(完整版)全等三角形证明方法(最新整理)
全等三角形的判定方法五种的证明
全等三角形的判定方法五种的证明全文共四篇示例,供读者参考第一篇示例:全等三角形(即三角形的所有对应边和角都相等)在几何学中具有重要意义,因为它们有着很多共性特征和性质。
在实际问题中,我们常常需要判定两个三角形是否全等,以便解决一些几何问题。
下面我们将介绍五种判定方法,并给出它们的证明。
一、SSS法则(边边边全等)首先我们来介绍SSS法则,即如果两个三角形的三条边分别相等,则这两个三角形全等。
设有两个三角形ABC和DEF,已知AB=DE,AC=DF,BC=EF。
我们要证明三角形ABC全等于三角形DEF。
【证明过程】由已知条件可知,三角形ABC和三角形DEF的三边分别相等。
所以可以得到以下对应关系:AB=DEAC=DFBC=EF三角形的两边之和大于第三边,所以我们有以下结论:AB+AC>BCDE+DF>EF由于AB=DE,AC=DF,BC=EF,所以根据上述两个不等式可得:AB+AC>BCAB+AC>BC所以三角形ABC与三角形DEF全等。
由于∠C=∠F,所以我们有以下结论:∠A+∠C+∠B=180°∠A+∠F+∠E=180°由于∠C=∠F,所以可以将两个等式相减,得到:∠B-∠E=0∠B=∠E四、HL法则(斜边-直角-斜边全等)由于∠A=∠D,∠B=∠E,所以可以使用AA法则证明三角形ABC 与三角形DEF全等。
我们介绍了五种全等三角形的判定方法以及它们的证明。
这些方法在解决几何问题中起着至关重要的作用,希望大家能够掌握并灵活运用这些方法。
如果遇到类似的题目,可以根据不同情况灵活选择合适的方法来判定三角形的全等关系。
通过不断练习和思考,相信大家能够在几何学习中取得更好的成绩。
【2000字】第二篇示例:全等三角形是指具有完全相同的三边和三角形的一种特殊情况。
在几何学中,全等三角形之间具有一些特殊的性质和关系。
正确判断两个三角形是否全等是解决几何问题的关键。
全等三角形的判定方法五种证明
全等三角形的判定方法五种证明方法一:SSS判定法(边边边判定法)该方法基于全等三角形的定义,即三角形的三边相等。
假设有两个三角形ABC和DEF,若AB=DE,BC=EF,AC=DF,则可以得出两个三角形全等。
证明:假设有两个三角形ABC和DEF,且已知AB=DE,BC=EF,AC=DF。
通过图形可以发现,若容器DAB将图形DEF旋转并平移后完全重合于ABC,则两个三角形全等。
因此,通过旋转和平移操作,将DEF旋转至直线AC上的点F与C匹配,同时将点F移动至点C。
由于线段DE和线段AC相等,而由已知条件可知线段DF与线段AC相等,所以线段DC也与线段AC相等。
因此,可以得出点C与点D重合,即三角形DEF重合于三角形ABC,证明了两个三角形全等。
方法二:SAS判定法(边角边判定法)该方法基于全等三角形的定义,即当两个三角形的两边和夹角分别相等时,它们全等。
假设有两个三角形ABC和DEF,若AB=DE,角A=角D,BC=EF,则可以得出两个三角形全等。
证明:假设有两个三角形ABC和DEF,已知AB=DE,角A=角D,BC=EF。
根据已知条件可以得出角D与角A相等,以及线段DE与线段AB相等。
通过这两个已知条件可以得出点D与点A重合,即三角形DEF与三角形ABC重合,证明了两个三角形全等。
方法三:ASA判定法(角边角判定法)该方法基于全等三角形的定义,即当两个三角形的两角和一边分别相等时,它们全等。
假设有两个三角形ABC和DEF,若角A=角D,角B=角E,AB=DE,则可以得出两个三角形全等。
证明:假设有两个三角形ABC和DEF,已知角A=角D,角B=角E,AB=DE。
根据已知条件可以得出角D与角A相等,角E与角B相等,以及线段AB与线段DE相等。
通过这三个已知条件可以得出三角形DEF与三角形ABC完全重合,证明了两个三角形全等。
方法四:HL判定法(斜边和高判定法)该方法基于全等三角形的定义,即当两个三角形的斜边和高分别相等时,它们全等。
三角形证全等的五种方法
三角形证全等的五种方法
1、两角分别对应相等的两个三角形相似;
2、两边成比例且夹角相等的两个三角形相似;
3、三边成比例的两个三角形相近;
4、一条直角边与斜边成比例的两个直角三角形相似;
5、用一个三角形的两边回去比另一个三角形与之相对应当的两边,分别对应成比例,如果三组对应边较之都相同,则三角形相近。
方法一:定理法,即平行于三角形一边的直线和其他俩边(或他的延长线)相交,所
截得的三角形与原三角形相似,俗话来讲就是一个大的三角形包含一个小的三角形,小的
三角形两边延长就成为了大三角形的两边;
方法二:俩角对应成正比的三角形相近,俗语来说先找出这两个三角形的对应边,间
接找到三角形三组对应角有俩组与成正比则相近;
方法三:两边对应成比例且夹角相等的三角形相似,俗话来讲:先找到各对应边对应角,一一对应后会很方便。
两边对应成比例:两组对应边之比相等,即按同一种比法相比。
夹
角相等:即所成比例的两边之间的那个角相等;
方法四:三边对应成比例,俗语来说:如上均先找出对应边对应角,将其一一对应。
三边对应成比例:就是三组对应边之比相等,比法均一致;
认定五:只适用于于直角三角形:直角边和斜边对应成比例则这俩个三角形相近,俗语
来说俗语来说:某种程度上直角三角形一个直角边和一个斜边对应成比例也同时代表着另
外一个直角边也对应成比例。
12.2 三角形全等的判定(解析版)
12.2 三角形全等的判定1.理解和掌握边边边、边角边的方法判断三角形全等;2.理解和掌握角边角和角角边的方法判断三角形全等;3.理解和掌握直角三角形的判定方法。
一、判定方法一:边边边(SSS )1.边边边:三边对应相等的两个三角形全等(可以简写成“边边边“或“SSS “)。
2.书写格式①先写出所要判定的两个三角形。
②列出条件:用大括号将两个三角形中相等的边分别写出。
③得出结论:两个三角形全等。
如下图,在△ABC 和 △A ′B ′C ′中,∵AB =A ′B ′,BC =B ′C ′,AC =A ′C ′,∴△ABC≅△A ′B ′C ′(SSS ).书写判定两个三角形全等的条件:在书写全等的过程中,等号左边表示同一个三角形的量,等号右边表示另一个三角形的量。
如上图,等号左边表示△ABC 的量,等号右边表示 △A ′B ′C ′的量。
3.作一个角等于已知角已知:∠AOB 。
求作: ∠A ′O ′B ′,使 ∠A ′O ′B ′=∠AOB .作法:如上图所示,①以点O 为圆心、任意长为半径画弧,分别交 OA ,OB 于点 C ,D 。
②画一条射线( O ′A ′,以点 O ′为圆心、OC 长为半径画弧,交( O ′A ′于点 C ′.③以点C ′为圆心、CD 长为半径画弧,与上一步中所画的弧交于点 D ′.④过点。
D ′画射线 O ′B ′,则 ∠A ′O ′B ′=∠AOB .题型一 利用SSS 直接证明三角形全等如图,已知AC DB =,要用“SSS ”判定ABC DCB @V V ,则只需添加一个适当的条件是_____.【答案】AB DC=【分析】根据全等三角形的判定:三边对应相等的两个三角形全等,即可.【详解】∵全等三角形的判定“SSS ”:三边对应相等的两个三角形全等,∴当ABC V 和DCB △中,AC DB BC BC AB DC =ìï=íï=î,∴()SSS ABC DCB @V V ,故答案为:AB DC =.【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的判定()SSS :三边对应相等的两个三角形全等.1.如图,已知AC DB =,要使得ABC DCB @V V ,根据“SSS ”的判定方法,需要再添加的一个条件是_______.【答案】AB DC=【分析】要使ABC DCB @V V ,由于BC 是公共边,若补充一组边相等,则可用SSS 判定其全等.【详解】解:添加AB DC =.在ABC V 和DCB △中AB DC BC CB AC BD =ìï=íï=î,∴()ABC DCB SSS @△△,故答案为:AB DC =.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择添加的条件是正确解答本题的关键.2.如图,AB DC =,若要用“SSS ”证明ABC DCB △△≌,需要补充一个条件,这个条件是__________.【答案】AC BD=【分析】由图形可知BC 为公共边,则可再加一组边相等,可求得答案.【详解】解:∵AB DC =,BC CB =,∴可补充AC DB =,在ABC V 和DCB V 中,AB DC BC CB AC DB =ìï=íï=î,∴ABC V ≌()SSS DCB V ;故答案为:AC DB =.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.题型二 全等三角形的性质与SSS 综合如图,点E 、点F 在BD 上,且AB CD =,BF DE =,AE CF =,求证:AB CD ∥.【分析】根据全等三角形的判定得出ABE CDF △≌△,推出B D Ð=Ð,利用平行线的判定解答即可.【详解】证明:∵BF DE =,∴BE DF =,在ABE V 和CDF V 中,AB DC AE CF BE DF =ìï=íï=î,∴()SSS ABE CDF V V ≌,∴B D Ð=Ð,∴AB CD ∥.【点睛】本题考查全等三角形的判定和性质,解题的关键是学会利用全等三角形解决问题,属于中考常考题型.1.已知:如图,RPQ D 中,RP RQ =,M 为PQ 的中点.求证:RM 平分PRQ Ð.【分析】先根据M 为PQ 的中点得出PM QM =,再由SSS 定理得出PRM QRM V V ≌,由全等三角形的性质即可得出结论.【详解】证明:M Q 为PQ 的中点(已知),PM QM \=,在RPM △和RQM V 中,RP RQ PM QM RM RM =ìï=íï=î,(SSS)RPM RQM \V V ≌,PRM QRM \Ð=Ð(两三角形全等,对应角相等)即RM 平分PRQ Ð.【点睛】本题考查的是全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解答此题的关键.2.已知如图,四边形ABCD 中,AB BC =,AD CD =,求证:A C Ð=Ð.【分析】连接BD ,已知两边对应相等,加之一个公共边BD ,则可利用SSS 判定ABD CBD ≌△△,根据全等三角形的对应角相等即可证得.【详解】证明:连接BD ,AB CB =Q ,BD BD =,AD CD =,SSS ABD CBD \≌()V V .A C \Ð=Ð.【点睛】此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有SSS ,SAS ,ASA ,HL 等.题型三 作一个角等于已知角如图:(1)在A Ð的内部利用尺规作CED A Ð=Ð(不写作法,保留作图痕迹)(2)判断直线DE AB 与的位置关系【分析】(1)根据作一个角等于已知角的方法在;A Ð的内部作CED A Ð=Ð,即可求解.(2)根据图形及平行线的判定定理可直接得到答案.【详解】(1)解:如图所示,在A Ð的内部作CED A Ð=Ð, 则CED Ð即为所求;(2)∵CED A ÐÐ=,∴DE AB ∥.故答案为:DE AB ∥.【点睛】本题主要考查角的尺规作图及平行线的判定,熟练掌握基本作图以及平行线的判定定理是解题的关键.1.如图,已知Ðb 和线段a ,求作ABC V ,使B b Ð=Ð,2,AB a BC a==【分析】先画射线BP ,以B 为圆心,a 为半径画弧,与射线BP 交于点D ,再画DA a =,再以b 的顶点为圆心,a 为半径画弧,交b 的两边分别为E ,F ,再以D 为圆心,EF 为半径画弧,交前弧于C ,再连接AC ,从而可得答案.【详解】解:如图,ABC V 即为所求;【点睛】本题考查的是作三角形,作一个角等于已知角,作一条线段等于已知线段,熟练掌握基本作图是解本题的关键.2.已知a Ð.求作CAB a Ð=Ð.(尺规作图,保留作图痕迹,不写作法)【分析】按照作与已知角相等的角的尺规作图方法作图即可.【详解】解:如图,CAB Ð为所作.【点睛】本题主要考查了作与已知角相等的角的尺规作图,熟知相关作图方法是解题的关键.二、判定方法二:边角边(SAS )1.边角边:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边“或“SAS “)。
证明三角形全等的方法有哪些
证明三角形全等的方法有哪些三角形全等是指两个三角形的对应边相等,对应角相等,即它们的形状和大小完全相同。
证明三角形全等的方法有很多种,下面将介绍其中一些常用的方法。
方法一:SSS全等定理SSS全等定理是指如果一个三角形的三条边分别和另一个三角形的三条边相等,则这两个三角形全等。
证明这个定理的方法是通过计算两个三角形的三条边的长度,如果它们相等,则可以得出这两个三角形全等。
例如,我们有两个三角形ABC和DEF,如果AB=DE,BC=EF,AC=DF,那么根据SSS全等定理,三角形ABC和DEF全等。
方法二:SAS全等定理SAS全等定理是指如果一个三角形的两边和夹角分别和另一个三角形的两边和夹角相等,则这两个三角形全等。
证明这个定理的方法是通过计算两个三角形的两边和夹角的大小,如果它们相等,则可以得出这两个三角形全等。
例如,我们有两个三角形ABC和DEF,如果AB=DE,BC=EF,∠B=∠E,那么根据SAS全等定理,三角形ABC和DEF全等。
方法三:ASA全等定理ASA全等定理是指如果一个三角形的两个角和夹边分别和另一个三角形的两个角和夹边相等,则这两个三角形全等。
证明这个定理的方法是通过计算两个三角形的两个角和夹边的大小,如果它们相等,则可以得出这两个三角形全等。
例如,我们有两个三角形ABC和DEF,如果∠A=∠D,∠B=∠E,AB=DE,那么根据ASA全等定理,三角形ABC和DEF全等。
方法四:HL全等定理HL全等定理是指如果一个直角三角形的斜边和一个锐角的一条直角边分别和另一个直角三角形的斜边和一个锐角的一条直角边相等,则这两个直角三角形全等。
证明这个定理的方法是通过计算两个直角三角形的斜边和锐角直角边的长度,如果它们相等,则可以得出这两个直角三角形全等。
例如,我们有两个直角三角形ABC和DEF,如果AB=DE,∠A=∠D,那么根据HL全等定理,三角形ABC和DEF全等。
方法五:对顶角相等定理对顶角相等定理是指如果一个三角形的一个角和另一个三角形的一个角相等,且这两个三角形的对应边长相等,则这两个三角形全等。
全等三角形判定条件(六种)
全等三角形判定条件(六种)
①边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。
②角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。
③推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。
④边边边公理(SSS)有三边对应相等的两个三角形全等。
⑤斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角
三角形全等。
出现两等边三角形、两等腰直角三角形通常用SAS证全等;等腰直角
三角形常见辅助线添法--连结直角顶点和斜边中点;两直角三角形证全等
常用方法:SAS,AAS,HL;出现等腰直角三角形或正方形可能用到K型全等。
三角形全等的判定方法(5种)例题+练习(全面)
三角形全等的判定方法(5种)例题+练习(全面)本文讲述了全等三角形的判定方法,重点是边角边和角边角。
边角边指两边及其夹角分别相等的两个三角形全等,可以简写成“SAS”。
需要注意的是,必须是两边及其夹角,不能是两边和其中一边的对角。
例如,在图中的△ABC和△ABD中,虽然有一个角和两边相等,但是这两个三角形不全等。
但是在例1中,如果AC=AD,且∠CAB=∠DAB,则可以证明△ACB≌△ADB。
在例2中,如果AD∥BC,且∠ABC=∠DCB,AB=DC,AE=DF,则可以证明BF=CE。
角边角是指两角及其夹边分别相等的两个三角形全等,可以简写成“ASA”。
例如,在例2中,如果AD平分∠BAC,且∠ABD=∠ACD,则可以直接判定△ABD≌△ACD。
在例3中,如果在Rt△ABC中,BC=2cm,CD⊥AB,且EC=BC,EF=5cm,则可以求出AE的长度。
除了边角边和角边角外,还有三种判定全等三角形的条件。
在例5中,如果在△ABC和△DEF中,AB=DE,BC=EF,且有一个角相等,则可以证明△ABC≌△DEF。
在例6中,如果AB∥DE,AB=DE,BF=CE,则可以证明△ABC≌△DEF。
在例7和例8中,分别是通过角平分线和垂线的判定方法来证明两个三角形全等。
总之,掌握全等三角形的判定方法对于解决几何问题非常重要。
1.如图所示,在三角形ABC中,已知AB=DC,∠ABC=∠DCB。
根据角角边相等可知,∠ACB=∠DCB。
又因为AB=DC,所以BC=AC。
因此,根据SSS(边边边)相等可知,△ABC≌△DCB。
同时,∠ACB=∠DCB,AC=BC=DC。
2.如图所示,在三角形ABD和ABF中,已知AD=AE,∠1=∠2,BD=CE。
根据角角边相等可知,∠ABD=∠BCE。
又因为AD=CE,所以BD=BE。
因此,根据SAS(边角边)相等可知,△ABD≌△BCE。
同时,∠ABD=∠BCE,AD=CE=BE。
三角形全等的五种方法
三角形全等的五种方法
三角形全等是一种几何学中的概念。
在几何学中,全等指的是两
个或多个形状、物体或模型的大小、形状、位置等特征完全相同。
三
角形的全等有五种方法,分别是以下几点:
(1)SSS全等法。
SSS全等法是指当三角形三边的边长相等时,
可以通过做出三个完全相同的三角形来证明它们全等。
(2)SAS全等法。
在SAS全等法中,两个三角形的一个角和两个
边分别相等。
因此,通过构建两个能够匹配的三角形来证明它们全等。
(3)ASA全等法。
ASA全等法是当两个三角形的两个角以及它们
之间的一个边相等时,可以通过构建两个能够匹配的三角形来证明它
们全等。
(4)AAS全等法。
通过AAS全等法,我们可以确认两个三角形有
两个角和它们之间的一个边相等,可以运用这一法则来证明它们全等。
(5)HL全等法。
在HL全等法中,两个三角形的一条腰和一条相
邻边分别相等,同时另一条腰和它所对应的角也分别相等。
因此,可
以通过构建两个相应匹配的三角形来证明他们全等。
总之,无论哪种方法都可以用来证明两个三角形全等,都需要在
构建的时候保证构建出的三角形完全重合。
(完整版)全等三角形知识总结和经典例题
全等三角形复习[ 知识要点 ]一、全等三角形1.判定和性质一般三角形直角三角形边角边( SAS)、角边角( ASA)具备一般三角形的判定方法判定斜边和一条直角边对应相等( HL )角角边( AAS)、边边边( SSS)对应边相等,对应角相等性质对应中线相等,对应高相等,对应角平分线相等注:①判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等.2.证题的思路:找夹角( SAS)已知两边找直角( HL )找第三边( SSS)若边为角的对边,则找任意角( AAS)找已知角的另一边(SAS)已知一边一角边为角的邻边找已知边的对角(AAS)找夹已知边的另一角(ASA)找两角的夹边(ASA)已知两角找任意一边(AAS)性质1、全等三角形的对应角相等、对应边相等。
2、全等三角形的对应边上的高对应相等。
3、全等三角形的对应角平分线相等。
4、全等三角形的对应中线相等。
5、全等三角形面积相等。
6、全等三角形周长相等。
( 以上可以简称 : 全等三角形的对应元素相等)7、三边对应相等的两个三角形全等。
(SSS)8、两边和它们的夹角对应相等的两个三角形全等。
(SAS)9、两角和它们的夹边对应相等的两个三角形全等。
(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。
(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3,当图中出现两个以上等边三角形时,应首先考虑用 SAS找全等三角形。
4、用在实际中,一般我们用全等三角形测等距离。
以及等角,用于工业和军事。
有一定帮助。
5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上做题技巧一般来说考试中线段和角相等需要证明全等。
证三角形全等的方法
证三角形全等的方法学习初中数学的你是否总是被各种证明题困扰?是啊, 这些明明就是正确的, 却要我们实实在在地证明出来, 确实有些为难人。
但是呢, 我们学习的主要目的除了丰富自己的知识, 也要应对考试, 如果对这些证明题不熟悉的话, 就赶快看过来, 今日的数学小科普, 来给大家讲解一下如何证明三角形全等!方法一: 边边边(SSS)——三条边都对应相等的两个三角形全等。
这个判定方式其实很好记啦, 三角形具有稳定性, 三条边都确定了, 是不是整个三角形都可以固定下来了呢?这样就具有了唯一性, 而这样的两个三边都对应相等的三角形, 自然就是全等的。
但是需要注意的是三个角都相等的两个三角形不能判定全等哦, 只要在脑海中举出几个反例就知道啦!下面给大家举一些利用边边边证明全等的例题。
1-1.已知如下:A、B、E、F在同一条直线上, 且AC=BD, CE=DF, AF=BE。
求证: ACE ≌BDF1-2.已知如下: B.E、C.F在同一条直线上, 且AB=DE, AC=DF, BE=CF。
求证: ABC ≌DEF这两个例题都是通过方法一: 边边边来证明两个三角形全等的。
其中两条对应的边相等是题目已经给出的, 还有一个条件给出一部分边相等, 但是它们存在相互重合的部分, 也就是公共边。
既然重合, 自然相等, 两段相等的边相加, 第三条边相等的条件也就出来了。
方法二: 边角边(SAS)——两边和它们之间的夹角对应相等的两个三角形全等。
这个判定方式是课本上直接给出的, 你可以这么记:同一个角度的有很多,但是确定了夹这个角的两条边的长短, 这个就被确定下来了, 这是举不出反例的。
2-1.已知如下:AB=AC, AD=AE, ∠1=∠2。
求证: ABD ≌ACE2-2.已知如下: AB=AC, 且E、F分别是AC.AB的中点。
求证: ABD ≌ACE这两个例题都是通过方法二: 边角边来证明三角形全等的。
其中2-1题需要知道那两个夹角中存在公共角, 公共角相等, 题目又提到∠1=∠2, 因此夹角相等。
证三角形全等的五种方法
证三角形全等的五种方法一、第一种方法是“边边边(SSS)”。
如果两个三角形的三边长度相应相等,那么我们就可以说这两个三角形全等。
比如,对于三角形ABC和三角形DEF,如果AB=DE,BC=EF以及AC=DF,那么三角形ABC与三角形DEF全等。
这种全等的方式十分明确,只要各边对应长度一致,不论角度如何都可以判定为全等。
二、第二种方法是“边角边(SAS)”。
若两个三角形有两边和它们之间的夹角对应相等,那么这两个三角形就可以被证明为全等。
比如,对于三角形ABC和三角形DEF,如果AB=DE,而且它们之间的夹角∠BAC=∠EDF,另外AC=DF,我们就可以断定三角形ABC和三角形DEF全等。
三、第三种方法是“角边角(ASA)”。
如果两个三角形的两个角和它们之间的边对应相等,那么他们就是全等的。
例如,对于三角形ABC和三角形DEF,如果∠BAC=∠EDF,且他们之间的边AC=DF,以及∠BCA=∠FDE,那么我们就可以认为三角形ABC全等于三角形DEF。
四、第四种方法是“角角边(AAS)”。
若两个三角形有两个角和任一边对应相等,那么它们就是全等的。
例如,对于三角形ABC和三角形DEF,如果∠BAC=∠EDF,∠BCA=∠FDE,并且边BC=EF,那么三角形ABC就全等于三角形DEF。
五、第五种方法是“右角三角形的斜边与一直角边(HL)”。
对于两个右角三角形,如果它们的斜边和一条直角边对应相等,那么我们就可以证明这两个三角形是全等的。
例如,对于三角形ABC和三角形DEF,如果∠BAC和∠EDF都是90°,且AC=DF(斜边),AB=DE(一条直角边),则三角形ABC和三角形DEF全等。
全等三角形的四种判定方法
全等三角形的四种判定方法
1.SSS判定法(边-边-边):
SSS判定法是通过比较两个三角形的边长来判断它们是否全等。
当三
个边的长度完全相等时,两个三角形就是全等的。
这是最直观的方法,也
是最易判定的方法之一
2.SAS判定法(边-角-边):
SAS判定法是通过比较两个三角形的边长和夹角来判断它们是否全等。
当两个三角形的一对相邻边和它们之间的夹角相等时,这两个三角形就是
全等的。
3.ASA判定法(角-边-角):
ASA判定法是通过比较两个三角形的两个角度和它们之间的夹边来判
断它们是否全等。
当两个三角形的两个角度和它们之间的夹边相等时,这
两个三角形就是全等的。
4.AAS判定法(角-角-边):
AAS判定法是通过比较两个三角形的两个角度和一个非夹角边来判断
它们是否全等。
当两个三角形的两个角度和一个非夹角边相等时,这两个
三角形就是全等的。
这些判定方法都基于三角形的重要性质:对于两个全等的三角形,它
们的对应边长相等,对应角度相等。
因此,通过比较两个三角形的边长和
角度可以判断它们是否全等。
在实际应用中,这些判定方法可以用来解决各种问题,比如计算三角形的面积、寻找相似三角形等。
此外,全等三角形的概念也是其他几何学概念的基础,比如正方形和正五边形都是全等三角形的特殊情况。
综上所述,全等三角形的判定方法有四种:SSS、SAS、ASA和AAS。
通过比较边长和角度的相等性可以确定两个三角形是否全等。
这些方法在解决几何问题中非常有用,并且为其他几何学概念的理解提供了基础。
全等三角形证明方法
全等三角形的证明方法一、三角形全等的判定:(1)三组对应边分别相等的两个三角形全等(SSS);(2)有两边及其夹角对应相等的两个三角形全等(SAS) ;(3)有两角及其夹边对应相等的两个三角形全等(ASA) ;(4)有两角及一角的对边对应相等的两个三角形全等(AAS) ;(5)直角三角形全等的判定:斜边及一直角边对应相等的两个直角三角形全等(HL).二、全等三角形的性质:(1)全等三角形的对应边相等;全等三角形的对应角相等;(2)全等三角形的周长相等、面积相等;(3)全等三角形的对应边上的高对应相等;(4)全等三角形的对应角的角平分线相等;(5)全等三角形的对应边上的中线相等;三、找全等三角形的方法:(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
三角形全等的证明中包含两个要素:边和角。
①积极发现隐含条件:公共角对顶角公共边②观察发现等角等边:等边对等角同角的余角相等同角的补角相等等角对等边等角的余角相等等角的补角相等③推理发现等边等角:图1:平行转化图2 :等角转化图3:中点转化图4 :等量和转化图5:等量差转化图6:角平分线性质转化图7:三线合一转化图8:等积转化图9:中垂线转化图10:全等转化图11:等段转化四、构造辅助线的常用方法:1、关于角平分线的辅助线:当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。
角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。
关于角平分线常用的辅助线方法:(1)截取构造全等:如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。
全等三角形证明方法
全等三角形证明方法1.SSS判定(边边边判定):若两个三角形的三边分别相等,则这两个三角形全等。
证明步骤:设两个三角形为△ABC和△DEF,已知AB=DE、BC=EF、AC=DF。
1)通过R角平分线找到△ABC和△DEF的R角,并将它们延长成相交于点O的直线。
2)连接OA和OD,再连接OB和OE。
3)由已知AB=DE,可得△ABO≌△DEO(边边边全等)。
4)同理,通过OC和OF的延长线,可得△ACO≌△DFO。
5)根据全等三角形的性质,可以推得△ABC≌△DEF。
2.SAS判定(边角边判定):若两个三角形的两边和夹角分别相等,则这两个三角形全等。
证明步骤:设两个三角形为△ABC和△DEF,已知AB=DE、∠BAC=∠EDF、BC=EF。
1)由已知AB=DE,可得△ABD≌△EDC(边边边全等)。
2)由已知∠BAC=∠EDF,可得∠BAD=∠EDC(对应角相等)。
3)由已知BC=EF,可得∠BDC=∠EFD,且DC=FD(边边角全等)。
4)根据全等三角形的性质,可以推得△ABC≌△DEF。
3.ASA判定(角边角判定):若两个三角形的两角和边分别相等,则这两个三角形全等。
证明步骤:设两个三角形为△ABC和△DEF,已知∠BAC=∠EDF、∠ABC=∠DEF、AC=DF。
1)由已知∠BAC=∠EDF,可得△ABC≌△ADF(角边角全等)。
2)由已知∠ABC=∠DEF,可得∠BAC=∠EFD,且BC=EF(角边角全等)。
3)根据全等三角形的性质,可以推得△ABC≌△DEF。
通过上述三种常用的全等三角形证明方法,我们可以得到两个三角形全等的结论。
在实际应用中,我们可以根据已知条件选择适合的证明方法,从而快速确定三角形的全等关系。
三角形全等证明方法
三角形全等证明方法在几何学中,全等是指两个或多个几何体的大小、形状以及内部结构完全相同。
对于三角形而言,如果两个三角形的对应边长相等,对应的角度也相等,则它们是全等三角形。
在证明两个三角形全等时,有多种方法可以使用,本文将详细介绍其中的几种方法,并给出说明和举例。
【1. SSS (Side-Side-Side) 全等法】SSS全等法则是指如果两个三角形的三边分别相等,则它们是全等的。
这个证明方法简单直接,可以通过以下步骤来证明:Step 1: 确定两个三角形的三边分别相等;Step 2: 可以使用尺规作图工具在纸上绘制出两个三角形;Step 3: 通过测量确定两个三角形的三边分别相等;Step 4: 通过观察可以得出结论,即两个三角形是全等的。
例如,我们要证明△ABC ≡ △DEF。
我们已知AB = DE,BC = EF,AC = DF。
根据SSS全等法则,根据给定的条件可以得出结论,即△ABC ≡ △DEF。
【2. SAS (Side-Angle-Side) 全等法】SAS全等法则是指如果两个三角形的两个边和夹角分别相等,则它们是全等的。
这个证明方法也是常用的,可以通过以下步骤来证明:Step 1: 确定两个三角形的两个边和夹角分别相等;Step 2: 可以使用尺规作图工具在纸上绘制出两个三角形;Step 3: 通过测量确定两个三角形的两个边和夹角分别相等;Step 4: 通过观察可以得出结论,即两个三角形是全等的。
例如,我们要证明△ABC ≡ △DEF。
我们已知∠BAC = ∠EDF,AB = DE,AC = DF。
根据SAS 全等法则,根据给定的条件可以得出结论,即△ABC ≡ △DEF。
【3. ASA (Angle-Side-Angle) 全等法】ASA全等法则是指如果两个三角形的两个角和夹边分别相等,则它们是全等的。
这个证明方法也非常常用,可以通过以下步骤来证明:Step 1: 确定两个三角形的两个角和夹边分别相等;Step 2: 可以使用尺规作图工具在纸上绘制出两个三角形;Step 3: 通过测量确定两个三角形的两个角和夹边分别相等;Step 4: 通过观察可以得出结论,即两个三角形是全等的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形的证明方法
一、三角形全等的判定:
(1)三组对应边分别相等的两个三角形全等(SSS);
(2)有两边及其夹角对应相等的两个三角形全等(SAS) ;
(3)有两角及其夹边对应相等的两个三角形全等(ASA) ;
(4)有两角及一角的对边对应相等的两个三角形全等(AAS) ;
(5)直角三角形全等的判定:斜边及一直角边对应相等的两个直角三角形全等(HL).
二、全等三角形的性质:
(1)全等三角形的对应边相等;全等三角形的对应角相等;
(2)全等三角形的周长相等、面积相等;
(3)全等三角形的对应边上的高对应相等;
(4)全等三角形的对应角的角平分线相等;
(5)全等三角形的对应边上的中线相等;
三、找全等三角形的方法:
(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;
(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;
(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;
(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
三角形全等的证明中包含两个要素:边和角。
①积极发现隐含条件:
公共角对顶角公共边
②观察发现等角等边:
等边对等角同角的余角相等同角的补角相等
等角对等边等角的余角相等等角的补角相等
③推理发现等边等角:
图1:平行转化图2 :等角转化图3:中点转化
图4 :等量和转化图5:等量差转化图6:角平分线性质转化
图7:三线合一转化图8:等积转化图9:中垂线转化图10:全等转化
图11:等段转化
四、构造辅助线的常用方法:
1、关于角平分线的辅助线:
当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。
角平分线具有两条性质:①角平分线具有对称性;
②角平分线上的点到角两边的距离相等。
关于角平分线常用的辅助线方法:
(1)截取构造全等:
如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。
例1、如上右图所示,AB//CD,BE平分∠BCD,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。
提示:在BC上取一点F使得BF=BA,连结EF。
(2)角分线上点向角两边作垂线构造全等
利用角平分线上的点到两边距离相等的性质来证明问题。
如下左图所示,过∠AOB的平分线OC上一点D 向角两边OA、OB作垂线,垂足为E、F,连接DE、DF。
则有:DE=DF,△OED≌△OFD。
例2、如上右图所示,已知AB>AD, ∠BAC=∠FAC,CD=BC。
求证:∠ADC+∠B=180°
(3)作角平分线的垂线构造等腰三角形。
如下左图所示,从角的一边OB上的一点E作角平分线OC的垂线EF,使之与角的另一边OA相交,则截得一个等腰三角形(△OEF),垂足为底边上的中点D,该角平分线又成为底边上的中线和高,以利用中位线的性质与等腰三角形的三线合一的性质。
如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,从而得到一个等腰三角形,可总结为:“延分垂,等腰归”。
例3、如上右图所示,已知∠BAD=∠DAC,AB>AC,CD⊥AD于D,H是BC中点。
求证:
1
()
2
DH AB AC
=-
提示:延长CD交AB于点E,则可得全等三角形。
问题可证。
例4、已知,如图,在Rt△ABC中,AB = AC,∠BAC = 90o,∠1 = ∠2 ,CE⊥BD的延长线于E,
求证:BD = 2CE
提示:延长CE交BA的延长线于点F。
1
2
(4)作平行线构造等腰三角形作平行线构造等腰三角形分为以下两种情况:
①如下左图所示,过角平分线OC上的一点E作角的一边OA的平行线DE,从而构造等腰三角形ODE。
②如下右图所示,通过角一边OB上的点D作角平分线OC的平行线DH与另外一边AO的反向延长线相交于点H,从而构造等腰三角形ODH。
A
B
D (1)遇到求证一条线段等于另两条线段之和时,一般方法是截长补短法:
①截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;
②补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。
例1、在△ABC 中,AD 平分∠BAC ,∠ACB =2∠B ,求证:AB =AC +CD 。
(2)对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法将某些线段转化到一个三角形中证明。
在利用三角形三边关系证明线段不等关系时,如直接证不出来,可连接两点或廷长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明。
例2、已知如图,D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE.
(3)在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:
例3:如图:已知D 为△ABC 内的任一点,求证:∠BDC >∠
BAC
在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线加倍延长中线及其相关性质(等腰三角形底边中线性质),然后通过探索,找到解决问题的方法。
(1)中线把原三角形分成两个面积相等的小三角形. 即如图1,AD 是ΔABC 的中线,则(因为ΔABD 与ΔACD 是等底同高的)。
12
ABD ACD ABC S S S ∆∆∆==
图1 图2
(2)倍长中线,如图2, 已知中点、中线问题应想到倍长中线,由中线的性质可知,一条中线将中点所在的线段平分,可得到一组等边,通过倍长中线又可得到一组等边及对顶角,因而可以得到一组全等三角形。
如图,延长AD 到E ,使得AD=AE ,连结BE 。
例1、如图3,已知ΔABC 中,AD 是∠BAC 的平分线,AD 又是BC 边上的中线。
求证:ΔABC 是等腰三角形。
4、验证中点、中线问题,应构造平行线,如图,过B 作BE 平行AC 交AD 延长线于E.
例1、如图3,在等腰△ABC 中,AB=AC ,在AB 上截取BD ,在AC 延长线上截取CE ,且使CE=BD .连接DE 交BC 于F .求证:DF=EF .
5、其他辅助线作法:
D C B A (1)延长已知边构造三角形 在一些求证三角形问题中,延长某两条线段(边)相交,构成一个封闭的图形,可找到更多的相等关系,有助于问题的解决.
例1、如图4,在△ABC 中,AC=BC ,∠C=90°,BD 为∠ABC 的平分线.若A 点到直线BD 的距离AD 为a ,求BE
的长.
例2、已知:如图,AC=BD ,AD ⊥AC ,BC ⊥BD .求证:AD=BC .
(2)连接四边形的对角线,把四边形的问题转化成为三角形来解决.
例3、如图,AB ∥CD ,AD ∥BC 求证:AB=CD
(3)取线段中点构造全等三有形.
例4、如图,AB =DC ,∠A =∠D 求证:∠ABC =∠
DCB.。