴对称的两个图形只有一条对称轴。
10、常见的轴对称图形:
(1)英文字母。
图
图6 A
B C
A B D E H I K M O T U V W X Y
(2)中文。
日,目,木,土,十,士,中,一,二,三,六,米,山,甲,由,田,天,又,只,支,圭,凹,凸,出,兰,合,全,仝,人,关,甘,等等。
(3)数字。
0 3 8
(4)图形。
说明:圆有无数条对称轴。
正n 边形有n 条对称轴。
11、掌握几个作图:
(1)作出点A 关于直线m 对称的点A / 。
作法:如图
以点A 为圆心,适当的长为半径画圆弧。
使圆弧与直线MN 交于两点C 、D 。
分别以点C,D 为圆心,大于CD 21
的长为半径
画圆弧,设两条圆弧交于点E 。
作射线AE ,设交直线mn 于点F 。
○4在射线AE 上截取FA /=FA ,点A /即为所求。
(2)课本34页例题。
(3)课本37页9、10题。
(4)课本42页 图2。