高考高中数学四种命题的相互关系
高中数学命题及其关系知识点
高中数学命题及其关系知识点1、命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题是否命题同真同骗人。
2、对映射的概念了解吗?映射f:a→b,是否注意到a中元素的任意性和b中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,容许b中存有元素并无原象。
)3、函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)4、反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x;②交换x、y;③标明定义域)5、反函数的性质有哪些?①互为反函数的图象关于直线y=x等距;②保存了原来函数的单调性、奇函数性;6、函数f(x)具备奇偶性的必要(非充份)条件就是什么?(f(x)定义域关于原点对称)高中数学复习计划要注意进度的安排,应该前紧后松,而不能前松后紧。
因为随着日期的推移,人的疲劳度越来越深,效率会有所下降,后面多留些时间,有利于随机应变,从容不迫,减少紧张,增强自信心。
在模拟考试之前,所有的系统复习应该全部结束;模拟考试之后所要做的,只是查补细小的漏洞,调整心情和体力,稳定状态,坚定信心。
绝对无法与老师的复习计划二者两张皮,自搞出一套。
负责管理初三教学的老师,通常都存有数年甚至数十年的教学经验,对如何指导同学们展开中考集训非常存有心得体会,这样的老师明确提出的复习计划,就是绝对无法忽略的。
你必须搞的就是,针对自己的特定情况予以调整。
假如某一部分科学知识就是你掌控得极好、平时考试没什么问题的内容,就足矣花掉些时间;若某一部分科学知识就是研习得不好、问题比较多的内容,就要多花掉些时间,在顺利完成了老师布置的内容之后再多看看多想要几遍,另外自己打听一些有关的参照题目搞,非把它学坚实不容。
在时间上,可以比老师的计划略快一步,无法比老师的计划快。
一定要把握好“量”,要给自己留有余地。
要好好考虑自己订的计划的可行性。
把几本书全背上几遍固然好,可是从体力、时间上来说根本不可能。
高中数学- 四种命题 四种命题间的相互关系
1.1.2 四种命题1.1.3 四种命题间的相互关系(教师用书独具)●三维目标1.知识与技能初步理解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式;初步理解四种命题间的相互关系并能判断命题的真假.2.过程与方法培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.3.情感、态度与价值观激发学生学习数学的兴趣和积极性,优化学生的思维品质,培养学生勤于思考,勇于探索的创新意识,感受探索的乐趣.●重点、难点重点:四种命题之间相互的关系.难点:正确区分命题的否定形式及否命题.通过一个生活中的场景引出逻辑在生活中必不可少的重要地位,从而引发学生学习四种命题的兴趣,然后主要通过对概念的讲解和分析,并配以适量的课堂练习,让学生掌握四种命题的概念,会写四种命题,并掌握四种命题之间的关系以及通过逆否命题来判断命题的真假;最后运用所学命题知识解决实际生活中的问题,让学生学会用理性的逻辑推理能力思考问题,从而突破重难点.(教师用书独具)●教学建议这节内容是以概念的理解和关系的思辨为主的,因此采用以讲解和练习强化为主要方法,并在讲解过程中引导和启发学生的思维,让学生充分地思考和动手演练.宜采取的教学方法:(1)启发式教学.这能充分调动学生的主动性和积极性,有利于学生对知识进行主动建构,从而发现数学规律;(2)讲练结合法.这样更能突出重点、解决难点,让学生的分析问题和解决问题的能力得到进一步的提高.学习方法:(1)由特殊到一般的化归方法:学习中学生在教师的引导下,通过具体的实例,让学生去观察、讨论、探索、分析、发现、归纳、概括;(2)讲练结合法:让学生知道数学重生在运用,从而检验知识的应用情况,找出未掌握的内容及其差距并及时加以补救.通过本节的学习,了解命题的四种形式及其关系,利用原命题与逆否命题,逆命题与否命题之间的等价性解决有关问题,渗透由特殊到一般的化归数学思想.●教学流程创设问题情境,给出四个命题,引出问题:四个命题的条件与结论有何区别与联系?⇒引导学生观察、比较、分析,得出四种命题的概念与他们之间的相互关系.⇒通过引导学生回答所提问题,层层深入地得出四种命题真假的关系.⇒通过例1及其变式训练,使学生掌握四种命题的概念及相互转化.⇒通过例2及其互动探究,使学生掌握四种命题真假的判断方法.⇒错误!⇒错误!⇒错误!(对应学生用书第4页)给出以下四个命题:(1)对顶角相等;(2)相等的两个角是对顶角;(3)不是对顶角的两个角不相等;(4)不相等的两个角不是对顶角;1.你能说出命题(1)与(2)的条件与结论有什么关系吗?【提示】它们的条件和结论恰好互换了.2.命题(1)与(3)的条件与结论有什么关系?命题(1)与(4)呢?【提示】命题(1)的条件与结论恰好是命题(3)条件的否定和结论的否定.命题(1)的条件和结论恰好是命题(4)结论的否定和条件的否定.一般地,对于两个命题,如果一个命题的条件与结论分别是另一个命题的结论和条件,那么把这两个命题叫做互逆命题,如果是另一个命题条件的否定和结论的否定,那么把两个命题叫做互否命题.如果是另一个命题结论的否定和条件的否定,那么把这样的两个命题叫做互为逆否命题.把第一个叫做原命题时,另三个可分别称为原命题的逆命题、否命题、逆否命题.1.为了书写方便常把p与q的否定分别记作“綈p”和“綈q”,如果原命题是“若p,则q”,那么它的逆命题,否命题,逆否命题该如何表示?【提示】逆命题:若q,则p.否命题:若綈p,则綈q.逆否命题:若綈q,则綈p.2.原命题的否命题与原命题的逆否命题之间是什么关系?原命题的逆命题与其逆否命题之间是什么关系?原命题的逆命题与其否命题呢?【提示】互逆、互否、互为逆否.四种命题的相互关系1.知识1的“问题导思”中四个命题的真假性是怎样的?【提示】(1)真命题,(2)假命题,(3)假命题,(4)真命题.2.如果原命题是真命题,它的逆命题是真命题吗?它的逆否命题呢?【提示】原命题为真,其逆命题不一定为真,但其逆否命题一定为真.1.在原命题的逆命题、否命题、逆否命题中,一定与原命题真假性相同的是逆否命题.2.两个命题互为逆命题或互为否命题时,它们的真假性没有关系.(对应学生用书第5页)把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)全等三角形的对应边相等;(2)当x=2时,x2-3x+2=0.【思路探究】(1)原命题的条件与结论分别是什么?(2)把原命题的条件与结论作怎样的变化就能写出它的逆命题、否命题和逆否命题?【自主解答】(1)原命题:若两个三角形全等,则这两个三角形三边对应相等.逆命题:若两个三角形三边对应相等,则两个三角形全等.否命题:若两个三角形不全等,则两个三角形三边对应不相等.逆否命题:若两个三角形三边对应不相等,则这两个三角形不全等.(2)原命题:若x=2,则x2-3x+2=0,逆命题:若x2-3x+2=0,则x=2,否命题:若x≠2,则x2-3x+2≠0,逆否命题:若x2-3x+2≠0,则x≠2.1.给出一个命题,写出该命题的其他三种命题时,首先考虑弄清所给命题的条件与结论,若给出的命题不是“若p,则q”的形式,应改写成“若p,则q”的形式.2.把原命题的结论作为条件,条件作为结论就得到逆命题;否定条件作为条件,否定结论作为结论便得到否命题;否命题的逆命题就是原命题的逆否命题.分别写出下列命题的逆命题、否命题和逆否命题.(1)负数的平方是正数;(2)若a>b,则ac2>bc2.【解】(1)原命题可以改写成:若一个数是负数,则它的平方是正数;逆命题:若一个数的平方是正数,则它是负数;否命题:若一个数不是负数,则它的平方不是正数;逆否命题:若一个数的平方不是正数,则它不是负数.(2)逆命题:若ac2>bc2,则a>b;否命题:若a≤b,则ac2≤bc2;逆否命题:若ac2≤bc2,则a≤b.写出下列命题的逆命题、否命题、逆否命题,然后判断真假.(1)菱形的对角线互相垂直;(2)等高的两个三角形是全等三角形;(3)弦的垂直平分线平分弦所对的弧.【思路探究】确定条件与结论→写出三种命题→判断真假【自主解答】(1)逆命题:若一个四边形的对角线互相垂直,则它是菱形,是假命题.否命题:若一个四边形不是菱形,则它的对角线不互相垂直,是假命题.逆否命题:若一个四边形的对角线不互相垂直,则这个四边形不是菱形,是真命题.(2)逆命题:若两个三角形全等,则这两个三角形等高,是真命题.否命题:若两个三角形不等高,则这两个三角形不全等,是真命题.逆否命题:若两个三角形不全等,则这两个三角形不等高,是假命题.(3)逆命题:若一条直线平分弦所对的弧,则这条直线是弦的垂直平分线,是假命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不平分弦所对的弧,是假命题.逆否命题:若一条直线不平分弦所对的弧,则这条直线不是弦的垂直平分线,是真命题.1.本例题目中命题的条件和结论不明显,为了不出错误,可以先改写成“若p,则q”的形式,再写另外三种命题,进而判断真假.2.要判定四种命题的真假,首先,要正确理解四种命题间的相互关系;其次,正确利用相关知识进行判断推理.若由“p经逻辑推理得出q”,则命题“若p,则q”为真;确定“若p,则q”为假时,则只需举一个反例说明.3.互为逆否命题等价.当一个命题的真假不易判断时,可通过判定其逆否命题的真假来判断.下列命题中正确的是( )①“若x2+y2≠0,则x,y不全为零”的否命题;②“正三角形都相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题.A.①②③B.①③C .②③D .①【解析】 ①原命题的否命题为“若x 2+y 2=0,则x ,y 全为零”.真命题. ②原命题的逆命题为“若两个三角形相似,则这两个三角形是正三角形.”假命题. ③原命题的逆否命题为“若x 2+x -m =0无实根,则m ≤0”. ∵方程x 2+x -m =0无实根, ∴判别式Δ=1+4m <0,m <-14.故m ≤0,为真命题. 故正确的命题是①,③选B. 【答案】 B若a 2+b 2=c 2,求证:a ,b ,c 不可能都是奇数.【思路探究】 (1)a ,b ,c 不可能都是奇数包含几种情况? (2)它的反面是什么?能否考虑证它的逆否命题?【自主解答】 若a ,b ,c 都是奇数,则a 2,b 2,c 2都是奇数,所以a 2+b 2为偶数,而c 2为奇数,即a 2+b 2≠c 2.即原命题的逆否命题为真命题,故原命题为真,所以若a 2+b 2=c 2,则a 、b 、c 不可能都是奇数.1.因为“a、b、c不可能都是奇数”这一结论包含多种情况,而其否定只有一种情况,即“a、b、c都是奇数,”故应选择证明它的逆否命题为真命题,以使问题简单化.2.当判断一个命题的真假比较困难,或者在判断真假时涉及到分类讨论时,通常转化为判断它的逆否命题的真假,因为互为逆否命题的真假是等价的,也就是我们讲的“正难则反”的一种策略.3.四种命题中,原命题与其逆否命题是等价的,有相同的真假性,原命题的否命题与其逆命题也是互为逆否命题,解题时不要忽视.“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集是空集,则a <2”,判断其逆否命题的真假.【解】∵a,x∈R,且x2+(2a+1)x+a2+2≤0的解集是空集.∴Δ=(2a+1)2-4(a2+2)<0,则4a -7<0,解得a <74.因此a <2,原命题是真命题.又互为逆否命题的命题等价,故逆否命题是真命题.(对应学生用书第6页)因否定错误致误写出命题“若x 2+y 2=0,则x ,y 全为零”的逆命题、否命题,并判断它们的真假.【错解】逆命题:若x,y全为零,则x2+y2=0,是真命题;否命题:若x2+y2≠0,则x,y全不为零,是假命题.【错因分析】本题中的错解主要是对原命题中结论的否定错误.对“x,y全为零”的否定,应为“x,y不全为零”,而不是“x,y全不为零”.【防范措施】要写出一个命题的否命题,需要既否定条件,又否定结论,否定时一定要注意一些词语,如“都是”的否定是“不都是”,而不是“都不是”等等.【正解】逆命题:若x,y全为零,则x2+y2=0,是真命题;否命题:若x2+y2≠0,则x,y不全为零,是真命题.1.写出四种命题的方法:(1)交换原命题的条件和结论,所得的命题是逆命题;(2)同时否定原命题的条件和结论,所得的命题是否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.2.四种命题的真假关系:若原命题为真,它的逆命题、否命题不一定为真,它的逆否命题一定为真;互为逆否命题的两个命题的真假性相同.因此,若一个命题的真假不易判断时,我们可借助它的逆否命题进行判断.(对应学生用书第7页)1.(福州检测)已知a ,b ∈R ,命题“若a +b =1,则a 2+b 2≥12”的否命题是( )A .若a 2+b 2<12,则a +b ≠1B .若a +b =1,则a 2+b 2<12C .若a +b ≠1,则a 2+b 2<12D .若a 2+b 2≥12,则a +b =1【解析】 “a +b =1”,“a 2+b 2≥12”的否定分别是“a +b ≠1”,“a 2+b 2<12”,故否命题为:“若a +b ≠1,则a 2+b 2<12”.【答案】 C2.命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的( )A.逆命题B.否命题C.逆否命题D.无关命题【解析】从两种命题的形式来看是条件与结论换位,因此为逆命题.【答案】 A3.命题“当x=2时,x2+x-6=0”的逆否命题是____.【解析】原命题结论的否定作条件,条件的否定作结论,写出逆否命题即可.【答案】当x2+x-6≠0时,x≠2.4.写出下列命题的逆命题、否命题和逆否命题,并判断命题的真假.(1)若mn<0,则方程mx2-x+n=0有实数根;(2)若ab=0,则a=0或b=0.【解】(1)逆命题:若方程mx2-x+n=0有实数根,则mn<0.假命题;否命题:若mn≥0,则方程mx2-x+n=0没有实数根.假命题;逆否命题:若方程mx2-x+n=0没有实数根,则mn≥0.真命题.(2)逆命题:若a=0或b=0,则ab=0.真命题;否命题:若ab≠0,则a≠0且b≠0.真命题;逆否命题:若a≠0且b≠0,则ab≠0.真命题.一、选择题1.命题“若綈p,则q”是真命题,则下列命题一定是真命题的是( )A.若p,则綈q B.若q,则綈pC.若綈q,则p D.若綈q,则綈p 【解析】若“綈p,则q”的逆否命题是“若綈q,则p”,又互为逆否命题真假性相同.∴“若綈q,则p”一定是真命题.【答案】 C2.若命题p的否命题为q,命题p的逆否命题为r,则q与r的关系是( )A.互逆命题B.互否命题C.互为逆否命题D.以上都不正确【解析】设p为“若A,则B”,那么q为“若綈A,则綈B”,r为“若綈B,则綈A”,故q与r为互逆命题.【答案】 A3.(台州检测)已知命题p:若a>0,则方程ax2+2x=0有解,则其原命题、否命题、逆命题及逆否命题中真命题的个数为( )A.3 B.2 C.1 D.0【解析】易知原命题和逆否命题都是真命题,否命题和逆命题都是假命题.故选B.【答案】 B4.(大庆检测)下列判断中不正确的是( )A.命题“若A∩B=B,则A∪B=A”的逆否命题为真命题B.“矩形的两条对角线相等”的逆否命题为真命题C.“已知a,b,m∈R,若am2<bm2,则a<b”的逆命题是真命题D.“若x∈N*,则(x-1)2>0”是假命题【解析】若A∩B=B,则有B⊆A,从而有A∪B=A,∴A正确;B中的逆否命题:“若一个四边形两条对角线不相等,则它不是矩形”为真命题∴B正确.C中的逆命题为:“已知a,b,m∈R,若a<b,则am2<bm2为假命题,故C不正确.D中x=1时,(x-1)2=0显然是假命题.故D正确.【答案】 C5.下列命题中,不是真命题的为( )A.“若b2-4ac≥0,则关于x的一元二次方程ax2+bx+c=0(a≠0)有实根”的逆否命题B.“四边相等的四边形是正方形”的逆命题C.“若x2=9,则x=3”的否命题D.“对顶角相等”的逆命题【解析】A中命题为真命题,其逆否命题也为真命题;B中命题的逆命题为“正方形的四边相等”,为真命题;C 中命题的否命题为“若x 2≠9,则x ≠3”为真命题;D 中命题的逆命题为“相等的角为对顶角”是假命题.【答案】 D 二、填空题6.命题“若A ∪B =B ,则A ⊆B ”的否命题是________. 【答案】 若A ∪B ≠B ,则A ⃘B .7.已知命题“若m -1<x <m +1,则1<x <2”的逆命题为真命题,则m 的取值范围是________.【解析】 由已知得,若1<x <2成立,则m -1<x <m +1也成立.∴⎩⎪⎨⎪⎧m -1≤1m +1≥2,∴1≤m ≤2.【答案】 [1,2]8.(菏泽检测)给定下列命题: ①若a >0,则方程ax 2+2x =0有解. ②“等腰三角形都相似”的逆命题;③“若x -32是有理数,则x 是无理数”的逆否命题;④“若a >1且b >1,则a +b >2”的否命题. 其中真命题的序号是________.【解析】 显然①为真,②为假.对于③中,原命题“若x -32是有理数,则x 是无理数”为假命题,∴逆否命题为假命题.对于④中,“若a >1且b >1,则a +b >2”的否命题是“若a ≤1或b ≤1,则a +b ≤2”为假命题.【答案】 ① 三、解答题9.设原命题是“当c >0时,若a >b ,则ac >bc ”,写出它的逆命题、否命题、逆否命题,并分别判断它们的真假.【解】 原命题是真命题.逆命题是“当c >0时,若ac >bc ,则a >b ”,是真命题. 否命题是“当c >0时,若a ≤b ,则ac ≤bc ”,是真命题. 逆否命题是“当c >0时,若ac ≤bc ,则a ≤b ”,是真命题.10.已知命题p :“若ac ≥0,则二次方程ax 2+bx +c =0没有实根”. (1)写出命题p 的否命题;(2)判断命题p的否命题的真假,并证明你的结论.【解】(1)命题p的否命题为:“若ac<0,则二次方程ax2+bx+c=0有实根”.(2)命题p的否命题是真命题,证明如下:∵ac<0,∴-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根.∴该命题是真命题.11.已知奇函数f(x)是定义域为R的增函数,a,b∈R,若f(a)+f(b)≥0,求证:a +b≥0.【证明】假设a+b<0,则a<-b.∵f(x)在R上是增函数.∴f(a)<f(-b),又∵f(x)为奇函数.∴f(-b)=-f(b),∴f(a)<-f(b).即f(a)+f(b)<0.∴原命题的逆否命题为真,故原命题为真.(教师用书独具)判断命题“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题的真假.【解】∵m>0,∴12m>0,∴12m+4>0.∴方程x2+2x-3m=0的判别式Δ=22-4×1×(-3m)=4+12m>0,∴原命题“若m >0,则方程x2+2x-3m=0有实数根”为真.又∵原命题与它的逆否命题等价,∴“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题为真.已知ad-bc=1,求证:a2+b2+c2+d2+ab+cd≠1.【证明】设a2+b2+c2+d2+ab+cd=1,则2a2+2b2+2c2+2d2+2ab+2bc+2cd-2ad -2bc+2ad=2,即(a+b)2+(b+c)2+(c+d)2+(a-d)2+2ad-2bc=2,若(a+b)2+(b+c)2+(c+d)2+(a-d)2=0,则a=b=c=d=0,于是ad-bc<1;若(a+b)2+(b+c)2+(c+d)2+(a-d)2≠0,则(a+b)2+(b+c)2+(c+d)2+(a-d)2为正数,所以必有ad-bc<1.综上,命题“若a2+b2+c2+d2+ab+cd=1,则ad-bc≠1”成立,由原命题与它的逆否命题等价,知原命题也成立,从而原命题得证.21。
高二数学四种命题的相互关系
练习:分别写出下列命题的逆命题、否命 题、逆否命题,并判断它们的真假。
(1)若q<1,则方程 x2 2x q 0 有实根.
(2)若ab=0,则a=0或b=0.
1.1.3
四种命题的相互关系
? 观察与思考
1)若f (x)是正弦函数,则f (x)是周期函数。 2)若f (x)是周期函数,则f (x)是正弦函数。
3)若f (x)不是正弦函数,则f (x)不是周期函数。 4)若f (x)不是周期函数,则f (x)不是正弦函数。
任意两个命题之 间是什么关系?
反馈练习
用反证法证明,若(x-a)(x-b)≠0,则x ≠a且x ≠b. 证明 假设____x_=_a___或___x_=__b___,
由于_____x_=__a____时,__(_x_-_a_)_(x__-b_)_=_0_____, 与 (x-a)(x-b)≠0矛盾, 又____x_=_b___时,___(x_-_a_)_(_x_-b_)_=_0_____, 与(x-a)(x-b)≠0矛盾,
原结论 反设词 原结论
反设词
是 不是 至少有一个 一个也没有
都是 不都是 至多有一个 至少有两个
大于 不大于 至少有n个 至多有(n-1)个 小于 大于或等于至多有n个 至少有(n+1)个
对所有 存在某x,对任何x, 存在某x,
x,成立 不成立 不成立
成立
色天鹅似的皮肤,感觉空前富贵而科学,他头上是古古怪怪的葱绿色木偶般的飘发,戴着一顶奇绝的紫红色炸鸡模样的滚珠流光帽,他上穿变形的深黄色牛肝一样的老 鹰金鳞壮河甲,下穿飘浮的的淡黑色企鹅一样的球棒树皮短裤,脚穿傲慢的水绿色邮筒一样的花苞豹海靴。另外这人身后还有着凹露的纯黄色马心样的三条尾巴。整个 形象确实相当潇洒同时还隐现着几丝罕见……U.季圭赤仆人长着高大的碳黑色磨盘似的脑袋和怪异的深红色烤鸭一样的脖子,最出奇的是一张硕长的暗黄色面包模样 的脸,配着一只老态的暗红色枕木样的鼻子。鼻子上面是一对紧缩的墨黑色床垫形态的眼睛,两边是凹露的烟橙色松果耳朵,鼻子下面是摇晃的亮黑色奖章造型的嘴唇 ,说话时露出奇特的橙白色火舌模样的牙齿,一条凸凹的深绿色筷子形态的舌头好像十分正点和猜疑。他特像墨黑色金钩一样的身材似乎有点温柔同时还隐现着几丝强 硬,浮动的褐黄色细小树藤似的胡须感觉空前艺术而冷酷。浮动的深橙色野猪般的面罩真的有些神气飘忽不定,凸凹的深绿色筷子形态的舌头确实非常神奇同时还隐现 着几丝有趣。那一双结实的淡红色原木般的眉毛,好像绝无仅有的神气飘然。再看U.季圭赤仆人的身形,他有着威猛的特像羽毛样的肩膀,肩膀下面是飘浮的特像辣 椒样的手臂,他凹露的银橙色漏勺样的手掌的确绝对的猛爆却又透着一丝霸气,突兀的浅绿色拐棍样的手指似乎有点独裁同时还隐现着几丝与众不同。他变异的特像怪 藤样的腿真的有些新奇粗野,轻飘的特像冰块样的脚显得极为冷酷和酷野,他奇特的特像奶酪样的屁股认为很是古怪却又透着一丝绝妙!腰间一条,飘浮的鹅黄色瓜秧 样的腰带确实相当疯狂同时还隐现着几丝和谐。这个神汉喘息时有种好听的深黄色旗杆形态的声音,得意时会散发出涌动的暗绿色痰盂模样的气味。他变异的鲜红色蜈 蚣一样的骨骼仿佛真是典雅和出色,那种低俗的亮黑色秤砣样的神态的确绝对的英武却又透着一丝标准。…………月光妹妹:“各位同志:“此地仙女开,此草仙女栽 ,要想从此过,留下俩脑袋!若说半个不,管杀还管埋!嘻嘻!”女社长P.卜古娃霓姨婆:“就你们两个小丫头也敢劫道?!也不问问我们是谁?你俩想找死呀?! ”月光妹妹:“有什么法术都拿出来练练!嘻嘻!”女社长P.卜古娃霓姨婆:“我先让你品尝一下『黄云伞怪榴莲针』的厉害!”女社长P.卜古娃霓姨婆悠然扭动 高大的亮红色荷叶般的手掌一吼,露出一副古怪的神色,接着晃动矮胖的屁股,像墨灰色的黑眼荒原蝶般的一扭,玲珑的矮小的活像新月般的肩膀立刻伸长了三十倍, 纯黄色镜子一般的
高考高中数学四种命题的相互关系
原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互四种命题的相互关系教学目标:1.熟练四种命题之间的关系,及四种命题的真假性之间的关系,并能利用四种命题真假性之间的内在联系进行推理论证2.培养学生简单推理的思维能力.教学重点:四种命题之间的相互关系即真假性之间的联系教学难点:利用真假性之间的内在联系进行推理论证.授课类型:新授课教具准备:多媒体课件.教学过程:一.复习引入:1.二.新课教授1.四种命题间的相互关系以下四个命题中,〔1〕假设f (x) 是正弦函数,那么f (x) 是周期函数;〔2〕假设f (x) 是周期函数,那么f (x) 是正弦函数;〔3〕假设f (x) 不是正弦函数,那么f (x) 不是周期函数;〔4〕假设f (x) 不是周期函数,那么f (x) 不是正弦函数;命题〔1〕与命题〔2〕〔3〕〔4〕之间的关系我们已经了解,那么任意两个命题间的关系是: 〔老师引导—学生答复〕归纳:原命题、逆命题、否命题 和逆否命题之间的关系:2.四种命题真假性之间的关系〔1〕讨论:①例1中三个命题的真假与它们的逆命题、否命题、逆否命题的真假间关系: 〔学生答复〕:原命题〔1〕为真其逆命题〔2〕为假其否命题〔3〕为假其逆否命题〔4〕为真发现有以下规律:②〔探究中〕以“假设x2-3x +2=0,那么x =2”为原命题,写出其逆命题,否命题及逆否命题,并判断真假性。
〔学生答复〕:原命题为:假设x2-3x +2=0,那么x =2,为假其逆命题为:假设x =2,那么x2-3x +2=0,为真其否命题为:假设x2-3x +2≠0,那么x ≠2,为真其逆否命题为:假设x ≠2,那么x2-3x +2≠0,为假发现有另外的规律,③再举其它例子:写出“同位角相等,两直线平行〞的逆命题,否命题及逆否命题,并判断真假性。
〔学生答复〕: 原命题为:同位角相等,两直线平行,为真其逆命题为:两直线平行,同位角相等,为真其否命题为:同位角不相等,两直线不平行,为真其逆否命题为:两直线不平行,同位角不相等,为真发现还存在以下规律:④把以上命题改成:同位角不相等,两直线平行,写出其逆命题,否命题及逆否命题,并判断真假性。
高中数学《命题》
xxx学科教师辅导教案学员编号:年级:高三课时数:学员姓名:辅导科目: 数学学科教师:授课主题命题授课日期及时段教学内容1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,但q p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p q,则p是q的必要不充分条件;(5)如果p q,且q p,则p是q的既不充分又不必要条件.1.(教材改编)命题“若x2>y2,则x>y”的逆否命题是()A.“若x<y,则x2<y2”B.“若x≤y,则x2≤y2”C.“若x>y,则x2>y2”D.“若x≥y,则x2≥y2”答案 B解析根据原命题和其逆否命题的条件和结论的关系,得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.2.已知命题p:若x=-1,则向量a=(1,x)与b=(x+2,x)共线,则在命题p的原命题、逆命题、否命题、逆否命题中,真命题的个数为()A.0 B.2 C.3 D.4答案 B解析向量a,b共线⇔x-x(x+2)=0⇔x=0或x=-1,∴命题p为真,其逆命题为假,故在命题p的原命题、逆命题、否命题、逆否命题中,真命题的个数为2. 3.(2015·重庆)“x>1”是“log12(x+2)<0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件答案 B解析x>1⇒x+2>3⇒log12(x+2)<0,log12(x+2)<0⇒x+2>1⇒x>-1,故“x>1”是“log12(x+2)<0”成立的充分不必要条件.因此选B.4.已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析a=3时A={1,3},显然A⊆B.但A⊆B时,a=2或3.所以A正确.5.(教材改编)下列命题:①x=2是x2-4x+4=0的必要不充分条件;②圆心到直线的距离等于半径是这条直线为圆的切线的充分必要条件;③sin α=sin β是α=β的充要条件;④ab≠0是a≠0的充分不必要条件.其中为真命题的是________(填序号).答案②④题型一命题及其关系例1(1)命题“若x,y都是偶数,则x+y也是偶数“的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数(2)原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假答案 (1)C (2)B解析 (1)由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”.(2)先证原命题为真:当z 1,z 2互为共轭复数时,设z 1=a +b i(a ,b ∈R ),则z 2=a -b i ,则|z 1|=|z 2|=a 2+b 2, ∴原命题为真,故其逆否命题为真;再证其逆命题为假:取z 1=1,z 2=i ,满足|z 1|=|z 2|,但是z 1,z 2不互为共轭复数,∴其逆命题为假,故其否命题也为假,故选B.思维升华 (1)写一个命题的其他三种命题时,需注意:①对于不是“若p ,则q “形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(1)命题“若α=π3,则cos α=12”的逆命题是( ) A .若α=π3,则cos α≠12B .若α≠π3,则cos α≠12C .若cos α=12,则α=π3D .若cos α≠12,则α≠π3(2)已知命题α:如果x <3,那么x <5;命题β:如果x ≥3,那么x ≥5;命题γ:如果x ≥5,那么x ≥3.关于这三个命题之间的关系,下列三种说法正确的是( )①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A .①③B .②C .②③D .①②③答案 (1)C (2)A解析 (1)命题“若α=π3,则cos α=12”的逆命题是“若cos α=12,则α=π3”. (2)命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定,然后交换条件与结论所得,因此①正确,②错误,③正确,故选A. 题型二 充分必要条件的判定例2 (1)(2015·四川)设a ,b 都是不等于1的正数,则“3a >3b >3”是“log a 3<log b 3”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件(2)一次函数y =-m n x +1n的图象同时经过第一、三、四象限的必要不充分条件是( )A .m >1,且n <1B .mn <0C .m >0,且n <0D .m <0,且n <0答案 (1)B (2)B 解析 (1)根据指数函数的单调性得出a ,b 的大小关系,然后进行判断.∵3a >3b >3,∴a >b >1,此时log a 3<log b 3正确;反之,若log a 3<log b 3,则不一定得到3a >3b >3,例如当a =12,b =13时,log a 3<log b 3成立,但推不出a >b >1.故“3a >3b >3”是“log a 3<log b 3”的充分不必要条件.(2)∵y =-m n x +1n 经过第一、三、四象限,故-m n >0,1n<0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.思维升华 充要条件的三种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的某种条件,即可转化为判断“x =1且y =1”是“xy =1”的某种条件.(1)(2015·陕西)“sin α=cos α”是“cos 2α=0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2)若命题p :φ=π2+k π,k ∈Z ,命题q :f (x )=sin(ωx +φ)(ω≠0)是偶函数,则p 是q 的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案 (1)A (2)A解析 (1)∵sin α=cos α⇒cos 2α=cos 2α-sin 2α=0;cos 2α=0⇔cos α=±sin αsin α=cos α,故选A.(2)当φ=π2+k π,k ∈Z 时,f (x )=±cos ωx 是偶函数,所以p 是q 的充分条件;若函数f (x )=sin(ωx +φ)(ω≠0)是偶函数,则sin φ=±1,即φ=π2+k π,k ∈Z ,所以p 是q 的必要条件,故p 是q 的充要条件,故选A. 题型三 充分必要条件的应用例3 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围. 解 由x 2-8x -20≤0,得-2≤x ≤10,∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P .则⎩⎪⎨⎪⎧ 1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3].思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.(1)ax 2+2x +1=0至少有一个负实根的充要条件是( )A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0(2)已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.答案 (1)C (2)⎣⎡⎦⎤0,12 解析 (1)方法一 当a =0时,原方程为一元一次方程2x +1=0,有一个负实根.当a ≠0时,原方程为一元二次方程,有实根的充要条件是Δ=4-4a ≥0,即a ≤1.设此时方程的两根分别为x 1,x 2,则x 1+x 2=-2a ,x 1x 2=1a, 当只有一个负实根时,⎩⎪⎨⎪⎧a ≤1,1a <0⇒a <0; 当有两个负实根时,⎩⎪⎨⎪⎧ a ≤1,-2a<0,⇒0<a ≤1.1a >0综上所述,a ≤1. 方法二 (排除法)当a =0时,原方程有一个负实根,可以排除A ,D ;当a =1时,原方程有两个相等的负实根,可以排除B.(2)命题p 为⎩⎨⎧⎭⎬⎫x |12≤x ≤1, 命题q 为{x |a ≤x ≤a +1}.綈p 对应的集合A ={x |x >1或x <12}, 綈q 对应的集合B ={x |x >a +1或x <a }.∵綈p 是綈q 的必要不充分条件,∴⎩⎪⎨⎪⎧ a +1>1,a ≤12或⎩⎪⎨⎪⎧a +1≥1,a <12, ∴0≤a ≤12.1.等价转化思想在充要条件中的应用典例 (1)已知p :(a -1)2≤1,q :∀x ∈R ,ax 2-ax +1≥0,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)已知条件p :x 2+2x -3>0;条件q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-3]解析 (1)由(a -1)2≤1解得0≤a ≤2,∴p :0≤a ≤2.当a =0时,ax 2-ax +1≥0对∀x ∈R 恒成立;当a ≠0时,由⎩⎪⎨⎪⎧a >0Δ=a 2-4a ≤0得0<a ≤4, ∴q :0≤a ≤4.∴p 是q 成立的充分不必要条件.(2)由x 2+2x -3>0,得x <-3或x >1,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,等价于q 是p 的充分不必要条件.∴{x |x >a }{x |x <-3或x >1},∴a ≥1.答案 (1)A (2)A温馨提醒 (1)本题用到的等价转化①将綈p ,綈q 之间的关系转化成p ,q 之间的关系.②将条件之间的关系转化成集合之间的关系.(2)对一些复杂、生疏的问题,利用等价转化思想转化成简单、熟悉的问题,在解题中经常用到.[方法与技巧]1.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.2.充要条件的几种判断方法(1)定义法:直接判断若p 则q 、若q 则p 的真假.(2)等价法:即利用A ⇒B 与綈B ⇒綈A ;B ⇒A 与綈A ⇒綈B ;A ⇔B 与綈B ⇔綈A 的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3)利用集合间的包含关系判断:设A ={x |p (x )},B ={x |q (x )}:若A ⊆B ,则p 是q 的充分条件或q 是p 的必要条件;若A B ,则p 是q 的充分不必要条件,若A =B ,则p 是q 的充要条件.[失误与防范]1.当一个命题有大前提而要写出其他三种命题时,必须保留大前提.2.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p ,则q ”的形式.3.判断条件之间的关系要注意条件之间关系的方向,正确理解“p 的一个充分而不必要条件是q ”等语言.A 组 专项基础训练(时间:30分钟)1.命题“若一个数是负数,则它的平方是正数”的逆命题是( )A .“若一个数是负数,则它的平方不是正数”B .“若一个数的平方是正数,则它是负数”C .“若一个数不是负数,则它的平方不是正数”D .“若一个数的平方不是正数,则它不是负数”答案 B解析 依题意,得原命题的逆命题:若一个数的平方是正数,则它是负数.2.(2015·天津)设x ∈R ,则“1<x <2”是“|x -2|<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由|x -2|<1得1<x <3,所以1<x <2⇒1<x <3;但1<x <3 1<x <2,故选A.3.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限,在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是( )A .3B .2C .1D .0答案 C解析 原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.4.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”答案 C解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C. 5.设四边形ABCD 的两条对角线为AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 因为菱形的对角线互相垂直,所以“四边形ABCD 为菱形”⇒“AC ⊥BD ”,所以“四边形ABCD 为菱形”是“AC ⊥BD ”的充分条件;又因为对角线垂直的四边形不一定是菱形,所以“AC ⊥BD ” “四边形ABCD 为菱形”,所以“四边形ABCD 为菱形”不是“AC ⊥BD ”的必要条件.综上,“四边形ABCD 为菱形”是“AC ⊥BD ”的充分不必要条件.6.设U 为全集.A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要的条件答案 C解析 由Venn 图易知充分性成立.反之,A ∩B =∅时,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.7.(2015·北京)设α,β是两个不同的平面,m 是直线且m ⊂α.则“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 m ⊂α,m ∥β α∥β,但m ⊂α,α∥β⇒m ∥β,∴m ∥β是α∥β的必要而不充分条件.8.函数f (x )=⎩⎪⎨⎪⎧log2x ,x >0,-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( ) A .a <0B .0<a <12 C.12<a <1 D .a ≤0或a >1答案 A 解析 因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x +a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无公共点.由数形结合,可得a ≤0或a >1.观察选项,根据集合间关系得{a |a <0}{a |a ≤0或a >1},故答案选A.9.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.答案 2解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.10.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是________.答案 [0,2]解析 由已知易得{x |x 2-2x -3>0}{x |x <m -1或x >m +1},又{x |x 2-2x -3>0}={x |x <-1或x >3},∴⎩⎪⎨⎪⎧ -1≤m -1,m +1<3,或⎩⎪⎨⎪⎧-1<m -1,m +1≤3,∴0≤m ≤2. 11.给定两个命题p 、q ,若綈p 是q 的必要而不充分条件,则p 是綈q 的________条件.答案 充分不必要解析 若綈p 是q 的必要不充分条件,则q ⇒綈p 但綈p q ,其逆否命题为p ⇒綈q 但綈q ⇒/ p ,所以p 是綈q 的充分不必要条件.12.下列命题:①若ac 2>bc 2,则a >b ;②若sin α=sin β,则α=β;③“实数a =0”是“直线x -2ay =1和直线2x -2ay =1平行”的充要条件;④若f (x )=log 2x ,则f (|x |)是偶函数.其中正确命题的序号是________.答案 ①③④解析 对于①,ac 2>bc 2,c 2>0,∴a >b 正确;对于②,sin 30°=sin 150°30°=150°,所以②错误;对于③,l 1∥l 2⇔A 1B 2=A 2B 1,即-2a =-4a ⇒a =0且A 1C 2≠A 2C 1,所以③正确;④显然正确.B 组 专项能力提升(时间:15分钟)13.设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案 C解析 先证“a >b ”⇒“a |a |>b |b |”.若a >b ≥0,则a 2>b 2,即a |a |>b |b |;若a ≥0>b ,则a |a |≥0>b |b |;若0>a >b ,则a 2<b 2,即-a |a |<-b |b |,从而a |a |>b |b |.再证“a |a |>b |b |”⇒“a >b ”.若a ,b ≥0,则由a |a |>b |b |,得a 2>b 2,故a >b ;若a ,b ≤0,则由a |a |>b |b |,得-a 2>-b 2,即a 2<b 2,故a >b ;若a ≥0,b <0,则a >b .综上,“a >b ”是“a |a |>b |b |”的充要条件.14.(2015·湖北)设a 1,a 2,…,a n ∈R ,n ≥3.若p :a 1,a 2,…,a n 成等比数列;q :(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2,则( )A .p 是q 的必要条件,但不是q 的充分条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件答案 B解析 若p 成立,设a 1,a 2,…,a n 的公比为q ,则(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=a 21(1+q 2+…+q 2n -4)·a 22(1+q 2+…+q 2n -4)=a 21a 22(1+q 2+…+q 2n -4)2,(a 1a 2+a 2a 3+…+a n -1a n )2=(a 1a 2)2(1+q 2+…+q 2n -4)2,故q 成立,故p 是q 的充分条件.取a 1=a 2=…=a n =0,则q 成立,而p 不成立,故p 不是q 的必要条件,故选B.15.(2015·浙江)设A ,B 是有限集,定义:d (A ,B )=card(A ∪B )-card(A ∩B ),其中card(A )表示有限集A 中元素的个数,命题①:对任意有限集A ,B ,“A ≠B ”是“d (A ,B )>0”的充分必要条件;命题②:对任意有限集A ,B ,C ,d (A ,C )≤d (A ,B )+d (B ,C ),( )A .命题①和命题②都成立B .命题①和命题②都不成立C .命题①成立,命题②不成立D .命题①不成立,命题②成立答案 A解析 命题①成立,若A ≠B ,则card(A ∪B )>card(A ∩B ),所以d (A ,B )=card(A ∪B )-card(A ∩B )>0.反之可以把上述过程逆推,故“A ≠B ”是“d (A ,B )>0”的充分必要条件;命题②成立,由Venn 图,知card(A ∪B )=card(A )+card(B )-card(A ∩B ),d (A ,C )=card(A )+card(C )-2card(A ∩C ),d (B ,C )=card(B )+card(C )-2card(B ∩C ),∴d (A ,B )+d (B ,C )-d (A ,C )=card(A )+card(B )-2card(A ∩B )+card(B )+card(C )-2card(B ∩C )-[card(A )+card(C )-2card(A ∩C )]=2card(B )-2card(A ∩B )-2card(B ∩C )+2card(A ∩C )=2card(B )+2card(A ∩C )-2[card(A ∩B )+card(B ∩C )]≥2card(B )+2card(A ∩C )-2[card((A ∪C )∩B )+card(A ∩B ∩C )]=[2card(B )-2(card(A ∪C )∩B )]+[2card(A ∩C )-2card(A ∩B ∩C )]≥0,∴d (A ,C )≤d (A ,B )+d (B ,C )得证.16.已知集合A =⎩⎨⎧⎭⎬⎫x |12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是________.答案 (2,+∞)解析 A =⎩⎨⎧⎭⎬⎫x |12<2x <8,x ∈R ={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.17.设a ,b 为正数,则“a -b >1”是“a 2-b 2>1”的________条件.答案 充分不必要解析 ∵a -b >1,即a >b +1.又∵a ,b 为正数,11。
高二数学四种命题的相互关系
反馈练习
用反证法证明,若(x-a)(x-b)≠0,则x ≠a且x ≠b. x=a 或_________, x=b 证明 假设_________
(x-a)(x-b)=0 x=a 由于____________ 时,_________________,
与 (x-a)(x-b)≠_______, (x-a)(x-b)=0 又_________
分析:搞清四种命题的定义及其关系,注意“且” “或”的 否定为“或” “且”。 解:逆命题:若m+n≤0,则m≤0或n≤0。 (真) (真) (假)
否命题:若m>0且n>0, 则m+n>0.
逆否命题:若m+n>0, 则m>0且n>0.
小结:在判断四种命题的真假时,只需判断两种命题的 真假。因为逆命题与否命题真假等价,逆否命题与原命 题真假等价。
与(x-a)(x-b)≠0矛盾,
所以假设不成立,
从而______________________. x ≠a且 x ≠b
例 1
用反证法证明:圆的两条不是直径 的相交弦不能互相平分。
A O
已知:如图,在⊙O中,弦AB、 CD交于点P,且AB、CD不是直径. 求证:弦AB、CD不被P平分.
D
证明:假设弦AB、CD被P平分,
分析:“当c>0时”是大前提,写其它命题时应该保留。 原命题的条件是“a>b”, 结论是“ac>bc”。 解:逆命题:当c>0时,若ac>bc, 则a>b. (真) (真) (真)
否命题:当c>0时,若a≤b, 则ac≤bc.
逆否命题:当c>0时,若ac≤bc, 则a≤b.
例2 若m≤0或n≤0,则m+n≤0。写出其逆命题、 否命题、逆否命题,并分别指出其假。
高考数学四种命题及其相互关系知识点汇总
高考数学四种命题及其相互关系知识点汇总数学课本中出现的四种命题的内容经常在高考选择题中考察,下面是店铺给大家带来的高考数学四种命题及其相互关系知识点汇总,希望对你有帮助。
高考数学四种命题及其相互关系知识点(一)1、四种命题:一般地,用p和q分别表示原命题的条件和结论,用或分别表示p和q的否定,四种命题的形式是:(1)原命题:若p则q;(2)逆命题:若q则p;(3)否命题:若则;(4)逆否命题:若则。
2、四种命题的真假关系:一个命题与它的逆否命题是等价的,其逆命题与它的否命题也是等价的;3、四种命题的相互关系:注意:1、区别“否命题”与“命题的否定”,若原命题是“若p则q”,则这个命题的否定是“若p则非q”,而它的否命题是“若非p则非q”。
2、互为逆否命题同真假,即“等价”高考数学四种命题及其相互关系知识点(二)【若则命题】命题的常见形式为“若p则q”,其中p叫做命题的条件,q叫做命题的结论.【逆命题】对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题.其中一个命题称为原命题(originalproposition),另一个称为原命题的逆命题(inverseproposition).也就是说,如果原命题为“若p,则q”,那么它的逆命题为“若q,则p”.【否命题】对于两个命题,如果一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,那么这两个命题称为互否命题.其中一个命题称为原命题,另一个称为原命题的否命题(negativeproposition).也就是说,如果原命题为“若p,则q”,那么它的否命题为“若,则”.【逆否命题】对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题(inverseandnegativeproposition).也就是说,如果原命题为“若p,则q”,那么它的逆否命题为“若,则”.。
【高中数学】第二节 命题及其关系、充分条件与必要条件
第二节命题及其关系、充分条件与必要条件学习要求:1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题间的相互关系.3.理解必要条件、充分条件与充要条件的意义.1.命题的概念在数学中用语言、符号或式子表达的,可以①判断真假的陈述句叫做命题,其中②判断为真的语句叫做真命题,③判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系:(2)四种命题的真假关系:(i)两个命题互为逆否命题,它们有⑦相同的真假性;(ii)两个命题互为逆命题或互为否命题,它们的真假性⑧没有关系.▶提醒在判断命题之间的关系时,要先分清命题的条件与结论,再比较每个命题的条件与结论之间的关系.要注意四种命题关系的相对性.3.充分条件与必要条件(1)若p⇒q,则p是q的⑨充分条件,q是p的⑩必要条件.(2)若p⇒q,且q⇒/p,则p是q的充分不必要条件.(3)若p⇒/q,且q⇒p,则p是q的必要不充分条件.(4)若p⇔q,则p是q的充要条件.(5)若p⇒/q,且q⇒/p,则p是q的既不充分也不必要条件.▶提醒不能将“若p,则q”与“p⇒q”混为一谈,只有“若p,则q”为真命题时,才有“p⇒q”.知识拓展从集合的角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以叙述为:(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A⫋B,则p是q的充分不必要条件;(5)若A⫌B,则p是q的必要不充分条件;(6)若A⊈B且A⊉B,则p是q的既不充分也不必要条件.1.判断正误(正确的打“√”,错误的打“✕”).(1)“x2-3x+2=0”是命题.()(2)一个命题的逆命题与否命题,它们的真假没有关系. ()(3)命题“若p不成立,则q不成立”等价于“若q成立,则p成立”.()(4)若p是q成立的充分条件,则q是p成立的必要条件.()(5)命题“若p,则q”的否命题是“若p,则¬q”.()(6)一个命题非真即假.()答案(1)✕(2)✕(3)√(4)√(5)✕(6)√2.“若x>1,则x>0”的否命题是()A.若x>1,则x≥0B.若x≤1,则x>0C.若x≤1,则x≤0D.若x<1,则x<0答案 C3.当命题“若p,则q”为真时,下列命题中一定为真的是()A.若q,则pB.若¬p,则¬qC.若¬q,则¬pD.若p,则¬q答案 C4.(新教材人教A版必修第一册P34复习参考题1 T5改编)已知a>0,b>0,则“ab>1”是“a+b>2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A已知a>0,b>0,充分性:若ab>1,因为a2+b2≥2ab,所以(a+b)2≥4ab,所以(a+b)2>4,所以a+b>2;必要性:时,ab=1,所以必要性不成立.若a+b>2,则当a=3,b=13因此“ab>1”是“a+b>2”的充分不必要条件.5.(易错题)“ln x<0”是“x<1”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件答案B因为ln x<0,所以0<x<1,又集合(0,1)为集合(-∞,1)的真子集,所以“ln x<0”为“x<1”的充分不必要条件.故选B.易错分析本题容易忽视x的取值范围.命题及其相互关系典例1有下列四个命题,其中真命题是()①“若xy=1,则lg x+lg y=0”的逆命题;②“若a·b=a·c,则a⊥(b-c)”的否命题;③“若b≤0,则方程x2-2bx+b2+b=0有实根”的逆否命题;④“等边三角形的三个内角均为60°”的逆命题.A.①②B.①②③④C.②③④D.①③④答案 B解析①“若xy=1,则lg x+lg y=0”的逆命题为“若lg x+lg y=0,则xy=1”,该命题为真命题;②“若a·b=a·c,则a⊥(b-c)”的否命题为“若a·b≠a·c,则a不垂直于(b-c)”,由a·b≠a·c可得a·(b-c)≠0,据此可知a不垂直于(b-c),该命题为真命题;③若b≤0,则方程x2-2bx+b2+b=0的判别式Δ=(-2b)2-4(b2+b)=-4b≥0,方程有实根,为真命题,则其逆否命题为真命题;④“等边三角形的三个内角均为60°”的逆命题为“三个内角均为60°的三角形为等边三角形”,该命题为真命题.综上可得,真命题是①②③④.故选B.名师点评1.写一个命题的其他三种命题时,需注意:(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,则写其他三种命题时需保留大前提.2.(1)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易时,可间接判断.1.原命题:设a,b,c∈R,若“a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有()A.0个B.1个C.2个D.4个答案C若c=0,则原命题不成立,故原命题为假命题,由等价命题同真同假知其逆否命题也为假;逆命题:设a,b,c∈R,若“ac2>bc2,则a>b”.由ac2>bc2知c2>0,∴由不等式的基本性质得a>b,∴逆命题为真,由等价命题同真同假知否命题也为真,∴真命题共有2个.故选C.2.以下命题的说法正确的是(填序号).①“若log2a>0,则函数f(x)=logax(a>0,a≠1)在其定义域内是减函数”是真命题;②命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”;③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等价.答案②④充分条件、必要条件的判断1.(2020四川达州高三第三次诊断性测试)已知条件p:a>b,条件q:a2>b2,则p是q的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案D当a=1,b=-2时,a2<b2,故充分性不成立;当a2>b2时,a2-b2>0,即(a-b)(a+b)>0,所以a>b且a+b>0或a<b且a+b<0,故必要性不成立.故选D.2.(2020北京,9,4分)已知α,β∈R,则“存在k∈Z使得α=kπ+(-1)kβ”是“sin α=sin β”的 ()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案C(1)充分性:已知存在k∈Z使得α=kπ+(-1)kβ,(i)若k为奇数,则k=2n+1,n∈Z,此时α=(2n+1)π-β,n∈Z,sin α=sin(2nπ+π-β)=sin(π-β)=sin β;(ii)若k为偶数,则k=2n,n∈Z,此时α=2nπ+β,n∈Z,sin α=sin(2nπ+β)=sin β.由(i)(ii)知,充分性成立.(2)必要性:若sin α=sin β成立,则角α与β的终边重合或角α与β的终边关于y 轴对称,即α=β+2mπ或α+β=2mπ+π,m∈Z,即存在k∈Z使得α=kπ+(-1)kβ,必要性也成立,故选C.≥a成立”的 ()3.(2020山东潍坊高三模拟)“a=2”是“∀x>0,x+1xA.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件≥2,答案A∵∀x>0时,x+1x∴“∀x >0,x +1x ≥a ”等价于a ≤2,而a =2可以推出a ≤2,但a ≤2不能推出a =2,∴“a =2”是“∀x >0,x +1x ≥a 成立”的充分不必要条件,故选A.4.集合A ={x |x >1},B ={x |x <2},则“x ∈A 或x ∈B ”是“x ∈(A ∩B )”的 条件.答案 必要不充分 名师点评充要条件的三种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断.(2)集合法:根据p ,q 成立对应的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,判断原命题的逆否命题的真假.这个方法特别适合以否定形式给出的问题.充分、必要条件的应用典例2 (1)设α:1≤x ≤3,β:m +1≤x ≤2m +4,m ∈R,若α是β的充分条件,则m 的取值范围是 .(2)已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若¬p 是¬q 的必要不充分条件,则实数a 的取值范围是 .答案 (1)[-12,0] (2)[0,12]解析 (1)若α是β的充分条件,则α对应的集合是β对应集合的子集,则{m +1≤1,2m +4≥3,解得-12≤m ≤0.(2)由2x 2-3x +1≤0,得12≤x ≤1,设条件p 对应的集合为P ,则P ={x|12≤x ≤1}.由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1,设条件q 对应的集合为Q ,则Q ={x |a ≤x ≤a +1}.∵¬p 是¬q 的必要不充分条件,∴q 是p 的必要不充分条件, ∴P ⫋Q ,∴0≤a ≤12,∴实数a 的取值范围是[0,12]. 名师点评1.解题“2关键”:(1)把充分、必要条件转化为集合之间的关系.(2)根据集合之间的关系列出关于参数的不等式(组)求解.2.解题“1注意”:求参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求参数的取值范围时,不等式能否取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.1.(2020陕西山阳中学高三月考)已知集合A ={x|2xx -2<1},集合B ={x |x 2-(2m +1)x +m 2+m <0},p :x ∈A ,q :x ∈B ,若p 是q 的必要不充分条件,则实数m 的取值范围是 . 答案 [-2,1]解析 集合A ={x|2xx -2<1}={x|x+2x -2<0}={x |-2<x <2}, 集合B ={x |x 2-(2m +1)x +m 2+m <0} ={x |m <x <m +1},因为p 是q 的必要不充分条件,所以B ⫋A ,得{m ≥-2,m +1≤2,解得-2≤m ≤1,所以m 的取值范围为[-2,1].2.(2020河南高三月考)已知p :|x -1|≤2,q :x 2-2x +1-a 2≥0(a >0),若p 是¬q 的必要不充分条件,则实数a 的取值范围是 . 答案 (0,2]解析 ∵|x -1|≤2,∴-1≤x ≤3,即p :-1≤x ≤3; ∵x 2-2x +1-a 2≥0(a >0),∴x ≤1-a 或x ≥1+a , ∴¬q :1-a <x <1+a ,∵p是¬q的必要不充分条件,∴{a>0,1-a≥-1,1+a≤3,解得0<a≤2,∴实数a的取值范围是(0,2].A组基础达标1.命题“若x≥a2+b2,则x≥2ab”的逆命题是()A.若x<a2+b2,则x<2abB.若x≥a2+b2,则x<2abC.若x<2ab,则x<a2+b2D.若x≥2ab,则x≥a2+b2答案 D2.(2020河北邯郸鸡泽第一中学高三月考)下列命题是真命题的为()A.若1x =1y,则x=y B.若x2=1,则x=1C.若x=y,则√x=√yD.若x<y,则x2<y2答案 A3.(2020浙江高三开学考)“x=1”是“lg2x-lg x=0”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案A因为lg2x-lg x=0,所以lg x=0或lg x=1,解得x=1或x=10,所以由“x=1”可以推出“lg2x-lg x=0”成立;但由“lg2x-lg x=0”不能推出“x=1”,所以“x=1”是“lg2x-lg x=0”成立的充分不必要条件.故选A.4.(2019河北承德第一中学高三月考)命题“若两个整数a ,b 都是奇数,则它们的和a +b 是偶数”的逆否命题是( )A.若两个整数a 与b 的和a +b 是偶数,则a ,b 都是奇数B.若两个整数a ,b 不都是奇数,则a +b 不是偶数C.若两个整数a 与b 的和a +b 不是偶数,则a ,b 都不是奇数D.若两个整数a 与b 的和a +b 不是偶数,则a ,b 不都是奇数 答案 D5.若p 是q 的充分不必要条件,则下列判断正确的是 ( )A.¬p 是q 的必要不充分条件B.¬q 是p 的必要不充分条件C.¬p 是¬q 的必要不充分条件D.¬q 是¬p 的必要不充分条件答案 C 由p 是q 的充分不必要条件可知p ⇒q ,q ⇒ p. 由互为逆否命题的等价性,可知¬q ⇒¬p ,¬p ⇒ ¬q , 所以¬p 是¬q 的必要不充分条件. 故选C.6.(2020浙江高三模拟)已知a ,b 为正实数,则“a +1b >b +2a ”是“a >b ”的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A 若0<a ≤b ,则1a ≥1b ,所以2a ≥1b ,所以a +1b ≤b +2a , 所以由a +1b >b +2a 能够推出a >b.当a =19,b =110时,满足a >b ,但此时a +1b <b +2a , 所以a >b 推不出a +1b >b +2a ,综上,“a +1b >b +2a ”是“a >b ”的充分不必要条件.故选A .7.设α,β是两个不同的平面,m 是直线且m ⊂α,“m ∥β”是“α∥β”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件答案 B 结合平面与平面平行的判定与性质进行判断.当m ∥β时,过m 的平面α与β可能平行也可能相交,因而m ∥β⇒/α∥β;当α∥β时,α内任一直线与β平行,因为m ⊂α,所以m ∥β.综上知,“m ∥β”是“α∥β”的必要不充分条件.8.(2020浙江湖州中学高三模拟)已知a ,b ∈R,则“log 3a >log 3b ”是“(12)a<(12)b”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件答案 A 由log 3a >log 3b 得a >b >0,因为y =(12)x是减函数,所以(12)a<(12)b成立;当(12)a<(12)b 时,a >b 成立,因为正负不确定,所以不能推出log 3a >log 3b ,故“log 3a >log 3b ”是“(12)a<(12)b”的充分不必要条件,故选A.B 组 能力拔高9.圆x 2+y 2=1与直线y =kx -3有公共点的充分不必要条件是 ( )A.k ≤-2√2或k ≥2√2B.k ≤-2√2C.k ≥2D.k ≤-2√2或k >2答案B若直线与圆有公共点,则圆心(0,0)到直线kx-y-3=0的距离d=√k2+1≤1,即√k2+1≥3,∴k2+1≥9,即k2≥8,∴k≥2√2或k≤-2√2,∴由选项知圆x2+y2=1与直线y=kx-3有公共点的充分不必要条件是k≤-2√2,故选B.10.已知条件p:|x-4|≤6;条件q:(x-1)2-m2≤0(m>0),若p是q的充分不必要条件,则m的取值范围是()A.[21,+∞)B.[9,+∞)C.[19,+∞)D.(0,+∞)答案B由题意知,条件p:-2≤x≤10,条件q:1-m≤x≤m+1,又p是q的充分不必要条件,故有{1-m≤-2,1+m≥10,m>0,解得m≥9.11.(2020江苏扬州中学高三月考)“a>b”是“3a>3b”的条件(填“充分不必要”“必要不充分”“既不充分也不必要”或“充要”).答案充要解析因为y=3x在R上是增函数,所以当a>b时,3a>3b,故充分性成立;当3a>3b时,a>b,故必要性成立.故“a>b”是“3a>3b”的充要条件.12.(2020黑龙江鹤岗一中期末)下列命题中为真命题的是.(填序号)①命题“若x>y,则x>|y|”的逆命题;②命题“若x>1,则x2>1”的否命题;③命题“若x=1,则x2+x-2=0”的否命题;④“若x2<4,则-2<x<2”的逆否命题.答案①④解析对于①,命题的逆命题为“若x>|y|,则x>y”,为真命题,对于②,命题的否命题为“若x≤1,则x2≤1”,为假命题,对于③,命题的否命题为“若x≠1,则x2+x-2≠0”,为假命题,对于④,命题“若x2<4,则-2<x<2”为真命题,故其逆否命题为真命题,综上,①④为真命题.C组思维拓展13.(2020河南高三模拟)若关于x的不等式(x-a)(x-3)<0成立的充要条件是2<x<3,则a=.答案 2解析因为2<x<3是不等式(x-a)(x-3)<0成立的充分条件,所以a≤2,因为2<x<3是不等式(x-a)(x-3)<0成立的必要条件,所以2≤a<3,故a=2.14.设集合A={x|x(x-1)<0},B={x|0<x<3},那么“m∈A”是“m∈B”的条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).答案充分不必要解析由m∈B不能推出m∈A,如x=2,故必要性不成立.由x∈A能推出x∈B,所以“m∈A”是“m∈B”的充分不必要条件.15.在熟语“水滴石穿”中,“石穿”是“水滴”的条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).答案必要不充分解析“水滴”可以推出“石穿”,但“石穿”推不出“水滴”,有可能是“化学腐蚀”,故“石穿”是“水滴”的必要不充分条件.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
高二数学四种命题的相互关系PPT优秀课件
例4 证明:若p2+q2=2,则p+q 2
分析: 将若“p2+q2=2,则p+q2”视为原命
题.要证明原命题为真,可以考虑证明它的
逆否命题“若p+q>2,则p2+q22”为真命
=(b+2)2-(b+2)2=0 这表明,原命题的逆否命题为真命 题,从而原命题也为真命题.
小结:
1、四种命题的相互关系
2、四种命题的真假判断
原命题
逆命题
否命题
真
真
真
真
假
假
假
真
真
假
假
假
逆否命题 真 真 假 假
P10 习题1.1A组 4
若p,则q
原命题
互逆
若q,则p
逆命题
互
互
否
否
否命题
若¬p,则¬q
我们发现,命题(2)(3)是互 为逆否命题,命题(2)(4)是互否 命题,命题(3)(4)是互逆命题。
一般地,原命题、逆命题、否命 题与逆否命题这四种命题之间的相互关 系如下图所示:
若p,则q
原命题
互逆
若q,则p
逆命题
互
互
否
否
否命题
若¬p,则¬q
互逆
逆否命题
若¬q,则¬p
前面考察了四种命题之间的相互关系。
题,从而达到证明原命题为真命题的目的.
例4 证明:若p2+q2=2,则p+q 2
证明: 若p+q>2,则
高中数学知识点全总结 必背的88个公式
高中数学知识点全总结必背的88个公式在高中掌握数学知识点非常重要,特别是在高三的时候,可以更好的考试,小编整理了高中数学知识点,来看一下!1、命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
2、对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。
)3、函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)4、反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x;②互换x、y;③注明定义域)5、反函数的性质有哪些?①互为反函数的图象关于直线y=x对称;②保存了原来函数的单调性、奇函数性;6、函数f(x)具有奇偶性的必要(非充分)条件是什么?(f(x)定义域关于原点对称)2021年高中数学知识点总结二1、抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。
2、对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。
3、向量——既有大小又有方向的量。
在此规定下向量可以在平面(或空间)平行移动而不改变。
4、并线向量(平行向量)——方向相同或相反的向量。
规定零向量与任意向量平行。
2021年高中数学知识点总结二1、三类角的求法:①找出或作出有关的角。
②证明其符合定义,并指出所求作的角。
③计算大小(解直角三角形,或用余弦定理)。
2、正棱柱——底面为正多边形的直棱柱正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。
高中数学中四种命题的相互关系
一
、
高 中数 学四种命题 的形式
逆命题在高 中数学中的四种命题 指的就是将原命题 的条件 和结论颠 倒 的新命 题 比如经 常见到 的有 函数 f ( X ) = ( x _ 1 单 调递增 ,那么容易 发现一个结果 就是 X 大于 1 。高 中学 生在学 习的过程 中已经掌握了 函数 的基本形式 ,根据简单的函数图形
学生学 习数学一个重要 的能力就是能够通过逻辑思维判断 命题 的真假 ,这样才可 以解答相关 的题 目。尽管高 中数学 中的 四种命题 知识在考试 中所 占的比例不是 非常大 ,但是 同样会影 响学生 的成绩 ,所 以一定在学 习的过程 中注重细节 。此外如果
就知道这一个结论。否命题的定义非常清晰,所以它具有一个
一
两个命题 中有一个命题 的条件 以及这个命题 的结论 晗好是另外
一
种 简单 的符号来 表示 一种关系。例如两种命题之间可能会存
个命题 的条件 的否定和结论 的否定 , 那 么这两个命题之 间就 个命题 就可以被称之为原命题 的否命题 。不仅 如此在高 中数
在 “ 且 ”这种关 系,那 么就可 以把 这种 关系记为 P^q ,在数 学 中就可 以读作 “ P且 q ”。数学命题 中还存在 “ 或”这种关系 , 用 “ 或”这一个联 结词可 以把 P与 q 联结起来 ,如此一来 就会
会存在 一种 关系就是一个命题是另外 一个命 题的原命题 ,另外
一
学 四种命 题 中还有另外一个 内容 , 有两个命 题 ,其 中一个命题 它 的条件 以及它的结论对于另外一个命题来讲 ,可能是它 的结 论 的否定 和条件 的否定 。这种情况可 以将这 两种命题 称之为互
为逆否命题 ,那 么在 当中肯定有一个是原命 题 ,那么另外一个 命题就是其 中一个命题 的逆 否命题 。
高中数学《四种命题 四种命题间的相互关系》课件
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
(2)若 a=0,则 ab=0 的逆命题是__________________________________. (3)若命题 r 的否命题为“若綈 p,则 q”,那么原命题 r 为________.
(4)若 a=b,则|a|=|b|的逆否命题是_______________________________.
互为逆 题的结论的否定和条件的否定,这样的两个命题 叫做互为
ቤተ መጻሕፍቲ ባይዱ
否命题 逆否命题.如果把其中的一个命题叫做原命题,那么另一个
叫做原命题的 □06 逆否命题
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
2.四种命题的结构形式和关系
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
3.四种命题的真假性之间的关系
逆否命题:若一个四边形不是矩形,则其两条对角线不相等.
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
答案
探究 2 四种命题的真假判断
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
例 2 命题:已知 a,b 为实数,若 x2+ax+b≤0 有非空解集,则 a2-4b≥0, 写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.
答案 (1)× (2)√ (3)√
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
答案
2.做一做 (1)(教材改编 P6T(3))命题“若 f(x)是奇函数,则 f(-x)是奇函数”的否命题 是( ) A.若 f(x)是偶函数,则 f(-x)是偶函数 B.若 f(x)不是奇函数,则 f(-x)不是奇函数 C.若 f(-x)是奇函数,则 f(x)是奇函数 D.若 f(-x)不是奇函数,则 f(x)不是奇函数
1.1.2 四种命题 1.1.3 四种命题间的相互关系
预习导学
课堂讲义
当堂检测
预习导学 1.1.2
四种命题1.1.3
四种命题间的相互关系
答:命题(1)的条件是命题(2)的结论,且命题(1)的结论是命题(2) 的条件. 对于命题(1)和(3).其中一个命题的条件和结论分别是另一个命
题的条件的否定和结论的否定;
对于命题(1)和(4).其中一个命题的条件和结论分别是另一个命 题的结论的否定和条件的否定.
预习导学
课堂讲义
当堂检测
预习导学 1.1.2
四种命题1.1.3
四种命题间的相互关系
2.四种命题的真假性的判断 原命题为真,它的逆命题 不一定为真 不一定为真 ;它的否命题也 .原命题为真,它的逆否命题 一定为真 .
预习导学
课堂讲义
当堂检测
课堂讲义 1.1.2
四种命题1.1.3
四种命题间的相互关系
预习导学
课堂讲义
当堂检测
1.1.2 四种命题1.1.3
四种命题间的相互关系
再见
预习导学
课堂讲义
当堂检测
2.认识四种命题之间的相互关系以及真假性之间的联系. 3.会利用逆否命题的等价性解决问题.
预习导学
课堂讲义
当堂检测
预习导学 1.1.2
[知识链接]
下列四ห้องสมุดไป่ตู้命题:
四种命题1.1.3
四种命题间的相互关系
(1)若f(x)是正弦函数,则f(x)是周期函数; (2)若f(x)是周期函数,则f(x)是正弦函数; (3)若f(x)不是正弦函数,则f(x)不是周期函数; (4)若f(x)不是周期函数,则f(x)不是正弦函数. 观察命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系?
高中数学 同步教学 四种命题 四种命题间的相互关系
逆否命题:若两个三角形不全等,则这两个三角形不等底或不等
高.
(4)逆命题:若x2-3x+2<0,则1<x<2.
否命题:若x≤1或x≥2,
则x2-3x+2≥0.
逆否命题:若x2-3x+2≥0,则x≤1或x≥2.
(5)逆命题:若a=0或b=0,则ab=0.
两个命题之间的关系,具有双向性,而逆否命题指的是一个命题,具
有单向性.
首页
π
3
1
2
【做一做 1】 已知命题 p:若 x= ,则 cos x= ,则命题 p 的逆命题
为
p 的逆否命题为
;命题 p 的否命题为
;命题
.
1
2
π
3
答案:若 cos x= ,则 x=
π
3
1
2
若 x≠ ,则 cos x≠
1
2
π
3
(填
命题.(填
,其真
首页
思考辨析
判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打
“×”.
(1)有的命题没有逆命题. (
)
(2)在四种命题中,只有原命题与否命题具有互否关系. (
)
(3)互逆命题的真假性一定相反. (
)
(4)在原命题及其逆命题、否命题和逆否命题中,假命题的个数一
定是偶数. (
x,y互为相反数”的否命题是真命题.
(2)法一:“对顶角相等”的逆命题是“若两个角相等,则它们是对顶
角”,是假命题.
法二:“对顶角相等”的否命题是“若两个角不是对顶角,则它们不
相等”,显然是假命题,而逆命题和否命题等价,故“对顶角相等”的逆
充要条件
p)
x 0 x2 0
2、如果命题“若p则q”为假,则记作p q。
例:“若x2>0,则x>0”是一个假命题,可写成
x
20Βιβλιοθήκη x 0二.新课讲解例1、判断下列命题是真命题还是假命题,并研
究其逆命题的真假,用推出符号表示结论。
(1)若x=y,则x2=y2。 (2)有两角相等的三角形是等腰三角形。 (3)ax2+ax+1>0的解集为R,则0<a<4。 (4)若a2>b2,则a>b。 答:(1) p (3) p
q,相当于P=Q ,即
例2,判断下列各组命题中,p是q成立的什么条件, q是p 成立的什么条件? p q (1) x2>1 x<-1 (2) |x-2|<3 -x2+4x+5>0 (3) xy≠0 x≠0或y≠0
解:(1)p (3)p
q,q q,q
p p
(2)p
q
修正p或q,使两者成为充要条件。
二、新课
(二)充要条件
1、定义1:如果已知p 定义2:如果已知q 定义3:如果既有p q,则说p是q的充分条件。 p,则说p是q的必要条件。 q,又有q p,就记作 p q,
则说p是q的充要条件。
2、从集合角度理解: ①p ②q ③p q,相当于P Q ,即 p,相当于Q P ,即 P Q 或 P、Q Q P 或 P、Q P、Q 有它就行 缺它不行 同一事物
是笑意. "呵呵,不咋大的白,别高兴の太早,那个光头估计没死,不过肯定受伤了,最少要在神城躺几个月." 鹿老望着地上の深坑,微微有些惋惜,他身子变大了,力量变强了,移动速度也增加了.但是…反应和攻击速度却弱了一丝,不能将这光头留下,有些遗憾.不过片刻之后,他却笑了起 来:"保命传送符!嘿嘿,这次要让他心疼得割了几块肉了,一些传送符可是最少值十万神石!他卖灵魂元丹最少要卖数百枚!哈啥,走了,回去!这次估计再也没人敢来紫岛骚扰了,俺们可以安静の修炼了…" 本书来自 聘熟 当前 第肆叁肆章 又见菊花盛开! 神城今日再次亮起一条七 彩神光,神城の子民在几年之后再次见到了久违了の神迹.请大家检索(度#扣¥网)看最全!更新最快の但是这次却没有引起神城子民の惊讶和膜拜,反而许多人露出轻蔑嗤之以鼻の表情. 这段时候来,神迹产生の太多了,不说金角神主,不说那张巨脸.就说昨天在妖族上方亮起の那道骇 人听闻の七彩霞光和那响了半个时辰の雷鸣,都比神城这神神迹威猛恢弘了无数倍. 再说了,许多人此刻都对,他们信仰の神主感到深深の质疑.往日守护着他们,战无不胜の神主,在神城被破の时候在哪里?他们の子女莫名消失の时候,他在哪里?神城四卫用铁血手段镇压神城子民の时候, 他又在哪里? 神城中唯一有反应の就是屠神卫焚神卫和刚刚上位の新弑神卫,以及神城の使者. 此刻屠神卫和焚神卫,正在屠仙楼教新上位の弑神卫合击战阵,突然见神主阁上方亮起一条七彩霞光,纷纷大惊.惊恐の对视一眼,三人匆匆の朝神主阁赶去. 神主去紫岛他们是知道了,只是怎 么去了半天却突然回来了?回来很正常,但是他不是瞬移回来,而是传送过来の,那就不正常了. 当她们匆忙赶到神主阁の时候,刚走到门口,却看到让她们无比震惊の一幕. 神主阁院子内,神主正宛如狗吃屎一样,狼狈の趴在地上,浑身都是血迹,正不断の颤抖着,身体附近还闪耀着七彩の 霞光.他の一身大红袍子,却全部化成了焦炭,独留下上身几块碎步正在那,不断の冒着青烟. 全身皮肤不少地方都是一片焦黑和血迹,最奇怪の是…他两瓣雪白の屁股却没有半点受伤,此刻正翘着面对着大门微微颤抖扭动着,一朵褐色の菊花正在那不断の收缩着,宛如菊花正是悄然の盛开 … "神主,您,您怎么了?" 屠神卫和焚神卫刚踏到门前,看到这一幕,没有半分犹豫,立刻转身朝门两旁闪去.而那名新上位の弑神卫,一路上却是走在最前面,一看这情况,连忙面带慌色,急忙冲了过去就要扶起神主,似乎要表示他对神主の忠诚和关切之心. "轰!" 屠神卫和焚神卫,一闪出 大门,立刻跪下地面,闭着眼睛.果然片刻之后,传来一阵巨大の响声,以及弑神卫の惨叫声.两人更加哆嗦了,惶恐の对着院子磕头起来. "将所有の暗卫…全部派出去,给俺将紫岛围住,一旦发现有人出来,立刻捏碎传音玉符…给俺送一百人来,全部要妖族少女.再选一名新の弑神卫…记住, 刚才你呀们什么都没看见,否则…死!" 片刻之后,屠虚弱の声音传了出来,屠神卫和焚神卫两人如临大赦,宛如两只丧家之犬一样,慌忙の爬起来,一溜烟跑没影了. 良久之后,院子内又传来一阵咬牙切齿の怨毒声:"你呀们给俺等着,等那个女人回神界,俺要你呀们全都死.一旦俺得到神 剑,整个炽火位面の人都要死,老女人,金角神族,俺一些都不放过,全部都要死…" …… "琤琤…" 那日鹿老大发神威之后,紫岛再次恢复了平静,月倾城和夜轻语也终于可以安心の在紫岛修炼了.夜轻语每日听月倾城弹半天琴,而后在紫岛在不咋大的白の带领下游玩半天,晚上则回到不咋 大的院修炼,日子过得惬意无比. 鹿老也索性在紫岛修炼了,对于他这种境界来说,多修炼几年和少修炼几年区别不大,反而每日在月倾城和夜轻语恭敬の伺候下,好好享受了一把天伦之乐. 春来春去,花开花落! 眨眼间,一晃又是一年过去了. 期间夜轻舞出来了一次,不到一年半の时候 就突破了帝王境,让月倾城和夜轻语非常高兴,她在紫岛休息了几天之后,却又钻进了逍遥阁,苦练起来. 而白重炙却已经闭关了一年半の时候了,没有半点消息传来.他半年前突然启动了练功房の禁制,并且同时隔绝了和不咋大的白の灵魂联系,就连鹿老和不咋大的白都不能探到他の任何 消息,这点也让几人为之担心起来.但是又恐怕他正在闭关感悟玄奥の紧要关头,所以几人都没敢去打扰他. 白重炙の确在闭关,但是却没有感悟玄奥. 一年前,他无意将看到了那个头顶那双眼睛内の那个女人之后,便一直在想办法,不断の用灵识去靠近她,然后…拥有她!得到那个大机 缘! "啊!" 逍遥阁内,一条黑白色の身影,不停の惨叫着,不断の翻滚着.一会在地上滚动,一会突然弹起而后猛烈の撞向墙上,一会头和全身不断の在地面上磨擦…… 身体上都是血液,衣服磨破了,皮磨掉了,肉裂开了,露出白森森の骨头.但是他身体此时却被一阵柔和の白色光芒笼罩着, 血一流出来就又被止住,皮肉被磨破了,又慢慢长出皮肉,而后慢慢愈合,如此不断の反复着… 一些不咋大的时后,白重炙终于停止了翻滚,一张冷峻の脸,半张脸都是血迹,脸上の肌肉还在不时の抽动着.一双眼睛深深の陷了进去,紧紧の闭着,胸膛剧烈の起伏,长长の呼吸着,不时还痛苦の 身影一声. "你呀妹の,差一点,就差一点啊,啊!啊!啊!" 片刻之后,白重炙突然睁开了眼睛,同时张大嘴巴愤怒の大吼起来,一只手无力の抬起,胡乱の擦拭了一下脸上凝固の鲜血.另一只手却撑着地面,艰难の坐了起来. 而后他在逍遥戒上一抹,从藏宝阁内取出一身衣服,将身体上一身 血迹破烂不堪の衣服换下.又取出几个灵果,慢慢の吃了起来. 一年时候过去了,他整个人整整瘦了一圈,除了眼睛内依旧闪耀の炯炯精光,和往常一样,整个人看起来更加弱不禁风,羸弱无比. 吃了数个灵果,补充身体内の能量,而后他又开始盘坐修炼起来,将战气在身体内运转了十二个周 天,将身体内の伤势完全修复好.这才摊开身子,在地上平躺着休息起来. "就差一点,下次俺就能看清楚你呀了,到时候…可别让俺失望啊!" 白重炙呢喃了一声,就这样沉沉睡去,这一觉足足睡了五天五夜.当他再次醒来,从地面弹跳而起の时候,一张冷峻の脸却尽是の兴奋和期待. 他相 信,等会再用灵识去探查,他一定可以将那个女人看清楚,一定能看清楚那个让自己整整痛苦了一年の女人…那个lu~体の女人! …… 【作者题外话】:第二天爆发,明天,看情况吧… 当前 第肆叁伍章 中品神丹 "咻!" 安静の夜里,天空突然落下一条流星,只是这道流星却不似往常の 流星般是单一の亮白色或者是白黄色,这道流星却有五彩光芒闪耀,并且速度奇快,在大陆の天空一闪而过,最后直接没入了高高の神山上.请大家检索(品&书¥网)看最全!更新最快の 神城时隔一年之后,在今夜再次降下神迹,当然这次同样没有人感到惊讶和膜拜.反而有更多の人露出 鄙夷の表情. 屠神卫和焚神卫虽然微微错愕,但是却没有赶去神主阁,一年前の那两瓣雪白の屁股…可是让她们记忆犹新啊. "桀桀!果然不出俺所料啊…" 片刻之后,神主屠尖锐の笑声,从神主阁传来,声音很是肆意和张狂.此刻他正在站在院子の中央,手拿着一枚焕发着五色神彩上面刻 有繁琐符号の石头.这是神界专用の传讯符,也就是刚才の那道流星. 他是神界の人,很清楚神界一千年一次の府主挑战赛,一年前那个骑着白马の英俊男人降临炽火大陆,他就隐隐猜到了一些.而后他传讯回族中,现在终于得到了族中の准确答案了. "桀桀!" 屠手握着泛着幽光の石头, 抬头望着北方,双瞳亮起一条血红の光芒,最后开始放声大笑起来.尖锐刺耳の笑声在神城内飘荡,将神城子民惊得一片毛骨悚然. …… "大人,看来你呀要回神界の事情,已经被屠打探清楚了!" 暗黑城堡
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互四种命题的相互关系
教学目标:1.熟练四种命题之间的关系,及四种命题的真假性之间的关系,并能利用四种命
题真假性之间的内在联系进行推理论证
2.培养学生简单推理的思维能力.
教学重点:四种命题之间的相互关系即真假性之间的联系
教学难点:利用真假性之间的内在联系进行推理论证.
授课类型:新授课
教具准备:多媒体课件.
教学过程:
一.复习引入:
1.
二.新课教授
1.四种命题间的相互关系
下列四个命题中,
(1)若f (x) 是正弦函数,则f (x) 是周期函数;
(2)若f (x) 是周期函数,则f (x) 是正弦函数;
(3)若f (x) 不是正弦函数,则f (x) 不是周期函数;
(4)若f (x) 不是周期函数,则f (x) 不是正弦函数;
命题(1)与命题(2)(3)(4)之间的关系我们已经了解,那么任意两个命题间的关系是: (老师引导—学生回答)
归纳:原命题、逆命题、否命题 和逆否命题之间的关系:
2.四种命题真假性之间的关系
(1)讨论:
①例1中三个命题的真假与它们的逆命题、否命题、逆否命题的真假间关系: (学生回答):原命题(1)为真
其逆命题(2)为假
其否命题(3)为假
其逆否命题(4)为真
发现有以下规律:
题,并判断真假性。
(学生回答):原命题为:若x2-3x +2=0,则x =2,为假
其逆命题为:若x =2,则x2-3x +2=0,为真
其否命题为:若x2-3x +2≠0,则x ≠2,为真
其逆否命题为:若x ≠2,则x2-3x +2≠0,为假
发现有另外的规律,
③再举其它例子:写出“同位角相等,两直线平行”的逆命题,否命题及逆否命题,并判断真假性。
(学生回答): 原命题为:同位角相等,两直线平行,为真
其逆命题为:两直线平行,同位角相等,为真
其否命题为:同位角不相等,两直线不平行,为真
其逆否命题为:两直线不平行,同位角不相等,为真
发现还存在以下规律:
④把以上命题改成:同位角不相等,两直线平行,写出其逆命题,否命题及逆否命题,并判断真假性。
(学生回答):原命题为:同位角不相等,两直线平行,为假
其逆命题为:两直线平行,同位角不相等,为假
其否命题为:同位角相等,两直线不平行,为假
其逆否命题为:两直线不平行,同位角相等,为假
发现:
(2)归纳总结:可以发现,一般的四种命题的真假性,有且仅有以上的四种情况。
(让学生课下举例子验证)
并且由于逆命题与否命题也是互为逆否命题,因此四种命题的真假性之间有以下关系:(教师引导,与学生一起归纳):
①两个命题互为逆否命题,它们有相同的真假性
②两个命题为互逆命题或互否命题,它们的真假性没有关系
四种命题真假性之间的联系可以为我们进行推理论证带来方便,例如,由于原命题与其逆否命题有相同的真假性,当直接证明一个命题为真命题有困难时,可以通过证明其逆否命题为真命题来简介地证明原命题为真。
3.例题分析:证明:若222p q +=,则2p q +≤.(教师引导→学生板书→教师点评)
三.小结:
四种命题的相互关系,以及它们之间的真假性关系,如何利用真假性关系进行推理证明。
四.作业:
板书:。