04第四节动能动能定理
动能和动能的定理
动能定理与牛顿第二定律的关系
牛顿第二定律描述了力对物体运动状态改变 的作用,即F=ma,其中F为作用力,m为质 量,a为加速度。而动能定理则描述了力对物 体动能改变的作用,即合外力对物体所做的 功等于物体动能的变化。
动能定理可以看作是牛顿第二定律在动能方 面的应用,因为物体的加速度与作用力成正 比,而物体的动能与速度平方成正比,所以 当力作用在物体上使其加速时,物体的动能
动能定理对于理解能量守恒定律的意义
动能定理是能量守恒定律在动力学中 的具体表现,通过动能定理可以深入 理解能量守恒定律的内涵和应用。
VS
动能定理表明,力对物体所做的功等 于物体动能的改变量,这有助于我们 更好地理解能量的转化和守恒,以及 物体运动状态的改变。
05 动能定理的深入思考
动能定理与势能、内能的关系
动能的特点
动能是标量,只有大 小,没有方向。
动能是状态量,与过 程无关,只与物体在 某一时刻的状态有关。
动能是相对量,与参 考系的选取有关。
动能与其他物理量的关系
动能与动量关系
P=mv,其中P为物体的动量,单位是 千克·米/秒(kg·m/s)。
动能与能量关系
动能是能量的一种形式,是物体机械 运动的能量,其他形式的能量可以转 化为动能。
也会相应增加或减少。
动能定理与相对论的关系
在相对论中,物体的动能不再是经典力学中的1/2mv^2, 而是与物体的质量和速度相关的更复杂的表达式。但动 能定理的基本思想仍然适用,即合外力对物体所做的功 等于物体动能的改变。
相对论中的动能关系式为E_k = (m_0c^2 + E_k') / √(1-v^2/c^2),其中E_k为物体的动能,m_0为物体的 静止质量,E_k'为物体因运动而具有的内部能量,v为物 体的速度,c为光速。这个公式可以看作是经典力学中动能的定理表述
4.4 动能 动能定理
H
h
2-7-2
应用动能定理解题的步骤:
1、找对象,受力分析,求出合力做的功。
2、求出初、末位置的动能。 3、利用动能定列式求解。
1 2 1 2 W mv t mv 0 2 2
家庭作业1.
一架喷气式飞机,质量m=5×103kg,起飞过程中从静止 开始滑跑的路程为s =5.3×102m时,达到起飞的速度v =60m/s,在此过程中飞机受到的平均阻力是飞机重量的 0.02倍(k=0.02),求飞机受到的牵引力。
二.动能定理的应用——曲线运动问题
例题1:
如图所示,AB为1/4光滑圆弧轨道,半径为 R=0.8m,与水平轨道BC相切于B点,BC处的摩擦 系数为μ=1/15。今有质量m=1kg的物体,自A点 从静止起下滑到C点刚好停止。 求:(1 B点时的速度大小? 3)物体达到 )在BC段摩擦力做的功? (2)物体在B点对轨道的压力?
家庭作业3.
如图所示,ABCD是一个盆式容器,盆内侧壁与 盆底BC的连接处都是一段与BC相切的圆弧,BC为 水平的,其距离为d = 0.50m,盆边缘的高度为h = 0.30m。在A处放一个质量为m的小物块并让其 从静止出发下滑。已知盆内侧壁是光滑的,而盆 底BC面与小物块间的动摩擦因数为μ= 0.1,小 物块在盆内来回滑动,最后停下来,则停下的地 点到B的距离为多少米?
1 2 A.地板对物体的支持力做的功等于 mv 2 B.地板对物体的支持力做的功等于mgH 1 C.钢索的拉力做的功等于 Mv 2+MgH 2 1 D.合外力对电梯M 做的功等于 Mv 2 2
二.动能定理的应用——变力做功问题
例题1:从离地面H高处落下一只小球,小球在运动过程 中所受的空气阻力是它重力的k(k<1)倍,而小球与地面 相碰后,能以相同大小的速率反弹,求: ( 12 ) ( )小球第一次与地面碰撞后,能够反弹起的最大高 小球从释放开始,直至停止弹跳为止,所通过 度是多少? 的总路程是多少?
动能与动能定理
动能与动能定理动能是物体运动时所具有的能量,是描述物体运动状态的重要物理量。
本文将介绍动能的概念、计算方法以及动能定理的原理和应用。
一、动能的概念与计算方法动能是物体运动时所具有的能量,它与物体的质量和速度有关。
动能的计算公式为:动能 = 1/2 ×质量 ×速度的平方式中,“质量”表示物体的质量,单位为千克,“速度的平方”表示物体的速度的平方,单位为米每秒。
二、动能定理的原理与表达方式动能定理是描述物体运动过程中能量变化的定理,它表明,当物体受到合外力作用时,物体的动能会发生变化。
动能定理可用以下方式表达:动能的变化量 = 物体所受合外力的功其中,“动能的变化量”表示物体动能的增量或减量,“物体所受合外力的功”表示作用在物体上的合外力所做的功。
三、动能定理的应用动能定理在物理学中有广泛的应用,以下是其中两个重要方面:1. 机械能守恒原理根据动能定理,当物体只受重力做功或只受弹力做功时,物体的总机械能保持不变。
即动能和势能之和保持不变。
2. 动能定理与运动的描述动能定理可以用来分析和描述物体的运动过程。
通过计算物体在不同位置或不同时间点的动能变化量,可以了解物体的运动状态和受力情况,进而预测物体的运动轨迹。
四、总结动能是物体运动时所具有的能量,可以通过物体质量和速度来计算。
动能定理描述了物体受到合外力作用时动能的变化规律,可以用来研究和描述物体运动的特性。
在实际应用中,动能定理在机械能守恒和运动分析等方面发挥着重要的作用。
通过本文的介绍,相信读者对动能与动能定理有了更深入的理解,能够运用这些概念和定理解决有关的物理问题。
动能定理优质课件
二、动能定理
1 2 1 2 W mv 2 mv1 2 2
合外力 做的功
推广:
初状态 的动能
动能定理的表达式:
W合= Ek2 - Ek1
动能定理的内容:
末状态的动能
合外力对物体所做的功等于 物体在这个过程中动能的变化。
对动能定理的理解
1. 合外力做功与动能变化的关系
W合= Ek2 - Ek1
(3)明确物体在初、末状态的动能
(4)运用动能定理列方程求解
物体的动能与哪些因素有关
同一小球从斜面上不同高度滚下对纸盒
做的功 不同
物体的动能应该与物体的速度有关。 结论:
不同小球从斜面上同一高度滚下对纸盒 做的功 不同
结论: 物体的动能应该与质量有关。
实验表明: 质量越大,速度越大,物体所具有的动能也就越大。
2、质量为m=3kg的物体与水平地面之间的动摩 擦因数μ=0.2 ,在水平恒力 F=9N 作用下起动, 如图所示。当m位移s1=8m时撤去推力F,试问: 还能滑多远?(g取10m/s2)
分析:物体m所受重力G、支持力N、推力F、滑动摩擦力f均 为恒力,因此物体做匀加速直线运动;撤去F后,物体做匀减速 直线运动.因此,可用牛顿定律和匀变速直线运动规律求解. 物体在动力F和阻力f作用下运动时,G和N不做功,F做正功, f做负功,因此,也可以用动能定理求解.
合
k
WF + Wf = E kt - E k0
2 Fs1 + ( - f)·(s1 + s2 ) = mv 2 / 2 mv t 0 /2
Fs1 - f(s1 + s2 ) = 0 - 0
Fs1 fs1 s2 = = 4m f
动能定理物体的动能与力的做功
动能定理物体的动能与力的做功动能定理:物体的动能与力的做功动能定理是物理学中的基本定理之一,它描述了物体的动能与力的做功之间的关系。
在本文中,我们将探讨动能定理的定义、原理以及应用。
一、动能定理的定义动能定理是指在外力作用下,物体的动能的变化量等于力的做功。
简而言之,物体的动能增加或减少的大小,正好等于作用于物体的力所作的功。
二、动能定理的原理物体的动能可以通过它的质量和速度来定义,即动能 = 1/2 ×质量 ×速度的平方。
力的功可以用力的大小、物体的位移和力与位移之间的夹角来定义,即做功 = 力 ×位移× cosθ。
根据动能定理,在外力作用下,物体的动能的变化量等于力的做功。
表示为:物体的动能的增量 = 力的做功。
三、动能定理的应用1. 物体的动能和速度关系:根据动能定理,物体的动能正比于其速度的平方。
当速度增加时,动能增加;当速度减小时,动能减小。
2. 动能与重力势能的转换:在重力场中,当物体从较高位置下降到较低位置时,重力对物体做功,并将其势能转化为动能。
反之,当物体由较低位置上升到较高位置时,动能将转化为重力势能。
3. 动能与弹性势能的转换:在弹性体系中,物体由于受到压缩或伸展而具有弹性势能。
当物体释放出弹性势能时,它将转化为动能。
4. 动能定理的应用于机械工作:在机械运动中,动能定理可应用于机器的工作原理和能量转换的分析。
比如,在运输系统中,我们可以通过应用动能定理来计算物体在传送过程中所需的能量和功率。
总结:动能定理是物体的动能与力的做功之间的关系。
它可以帮助我们理解物体运动时的能量转化过程,并应用于各种实际情况的分析和计算。
通过深入研究动能定理,我们可以更好地理解物体运动的本质和力学规律。
动能与动能定理
动能与动能定理动能是物体运动的表现,是描述物体运动状态的重要物理量之一。
物体的动能与其质量和速度有关,可以用公式K = 0.5mv²来表示,其中K表示物体的动能,m表示物体的质量,v表示物体的速度。
动能定理是描述物体运动动能变化的原理,它说明了当物体受到力的作用时,动能的变化量与力的做功的关系。
根据动能定理,物体的动能变化等于作用在物体上的力所做的功。
公式可以表示为K2 - K1 = W,其中K1表示物体在起始状态的动能,K2表示物体在结束状态的动能,W表示力所做的功。
动能定理的推导可以通过牛顿第二定律和功的定义来进行。
根据牛顿第二定律F = ma,将物体的加速度a表示为v² - u² / 2s,其中u表示起始速度,v表示结束速度,s表示运动距离。
将力与位移的乘积表示为Fs,将物体的质量m替换进去,可以得到力所做的功W = 0.5mv² - 0.5mu²。
根据动能定理,我们可以理解一些与动能相关的现象。
比如,在一个平直的水平面上,当一个物体在滑行过程中受到恒定的水平力作用时,物体的动能会发生变化。
如果力的方向与物体运动的方向一致,力做正功,物体的动能增加;如果力的方向与物体运动的方向相反,力做负功,物体的动能减少。
如果没有外力作用,物体的动能不会发生改变。
动能定理也可以应用于其他一些情况。
例如,当一个物体自由落体时,在下落过程中由于重力的做功,物体的动能会逐渐增加,而在上升过程中,由于重力与位移的夹角大于90°,重力做负功,物体的动能会减少。
当物体到达最高点时,动能达到最小值,为零,而在下落过程中逐渐恢复。
动能定理的应用还可以帮助我们理解一些现实中的问题。
例如,当汽车减速时,汽车制动器所施加的摩擦力会做负功,使汽车的动能减小,从而使汽车减速停止。
另外,运动员在进行跳跃动作时,运动员腿部的肌肉通过做功使身体获得一定的动能,然后将动能转化为跳跃的高度或距离。
动能与动能定理的解析
动能与动能定理的解析动能是描述物体运动状态的物理量,是物体运动所具有的能量形式。
在物理学中,动能可以通过物体质量和速度的平方来计算。
动能定理则是表明物体的动能变化量与外力所做的功等于物体所受的净作用力所做的功的关系。
一、动能的定义及计算公式动能是物体由于运动而具有的能量,它与物体的质量和速度有关。
动能的定义公式为:动能 = 1/2 ×质量 ×速度的平方,用数学表达式表示为:K = 1/2mv²。
其中,K代表动能,m代表物体的质量,v代表物体的速度。
二、动能与速度的关系动能与物体的速度呈正比关系。
当物体的速度增加时,其动能也会相应增加。
这意味着速度越大,物体运动所具有的能量就越多,动能也就越大。
相反,当物体的速度减小时,其动能会减小。
三、动能与质量的关系动能与物体的质量呈正比关系。
质量越大,动能也就越大;质量越小,动能也就越小。
这是因为相同速度下,质量较大的物体具有更大的惯性,需要更多的能量来维持其运动状态。
四、动能定理的解析动能定理是描述物体运动状态变化的一个重要定理。
它表明,物体的动能变化量等于外力所做的功。
动能定理的数学表达式为:∆K = W,其中∆K代表动能的变化量,W代表外力所做的功。
根据动能定理,当物体受到净作用力时,它的动能会发生变化。
当物体受到正向作用力(如推力、引力等)时,该作用力所做的功为正,导致物体的动能增加;当物体受到负向作用力(如阻力、制动力等)时,该作用力所做的功为负,导致物体的动能减小。
动能定理可用来解析物体在不同情况下的动能变化。
例如,在施加恒定力的作用下,物体的速度会随时间增加,由动能定理可推导出速度与时间的关系。
同样,当物体在阻力作用下停止运动时,也可以应用动能定理来计算作用力所做的功和动能的变化量。
动能定理也可以用于解析机械能守恒的情况。
当物体只受重力等保守力的作用时,机械能(势能和动能之和)保持不变。
根据动能定理,作用力所做的功等于动能的变化量为零,从而得出机械能守恒的结论。
第四节 动能 动能定理
2 2 v v 2 1 2 2 x ( ) v2 v1 2ax 2a 2 2 1 2 1 2 v2 v1 m a ( ) mv 2 mv1 2 2 2a
外力对物体所做的功
末状态
初状态
1 2 ①外力对物体所做的功W等于物理量 mv 的变化 2
②而功是能量变化的量度; ③
1 2 mv 由m、v决定; 2
所以
1 2 mv 表示了动能的大小 2
2.表达式
1 2 Ek mv 2
3.单位:J(焦耳)1J=1N· m=1kg· (m/s)2
你的速度小 所以我的动能大!
一质量为10g,飞行 速度为300m/s的子弹
谁的动能大呢?
你的质量小 所以我的动能大!
一质量为4kg,飞行速 度为10m/s的铅球
类型三: 多过程运动
例1.一沙堆正上方2m处有一小金属球由静止释放,最终没 入沙堆2cm深,求沙堆对小金属球的平均阻力是重力的几 倍。
mg H=2m
f
解题注意:
mg
h=2cm
多过程问题,往往可忽略中间状态,直 接选择全过程的初末状态进行研究.
例2. 质量为2kg的滑块,以4m/s的速度在光滑的水平面上向 左滑行.从某时刻起,对滑块施加一水平向右的力,经过一段 时间,滑块的速度变为向右,大小为5m/s, 试求水平力对滑 块所做的功.
例4.人在A点拉着绳通过一定滑轮吊起质量m=50Kg的物 体,如图所示,开始绳与水平方向夹角为,当人匀速提 起重物由A点沿水平方向运动而到达B点,此时绳与水平 方向成角,求人对绳的拉力做了多少功?
G
60
A
30
B
例 5.用汽车从井下提重物,重物质量为 m,定滑轮高为 H, 如图所示, 已知汽车由 A 点静止开始运动至 B 点时的速度为 v, 此时轻绳与竖直方向夹角为 θ.这一过程中轻绳的拉力做功多 大?
动能定理内容
动能定理
动能定理是物理学中一个重要的定理,它是物体运动的重要理论依据,是物理学中最重要
的定理之一。
动能定理指出,物体在加速运动时,其动能增加,而在减速运动时,其动能
减少。
一、动能定理的内容
动能定理指出,当物体在加速运动时,其动能增加,而在减速运动时,其动能减少。
它可
以用来解释物体运动的原理,并用来计算物体的动能变化。
动能定理的数学表达式为:
$$W_{2}-W_{1}=\Delta W=F\Delta t$$
其中,$W_{2}$和$W_{1}$分别表示物体的最终动能和初始动能,$\Delta W$表示物体的动
能变化,$F$表示外力,$\Delta t$表示时间间隔。
二、动能定理的应用
1、动能定理可以用来解释物体运动的原理。
例如,当一个球从一定高度自由落下时,它
的动能会随着时间的推移而增加,这就是动能定理的体现。
2、动能定理可以用来计算物体的动能变化。
例如,当一个物体从一定高度落下时,可以
利用动能定理来计算它在落下过程中的动能变化。
3、动能定理也可以用来计算物体的运动轨迹。
例如,当一个物体在一个重力场中运动时,可以利用动能定理来计算它的运动轨迹。
三、动能定理的总结
动能定理是物理学中一个重要的定理,它是物体运动的重要理论依据。
它指出,当物体在
加速运动时,其动能增加,而在减速运动时,其动能减少。
动能定理可以用来解释物体运
动的原理,并用来计算物体的动能变化。
【高中物理】动能定理
湛江市二中物理
组
、3
一、动能EK 1.定义:物体由于运动而具有的能叫动能, 2.公式:Ek=1/2mv2,单位:J. 3.动能是标量,是状态量,V 4.动能的变化△Ek=1/2mVt2-1/2mV02. △Ek>0, 表示物体的动能增加; △Ek<0,表示物体的 动能减少.
二、动能定理
我们在处理问题时可以从能量变化来求功,也可以从物体做功的多少来求能量的变化.
P初
P末,
力做功等于重力势能的增加量W =ΔE =E -E 动能是标量,是状态量,V是瞬时速度。
(2)动能定理适用于单个物体,也适用于系统; 外力对物体做的总功为正功,则物体的动能增加;
克
P增 P末 P
初应用:利用动能定理求变力的功
(3)应用动能定理解题,一般比牛顿第二定律解题要简便. 一般牵扯到力与位移关系的题目中,优先考虑使用动能 定理
3.应用动能定理解题的基本步骤: (1) (2)分析研究对象的受力情况和各个力的做功情 况:受哪些力?每个力是否做功,做正功还ห้องสมุดไป่ตู้做 负功?做多少功?然后求各个力做功的代数和. (3)明确物体在过程的始未状态的动能EK0和EKt (4)列出动能的方程W合=EKt-EK0,及其他必要辅 助方程,进行求解.
P91 题型二
4、使用动能定理应注意的问题:
①物体动能的变化是由于外力对物体做功 引起的.外力对物体做的总功为正功,则 物体的动能增加;反之将减小.外力对物 体所做的总功,应为所有外力做功的代数 和,包含重力.
②有些力在物体运动全过程中不是始终存在的, 若物体运动过程中包含几个物理过程,物体运动 状态、受力等情况均发生变化,因而在考虑外力 做功时,必须根据不同情况分别对待.
第四节 动能 动能定理
1、求解题目时不能凭感觉,应带入相应的物理公式——有凭有据
2、求解动能时,各物理量必须用国际单位,即质量用kg、速度用 m/s
V1 FN f F S
V2
外力F做功: WF FS 摩擦力f做功: W f fs
答:6mg
能力· 思维· 方法
1.玩具火箭内充满压缩空气,在发射的时候利用压缩空气从 火箭的尾部射出笨重的箭身,而使火箭头向前飞行假如在 竖直向上发射的时候,箭头能上升的度为h=16m现改为另 一种发射方式:首先让火箭沿半径为R=4m的半圆形轨道滑行 (如图6-4-1所示),在达到轨道的最低点A时(此时火箭具有 最大的滑行速度),再开动发动机发射火箭,试问按这种方 式发射的火箭头能上升多高?(不计摩擦和空气阻力)
3.单位:焦耳
4.相对性:不同参照系,速度大小不同。
通常选地面、
例题:质量10g、以0.8km/s的速度飞行的子弹, 质量60kg、以10m/s的速度奔跑的运动员,二者 相比,那一个的动能大?
1 1 2 运动员: E m运动员v运动员 60 102 3000J k 运动员 2 2 友情提示
4.长为l的轻绳,一端系一质量为m的小球, 一端固定于O点.在O点正下方距O点h处有一 枚钉子C现将绳拉到水平位置,如图6-43所示.将小球由静止释放,欲使小球到达 最低点后以C为圆心做完整的圆周运动,试 确定h应满足的条件.
图6-4-3
5.从距地面高为h1=1.25m处竖直向下抛出皮球,碰 地后皮球跳起的高度h2=2.5m,不计空气阻力,设 球碰撞地面时无机械能损失,g取10m/s2,则皮球 下抛时的初速度大小是_________m/s。 (答:5 m/s )
(完整版)动能定理
动能定理知识梳理 一、动能(一)动能的表达式1.定义:物体由于运动而具有的能叫做动能.2.公式:E k =mv 2,动能的单位是焦耳. 说明:(1)动能是状态量,物体的运动状态一定,其动能就有确定的值,与物体是否受力无关.(2)动能是标量,且动能恒为正值,动能与物体的速度方向无关.一个物体,不论其速度的方向如何,只要速度的大小相等,该物体具有的动能就相等.(3)像所有的能量一样,动能也是相对的,同一物体,对不同的参考系会有不同的动能.没有特别指明时,都是以地面为参考系相对地面的动能. (二)动能定理1.内容:力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化.2.表达式:W=E -E ,W 是外力所做的总功,E 、E 分别为初末状态的动能.若初、末速度分别为v 1、v 2,则E =mv 21,E =mv . 3.物理意义:动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化,变化的大小由做功的多少来度量.动能定理的实质说明了功和能之间的密切关系,即做功的过程是能量转化的过程.利用动能定理来求解变力所做的功通常有以下两种情况: ①如果物体只受到一个变力的作用,那么:W=E k2-E k1.只要求出做功过程中物体的动能变化量ΔE k ,也就等于知道了这个过程中变力所做的功.②如果物体同时受到几个力作用,但是其中只有一个力F 1是变力,其他的力都是恒力,则可以先用恒力做功的公式求出这几个恒力所做的功,然后再运用动能定理来间接求变力做的功:W 1+W 其他=ΔE k .可见应把变力所做的功包括在上述动能定理的方程中. ③注意以下两点:122k 1k 1k 1k 1k 122k 1222a.变力的功只能用表示功的符号W来表示,一般不能用力和位移的乘积来表示.b.变力做功,可借助动能定理求解,动能中的速度有时也可以用分速度来表示.4.理解动能定理(1)力(合力)在一个过程中对物体所做的功,等于物体在这个过程中动能的变化。
教科版高中物理必修二4.4《动能 动能定理》ppt课件
实验方案(如图4-4-2)
图4-4-2
测小车的质量M ⇓ 安装器材,平衡摩擦力 ⇓ 让砝码拉动小车运动 ⇓ 纸带记录小车的运动情况 ⇓ 数据分析:拉力做功与小车动能改变的关系
实验结论:如果绳的拉力对小车所做的功 mgx等于小车对应时间的动能变化量,可得 出结论:恒力对物体所做的功等于物体动能 的变化量.
二、合外力做功和物体动能的变化 动能定理的推导 (1)建立情景:
图4-4-1
如图4- 4-1所示,光滑水平面上质量为 m 的物体,在恒力F作用下,经位移x后,速度 由v1增加到v2.
(2)推导依据: Fx ___ 外力做的总功:W= ma____ 由牛顿第二定律:F=
2 v2 2-v1 2a 由运动学公式:x=__________ 1 2 1 2 (3)结论:W= 2mv2-2mv14 动能Fra bibliotek动能定理
1.理解动能的概念,会用功能关系导出动能 的定义式,并会用动能的定义式进行计 算. 2.用实验来探究恒力做功与物体动能变化的 关系,导出动能定理. 3.理解动能定理,知道动能定理的适用条件, 知道用动能定理解题的基本步骤,会用动 能定理解决力学问题.
一、动能 运动 1.定义:物体由于
(3)小车所受的阻力f应包括车受的摩擦力和打 点计时器对车后所拖纸带的摩擦力. (4)小车应靠近打点计时器,并且要先接通电 源后放手.在小车停止运动前应按住小车.
【典例1】 如图4-4-3所示,一质量为2 kg的铅球从离地面
动能定理的应用 2 m高处自由下落,陷入沙坑2 cm深处,求沙子对铅球的
即W=Ek2-Ek1=ΔEk
内容:合外力在一个过程中对物体所做的 动能的变化 功等于物体在这 个过程中 .
1 2 1 2 W= mv2- mv1 2 2
高二物理动能定理
动能定理中的合力既可以是恒力, 也可以是变力。
既可以是重力、弹力、摩擦力、也 可以是任何其他的力
三、利用动能定理解题的方法
1. 明确研究对象、研究过程,找出初、 末状态的速度情况. 2. 要对物体进行正确受力分析(包括重 力),明确各力的做功大小及正负情 况.有些力在运动过程中不是始终存 在,若物体运动过程中包含几个物理 过程,物体运动状态受力情况均发生 变化,因而在考虑外力做功时,必须 根据不同情况分别对待.
3. 明确物体在过程的起始状态动能和 末状态的动能. 4. 列出动能定理的方程 ,及其它必要 的解题方程进行求解.
深圳上门 深圳上门
txd62tzu
媳妇,是这样,我想好了,还是继续南下吧。反正这一带都很富庶,在别的地儿开个店照样可以发达的。再说了,这武 汉三镇水患多,我们可实在是再经受不起一次大洪灾了。而且啊,我们父子四个都是旱鸭子,最好还是找一个离水远一 点儿的地方立足吧!”乔氏说:“可是,这自古就有‘若想富,沿江住’的说法啊!”耿老爹想一想,说:“可不是呢, 这也是我们首选汉口镇的理由啊!可是,这武汉三镇确实比其他的沿江城镇更不适合我们这些旱鸭子生活啊!我想啊, 还是另找一个水患少一些的富庶地方发展更稳妥一些!”看着乔氏母女俩呆坐在桌子边上不动筷子,耿正兄妹三人也吃 不下去了。毕竟,这半年多以来,大家在一个锅里吃饭,确实是真心相处来着。而耿老爹自己又何尝没有离别的那份不 舍呢?白家母女俩是在自己父子们最困难的时候收留了他们的啊!而且,这母女俩是那么善良,那么善解人意但是,耿 老爹心里非常明白,是时候必须果断地带着孩子们离开这里了,而且越早走越好!若要再这样住下去,非但帮不了白家 的什么忙,还只怕是会给乔氏以后的生活带来诸多的不便了。耿英说得很对,小青将来成家之后,她还得有自己的生活 啊!想到这里,耿老爹爽快地说:“喏,大家快吃饭!吃完饭,咱们就动手干了。这个活儿不是多么费劲儿,比起亮家 来,容易多了去了。”乔氏用手绢擦擦眼睛,轻轻地说:“耿大哥,你不用带娃娃们刷家了。你不知道,我和青丫头她 爹当初急着盖这些房子,想的是你们父子们住一间房子太憋屈,盖一些大房子先给你们住的。既然你们现在执意要走, 这两间老房子已经足够我们娘儿俩眼下住了。等青丫头什么时候成婚的时候,让他们自己刷吧。若是早刷了不住人,过 些时间也就不新了。你说呢?”耿老爹问:“这么说,你和青丫头是不准备现在住过去的了?”乔氏摇摇头,轻轻地说: “不,我是永远不会住那些新屋的。我要一直住在这个老房子里,这是我和丫头她爹住的房子”这个话题太沉重了。大 家只能含着眼泪吃完这顿早饭。看大家都不再吃了,小青和耿英收拾起碗筷端到灶台上去洗刷,乔氏却依然坐在圆桌边 上没有动。耿老爹见她没有动,也就没有动。耿正和耿直也不好离开,或者说是不想离开。于是,大家继续坐在那里说 话。耿老爹说:“走之前,我想去码头上看看船老大,还想再祭奠祭奠我白兄弟。”乔氏无声地点点头。停一停,乔氏 轻轻地叹了一口气,细细地看看耿正,又拉过耿直来,攥着他的手问耿老爹:“你准备哪天带娃娃们走?”耿老爹问: “你说真得不刷家了?”乔氏又无声地点点头。耿老爹轻轻地说:“那我们今儿个上午就到码头上去,明儿个一早就 走。”乔氏还是无声地点点头。碗筷洗刷完了。乔氏还坐在
动能与动能定理
动能与动能定理动能是描述物体的运动状态和能量的一种物理量。
在物理学中,动能通常用符号K表示,其计算公式为K=½mv²,其中m为物体的质量,v为物体的速度。
动能定理则描述了动能的改变与物体所受合外力的关系。
本文将从动能的概念、计算公式,以及动能定理的推导和应用等方面进行探讨。
1. 动能的概念动能是物体在运动过程中所具有的能量,它随着物体的速度增加而增加。
当物体停止运动时,动能为零。
动能的单位是焦耳(J)。
在经典物理学中,动能的计算公式为K=½mv²,其中m为物体的质量,v为物体的速度。
正如计算公式所示,动能与物体的质量和速度的平方成正比。
2. 动能定理的推导动能定理描述了物体运动的改变与物体所受合外力的关系。
根据牛顿第二定律F=ma,将其代入动能的计算公式K=½mv²中,可得到K=½m(v²-0)。
根据牛顿第二定律的形式F=ma,我们知道力可以表示为F=dp/dt,其中p是物体的动量,t是时间。
代入动量的定义p=mv,可得到F=mdv/dt。
将这个方程代入动能的计算公式中,可得到K=½mdv/dt *v。
对动能公式进行简化后,可得到K=d(½mv²)/dt,即动能的变化率等于物体所受合外力的功率。
3. 动能定理的应用动能定理可以应用于多种物理问题的求解和分析。
首先,我们可以利用动能定理来计算物体的速度和位移。
通过已知物体的质量、起始速度、物体所受合外力的功率等信息,可以利用动能定理来求解相应的物理量。
其次,动能定理可以帮助我们理解和解释物体的能量转化过程。
例如,当一个物体从较高的位置下落时,它的重力势能被转化为动能,从而使其速度增加。
在碰撞等过程中,动能定理也可以用于分析和计算能量的守恒与转化。
总结:动能是物体运动时所具有的能量,与物体的质量和速度的平方成正比。
动能定理描述了动能的变化与物体所受合外力的关系,通过动能定理可以计算物体的速度和位移,并用于分析能量的转化过程。
动能 动能定理
A 功和能量都是标量,单位:焦 B 功是能量转化的量度 C 功是过程量,能是状态量
一.动能: 物体由于运动而具有的能叫做动 能
物体的动能跟物体的质量和速度都 有关系, 现在让我们复习一下初中做过的 实验
实验结论: 1 物体的质量越大,做功 越多,动能越大 2 物体速度越大,做功越多, 动能越大
动能与质量和速度的定量关系如何呢
1 W=-FS= m(V22-V12)得: 2 2 2 m(V - V2 ) 1 F 2S 3 2 2 2 10 (300 100 ) N 1600N -2 2 5 10
作ห้องสมุดไป่ตู้: 练习三 红对勾
如果物体受到几个力的共同作用,则 W=EK2- EK1表示各个力做功的代数和。 即:合力所做的功。这就是动能定理。
二、动能定理:
合力所做的功等于物体动能的变化, 也可以说外力做功的和等于物体动能 的变化。
动能定理: 合力所做的功等于物体动能的变化
W = EK2 — Ek1
功
动能变化
动能定理的适用范围:
课堂小结:
1、动能公式:EK=1/2MV2 2、动能定理:合力所做的功等于动能的变化。 W=EK2-EK1.会推导动能定理公式 3、动能定理的适用范围:不但适用于恒力作用 下直线运动,而且适用于变力作用下及物体作曲 线运动的情况。
4、知道利用动能定理解决力学问题的基本步骤
5、动能定理的应用:可用来求力、功、速度或 位移。
随堂练习: 1、改变汽车的质量和速度,都能使汽车的动能 发生改变,在下列几种情况汽车的动能各是原 来的几倍?
A、质量不变,速度增大到原来的2倍
B、速度不变,质量增大到原来的2倍。
C、质量减半,速度增大到原来的4倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动能动能定理
一、教学目标
知识目标:1、理解动能的概念;
2、知道动能的定义式,会用动能的定义式进行计算;
3、理解动能定理及其推导过程,知道动能定理的适用范围。
能力目标:1、运用演绎推导方式推导动能定理的表达式。
2、理论联系实际,培养学生分析问题的能力。
德育目标:通过动能定理的演绎推导,培养学生对科学研究的兴趣。
二、教学重难点
重点:1、动能的概念;
2、动能定理及其应用。
难点:对动能定理的理解。
三、教学用具
投影片、导轨、物块(或小球两个)。
四、教学过程:
(一)引入:
初中我们曾对动能这一概念有简单、定性的了解,在学习了功的概念及功和能的关系之后,我们再进一步对动能进行研究,定量、深入地理解这一概念及其与功的关系.
[板书课题:动能动能定理]
(二)新课过程
提问:什么是物体的动能?物体的动能与什么因素有关?
学生答:物体由于运动而具有的能叫动能;
物体的动能跟物体的质量和速度有关。
那么,物体的动能跟物体的质量和速度有什么关系呢?
1、实验回顾:让摆球A从导轨上摆下,与滑块B相碰,推动木块运动。
(1)介绍实验装置:动能演示仪,定性研究动能与物体质量、速度之间关系的装置;此装置由两部分组成。
第一部分:摆球A,请学生思考:
a 、同一质量的摆球,从不同高度静止释放,摆球运动到最低点时速度关系如何?
b 、质量不同的摆球,从同一高度释放,摆球运动最低点时速度关系如何? 第二部分:滑块B
思考:具有不同动能的物体A 与滑块B 相碰,推动木块运动。
请问:动能大的物体做的功多还是动能小的物体做的功多?
(2) 演示:
a 、同一质量的摆球,从不同高度静止释放与滑块B 相碰,推动木块运动。
b 、质量不同的摆球,从同一高度释放与滑块B 相碰,推动木块运动。
(3)学生观察并总结实验结论:
物体的质量越大,速度越大,它的动能就越大。
提问:那么我们如何定量表示物体的动能呢?
2、指导学生探索、研究动能定量表达式
(1)根据学生已有的知识,引导学生猜想动能定量表示式的可能形式。
(2)选择研究方法
研究物理问题的方法,通常有实验研究和理论推导等,通过比较、分析,指出这里借助实验测定较为困难,因而采用理论推导的方法来研究。
(3)确定研究思路:功是能量转化的量度,即要根据功和能的转化关系这思路来研究动能的定量表示式。
(4)建立物理模型(让学生自由发挥,分四小组,每组提出设计方案,比较,选出最简洁的模型来分析)
建立模型时,应尽可能排除干扰因素,忽略次要因素,突出主要因素,因为我们是通过做功来对动能进行定量研究的,所以应排除势能等变化带来的干扰,可设想一个物体放在水平面上,为了简单起见,又设想只有一个水平恒力F 对物体做功,因此水平面应是光滑的,总起来说,建立这样的模型:
一个物体的质量为m,放在光滑水平面上,初速度为v1,在与运动方向相同的
恒力F 的作用下发生一段位移s ,速度增大到v2,
W=FS= ma.a v v 22122-=21222
121mv mv -
(5)动能公式的导出
针对学生推理得到的表达式,教师分析概括:合力F 所做的功等于221mv 这个物理量的变化;又据功能关系,F 所做的功等于物体动能的变化,所以在物理学中就用221mv 这个量表示物体的动能.
(6)讲述动能的有关问题:
一、动能
a.物体的动能等于物体质量与物体速度的二次方的乘积的一半.
b.公式E k=22
1mv
c.动能是标量
d.动能的单位:焦(J)
二、动能定理
1. 我们用E k来表示物体的动能,那么刚才得到的表达式可以改写为:W =
E k2-E k1
式中各个字母所表示的物理量:−−→−表示W 合力对物体所做的功;−−→−表示2k E 物体的末动能;−−→−表示1
k E 物体的初动能. 此公式说明了合力对物体所做的功等于物体动能的变化,这个结论叫做动能定理.
当合力对物体做正功时,末动能大于初动能,动能增加;
当合力对物体做负功时,末动能小于初动能,动能减少.
2、教师讲解动能定理的适用条件
动能定理既适合于恒力做功,也适合于变力做功,既适用于直线运动,也适用于曲线运动.
(三)课堂巩固练习:
1.用多媒体出示下列例题:
一架喷气式飞机,质量m=5×103 kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m时,达到起飞速度v=60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02),求飞机受到的牵引力.
2.学生解答上述问题
3.抽查有代表性的解法在实物投影仪上展示:
解:以飞机为研究对象,它受到重力、支持力、牵引力和阻力作用,这四个力做的功分别为W G=0,W
支=0,W 牵=Fs ,W 阻=-kmgs.据动能定理得:Fs-kmgs=021
2 mv 代入数据,解得F =1.8×104 N
通过这道例题要求学生归纳利用动能定理解力学问题的步骤。
4、动能定理解题的步骤
①确定研究对象
②明确合外力的功.
③明确始末状态的动能.
④根据动能定理列方程求解.
(四)小结
这节课我们学习了动能的定量表示及动能定理,知道了合外力作功等于动能的变化。
动能定理是物体受恒力作用且做直线运动的情况下根据牛顿第二定律和运动学公式推导出来的,但对于外力是变力,物体做曲线运动的情况同样适用。
(五)课后思考题:
一个质量为m 的小球用长为L 的细线悬挂于O
点。
小球在水平力F 的作用下,从平衡位置P 缓
慢移到Q 点,细线偏离竖直方向的角度为θ,如
图所示。
则力F 做的功?
(六)作业布置
课本第125页2、4、5、6、7题。