苏科版九年级上册数学《期末考试卷》(带答案)
苏科版九年级上册数学期末考试试题带答案
苏科版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.一元二次方程x 2=-3x 的解是()A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-32.一组数据0、-1、3、2、1的极差是()A .4B .3C .2D .13.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =()A .4.4B .4C .3.4D .2.44.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8cm ,MB =2cm ,则直径AB 的长为()A .9cmB .10cmC .11cmD .12cm5.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有()①c >0;②b 2-4ac <0;③a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个6.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为()A .7:12B .7:24C .13:36D .13:72二、填空题7.若a b b-=23,则a b 的值为________.8.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-∙=__________.9.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.10.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.11.在一块边长为30cm 的正方形飞镖游戏板上,有一个半径为10cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.12.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.13.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF ∆的面积为__________.14.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵坐标y 的对应值如下表:x …-10123…y…-3-3-139…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.15.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.16.如图,在Rt ABC ∆中,90ACB ∠= ,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.三、解答题17.解方程:(1)3x 2-6x -2=0(2)(x -2)2=(2x +1)218.为了从小华和小亮两人中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射击6次,命中的环数如下(单位:环):小华:7,8,7,8,9,9;小亮:5,8,7,8,10,10.(1)填写下表:平均数(环)中位数(环)方差(环2)小华8小亮83(2)根据以上信息,你认为教练会选择谁参加比赛,理由是什么?(3)若小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差.(填“变大”、“变小”、“不变”)19.某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.20.已知二次函数y=-x2+bx+c(b,c为常数)的图象经过点(2,3),(3,0).(1)则b=,c=;(2)该二次函数图象与y轴的交点坐标为,顶点坐标为;(3)在所给坐标系中画出该二次函数的图象;(4)根据图象,当-3<x<2时,y的取值范围是.21.如图,AB是⊙O的弦,AB=4,点P在AmB上运动(点P不与点A、B重合),且∠APB =30°,设图中阴影部分的面积为y.(1)⊙O的半径为;(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.22.如图,在Rt ABC ∆中,90C = ∠,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:ADG ∆∽FEB ∆;(2)若2AD GD =,则ADG ∆面积与BEF ∆面积的比为.23.已知二次函数y =x 2-mx +m 2+m -1(m 为常数).(1)求证:不论m 为何值,该二次函数的图像与x 轴总有两个公共点;(2)将该二次函数的图像向下平移k (k >0)个单位长度,使得平移后的图像经过点(0,-2),则k 的取值范围是.24.(1)如图①,在△ABC 中,AB =m ,AC =n (n >m ),点P 在边AC 上.当AP =时,△APB ∽△ABC ;(2)如图②,已知△DEF (DE >DF ),请用直尺和圆规在直线DF 上求作一点Q ,使DE 是线段DF 和DQ 的比例项.(保留作图痕迹,不写作法)25.如图,四边形ABCD 内接于⊙O ,AC 为⊙O 的直径,D 为 AC 的中点,过点D 作DE ∥AC ,交BC 的延长线于点E .(1)判断DE 与⊙O 的位置关系,并说明理由;(2)若CE =163,AB =6,求⊙O 的半径.26.某商店销售一种商品,经市场调查发现:该商品的月销售量y (件)是售价x (元/件)的一次函数,其售价x 、月销售量y 、月销售利润w (元)的部分对应值如下表:售价x (元/件)4045月销售量y (件)300250月销售利润w (元)30003750注:月销售利润=月销售量×(售价-进价)(1)①求y 关于x 的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m 元/件(m >0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m 的值为.27.在矩形ABCD 中,3AB =,5AD =,E 是射线DC 上的点,连接AE ,将ADE ∆沿直线AE 翻折得AFE ∆.(1)如图①,点F 恰好在BC 上,求证:ABF ∆∽FCE ∆;(2)如图②,点F 在矩形ABCD 内,连接CF ,若1DE =,求EFC ∆的面积;(3)若以点E 、F 、C 为顶点的三角形是直角三角形,则DE 的长为.参考答案1.D【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x2=-3x,x2+3x=0,x(x+3)=0,解得:x1=0,x2=-3.故选:D.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.2.A【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.3.D【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c∴AB DEBC EF=即1.5 1.82EF=解得:EF=2.4故答案为D.【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.4.B 【分析】由CD ⊥AB ,可得DM=4.设半径OD=Rcm ,则可求得OM 的长,连接OD ,在直角三角形DMO 中,由勾股定理可求得OD 的长,继而求得答案.【详解】解:连接OD ,设⊙O 半径OD 为R,∵AB 是⊙O 的直径,弦CD ⊥AB 于点M ,∴DM=12CD=4cm ,OM=R-2,在RT △OMD 中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB 的长为:2×5=10cm .故选B .【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.5.C 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧,y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y 轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x 轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.6.B【分析】根据已知条件想办法证明BG=GH=DH,即可解决问题;【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AB=CD,AD=BC,∵DF=CF,BE=CE,∴12DH DFHB AB==,12BG BEDG AD==,∴13 DH BGBD BD==,∴BG=GH=DH,∴S△ABG=S△AGH=S△ADH,∴S平行四边形ABCD=6S△AGH,∴S△AGH :ABCDS平行四边形=1:6,∵E、F分别是边BC、CD的中点,∴12 EFBD=,∴14EFCBCDDSS=,∴18EFCABCDSS=四边形,∴1176824AGH EFCABCDS SS+=+=四边形=7∶24,故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.7.53【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】∵a b b-=23,∴b=35a,∴a b =5335a a =,故答案为:53.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.8.2【分析】根据根与系数的关系确定12x x +和12x x ∙,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3,12x x ∙=-5∴1212x x x x +-∙=-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a+=-,12cx x a∙=是解答本题的关键.9.y =-5(x +2)2-3【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.10.∠P=∠B(答案不唯一)【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.11.9π【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P (飞镖落在圆内)=100==9009S S ππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.12.15π.【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.13.32【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F ∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x 在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32故答案为32.【点睛】本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.14.-3【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴x=122ba-±-±==−1±2,∵1x<0,∴1x2<0,∵,∴322-≤--,∴-3≤−1−2≤ 2.5 -,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.15.1,8 3,32【分析】根据P的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP∥AB时∴△DCP∽△BCA∴DC DPBC AB=即263DP=,解得DP=1如图:当P在AB上,即DP∥AC∴△DCP∽△BCA∴BD DPBC AC=即6264DP-=,解得DP=83如图,当∠CPD=∠B,且∠C=∠C时,∴△DCP∽△ACB∴PD CDAB AC=即243DP=,解得DP=32故答案为1,83,32.【点睛】本题考查了相似三角形的判定和性质,掌握分类讨论思想并全部找到不同位置的P点是解答本题的关键.16.1452【分析】先在CB上取一点F,使得CF=12,再连接PF、AF,然后利用相似三角形的性质和勾股定理求出AF,即可解答.【详解】解:如图:在CB 上取一点F ,使得CF=12,再连接PF 、AF ,∵∠DCE=90°,DE=4,DP=PE ,∴PC=12DE=2,∵14CF CP =,14CP CB =∴CF CPCP CB=又∵∠PCF=∠BCP ,∴△PCF ∽△BCP ,∴14PF CF PB CP ==∴PA+14PB=PA+PF ,∵PA+PF≥AF ,==∴PA+14PB ≥.2∴PA+14PB 的最小值为2,【点睛】本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.17.(1)x 1=1+3,x 2=1-3;(2)x 1=13,x 2=-3【分析】(1)利用配方法解方程即可;(2)先移项,然后利用因式分解法解方程.【详解】(1)解:x 2-2x =23x 2-2x +1=23+1(x -1)2=53x -1=∴x 1=1x 2=1(2)解:[(x -2)+(2x +1)][(x -2)-(2x +1)]=0(3x -1)(-x -3)=0∴x 1=13,x 2=-3【点睛】本题考查了解一元二次方程的应用,能灵活运用各种方法解一元二次方程是解题的关键.18.(1)8,8,23;(2)选择小华参赛.(3)变小【分析】(1)根据方差、平均数和中位数的定义求解;(2)根据方差的意义求解;(3)根据方差公式求解.【详解】(1)解:小华射击命中的平均数:7+8+7+8+9+96=8,小华射击命中的方差:2222122(78)2(88)2(98)63S ⎡⎤=-+-+-=⎣⎦,小亮射击命中的中位数:8+8=82;(2)解:∵x 小华=x 小亮,S 2小华<S 2小亮∴选小华参赛更好,因为两人的平均成绩相同,但小华的方差较小,说明小华的成绩更稳定,所以选择小华参赛.(3)解:小亮再射击2次,分别命中7环和9环,则小亮这8次射击成绩的方差变小.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数和众数.19.(1)14;(2)14.【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A通道通过的概率=1 4,故答案为:1 4;(2)解:列表如下:A B C DA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E,它的发生有4种可能:(A,A)、(B,B)、(C,C)、(D,D)∴P(E)=416=14.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(1)b=2,c=3;(2)(0,3),(1,4)(3)见解析;(4)-12<y≤4【分析】(1)将点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 即可;(2)由(1)可得解析式,将二次函数的解析式华为顶点式即可;(3)根据二次函数的定点、对称轴及所过的点画出图象即可;(4)直接由图象可得出y 的取值范围.【详解】(1)解:把点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 得3=-4+2b+c0=-9+3b+c ⎧⎨⎩,解得23b c =⎧⎨=⎩,故答案为:b=2,c=3;(2)解:令x=0,c=3,二次函数图像与y 轴的交点坐标为则(0,3),二次函数解析式为y=y =-x 2+2x +3=-(x-1)²+4,则顶点坐标为(1,4).(3)解:如图所示…(4)解:根据图像,当-3<x <2时,y 的取值范围是:-12<y ≤4.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象与性质.21.(1)4;(2)y=2x +83π-(0<4)【分析】(1)根据圆周角定理得到△AOB 是等边三角形,求出⊙O 的半径;(2)过点O 作OH ⊥AB ,垂足为H,先求出AH=BH=12AB=2,再利用勾股定理得出OH 的值,进而求解.【详解】(1)解:(1)∵∠APB=30°,∴∠AOB=60°,又OA=OB ,∴△AOB 是等边三角形,∴⊙O 的半径是4;(2)解:过点O 作OH ⊥AB ,垂足为H则∠OHA =∠OHB =90°∵∠APB =30°∴∠AOB =2∠APB =60°∵OA=OB ,OH ⊥AB ∴AH=BH=12AB=2在Rt △AHO 中,∠AHO =90°,AO =4,AH =2∴OH∴y =16×16π-1212×4×x=2x +83π-(0<4).【点睛】本题考查了圆周角定理,勾股定理、掌握一条弧所对的圆周角是这条弧所对的圆心角的一半是解题的关键.22.(1)见解析;(2)4.【分析】(1)先证∠AGD=∠B ,再根据∠ADG=∠BEF=90°,即可证明;(2)由(1)得ADG ∆∽FEB ∆,则△ADG 面积与△BEF 面积的比=2AD EF ⎛⎫⎪⎝⎭=4.【详解】(1)证:在矩形DEFG 中,GDE FED ∠=∠=90°∴GDA FEB ∠=∠=90°∵C GDA ∠=∠=90°∴A AGD A B ∠+∠=∠+∠=90°∴AGD B ∠=∠在ADG ∆和FEB ∆中∵AGD B ∠=∠,GDA FEB ∠=∠=90°∴ADG ∆∽FEB∆(2)解:∵四边形DEFG 为矩形,∴GD=EF ,∵△ADG ∽△FEB ,∴224ADG BEF S AD AD S EF GD ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭故答案为4.【点睛】本题考查了相似三角形的判定与性质,根据题意证得△ADG ∽△FEB 是解答本题的关键.23.(1)证明见解析;(2)k ≥34.【分析】(1)根据判别式的值得到△=(2m -1)2+3>0,然后根据判别式的意义得到结论;(2)把(0,-2)带入平移后的解析式,利用配方法得到k=(m+12)²+34,即可得出结果.【详解】(1)证:当y =0时x 2-mx +m 2+m -1=0∵b 2-4ac =(-m )2-4(m 2+m -1)=8m 2-4m 2-4m +4=4m 2-4m +4=(2m -1)2+3>0∴方程x 2-+m 2+m -1=0有两个不相等的实数根∴二次函数y =x 2-+m 2+m -1图像与x 轴有两个公共点(2)解:平移后的解析式为:y =x 2-mx +m 2+m -1-k,过(0,-2),∴-2=0-0+m²+m-1-k,∴k=m²+m+1=(m+12)²+34,∴k ≥34.【点睛】本题考查了二次函数图象与几何变换以及图象与x 轴交点个数确定方法,能把一个二次三项式进行配方是解题的关键.24.(1)2m n ;(2)见解析.【分析】(1)根据相似三角形的判定方法进行分析即可;(2)直接利用相似三角形的判定方法以及结合做一角等于已知角进而得出答案.【详解】(1)解:要使△APB ∽△ABC 成立,∠A 是公共角,则AB AC AC AP =,即m n n AP =,∴AP=2m n.(2)解:作∠DEQ =∠F,如图点Q 就是所求作的点【点睛】本题考查了相似变换,正确掌握相似三角形的判定方法是解题的关键.25.(1)DE 与⊙O 相切;理由见解析;(2)4.【分析】(1)连接OD ,由D 为 AC 的中点,得到 AD CD=,进而得到AD=CD ,根据平行线的性质得到∠DOA =∠ODE =90°,求得OD ⊥DE ,于是得到结论;(2)连接BD ,根据四边形对角互补得到∠DAB =∠DCE ,由 AD CD=得到∠DAC =∠DCA =45°,求得△ABD ∽△CDE ,根据相似三角形的性质即可得到结论.【详解】(1)解:DE 与⊙O 相切证:连接OD ,在⊙O 中∵D 为 AC 的中点∴AD CD ∴AD =DC∵AD =DC ,点O 是AC 的中点∴OD ⊥AC∴∠DOA =∠DOC =90°∵DE ∥AC∴∠DOA =∠ODE =90°∵∠ODE =90°∴OD ⊥DE∵OD ⊥DE ,DE 经过半径OD 的外端点D∴DE 与⊙O 相切.(2)解:连接BD∵四边形ABCD 是⊙O 的内接四边形∴∠DAB +∠DCB =180°又∵∠DCE +∠DCB =180°∴∠DAB =∠DCE∵AC 为⊙O 的直径,点D 、B 在⊙O 上,∴∠ADC =∠ABC =90°∵ AD CD=,∴∠ABD =∠CBD =45°∵AD =DC ,∠ADC =90°∴∠DAC =∠DCA =45°∵DE ∥AC∴∠DCA =∠CDE =45°在△ABD 和△CDE 中∵∠DAB =∠DCE ,∠ABD =∠CDE =45°∴△ABD ∽△CDE ∴AB CD =AD CE ∴6CD =163AD ∴AD =DC =CE =163,AB =6,在Rt △ADC 中,∠ADC =90°,AD =DC =,∴AC8∴⊙O 的半径为4.【点睛】本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.26.(1)①y =-10x +700;②当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(2)2.【分析】(1)①将点(40,300)、(45,250)代入一次函数表达式:y=kx+b 即可求解;②设该商品的售价是x 元,则月销售利润w=y (x -30),求解即可;(2)根据进价变动后每件的利润变为[x-(m+30)]元,用其乘以月销售量,得到关于x 的二次函数,求得对称轴,判断对称轴大于50,由开口向下的二次函数的性质可知,当x=40时w 取得最大值2400,解关于m 的方程即可.【详解】(1)①解:设y =kx +b (k ,b 为常数,k ≠0)根据题意得:,4030045250k b k b +=⎧⎨+=⎩解得:10700k b =-⎧⎨=⎩∴y =-10x +700②解:当该商品的进价是40-3000÷300=30元设当该商品的售价是x 元/件时,月销售利润为w 元根据题意得:w =y (x -30)=(x -30)(-10x +700)=-10x 2+1000x -21000=-10(x -50)2+4000∴当x =50时w 有最大值,最大值为4000答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(2)由题意得:w=[x-(m+30)](-10x+700)=-10x 2+(1000+10m )x-21000-700m对称轴为x=50+2m ∵m >0∴50+2m >50∵商家规定该运动服售价不得超过40元/件∴由二次函数的性质,可知当x=40时,月销售量最大利润是2400元∴-10×402+(1000+10m )×40-21000-700m=2400解得:m=2∴m 的值为2.【点睛】本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,正确列式并明确二次函数的性质,是解题的关键.27.(1)见解析;(2)EFC ∆的面积为513;(3)53、5、15、5)3【分析】(1)先说明∠CEF=∠AFB 和90B C ∠=∠= ,即可证明ABF ∆∽FCE ∆;(2)过点F 作FG DC ⊥交DC 与点G ,交AB 于点H ,则90EGF AHF ∠=∠= ;再结合矩形的性质,证得△FGE ∽△AHF ,得到AH=5GF ;然后运用勾股定理求得GF 的长,最后运用三角形的面积公式解答即可;(3)分点E 在线段CD 上和DC 的延长线上两种情况,然后分别再利用勾股定进行解答即可.【详解】(1)解:∵矩形ABCD 中,∴90B C D ∠=∠=∠=o由折叠可得90D EFA ∠=∠=∵90EFA C ∠=∠=∴90CEF CFE CFE AFB ∠+∠=∠+∠=∴CEF AFB∠=∠在ABF ∆和FCE ∆中∵AFB CEF ∠=∠,90B C ∠=∠=∴ABF ∆∽FCE∆(2)解:过点F 作FG DC ⊥交DC 与点G ,交AB 于点H ,则90EGF AHF ∠=∠= ∵矩形ABCD 中,∴90D ∠=由折叠可得:90D EFA ∠=∠= ,1DE EF ==,5AD AF ==∵90EGF EFA ∠=∠=∴90GEF GFE AFH GFE ∠+∠=∠+∠=∴GEF AFH∠=∠在FGE ∆和AHF ∆中∵,90GEF AFH EGF FHA ∠=∠∠=∠=∴FGE ∆∽AHF∆∴EFGFFA AH=∴15GFAH=∴5AH GF=在Rt AHF ∆中,90AHF ∠=∵222AH FH AF +=∴222(5)(5)5GF GF +-=∴513GF =∴EFC ∆的面积为155221313⨯⨯=(3)设DE=x ,以点E 、F 、C 为顶点的三角形是直角三角形,则:①当点E 在线段CD 上时,∠DAE<45°,∴∠AED>45°,由折叠性质得:∠AEF=∠AED>45°,∴∠DEF=∠AED+∠AEF>90°,∴∠CEF<90°,∴只有∠EFC=90°或∠ECF=90°,a,当∠EFC=90°时,如图所示:由折叠性质可知,∠AFE=∠D=90°,∴∠AFE+∠EFC=90°,∴点A ,F ,C 在同一条线上,即:点F 在矩形的对角线AC 上,在Rt △ACD 中,AD=5,CD=AB=3,根据勾股定理得,由折叠可知知,EF=DE=x ,AF=AD=5,∴,在Rt △ECF 中,EF 2+CF 2=CE 2,∴x 2+)2=(3-x )2,解得x=5)3即:DE=5)3b,当∠ECF=90°时,如图所示:点F 在BC 上,由折叠知,EF=DE=x ,AF=AD=5,在Rt △ABF 中,根据勾股定理得,,∴CF=BC-BF=1,在Rt △ECF 中,根据勾股定理得,CE 2+CF 2=EF 2,(3-x )2+12=x 2,解得x=53,即:DE=53;②当点E 在DC 延长线上时,CF 在∠AFE 内部,而∠AFE=90°,∴∠CFE<90°,∴只有∠CEF=90°或∠ECF=90°,a 、当∠CEF=90°时,如图所示由折叠知,AD=AF=5,∠AFE=90°=∠D=∠CEF ,∴四边形AFED 是正方形,∴DE=AF=5;b 、当∠ECF=90°时,如图所示:∵∠ABC=∠BCD=90°,∴点F 在CB 的延长线上,∴∠ABF=90°,由折叠知,EF=DE=x ,AF=AD=5,在Rt △ABF 中,根据勾股定理得,22AF AB -,∴CF=BC+BF=9,在Rt △ECF 中,根据勾股定理得,CE 2+CF 2=EF 2,∴(x-3)2+92=x 2,解得x=15,即DE=15,5(345)3-53、5、15.【点睛】本题属于相似形综合题,主要考查了相似三角形的判定和性质、折叠的性质、勾股定理等知识点,正确作出辅助线构造相似三角形和直角三角形是解答本题的关键.。
苏科版九年级上册数学《期末考试试题》附答案解析
2021年苏科版数学九年级上册期末测试 学校________ 班级________ 姓名________ 成绩________ 一、选择题 1.下列四组图形中,相似图形为( ) A. B.C .D.2.某鞋店先后卖出7双某品牌的运动鞋,其尺码依次为(单位:码):40,39,40,41,42,41,41,则这组数据的众数是( )A. 39B. 40C. 41D. 423.若=2x 是一元二次方程230x x a -+=的一个根,则a 的值是( )A. 2B. –2C. 1D. –14.如图,在矩形ABCD 中,4AB =,3AD =,若以A 为圆心,4为半径作⊙A .下列四个点中,在⊙A 外的是()A. 点AB. 点BC. 点CD. 点D5.如图,在ABC ∆中,90ACB ∠=︒,1sin 2A =,CD 平分ACB ∠,则BDC ∠的度数是( )A. 45ºB. 60ºC. 70ºD. 75º6.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为6,则ADE ∆的周长是( )A. 933+B. 1263+C. 1833+D. 1863+7.如图,护林员在离树8m 的A 处测得树顶B 的仰角为45°,已知护林员的眼睛离地面的距离AC 为1.6m ,则树的高度BD 为( )A. 8mB. 9.6mC. (42+1.6)mD. (82+1.6)m 8.如图,二次函数223y x x =--的图像与x 轴交于A 、B 两点,与y 轴交于点C ,则下列说法错误..的是( )A. 4AB =B. 45ABC ∠=︒C. 当0x >时,3y <-D. 当1x >时,y 随x 的增大而增大9.我们把宽与长的比值等于黄金比例512的矩形称为黄金矩形.如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AE AD等于( )A. 22B. 512-C. 352 D. 512+ 10.如图,二次函数2(1)y a x =-的图像经过点(1,4)A -,与y 轴交于点B ,C 、D 分别为x 轴、直线1x =上的动点,当四边形ABCD 的周长最小时,CD 所在直线对应的函数表达式是( )A. 332y x =-B. 31y x =-C. 8455y x =-D. 513y x =- 二、填空题11.有一组数据:1,0,–1,3,2,它们的平均数是___________.12.二次函数23y x =-的顶点坐标为_____________.13.若'''ABC A B C ∆∆,2''AB A B =,ABC ∆的周长为4,则'''A B C ∆的周长为_______.14.一个圆锥的母线长为5cm ,底面圆半径为3 cm ,则这个圆锥的侧面积是____ cm ².(结果保留π). 15.如图,一个圆形飞镖板被等分为四个圆心角相等的扇形.假设飞镖投中游戏板上的每一个点都是等可能的(若投中圆的边界、图中的分割线或没有投中,则重投1次),则任意投掷一次,飞镖投中阴影部分的概率是_______.16.如图,⊙O 弦AC 与半径OB 交于点D ,//BC OA ,AO AD =,则C ∠的度数为______º.17.如图,点A 、B 、C 为正方形网格纸中的3个格点,则tan BAC ∠的值是________.18.如图,用同样长度的篱笆分别围成一个正方形ABCD 和矩形AEFG ,若图中矩形BCHE 的面积比矩形DGFH 的面积多100m 2,则矩形AEFG 的长比宽多_______m.三、解答题19.计算:2sin 45tan 30cos302︒+︒︒20.解方程:2(1)62x x -=+.21.若二次函数2y x bx c =++图像经过(1,0)A -,(3,4)B -两点,求b 、c的值.22.在一个不透明的口袋中有2个红球和2个黄球,4个球除颜色外都相同.(1)搅匀后从中任意摸出1个球,摸到红球的概率为 ; (2)搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出一个球,请用列表或画树状图的方法求出两次都摸到红球的概率.23.某校课程中心为了了解学生对开设3D 打印、木工制作、机器人和电脑编程四门课程的喜爱程度,随机调查了部分学生,每人只能选一项最喜爱的课程.图①是四门课程最喜爱人数的扇形统计图,图②是四门课程男、女生最喜爱人数的条形统计图.(1)求图①中m 的值,补全图②中的条形统计图,标上相应的人数;(2)若该校共有1800名学生,则该校最喜爱3D 打印课程的学生约有多少人?24.如图,在正方形网格纸中,ABC ∆的三个顶点都在格点上.以点O 为位似中心,把ABC ∆按相似比2:1放大,得到对应的'''A B C ∆.(1)请在第一象限内画出'''A B C ∆';设(,)D a b 为线段AC 上一点,则点D 经过上述变换后得到的对应点'D 的坐标为 (用含a 、b 的式子表示);(2)'''A B C ∆的面积为 .25.如图,一艘轮船在A 处测得灯塔P 在船的北偏东30º的方向,轮船沿着北偏东60º的方向航行16km 后到达B 处,这时灯塔P 在船的北偏西75º的方向.求灯塔P 与B 之间的距离(结果保留根号).26.如图,AC 、BD 是以AB 为直径的半圆的两条切线,AD 与半圆交于点E ,连接CE ,过点E 作EF CE ⊥,交AB 于点F .(1)若弧AE 的度数为140º,求D ∠的度数;(2)求证: ACE BFE ∆~∆.27.如图,已知二次函数23y x bx =-++的图像与x 轴交于A 、C 两点(点A 在点C 的左侧),与y 轴交于点B ,且OA OB =.(1)求线段AC 的长度:(2)若点P 在抛物线上,点P 位于第二象限,过P 作PQ AB ⊥,垂足为Q .已知2PQ =,求点P 的坐标.28.如图①,在ABC ∆中,90ACB ∠=︒,6BC =cm ,动点P 以2cm/s 的速度在ABC ∆的边上沿A B →的方向匀速运动,动点Q 在ABC ∆的边上沿C A →的方向匀速运动,P 、Q 两点同时出发,5s 后,点P 到达终点B ,点Q 立即停止运动(此时点Q 尚未到达点A ).设点P 运动的时间为t (s),APQ ∆的面积为S (cm 2),S 与t 的函数图像如图②所示.(1)图①中AC = cm ,点Q 运动速度为 cm/s;(2)求函数S 的最大值;(3)当t 为何值时,以A 、P 、Q 为顶点的三角形与ABC ∆相似?请说明理由.答案与解析一、选择题1.下列四组图形中,相似图形为( ) A. B. C.D.【答案】B【解析】【分析】 根据相似多边形的判定,对应角相等且对应边成比例即可解题.【详解】解:A 图形一个是等边三角形一个是等腰三角形,所以不是相似三角形;B 图形两个都是正方形,是相似图形;C 图形一个是正方形,一个是菱形,不是相似图形;D 图形一个是正方形,一个是长方形,不是相似图形;故选B.【点睛】本题考查了相似多边形的判定,属于简单题,熟悉相似多边形的判定条件是解题关键. 2.某鞋店先后卖出7双某品牌的运动鞋,其尺码依次为(单位:码):40,39,40,41,42,41,41,则这组数据的众数是( )A. 39B. 40C. 41D. 42【答案】C【解析】【分析】众数是指数据中出现次数最多的数据,一组数据的众数可以有多个.【详解】解:这7个数据中41出现的次数最多,出现了3次,所以这组数据的众数是41,故选C.【点睛】本题考查了数据的统计,众数的识别,属于简单题,熟悉众数的概念是解题关键.3.若=2x 是一元二次方程230x x a -+=的一个根,则a 的值是( )A. 2B. –2C. 1D. –1【答案】A【解析】【分析】将x=2代入方程即可求解. 【详解】解:将x =2代入一元二次方程230x x a -+=得,a=2,故选A.【点睛】本题考查了一元二次方程的求解,属于简单题,熟悉代入求值的方法是解题关键.4.如图,在矩形ABCD 中,4AB =,3AD =,若以A 为圆心,4为半径作⊙A .下列四个点中,在⊙A 外的是()A. 点AB. 点BC. 点CD. 点D【答案】C【解析】【分析】 连接AC,利用勾股定理求出AC 的长度,即可解题.【详解】解:如下图,连接AC,∵圆A 的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D 在圆A 内,B 在圆上,C 在圆外,故选 C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC 的长是解题关键.5.如图,在ABC ∆中,90ACB ∠=︒,1sin 2A =,CD 平分ACB ∠,则BDC ∠的度数是( )A. 45ºB. 60ºC. 70ºD. 75º 【答案】D【解析】【分析】 利用特殊的三角函数值求出∠A=30°,∠B=60°,再利用角平分线性质得∠ACD=∠BCD=45°,最后利用三角形内角和即可解题.【详解】解:在直角三角形ABC 中,∵90ACB ∠=︒,1sin 2A =, ∴∠A=30°,∠B=60°, 又∵CD 平分ACB ∠,∴∠ACD=∠BCD=45°, ∠BDC=180°-60°-45°=75°, 故选D.【点睛】本题考查了特殊的三角函数值,角平分线的性质,三角形的内角和,属于简单题,熟悉特殊三角函数值是解题关键.6.如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为6,则ADE ∆的周长是( )A. 933+B. 1263+C. 1833+D. 1863+【答案】D【解析】【分析】利用正六边形内接于圆O,证明△AED是特殊的直角三角形,再利用三角函数值即可解题.【详解】解:在正六边形ABCDEF中,每个内角都等于120°,∴∠F=120°,AF=EF,∴∠FAE=∠FEA=30°,∴∠AED=90°,∵正六边形ABCDEF内接于⊙O,∴∠ADE=60°,即△ADE是特殊的直角三角形,AD=2DE,(30°所对直角边等于斜边一半)∵⊙O的半径为6,∴AD=12,DE=6,AE=63,∆∴ADE的周长是1863+, 故选D. 【点睛】本题考查了正六边形的性质,直角三角函数的应用,中等难度,证明△AED是特殊的直角三角形,找到边长之间的关系是解题关键.7.如图,护林员在离树8m的A处测得树顶B的仰角为45°,已知护林员的眼睛离地面的距离AC为1.6m,则树的高度BD为()A. 8mB. 9.6m2+1.6)m2+1.6)m【答案】B【解析】【分析】过点C作CE⊥BD于E,证明△CEB是等腰直角三角形,利用矩形性质即可解题.【详解】解:过点C作CE⊥BD于E,∵∠BCE=45°,∴△CEB是等腰直角三角形,∴CE=BE=8,四边形ACED 是矩形,∴AC=DE=1.6,∴BD=8+1.6=9.6米,故选B.【点睛】本题考查了等腰直角三角形和矩形的性质,属于简单题,正确作辅助线是解题关键.8.如图,二次函数223y x x =--的图像与x 轴交于A 、B 两点,与y 轴交于点C ,则下列说法错误..的是( )A. 4AB =B. 45ABC ∠=︒C. 当0x >时,3y <-D. 当1x >时,y 随x 的增大而增大【答案】C【解析】【分析】 根据已知条件求出抛物线与x 轴的交点坐标,对称轴,利用开口向上时的增减性即可解题.【详解】解:令y=0,即2230x x --=,解得:x 1=3,x 2=-1,∵二次函数223y x x =--的图像与x 轴交于A 、B 两点,与y 轴交于点C , ∴A(-1,0),B(3,0),C(0,-3),∴AB=4,A 项正确,∴△COB 是等腰直角三角形,∴∠ABC=45°,B 项正确,∵抛物线的对称轴为直线x=1,开口向上,∴当1x >时,y 随x 的增大而增大,D 项正确,当0x >时,抛物线对应的图像为y 轴右侧,即函数值能取到最小值,y ≥-4,C 项错误,故选C.【点睛】本题考查了二次函数的图像和性质,中等难度,熟悉二次函数的性质,会求函数与x 轴的交点坐标是解题关键.9.我们把宽与长的比值等于黄金比例51-的矩形称为黄金矩形.如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AE AD等于( )A. 22B. 512C. 352 D. 512【答案】B【解析】【分析】利用黄金矩形的定理求出AD AB =51-,再利用矩形的性质得1AE AB BE AB AD AB AD AD AD AD --===-,代入求值即可解题. 【详解】解:∵矩形ABCD 中,AD=BC,根据黄金矩形的定义可知AD AB =512, ∵BE BC =,∴511151AE AB BE AB AD AB AD AD AD AD ---===-=-=- 故选B【点睛】本题考查了黄金矩形这一新定义,属于黄金分割概念的拓展,中等难度,读懂黄金矩形的定义,表示出边长比是解题关键.10.如图,二次函数2(1)y a x =-的图像经过点(1,4)A -,与y 轴交于点B ,C 、D 分别为x 轴、直线1x =上的动点,当四边形ABCD 的周长最小时,CD 所在直线对应的函数表达式是( )A. 332y x =-B. 31y x =-C. 8455y x =-D. 513y x =- 【答案】D【解析】【分析】 利用对称性和两点之间线段最短,作出辅助线,将A 代入求出函数解析式,进而求出G(3,4),B(0,1),H (0,-1),待定系数法即可求出直线解析式.【详解】解:如下图,取A 关于抛物线的对称轴的对应点G ,B 关于x 轴的对称点H,连接HG ,与抛物线的对称轴交于点D,与x 轴的交点为点C,连接AD,CD,BC,利用对称的性质可知DA=DG ,CB=CH,∵两点之间线段最短,并且此时H,C,D,G 四点共线,∴此时的四边形ABCD 是周长最小的,将()1,4A -代入()21y a x =-中得,a=1, ∴抛物线的解析式为()21y x =-,∴抛物线的对称轴为直线x=1,∴G(3,4),B(0,1),H (0,-1)设直线CD 的解析式为y=kx+b,(k ≠0)代入G(3,4), H (0,-1)得 431k b b =+⎧⎨-=⎩解得:5 31kb⎧=⎪⎨⎪=-⎩,∴直线CD的解析式为513y x=-故选D.【点睛】本题考查了二次函数的图像和性质,待定系数法求直线解析式,对称的实际应用,难度较大,首先利用对称性作出辅助线,再用待定系数法求解析式是解题关键.二、填空题11.有一组数据:1,0,–1,3,2,它们的平均数是___________.【答案】1【解析】【分析】根据平均数计算公式即可解题.【详解】解:平均数=1013215+-++=,所以它们的平均数是1.【点睛】本题考查了平均数的计算,属于简单题,熟悉平均数的计算方法是解题关键.12.二次函数23y x=-的顶点坐标为_____________.【答案】(0,-3).【解析】【分析】利用顶点式即可直接找到顶点坐标.【详解】解:由顶点式可知23y x=-的顶点为(0,-3).【点睛】本题考查了二次函数的顶点坐标,属于简单题,熟悉二次函数的性质是解题关键.13.若'''ABC A B C∆∆,2''AB A B=,ABC∆的周长为4,则'''A B C∆的周长为_______.【答案】2【解析】【分析】利用相似三角形的周长比等于相似比即可解题.【详解】解:∵'''ABC A B C ∆~∆,2''AB A B =,∴2:1AB A B ''=:,∵ABC ∆的周长为4,∴'''A B C ∆的周长为2.【点睛】本题考查了相似三角形的性质,属于简单题,熟悉相似三角形的周长比等于相似比是解题关键. 14.一个圆锥的母线长为5cm ,底面圆半径为3 cm ,则这个圆锥的侧面积是____ cm ².(结果保留π).【答案】15π【解析】【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】解:圆锥的侧面积=π×3×5=15πcm 2故答案为:15π.【点睛】本题考查圆锥侧面积公式的运用,掌握公式是关键.15.如图,一个圆形飞镖板被等分为四个圆心角相等的扇形.假设飞镖投中游戏板上的每一个点都是等可能的(若投中圆的边界、图中的分割线或没有投中,则重投1次),则任意投掷一次,飞镖投中阴影部分的概率是_______.【答案】12【解析】【分析】 将阴影部分进行平移,利用阴影部分的面积占总面积的一半即可解题.【详解】解:由题可知,图形被四等分,各圆心角的度数等于90°, 所以将阴影部分进行平移可得,阴影部分的面积占整个圆的面积的一半,∴任意投掷一次,飞镖投中阴影部分的概率是12. 【点睛】本题考查了几何概型,属于简单题,对阴影部分进行平移是解题关键.16.如图,⊙O 的弦AC 与半径OB 交于点D ,//BC OA ,AO AD =,则C ∠的度数为______º.【答案】36°. 【解析】【分析】利用同弧所对的圆心角的度数是圆周角度数的2倍得∠O=2∠C,再利用平行线性质得∠O=∠B 即可证明OA=AD,最后利用三角形内角和即可解题.【详解】解:设∠C=x,由图可知∠O=2∠C=2x,(同弧所对的圆心角的度数是圆周角度数的2倍)∵//BC OA ,∴∠O=∠B=2x,∵AO AD =,∴∠O=∠ADO=∠CDB=2x,在△CDB 中,5x=180°,(三角形内角和) 解得:x=36°, ∴∠C=36°. 【点睛】本题考查了圆周角和圆心角的关系,平行线的性质,三角形内角和的性质,中等难度,熟悉圆周角的性质是解题关键.17.如图,点A 、B 、C 为正方形网格纸中的3个格点,则tan BAC ∠的值是________.【答案】2【解析】【分析】作辅助线, 取AC得中点D,连接BD,利用格点三角形的性质求出各边边长,证明△BAC是等腰三角形,再利用三线合一性质证明直角三角形,最后运用正切值等于对边比邻边即可解题.【详解】解:取AC得中点D,连接BD,设相邻两点之间的距离为1,利用格点三角形特征可得:AB=5,BC=5,AC=25,∴△BAC是等腰三角形,AD=5,∴∠BDA=90°,(三线合一)BD=25,∴25tan5BDBACAD∠===2.【点睛】本题考查了解直角三角形,中等难度,作辅助线证明直角三角形,利用边长之间的关系求正切值是解题关键.18.如图,用同样长度的篱笆分别围成一个正方形ABCD和矩形AEFG,若图中矩形BCHE的面积比矩形DGFH的面积多100m2,则矩形AEFG的长比宽多_______m.【答案】20【解析】【分析】分别设AD=y,DG=x,利用矩形BCHE的面积比矩形DGFH的面积多100m2,列出方程,根据实际情况进行取舍,即可解题.【详解】解:设AD=y,DG=x,由图可知,AB=y,BE=x,AE=y-x,∵矩形BCHE的面积比矩形DGFH的面积多100m2,∴xy-(y-x)x=100,解得:x=10,或x=-10(不合题意,舍)∵矩形AEFG 的长为AG=x+y,宽为GF=y-x,∴长-宽= x+y-(y-x )=2x=20,∴矩形AEFG 的长比宽多20m.【点睛】本题考查了矩形的性质,中等难度,用方程思想进行解题是解题关键.三、解答题19.计算:2sin 45tan 30cos30︒+︒︒【答案】12 【解析】【分析】利用特殊的三角函数值即可解题.【详解】解:原式12 =12【点睛】本题考查了特殊的三角函数值,属于简单题,熟悉特殊的三角函数值是解题关键.20.解方程:2(1)62x x -=+.【答案】x 1=5,x 2=-1.【解析】【分析】先将一元二次方程变成一般式,再利用十字相乘的方法即可解题.【详解】解:()2162x x -=+x 2-2x+1=62x +x 2-4x-5=0(x-5)(x+1)=0∴x 1=5,x 2=-1.【点睛】本题考查了一元二次方程的求解,中等难度,熟悉十字相乘的方法是解题关键.21.若二次函数2y x bx c =++图像经过(1,0)A -,(3,4)B -两点,求b 、c 的值.【答案】b=-3,c=-4.【解析】【分析】将()1,0A -,()3,4B -代入2y x bx c =++中,求解二元一次方程组即可解题.【详解】解:将()1,0A -,()3,4B -代入2y x bx c =++中得, 10493b c b c-+=⎧⎨-=++⎩ 解得:34b c =-⎧⎨=-⎩∴b=-3,c=-4.【点睛】本题考查了含参数的二次函数的求解,属于简单题,熟悉求解二元一次方程组的方法是解题关键. 22.在一个不透明的口袋中有2个红球和2个黄球,4个球除颜色外都相同.(1)搅匀后从中任意摸出1个球,摸到红球的概率为 ;(2)搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出一个球,请用列表或画树状图的方法求出两次都摸到红球的概率. 【答案】111224()(). 【解析】【分析】(1)利用概率等于红球的个数除以全部球的个数即可解题;(2)树状图见下图.【详解】解:1()∵4个球中一共有2个红球,∴P (红)=24=12, 2()树状图见下图,由树状图可知一共有16种可能,其中两次都摸中红球的有4种,∴P (红)=416=14.【点睛】本题考查了概率的实际应用,树状图的画法,属于简单题,熟悉概率的计算方法和树状图的画法是解题关键.23.某校课程中心为了了解学生对开设的3D打印、木工制作、机器人和电脑编程四门课程的喜爱程度,随机调查了部分学生,每人只能选一项最喜爱的课程.图①是四门课程最喜爱人数的扇形统计图,图②是四门课程男、女生最喜爱人数的条形统计图.(1)求图①中m的值,补全图②中的条形统计图,标上相应的人数;(2)若该校共有1800名学生,则该校最喜爱3D打印课程的学生约有多少人?【答案】(1)m=30,图形见详解(2)630【解析】【分析】(1)用100%分别减去电脑编程,3D打印,木工制作的百分比即可求出m,根据喜爱机器人的总人数为36,用36除以30%即可求出总人数,再由总人数分别计算出木工制作和电脑编程的人数即可;(2)用1800×35%即可解题.【详解】解:(1)1-15%-35%-20%=30%,∴m=30,∴总人数=36÷30%=120人,其中木工制作=120×15%=18人,所以女生有18-9=9人,电脑编程=120×20%=24人, 所以女生有24-14=10人,补全统计图见下图,(2)1800×35%=630人, ∴该校最喜爱3D 打印课程的学生约有630人.【点睛】本题考查了扇形统计图和条形统计图的使用,统计的实际应用,中等难度,从统计图中提取有效信息是解题关键.24.如图,在正方形网格纸中,ABC ∆的三个顶点都在格点上.以点O 为位似中心,把ABC ∆按相似比2:1放大,得到对应的'''A B C ∆.(1)请在第一象限内画出'''A B C ∆';设(,)D a b 为线段AC 上一点,则点D 经过上述变换后得到的对应点'D 的坐标为 (用含a 、b 的式子表示); (2)'''A B C ∆的面积为 .【答案】1'D ()的坐标为(2a,2b) (2)12 【解析】 【分析】(1)位似图形见下图,根据相似比即可求出对应坐标;(2)三角形的面积等于矩形的面积减去四周三个直角三角形的面积.【详解】解:1()位似图形见下图, ∵相似比2:1,∴横纵坐标都扩大2倍,∵(),D a b∴'D 的坐标为(2a,2b )(2)将'''A B C ∆放进矩形中, 则S '''A B C ∆=8×4-12×4×4-12×4×2-12×8×2=12. 【点睛】本题考查了位似图形的作图,相似三角形的性质,中等难度,熟悉相似三角形的性质是解题关键. 25.如图,一艘轮船在A 处测得灯塔P 在船的北偏东30º的方向,轮船沿着北偏东60º的方向航行16km 后到达B 处,这时灯塔P 在船的北偏西75º的方向.求灯塔P 与B 之间的距离(结果保留根号).【答案】62【解析】 【分析】作辅助线得到两个特殊的直角三角形,利用三角函数即可解题. 【详解】解.过点P 作PQ ⊥AB 于Q, 由方位角的性质可知∠ABC=30°, ∵∠PBC=15°, ∴∠PBQ=45°,∴△PQB 是等腰直角三角形, 设PQ=x,则BQ=x, ∵∠PAQ=30°, ∴AQ=30PQtan ︒=3x ,∵AB=16,即x+3x =16, 解得:x=83-8 ∴PB=()228388682x =-=-【点睛】本题考查了三角函数的实际应用,属于简单题,熟悉三角函数的概念和特殊三角函数值是解题关键. 26.如图,AC 、BD 是以AB 为直径的半圆的两条切线,AD 与半圆交于点E ,连接CE ,过点E 作EF CE ⊥,交AB 于点F .(1)若弧AE 的度数为140º,求D ∠的度数; (2)求证: ACE BFE ∆~∆.【答案】(1)∠D=70°, (2)见详解. 【解析】【分析】(1)连接OE,利用切线证明∠DBA=∠CAB=90°,根据已知得∠AOE=140°,在直角三角形ABD 中即可解题;(2)利用同角的余角相等证明∠CEA=∠FEB, ∠CAE=∠EBA 即可证明三角形相似. 【详解】解:(1)设圆的圆心为点O,连接OE(作图略), ∵AC 、BD 是以AB 为直径的半圆的两条切线, ∴∠DBA=∠CAB=90°, ∵弧AE 的度数为140º,即∠AOE=140°, ∵OA=OE, ∴∠EAO=20°, 在直角三角形ABD 中,∠D=70°, (2)∵AB 为直径,∴∠AEB=90°,(直径所对圆周角是90°) ∵EF CE ⊥, ∴∠CEF=90°, ∴∠CEA=∠FEB (同角的余角相等) 又∵∠CAE+∠EAF=∠EBA+∠EAF ∴∠CAE=∠EBA (同角的余角相等)∴ACE BFE ∆~∆(有两个角对应相等的三角形是相似三角形)【点睛】本题考查了圆的性质,相似三角形的判定,中等难度,熟悉圆的性质和三角形相似的判定方法是解题关键.27.如图,已知二次函数23y x bx =-++的图像与x 轴交于A 、C 两点(点A 在点C 的左侧),与y 轴交于点B ,且OA OB =.(1)求线段AC 的长度:(2)若点P 在抛物线上,点P 位于第二象限,过P 作PQ AB ⊥,垂足为Q .已知PQ =,求点P 的坐标.【答案】(1)AC=4 (2)P (-1,4)或(-2,3). 【解析】 【分析】(1)求出B 点坐标,再利用OA=OB 求出A 点坐标,代入二次函数求出解析式,再令y=0即可求出与x 轴的交点坐标,进而即可解题;(2)作PF ∥x 轴于F,利用∠BAO=45°,证明三角形PQF 是等腰直角三角形,求出PF=2,再设出P,F 的坐标,代入直线解析式求解方程即可解题.【详解】解:(1)由23y x bx =-++可知二次函数与y 轴的交点为B (0,3) ∵OA=OB, ∴A (-3,0),将A 点代入二次函数解析式得:b=-2,即二次函数解析式为223y x x =--+, 令y=0,即2230x x --+=解得:x 1=-3,x 2=1, ∴C (1,0) ∴AC=4,(2)过点P 作PF ∥x 轴于F,由A,B 坐标可得直线AB 的解析式为y=x+3, ∴∠BAO=45°, 又∵PQ AB ⊥, PF ∥x 轴 ∴三角形PQF 是等腰直角三角形, 设P(a,b), ∵P 在抛物线上, ∴b=-a 2-2a+3,∵2PQ =∴PF=2(勾股定理), ∴F (a+2, -a 2-2a+3)将F 代入y=x+3,即-a 2-2a+3=a+5, 解得a 1=-1,a 2=-2, ∴P (-1,4)或(-2,3).【点睛】本题考查了二次函数的图像和性质,等腰直角三角形的性质,二次函数与动点问题,难度较大,熟悉函数的性质,求出解析式是解(1)的关键;设出坐标,将动点问题转换成求解一元二次方程的问题是(2)的解题关键.28.如图①,在ABC ∆中,90ACB ∠=︒,6BC =cm ,动点P 以2cm/s 的速度在ABC ∆的边上沿A B →的方向匀速运动,动点Q 在ABC ∆的边上沿C A →的方向匀速运动,P 、Q 两点同时出发,5s 后,点P 到达终点B ,点Q 立即停止运动(此时点Q 尚未到达点A ).设点P 运动的时间为t (s),APQ ∆的面积为S (cm 2),S 与t 的函数图像如图②所示.(1)图①中AC = cm ,点Q 运动的速度为 cm/s; (2)求函数S 的最大值;(3)当t 为何值时,以A 、P 、Q 为顶点的三角形与ABC ∆相似?请说明理由.【答案】(1)AC=8cm,点Q 运动的速度为5÷5=1cm/s;(2)当t=4时,函数S的最大值S=48 5(3) t=40 13或t=167【解析】【分析】(1)由勾股定理求得AC的长,再利用APQ∆的面积为9,得92AQ CP⨯=,即可解题;(2)过点P作PH⊥AC 于H,证明△AHP∽△ACB得AP ABPH BC=,求出边长表示S△APQ=2AQ PH⨯=68t?52t-,整理成顶点式即可解题;(3)分两种情况讨论当∠PQA=90°时,当∠QPA=90°时,见详解.【详解】解:(1)∵动点P以2cm/s的速度运动了5秒到B点, 如下图,∴AB=10cm,∵90ACB∠=︒,6BC=cm,∴AC=8cm(勾股定理)由图2可知当时间为5秒时,APQ∆的面积为9,即92AQ CP⨯=,∵BC=CP=6,∴AQ=3,CQ=8-3=5,∴点Q运动的速度为5÷5=1cm/s;(2)如下图,过点P作PH⊥AC于H,易证△AHP∽△ACB,∴AP ABPH BC=,∴2106tPH=,解得:PH=65t∵CQ=t,∴AQ=8-t,∴S △APQ=2AQ PH ⨯=68t?52t -=()2232434845555t t t -+=--+ ∴当t=4时,函数S 的最大值S=485(3)分两种情况,当∠PQA=90°时,如下图, △AQP ∽△ACB, ∴AP AB AQ AC =,21088t t =-,解得:t=4013;当∠QPA=90°时,如下图, △AQP ∽△ABC, ∴AP AC AQ AB =,28810t t =-,解得:t=167;综上, t=4013或t=167时以A 、P 、Q 为顶点的三角形与ABC ∆相似. 【点睛】本题考查了相似三角形的综合性质,动点与相似三角形的性质,二次函数与动点问题,难度大,综合性强,熟悉相似三角形的判定与性质,建立边长之间的关系, 用代数式表示出边长是解题关键.。
苏科版九年级上册数学期末测试卷及含答案
苏科版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若α、β是一元二次方程x2+3x-1=0的两个根,那么α2+2α-β的值是()A.-2B.4C.0.25D.-0.52、下列关于x的一元二次方程有实数根的是()A. x2+1=0B. x2+x+1=0C. x2-x+1=0D. x2-x-1=03、在扇形中,∠AOB=90°,面积为4πcm2,用这个扇形围成一个圆锥的侧面,这个圆锥的底面半径为 ( )A.1cmB.2cmC. cmD.4cm4、如图,直线AB,CD相交于点O,∠AOC=30°,半径为1cm的⊙P的圆心在射线OA上,开始时,PO=6cm.如果⊙P以1cm/秒的速度沿由A向B的方向移动,那么当⊙P的运动时间t(秒)满足条件时,⊙P与直线CD相交( )A.3≤t≤6B.t≥6C.t<4D.4<t<85、如图,已知在 Rt△ABC 中,∠ACB=90°,AC=3,BC=4,以AB 为直径向外作半圆O,P 是半圆O上的一个动点,M 是CP 的中点,当点P 沿半圆O 从点A 运动至点B 时,点M 的运动路径长为( )A. πB. πC.2πD. π6、用配方法解一元二次方程x2-8x+2=0,此方程可化为的正确形式是().A.(x-4)2=14B.(x-4)2=18C.(x+4)2=14D.(x+4)2=187、若是一元二次方程的两根,则=()A. B.2 C.3 D.58、某鞋店老板为了解各种运动鞋的销售情况,从而为进货做参考,统计了一段时间所销售的100双运动鞋的尺码,则鞋店老板最需要知道这些运动鞋尺码的()A.平均数B.众数C.中位数D.方差9、在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为2 ,则这个圆锥的侧面积是( )A.4πB.3πC.2 πD.2π10、一元二次方程x2﹣2x﹣5=0根的判别式的值是()A.24B.16C.﹣16D.﹣2411、下列方程中,是一元二次方程的是()A. B. C. D.12、如图,PA,PB分别与半径为3的OO相切于点A,B,直线CD分别交PA,PB于点C,D,并切OO于点E,当PO=5时,△PCD的周长为()A.4B.5C.8D.1013、某商场对上周女装的销售情况进行了统计,销售情况如表:颜色黄色绿色白色紫色红色数量(件)100 180 220 80 550经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差14、方程是关于的一元二次方程,则()A. B. C. D.15、关于x的方程(m+1)x2﹣(m﹣1)x+1=0是一元二次方程,那么m是( )A.m≠1B.m≠﹣1C.m≠1且m≠﹣1D.m≠0二、填空题(共10题,共计30分)16、如图,四边形ABCD内接于⊙O,E是BC延长线上一点,若∠BAD=100°,则∠DCE的大小是________.17、关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为________.18、如图,已知是的直径,点,在上,,,则的半径为________.19、某公司的营业额为100万元,的营业额为121万元,则该公司年营业额的年均增长率为________.20、一个布袋里装有2个红球和2个白球,它们除颜色外都相同,从中任意摸出2个球,摸到的两个球都是红球的概率为________.21、数据1,2,2,3,2,4的众数是________.22、已知点A、B、C、D均在圆上,AD∥BC,AC 平分∠BCD,∠ADC=120°,则∠ABC的度数为________.23、△ABC中,∠A=40°,若点O是△ABC的外心,则∠BOC=________°;若点I是△ABC的内心,则∠BIC=________°.24、某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程为________.25、有一组数据如下:2,3,3,4,则这组数据的方差是________.三、解答题(共5题,共计25分)26、解方程:4x2-8x+1=027、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?28、在洋浦一新开业的以经营男式皮鞋为主的鞋店当服务员的阿丽是个做事善于观察的小姑娘,上班一段时间后,她发现各种尺码的男式皮鞋销量并不均衡,于是她把这个发现记录下来交给了她的老板:你认为这个销售记录对老板管理鞋店生意有用吗?如果你认为有用,请说明你的理由,并请你帮这个老板策划一下如何利用这些信息?29、如图.电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光.(1)任意闭合其中一个开关,则小灯泡发光的概率等于多少;(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.30、若数据10,10,x,8的众数与平均数相同,求这组数的中位数.参考答案一、单选题(共15题,共计45分)1、B2、D3、A4、D5、B6、A7、D9、B10、A11、D12、C13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
苏科版九年级上册数学《期末考试卷》及答案解析
苏 科 版 数 学 九 年 级 上 学 期期 末 测 试 卷一、选择题(共 30 分)1.sin60°的值是( ) A. 12 B. 3 C. 3 D. 32.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( )A. 1B. 2C. 3D. 43.抛物线2(1)2y x =-+的顶点坐标是( )A. (﹣1,2)B. (﹣1,﹣2)C. (1,﹣2)D. (1,2) 4.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( )A. 2B. 3C. 4D. 55. 某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( )A . 144(1﹣x )2=100 B. 100(1﹣x )2=144 C. 144(1+x )2=100 D. 100(1+x )2=144 6. 如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A. 40°B. 50°C. 80°D. 100°7.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A. B. C. D.8.已知二次函数y=x2+mx+n的图像经过点(―1,―3),则代数式mn+1有()A. 最小值―3B. 最小值3C. 最大值―3D. 最大值39.如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A. 73B. 234+ C. 1433D.223310.已知关于x的一元二次方程(x - a)(x - b)-12= 0 (a < b)的两个根为x1、x2,(x1< x2)则实数a、b、x1、x2的大小关系为()A. a < x1< b <x2B. a < x1< x2 < bC. x1< a < x2< bD. x1< a < b < x2二、填空题(共16 分)11.已知x1、x2是关于x 的方程x2+4x-5=0的两个根,则x1+ x2=_____.12.将抛物线y=(x+2)2-5向右平移2个单位所得抛物线解析式为_____.13.已知圆锥的底面半径是3cm,母线长是5cm,则圆锥的侧面积为_____cm2.(结果保留π)14.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为_____km.15.若点M(-1,y1),N(1,y2),P(72, y3 )都在抛物线y=-mx2 +4mx+m2 +1(m>0)上,则y1、y2、y3大小关系为_____(用“>”连接).16.如图,在由边长为1的小正方形组成的网格中.点A,B,C,D 都在这些小正方形的格点上,AB、CD 相交于点E,则sin∠AEC的值为_____.17.如图,在边长为6 的等边△ABC 中,D 为AC 上一点,AD=2,P 为BD 上一点,连接CP,以CP 为边,在PC 的右侧作等边△CPQ,连接AQ 交BD 延长线于E,当△CPQ 面积最小时,QE=____________.18.如图,△ABC中,AB=AC=5,BC=6,AD⊥BC,E、F分别为AC、AD上两动点,连接CF、EF,则CF+EF的最小值为_____.三、解答题(共84 分)19.计算:(1)2sin30°+cos45°3(2)30-(12)-2+ tan2 30︒.20.解方程:(1)x2-8x+6=0(2)(x -1)2 -3(x -1)=021.计划开设以下课外活动项目:A 一版画、B 一机器人、C 一航模、D 一园艺种植.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生必须选且只能选一个项目),并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;扇形统计图中,选“D一园艺种植”的学生人数所占圆心角的度数是°;(2)请你将条形统计图补充完整;(3)若该校学生总数为1500 人,试估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数22.甲、乙、丙三人进行乒乓球比赛.他们通过摸球的方式决定首场比赛的两个选手:在一个不透明的口袋中放入两个红球和一个白球,这些球除颜色外其他都相同,将它们搅匀,三人从中各摸出一个球,摸到红球的两人即为首场比赛选手.求甲、丙两人成为比赛选手的概率.(请用画树状图或列表等方法写出分析过程并给出结果.)23.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DP A=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.24.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.25.如图,四边形 ABCD 为矩形.(1)如图1,ECD 上一定点,在AD 上找一点F ,使得矩形沿着EF 折叠后,点D 落在 BC 边上(尺规作图,保留作图痕迹);(2)如图2,在AD 和CD 边上分别找点M ,N ,使得矩形沿着MN 折叠后BC 的对应边B' C'恰好经过点D ,且满足B' C' ⊥BD(尺规作图,保留作图痕迹);(3)在(2)的条件下,若AB =2,BC =4,则CN = .26.如图,在矩形 ABCD 中,CE ⊥BD ,AB=4,BC=3,P 为 BD 上一个动点,以 P 为圆心,PB 长半径作⊙P ,⊙P 交 CE 、BD 、BC 交于 F 、G 、H (任意两点不重合),(1)半径 BP 的长度范围为 ;(2)连接 BF 并延长交 CD 于 K ,若 tan ∠KFC = 3 ,求 BP ;(3)连接 GH ,将劣弧 HG 沿着 HG 翻折交 BD 于点 M ,试探究PM BP是否为定值,若是求出该值,若不是,请说明理由.27.如图,二次函数22y ax ax c =-+ (a < 0) 与 x 轴交于 A 、C 两点,与 y 轴交于点 B ,P 为 抛物线的顶点,连接 AB ,已知 OA :OC=1:3.(1)求 A 、C 两点坐标;(2)过点 B 作 BD ∥x 轴交抛物线于 D ,过点 P 作 PE ∥AB 交 x 轴于 E ,连接 DE ,①求 E 坐标;②若tan∠BPM=25,求抛物线的解析式.28.如图1,直线y=2x+2 分别交x 轴、y 轴于点A、B,点C为x轴正半轴上的点,点D从点C处出发,沿线段CB匀速运动至点B 处停止,过点D作DE⊥BC,交x轴于点E,点C′是点C关于直线DE的对称点,连接EC′,若△ DEC′与△ BOC 的重叠部分面积为S,点D的运动时间为t(秒),S与t 的函数图象如图2 所示.(1)V D= ,C 坐标;(2)图2中,m= ,n= ,k= .(3)求出S与t 之间的函数关系式(不必写自变量t的取值范围).答案与解析一、选择题(共 30 分)1.sin60°的值是( )A. 12B.C.D. 【答案】C【解析】【分析】根据特殊角的三角函数值解答即可.【详解】sin60°=2, 故选C.【点睛】本题考查特殊角的三角函数值,熟记几个特殊角的三角函数值是解题关键.2.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( )A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】将x=2代入方程即可求得k 的值,从而得到正确选项.【详解】解:∵一元二次方程x 2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B .【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立. 3.抛物线2(1)2y x =-+的顶点坐标是( )A. (﹣1,2)B. (﹣1,﹣2)C. (1,﹣2)D. (1,2) 【答案】D【解析】【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x =-+的顶点坐标是(1,2).故选D .4.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( )A. 2B. 3C. 4D. 5【答案】B【解析】【分析】根据题意由有唯一的众数4,可知x =4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x =4,∵将数据从小到大排列为:1,2,3,3,4,4,4,∴中位数为:3.故选B .【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.5.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( )A. 144(1﹣x )2=100B. 100(1﹣x )2=144C. 144(1+x )2=100D. 100(1+x )2=144 【答案】D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x ),2013年的产量为100(1+x )(1+x )=100(1+x )2,即所列的方程为100(1+x )2=144,故选D .点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.6. 如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A. 40°B. 50°C. 80°D. 100°【答案】A【解析】 试题分析:先根据圆周角定理的推论得到∠ACB=90°,再利用互余计算出∠B=40°,然后根据圆周角定理求解.解:连结BC ,如图,∵AB 为⊙O 的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=90°﹣50°=40°,∴∠ADC=∠B=40°.故选A .考点:圆周角定理.7.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是 A. B. C. D.【答案】C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.8.已知二次函数y=x2+mx+n的图像经过点(―1,―3),则代数式mn+1有()A. 最小值―3B. 最小值3C. 最大值―3D. 最大值3【答案】A【解析】【分析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代数式mn+1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.9.如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()3 B. 234 C. 1433D.2233【答案】C【解析】【分析】由A、C关于BD对称,推出P A=PC,推出PC+PE=P A+PE,推出当A、P、E共线时,PE+PC的值最小,观察图象可知,当点P与B重合时,PE+PC=6,推出BE=CE=2,AB=BC=4,分别求出PE+PC的最小值,PD的长即可解决问题.【详解】解:∵在菱形ABCD中,∠A=120°,点E是BC边的中点,∴易证AE⊥BC,∵A、C关于BD对称,∴P A=PC,∴PC+PE=P A+PE,∴当A、P、E共线时,PE+PC的值最小,即AE的长.观察图象可知,当点P与B重合时,PE+PC=6,∴BE=CE=2,AB=BC=4,∴在Rt△AEB中,BE=23∴PC+PE的最小值为3∴点H的纵坐标a=23∵BC∥AD,∴AD PDBE PB==2,∵BD=43∴PD=2834333⨯=,∴点H的横坐标b=833,∴a+b=83143 2333+=;故选C.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.已知关于x的一元二次方程(x - a)(x - b)-12= 0 (a < b)的两个根为x1、x2,(x1< x2)则实数a、b、x1、x2的大小关系为()A. a < x1< b <x2B. a < x1< x2 < bC. x1< a < x2< bD. x1< a < b < x2【答案】D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】如图,设函数y=(x−a)(x−b),当y=0时,x=a或x=b,当y=12时,由题意可知:(x−a)(x−b)−12=0(a<b)的两个根为x1、x2,由于抛物线开口向上,由抛物线的图象可知:x1<a<b<x2故选:D.【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.二、填空题(共16 分)11.已知x1、x2是关于x 的方程x2+4x-5=0的两个根,则x1+ x2=_____.【答案】-4【解析】【分析】根据根与系数的关系即可求解.【详解】∵x1、x2是关于x 的方程x2+4x-5=0的两个根,∴x1+ x2=-41=-4,故答案为:-4.【点睛】此题主要考查根与系数的关系,解题的关键是熟知x1+ x2=-ba.12.将抛物线y=(x+2)2-5向右平移2个单位所得抛物线解析式为_____.【答案】y=x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−5向右平移2个单位,得:y=(x+2−2)2−5,即y=x2−5.故答案是:y=x2−5.【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.13.已知圆锥的底面半径是3cm,母线长是5cm,则圆锥的侧面积为_____cm2.(结果保留π)【答案】15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=12×6π×5=15πcm2.故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键.14.如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为_____km.【答案】23+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD 的长,从而得出答案.【详解】如图所示,过点A作AD⊥OB于点D,由题意知,∠AOD=30°,OA=4km,则∠OAD=60°,∴∠DAB=45°,在Rt△OAD中,AD=OAsin∠AOD=4×sin30°=4×12=2(km),OD=OAcos∠AOD=4×cos30°=4×32=3km),在Rt△ABD中,BD=AD=2km,∴OB=OD+BD=32(km),故答案为:32.【点睛】本题主要考查解直角三角形的应用−方向角问题,解题的关键是构建合适的直角三角形,并熟练运用三角函数进行求解.15.若点M(-1,y1),N(1,y2),P(72, y3 )都在抛物线y=-mx2 +4mx+m2 +1(m>0)上,则y1、y2、y3大小关系为_____(用“>”连接).【答案】y1<y3<y2【解析】【分析】利用图像法即可解决问题.【详解】y=-mx2 +4mx+m2 +1(m>0),对称轴为x=422mm-=-,观察二次函数的图象可知:y1<y3<y2.故答案为:y1<y3<y2.【点睛】本题考查二次函数图象上的点的特征,解题的关键是学会利用图象法比较函数值的大小.16.如图,在由边长为1的小正方形组成的网格中.点A,B,C,D 都在这些小正方形的格点上,AB、CD 相交于点E,则sin∠AEC的值为_____.25【解析】【分析】通过作垂线构造直角三角形,由网格特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.【详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD221310+=由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=22,由AC∥BD可得△ACE∽△BDE,∴13 CE ACDE BD==,∴CE=14CD=10,在Rt△ECF中,sin∠AEC=2252510CFCE=⨯=,故答案为:25.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.17.如图,在边长为6 的等边△ABC 中,D 为AC 上一点,AD=2,P 为BD 上一点,连接CP,以CP 为边,在PC 的右侧作等边△CPQ,连接AQ 交BD 延长线于E,当△CPQ 面积最小时,QE=____________.【答案】7 7【解析】【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相似三角形的性质可求AE的长,即可求解.【详解】如图,过点D作DF⊥BC于F,∵△ABC ,△PQC 是等边三角形,∴BC =AC ,PC =CQ ,∠BCA =∠PCQ =60°,∴∠BCP =∠ACQ ,且AC =BC ,CQ =PC ,∴△ACQ ≌△BCP (SAS )∴AQ =BP ,∠CAQ =∠CBP ,∵AC =6,AD =2,∴CD =4,∵∠ACB =60°,DF ⊥BC ,∴∠CDF =30°,∴CF =12CD =2,DF =CF ÷tan30°3=3 ∴BF =4,∴BD 22DF BF +1612+7,∵△CPQ 是等边三角形,∴S △CPQ 32, ∴当CP ⊥BD 时,△CPQ 面积最小,∴cos ∠CBD =BP BF BC BD=, ∴627BP = ∴BP 127, ∴AQ =BP =77, ∵∠CAQ =∠CBP ,∠ADE =∠BDC ,∴△ADE ∽△BDC ,∴AE AD BC BD=,∴2 627 AE=,∴AE=677,∴QE=AQ−AE=677.故答案为;677.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP的长是本题的关键.18.如图,△ABC中,AB=AC=5,BC=6,AD⊥BC,E、F分别为AC、AD上两动点,连接CF、EF,则CF+EF的最小值为_____.【答案】24 5【解析】【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.【详解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC边上的中线,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C关于AD对称,∴BF =CF ,根据垂线段最短得出:CF +EF =BF +EF ≥BF +FM =BM ,即CF +EF ≥BM ,∵S △ABC =12×BC ×AD =12×AC ×BM , ∴BM =642455BC AD AC, 即CF +EF 的最小值是245, 故答案:245. 【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目. 三、解答题(共 84 分)19.计算:(1)2sin30°+cos45°(2) 0 -(12)-2 + tan 2 30︒ .【答案】(1)2-2(2)83- 【解析】【分析】(1)根据特殊角的三角函数值即可求解;(2)根据负指数幂、零指数幂及特殊角的三角函数值即可求解.【详解】(1)2sin30°+cos45°=2×12+=1+2-3=2-2(2) 0 -(12)-2 + tan 2 30︒=1-4+(3)2=-3+1 3=83 -.【点睛】此题主要考查实数的运算,解题的关键是熟知特殊角的三角函数值.20.解方程:(1)x2-8x+6=0(2)(x -1)2 -3(x -1)=0【答案】(1)x14,x24(2)x1=1,x2=4.【解析】【分析】(1)根据配方法即可求解;(2)根据因式分解法即可求解.【详解】(1)x2-8x+6=0x2-8x+16=10(x-4)2=10x-4=∴x14,x24(2)(x -1)2 - 3(x -1)=0(x -1)(x -1-3)=0(x -1)(x-4)=0∴x-1=0或x-4=0解得x1=1,x2=4.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知其解法的运用.21.计划开设以下课外活动项目:A 一版画、B 一机器人、C 一航模、D 一园艺种植.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生必须选且只能选一个项目),并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;扇形统计图中,选“D一园艺种植”的学生人数所占圆心角的度数是°;(2)请你将条形统计图补充完整;(3)若该校学生总数为 1500 人,试估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总 人数【答案】(1)200;72(2)60(人),图见解析(3)1050人.【解析】【分析】(1)由A 类有20人,所占扇形的圆心角为36°,即可求得这次被调查的学生数,再用360°乘以D 人数占总人数的比例可得;(2)首先求得C 项目对应人数,即可补全统计图;(3)总人数乘以样本中B 、C 人数所占比例可得.【详解】(1)∵A 类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷36360=200(人); 选“D 一园艺种植”的学生人数所占圆心角的度数是360°×40200=72°, 故答案为:200、72;(2)C 项目对应人数为:200−20−80−40=60(人);补充如图.(3)1500×8060200=1050(人), 答:估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数为1050人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.甲、乙、丙三人进行乒乓球比赛.他们通过摸球的方式决定首场比赛的两个选手:在一个不透明的口袋中放入两个红球和一个白球,这些球除颜色外其他都相同,将它们搅匀,三人从中各摸出一个球,摸到红球的两人即为首场比赛选手.求甲、丙两人成为比赛选手的概率.(请用画树状图或列表等方法写出分析过程并给出结果.)【答案】1 3 .【解析】【分析】先画树状图得到所有等可能的情况,然后找出符合条件的情况数,利用概率公式求解即可. 【详解】画树状图为:由树状图知,共有6种等可能的结果数,其中甲、丙两人成为比赛选手的结果有2种,所以甲、丙两人成为比赛选手的概率为26=13.【点睛】本题考查了列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DP A=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.【答案】(123(2)13π﹣23.【解析】【分析】(1)根据垂径定理得CE的长,再根据已知DE平分AO得CO=12AO=12OE,根据勾股定理列方程求解.(2)先求出扇形的圆心角,再根据扇形面积和三角形的面积公式计算即可.【详解】解:(1)连接OF,∵直径AB⊥DE,∴CE=12DE=1.∵DE平分AO,∴CO=12AO=12OE.设CO=x,则OE=2x.由勾股定理得:12+x2=(2x)2.x3∴OE=2x 23.即⊙O 23.(2)在Rt△DCP中,∵∠DPC=45°,∴∠D=90°﹣45°=45°.∴∠EOF=2∠D=90°.∴S扇形OEF=22390360π⋅⋅⎝⎭=13π.∵∠EOF=2∠D=90°,OE=OF=3 3S Rt △OEF =21232⎛⎫⨯ ⎪ ⎪⎝⎭=23. ∴S 阴影=S 扇形OEF ﹣S Rt △OEF =13π﹣23. 【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了扇形的面积公式、圆周角定理和含30度的直角三角形三边的关系.24.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.【答案】(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.25.如图,四边形ABCD 为矩形.(1)如图1,E为CD上一定点,在AD上找一点F,使得矩形沿着EF折叠后,点D落在BC边上(尺规作图,保留作图痕迹);(2)如图2,在AD和CD边上分别找点M,N,使得矩形沿着MN折叠后BC的对应边B' C'恰好经过点D,且满足B' C' ⊥BD(尺规作图,保留作图痕迹);(3)在(2)的条件下,若AB=2,BC=4,则CN= .【答案】(1)图见解析(2)图见解析(3)51【解析】【分析】(1)以点E为圆心,以DE长为半径画弧,交BC于点D′,连接DD′,作DD′的垂直平分线交AD于点F即可;(2)先作射线BD,然后过点D作BD的垂线与BC的延长线交于点H,作∠BHD的角平分线交CD于点N,交AD于点M,在HD上截取HC′=HC,然后在射线C′D上截取C′B′=BC,此时的M、N即为满足条件的点;(3)在(2)的条件下,根据AB=2,BC=4,即可求出CN的长.【详解】(1)如图,点F为所求;(2)如图,折痕MN、矩形A’B’C’D’为所求;(3)在(2)的条件下,∵AB=2,BC=4,∴BD=5∵BD⊥B′C′,∴BD⊥A′D′,得矩形DGD′C′.∴DG=C′D′=2,∴BG=5设CN的长为x,CD′=y.则C′N=x,D′N=2−x,BD′=4−y,∴(4−y)2=y2+(5)2,解得y5.(2−x)2=x25)2解得x=512.51-.【点睛】本题考查了作图−复杂作图、矩形的性质、翻折变换,解决本题的关键是掌握矩形的性质.26.如图,在矩形 ABCD 中,CE ⊥BD ,AB=4,BC=3,P 为 BD 上一个动点,以 P 为圆心,PB 长半径作⊙P ,⊙P 交 CE 、BD 、BC 交于 F 、G 、H (任意两点不重合),(1)半径 BP 的长度范围为 ;(2)连接 BF 并延长交 CD 于 K ,若 tan ∠KFC = 3 ,求 BP ;(3)连接 GH ,将劣弧 HG 沿着 HG 翻折交 BD 于点 M ,试探究PM BP是否为定值,若是求出该值,若不是,请说明理由.【答案】(1)95102BP <<;(2)BP=1;(3)1125PM BP = 【解析】【分析】 (1)当点G 和点E 重合,当点G 和点D 重合两种临界状态,分别求出BP 的值,因为任意点都不重合,所以BP 在两者之间即可得出答案;(2)∠KFC 和∠BFE 是对顶角,得到tan =3BE BFE EF∠=,得出EF 的值,再根据△BEF ∽△FEG ,求出EG 的值,进而可求出BP 的值;(3)设圆的半径,利用三角函数表示出PO ,GO 的值,看PP G '∆用面积法求出P Q ',在P GQ '∆中由勾股定理得出MQ 的值,进而可求出PM 的值即可得出答案.【详解】(1)当G 点与E 点重合时,BG=BE ,如图所示:∵四边形ABCD 是矩形,AB=4,BC=3,∴BD=5,∵CE ⊥BD , ∴1122BC CD BD CE ⋅=⋅, ∴125CE =, 在△BEC 中,由勾股定理得:221293()55BE =-=, ∴910BP =, 当点G 和点D 重合时,如图所示:∵△BCD 是直角三角形,∴BP=DP=CP ,∴52BP =, ∵任意两点都不重合,∴95102BP <<, (2)连接FG ,如图所示:∵∠KFC=∠BFE ,tan ∠KFC = 3,∴tan 3BFE ∠=, ∴3BE EF =, ∴335BE EF ==, ∵BG 是圆的直径,∴∠BFG=90°,∴∠GFE+∠BFE=90°,∵CE ⊥BD ,∴∠FEG=∠FEB=90°,∴∠GFE+∠FGE=90°,∴∠BFE=∠FGE∴△BEF ∽△FEG ,∴2EF BE EG =⋅,∴99255EG =, ∴15EG =, ∴BG=EG+BE=2,∴BP=1,(3)PM BP为定值, 过P '作P Q BD '⊥,连接P G ',P M ',P P '交GH 于点O ,如下图所示:设5BP x PG P G P M ''====,则3PO P O x '==,4GO x =,∴1122P Q PG GO PP ''⋅=⋅, ∴245P Q x '=, ∴2275MQ GQ P G P Q x ''==-=, ∴145MG x =, ∴115PM PG MG x =-=, ∴1111:5525PM x x BP == 【点睛】本题考查了动圆问题,矩形的性质,面积法的运用,三角函数,相似三角形的判定和性质等知识点,属于圆和矩形的综合题,难度中等偏上,利用数形结合思想和扎实的基础是解决本题的关键. 27.如图,二次函数22y ax ax c =-+ (a < 0) 与 x 轴交于 A 、C 两点,与 y 轴交于点 B ,P 为 抛物线的顶点,连接 AB ,已知 OA :OC=1:3.(1)求 A 、C 两点坐标;(2)过点 B 作 BD ∥x 轴交抛物线于 D ,过点 P 作 PE ∥AB 交 x 轴于 E ,连接 DE ,①求 E 坐标;②若 tan ∠BPM=25,求抛物线的解析式.【答案】(1)A (-1,0),C (3,0);(2)① E (-13,0);②原函数解析式为:2515522y x x =-++. 【解析】【分析】 (1)由二次函数的解析式可求出对称轴为x=1,过点P 作PE ⊥x 轴于点E,所以设A (-m ,0),C (3m ,0),结合对称轴即可求出结果;(2) ①过点P 作PM ⊥x 轴于点M ,连接PE ,DE ,先证明△ABO △EPM 得到AO EM OB PM =,找出OE=a c -,再根据A (-1,0)代入解析式得:3a+c=0,c=-3a ,即可求出OE 的长,则坐标即可找到;②设PM 交BD 于点N ;根据点P (1,c-a ),BN ‖AC ,PM ⊥x 轴表示出PN=-a ,再由tan ∠BPM=25PN BN =求出a ,结合(1)知道c ,即可知道函数解析式.【详解】(1)∵二次函数为:22y ax ax c =-+(a<0),∴对称轴为2122b a x a a -=-=-=, 过点P 作PM ⊥x 轴于点M ,则M (1,0),M 为AC 中点,又OA :OC=1:3,设A (-m ,0),C (3m ,0),∴231m m -+=, 解得:m=1,∴A (-1,0),C (3,0),(2)①做图如下:∵PE ∥AB ,∴∠BAO=∠PEM ,又∠AOB=∠EMP ,∴△ABO△EPM , ∴AO EM OB PM= ,由(1)知:A (-1,0),C (3,0),M (1,0),B (0,c ),P (1,c-a ), ∴11OE c c a +=-, ∴OE=a c -, 将A (-1,0)代入解析式得:3a+c=0,∴c=-3a ,∴133a a OE c a =-== , ∴E (-13,0); ②设PM 交BD 于点N ;∵22y ax ax c =-+(a<0),∴x=1时,y=c-a ,即点P (1,c-a ),∵BN ‖AC ,PM ⊥x 轴∴NM= BO=c ,BN=OM=1,∴PN=-a ,∵tan ∠BPM=25, ∴tan ∠BPM=25BN PN =, ∴PN=52, 即a=-52,由(1)知c=-3a ,∴c=152; ∴原函数解析式为:2515522y x x =-++. 【点睛】此题考查了抛物线与x 轴的交点;二次函数的性质,待定系数法求二次函数解析式. 28.如图 1,直线 y=2x+2 分别交 x 轴、y 轴于点A 、B ,点C 为x 轴正半轴上的点,点 D 从点C 处出发,沿线段CB 匀速运动至点 B 处停止,过点D 作DE ⊥BC ,交x 轴于点E ,点 C′是点C 关于直线DE 的对称点,连接 EC′,若△ DEC′与△ BOC 的重叠部分面积为S ,点D 的运动时间为t (秒),S 与 t 的函数图象如图 2 所示.(1)V D = ,C 坐标为 ;(2)图2中,m= ,n= ,k= .(3)求出S 与t 之间的函数关系式(不必写自变量t 的取值范围).【答案】(1)点D 的运动速度为1单位长度/秒,点C 坐标为(4,0).(285;45;25(3)①当点C ′在线段BC 上时, S =14t 2;②当点C ′在CB 的延长线上, S=−1312t 285t−203;③当点E 在x 轴负半轴, S =t 25+20.【解析】【分析】(1)根据直线的解析式先找出点B 的坐标,结合图象可知当t 5点C ′与点B 重合,通过三角形的面积公式可求出CE 的长度,结合勾股定理可得出OE 的长度,由OC =OE +EC 可得出OC 的长度,即得出C 点的坐标,再由勾股定理得出BC 的长度,根据CD =12BC ,结合速度=路程÷时间即可得出结论; (2)结合D 点的运动以及面积S 关于时间t 的函数图象的拐点,即可得知当“当t =k 时,点D 与点B 重合,当t =m 时,点E 和点O 重合”,结合∠C 的正余弦值通过解直角三角形即可得出m 、k 的值,再由三角形的面积公式即可得出n 的值;。
苏科版九年级上册数学期末试卷含答案
苏科版九年级上册数学期末试题一、单选题1.在平面直角坐标系中,下列二次函数的图象开口向上的是( )A .2y =B .221y x x =-++C .22y x x =-+D .20.5y x x =-+ 2.下列属于随机事件的是( )A .抛一枚股子两次出现点数之和为13B .抛一枚硬币,正好反面朝上C .从一副扑克牌中任抽2张都是红心5D .从装满红球的口袋随意摸一个球是红球 3.一组数据40,37,x ,64的平均数是53,则x 的值是( ) A .67B .69C .71D .724.抛物线2(1)2y x =--+的顶点坐标是( ) A .()1,2B .1,2 C .1,2D .()1,2--5.如图,四边形ADBC 内接于⊙O ,⊙AOB =122°,则⊙ACB 等于( )A .131°B .119°C .122°D .58° 6.把抛物线2y x =-向右平移1个单位所得的新抛物线的函数表达式是( )A .21yx =-+ B .21y x =-- C .2(1)y x =-- D .2(1)y x =-+7.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r ,扇形的半径为R ,扇形的圆心角等于90°,则r 与R 之间的关系是( )A .R =2rB .R =C .R =3rD .R =4r8.如图是二次函数2y ax bx c =++图象的一部分,图象过点(3,0)A -,对称轴为直线=1x -,下列结论:⊙24b ac >;⊙20a b -=;⊙0a b c ++>;⊙若()()125,,1,B y C y 为函数图象上的两点,则12y y <.其中正确结论是( )A .⊙⊙B .⊙⊙C .⊙⊙⊙D .⊙⊙⊙⊙ 二、填空题9.已知一组数据:4、-1、5、9、7,则这组数据的极差是___________10.任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数大于4的概率为____. 11.已知函数()222my m x -=-是二次函数,则m =_____.12.如果一个正六边形的周长等于6cm ,那么这个正六边形外接圆的半径等于________cm . 13.一个扇形的圆心角为120°,半径为3cm ,则这个扇形的面积为_______cm 2 14.若m 是方程22310x x --=的一个根,则2692020m m -+的值为________. 15.已知二次函数2y x bx c =++中,函数y 与自变量x 的部分对应值如表:()14,A m y -,()26,B m y +两点都在该函数的图象上,若12y y =,则m 的值为________.16.某种花卉每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株.设每盆多植x 株,则可以列出的方程是____________.17.如图,MN 是O 的直径,6MN =,点A 在O 上,20ANM ∠=︒,B 为弧AM 的中点,P 是直径MN 上一动点,则PA PB +的最小值为________.三、解答题 18.解下列方程: (1)2430x x --= (2)2(2)3(2)x x +=+19.若关于x 的方程()2260x b x b +++-=有两个相等的实数根(1)求b 的值;(2)当b 取正数时,求此时方程的根,20.某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分排列名次,在规定时间内每人踢100个以上(含100)为优秀,下表是甲班和乙班各5名学生的比赛数据(单位:个):经统计发现两班总数相等.此时有学生建议,可通过考察数据中的其他信息作为参考. 请你回答下列问题:(1)甲班的优秀率为40%,乙班的优秀率为________;甲班5名学生比赛成绩的中位数是_________个,乙班5名学生比赛成绩的中位数是100个; (2)求两班比赛数据的方差;(3)根据以上几条信息,你认为应该把冠军奖杯发给哪一个班级?简述你的理由.21.防疫期间,我县所有学校都严格落实测体温进校园的防控要求.某校开设了A 、B 、C 、D 四个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园. (1)小明从A 测温通道通过的概率是________;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.22.某商店销售一种销售成本为每件40元的玩具,若按每件50元销售,一个月可售出500件,销售价每涨1元,月销量就减少10件.(1)商店要在月销售成本不超过10000的情况下,使月销售利润达到8000元,销售价应定为每件多少元?(2)当销售价定为每件多少元时会获得最大利润?求出最大利润.23.实践:如图⊙ABC 是直角三角形,⊙ACB =90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法) (1)作⊙BAC 的平分线,交BC 于点O. (2)以O 为圆心,OC 为半径作圆. 综合运用:在你所作的图中,(1)AB 与⊙O 的位置关系是_____ .(直接写出答案) (2)若AC=5,BC=12,求⊙O 的半径.24.一座隧道的截面由抛物线和长方形构成,长方形的长为8m ,宽为2m ,隧道最高点P 位于AB 的中央且距地面6m ,建立如图所示的坐标系.(1)求抛物线的表达式;(2)一辆货车高4m ,宽2m ,能否从该隧道内通过,为什么? 25.已知二次函数243y ax ax a =++(a 为常数)(1)若二次函数的图象经过点(2,3),求函数y 的表达式. (2)若a >0,当3mx <时,此二次函数y 随着x 的增大而减小,求m 的取值范围.(3)若二次函数在31x -≤≤时有最大值3,求a 的值.26.已知:如图,AB 是O 的直径,,AB AC BC ⊥交O 于点D ,点E 是AC 的中点,ED 与AB 的延长线交于点F .(1)求证:DE 是O 的切线;(2)若30,2F BF ∠=︒=,求ABC 外接圆的半径. 27.如图,直线y=﹣34x+3与x 轴交于点C ,与y 轴交于点B ,抛物线y=ax 2+34x+c 经过B 、C 两点.(1)求抛物线的解析式;(2)如图,点E 是直线BC 上方抛物线上的一动点,当⊙BEC 面积最大时,请求出点E 的坐标和⊙BEC 面积的最大值;(3)在(2)的结论下,过点E 作y 轴的平行线交直线BC 于点M ,连接AM ,点Q 是抛物线对称轴上的动点,在抛物线上是否存在点P ,使得以P 、Q 、A 、M 为顶点的四边形是平行四边形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.参考答案1.A【分析】二次函数y=ax2+bx+c(a≠0),⊙当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上;⊙当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,据此判断即可.【详解】解:A.⊙a0,⊙y2的图象开口向上,故本选项符合题意;B.⊙a=﹣1<0,⊙y=﹣x2+2x+1的图象开口向下,故本选项不符合题意;C.⊙a=﹣2<0,⊙y=﹣2x2+x的图象开口向下,故本选项不符合题意;D.⊙a=﹣0.5<0,⊙y=﹣0.5x2+x的图象开口向下,故本选项不符合题意;故选:A.【点睛】本题考查二次函数的图象和性质,解答本题的关键是明确题意,利用二次函数的性质解答.2.B【分析】根据随机事件,必然事件,不可能事件的特点判断即可.【详解】解:A.抛一枚骰子两次出现点数之和为13,这是不可能事件,故A不符合题意;B.抛一枚硬币,正好反面朝上,这是随机事件,故B符合题意;C.从一副扑克牌中任抽2张都是红心5,这是不可能事件,故C不符合题意;D.从装满红球的口袋随意摸一个球是红球,这是必然事件,故D不符合题意;故选:B.【点睛】本题考查了随机事件,熟练掌握随机事件,必然事件,不可能事件的特点是解题的关键.3.C【分析】根据求平均数公式即得出关于x的等式,解出x即可.【详解】根据题意可知403764534x+++=,解得:71x=.故选C.【点睛】本题考查已知一组数据的平均数,求未知数据的值.掌握求平均数的公式是解题关键. 4.A【分析】根据二次函数的性质,利用顶点式即可得出顶点坐标. 【详解】⊙抛物线2(1)2y x =--+,⊙抛物线2(1)2y x =--+的顶点坐标是:()1,2, 故选A. 5.B【分析】根据同弧所对的圆心角是圆周角的一半即可求解. 【详解】解:⊙同弧所对的圆心角是圆周角的一半;⊙1612ADB AOB ∠=∠=︒根据圆内接四边形对角互补 180180119ACB ADB ACB ADB +=︒∴=︒-=︒∠∠∠∠故选:B 6.C【分析】根据抛物线解析式求得顶点坐标,然后由平移规律得到平移后抛物线的顶点坐标,则易求平移后的抛物线解析式.【详解】解:⊙抛物线y=-x 2的顶点坐标是(0,0), ⊙抛物线y=-x 2向右平移1个单位后的顶点坐标是(1,), 则得到的抛物线是y=-(x -1)2. 故选择:C . 7.D【详解】解:扇形的弧长是:901802R Rππ=, 圆的半径为r ,则底面圆的周长是2πr ,圆锥的底面周长等于侧面展开图的扇形弧长则得到:22Rr ππ=⊙即:R=4r ,r 与R 之间的关系是R=4r .8.C【分析】根据抛物线2y ax bx c =++的对称轴2bx a=-、∆=-24b ac 的取值与抛物线与x 轴的交点的个数关系、抛物线与x 轴的交点与对称轴的关系及抛物线的特征进行分析判断. 【详解】解:⊙由函数的图形可知,抛物线与x 轴有两个交点,240b ac ∴->,即:24b ac >,故结论⊙正确;⊙二次函数2y ax bx c =++的对称轴为直线=1x -, 12ba∴-=-, 2a b ∴=,即:20a b -=,故结论⊙正确.⊙二次函数2y ax bx c =++图象的一部分,图象过点(3,0)A -,对称轴为直线=1x -, ∴二次函数与x 轴的另一个交点的坐标为(1,0), ∴当1x =时,有0a b c ++=,故结论⊙错误;⊙抛物线的开口向下,对称轴=1x -, ∴当1x >-时,函数值y 随着x 的增大而减小,51>则12y y <,则结论⊙正确,故选:C . 9.10【分析】先确定出这组数据的最大值与最小值,然后根据极差的定义进行求解即可得. 【详解】解:这组数据的最大值是9,最小值是-1, 所以这组数据的极差是:9-(-1)=10, 故答案为10. 10.13【分析】根据概率的求法,找准两点:⊙全部等可能情况的总数;⊙符合条件的情况数目;二者的比值就是其发生的概率.【详解】⊙1到6的点数中,点数大于4的有5,6两个, ⊙掷得面朝上的点数大于4的概率为2163=, 故答案为:13.【分析】根据二次函数的定义可直接进行求解. 【详解】解:⊙函数()222my m x -=-是二次函数,⊙22022m m -≠⎧⎨-=⎩, 解得:2m =-; 故答案为:2-. 12.1【分析】根据正六边形的定义可求出其边长为1cm ,再根据其性质可知其相邻两条半径与所夹边组成的三角形为等边三角形,即可求出答案. 【详解】根据题意可求出正六边形的边长61cm 6AB ==, 如图,根据正六边形的性质可知1(62)1806026OAB OBA -⨯︒∠=∠=⨯=︒,AO BO = ⊙AOB 为等边三角形,⊙1cm AO BO AB ===,即正六边形的外接圆半径为1cm . 故答案为:1.【点睛】本题考查正六边形的性质,等边三角形的判定.熟练掌握正六边形的性质是解题关键. 13.3π【分析】此题考查扇形面积的计算,熟记扇形面积公式2360n r S π=,即可求解.【详解】根据扇形面积公式,计算这个扇形的面积为212033360πSπ.【点睛】本题扇形面积的计算.熟记扇形面积公式是解题的关键. 14.2023【分析】把m 代入方程变形求解即可; 【详解】⊙m 是方程22310x x --=的一个根,⊙22310m m --=, ⊙2231m m -=,⊙()2269202032320203120202023-+=-+=⨯+=m m m m .故答案是:2023.【点睛】本题主要考查了代数式的求解,准确计算是解题的关键. 15.1【分析】根据表中的对应值得到x=1和x=3时函数值相等,则得到抛物线的对称轴为直线x=2,由于y 1=y 2,所以()14,A m y -,()26,B m y +是抛物线上的对称点,则2(4)62m m --=+-,然后解方程即可.【详解】解:⊙x=1时,y=2;x=3时,y=2, ⊙抛物线的对称轴为直线x=2,⊙()14,A m y -,()26,B m y +两点都在该函数的图象上,y 1=y 2, ⊙点()14,A m y -,()26,B m y +是抛物线上的对称点, ⊙2(4)62m m --=+-, 解得:1m =. 故答案为:1.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式. 16.(3+x)(4-0.5x)=15【分析】由每盆多植x 株,可得每盆共有(x+3)株;由“每盆增加1株,平均每株盈利减少0.5元”可得:增加x 株后平均每株盈利为(4-0.5x)元;接下来根据等量关系:每盆花的株数×平均每株盈利=15元,即可列出方程.【详解】解:根据题意可得(x+3)(4-0.5x)=15.故答案为:(x+3)(4-0.5x)=15.【点睛】本题考查了一元二次方程的应用,根据题意找出等量关系是解答本题的关键.17.3【分析】首先利用在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点P的位置,然后根据弧所对的圆心角的度数发现一个等腰直角三角形计算.【详解】解:作点B关于MN的对称点C,连接AC交MN于点P,则P点就是所求作的点,此时PA+PB最小,且等于AC的长.连接OA,OC,⊙BM CM=,⊙⊙BOM=⊙COM,⊙B为弧AM的中点,⊙BM AB=,⊙AOM,⊙⊙AOB=⊙BOM=12⊙⊙ANM=20°,⊙⊙AOM=40°,⊙⊙AOC=3⊙AOB=60°,⊙OA=OC=AC,⊙MN=6,MN=3,⊙OA=12⊙AC=3.故答案为:3.【点睛】此题主要考查了轴对称-最短路线问题,垂径定理,圆周角定理,直角三角形的性质等,确定点P 的位置是本题的关键.18.(1)12x =,22x =(2)12x =-,21x =【分析】(1)利用配方法求解即可;(2)移项然,提取公因式分解因式即可求解.(1)解:2430x x --=,243x x -=,24443x x -+=+,即2(2)7x -=,2x ∴-=12x ∴=,22x =(2)解:2(2)3(2)x x +=+,2(2)3(2)0x x ++=-,(2)(23)0x x ++-=,20x ∴+=或230x +-=,12x ∴=-,21x =.【点睛】本题考查了一元二次方程的解法,解题的关键是掌握解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法. 19.(1)b=2或b=10-;(2)x 1=x 2=-2;【分析】(1)根据根的判别式即可求出答案.(2)由(1)可知b=2,根据一元二次方程的解法即可求出答案.【详解】解:(1)由题意可知:⊙=(b+2)2-4(6-b )=0,⊙28200b b +-=解得:b=2或b=10-.(2)当b=2时,此时x 2+4x+4=0,⊙2(2)0x +=,⊙x 1=x 2=-2;【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.20.(1)60%;97;(2)94;44.4(3)冠军奖杯应发给乙班,理由见解析【分析】(1)优秀率就是优秀的人数与总人数的百分比;(2)根据平均数和方差的概念计算.(3)根据计算出来的统计量的意义分析判断.(1) 乙班的优秀率:35×100%=60%; 把甲班5名同学踢的个数从小到大排列为:89,96,97,100,118,则甲班5名学生比赛成绩的中位数是97个;故答案为:60%;97;(2)甲班的平均数是:(89+100+96+118+97)÷5=100(个),甲班的方差222222891001001009610011810097100594[]S =-+-+-+-+-÷=甲()()()()() 乙班的平均数是:(100+95+110+91+104)÷5=100(个),乙班的方差2222221001009510011010091100104100544.4[]S =-+-+-+-+-÷=乙()()()()(); (3)冠军奖杯应发给乙班,理由如下:因为两班总数相等,但乙班5名学生的比赛成绩的优秀率比甲班高,中位数比甲班大,方差比甲班小,成绩更稳定,综合评定乙班踢毽子水平较好.21.(1)14(2)14【分析】(1)直接利用概率公式计算即可;(2)列出表格表示出所有可能的情况,再找出符合题意的情况,最后根据概率公式计算即可.(1)因为共开设了A、B、C、D四个测温通道,所以小明从A测温通道通过的概率是14,故答案为:14.(2)根据题意可列表如下:根据表格可知,共有16种可能的情况,其中小明和小丽从同一个测温通道通过的情况有4种,⊙小明和小丽从同一个测温通道通过的概率为41 164.【点睛】本题考查简单的概率计算,列表或画树状图法求概率.熟练掌握概率公式是解题关键.22.(1)销售价应定为每件80元(2)当销售价定为每件70元时会获得最大利润,最大利润是9000元【分析】(1)根据题意和题目中的数据,可以列出相应的方程,然后求解,注意商店要在月销售成本不超过10000元;(2)根据题意,可以写出利润与销售价之间的函数关系式,然后化为顶点式,即可得到利润的最大值.(1)解:设销售价定为每件x 元,由题意可得:(40)[500(50)10]8000x x -⨯--⨯=,解得160x =,280x =,当60x =时,销售成本为:40[500(6050)10]16000⨯--⨯=(元),当80x =时,销售成本为:40[500(8050)10]8000⨯--⨯=(元),月销售成本不超过10000,∴销售价应定为每件80元,答:销售价应定为每件80元;(2)解:设利润为w 元,销售价定为a 元,由题意可得:2(40)[500(50)10]10(70)9000w a a a =-⨯--⨯=--+,∴当70a =时,w 取得最大值9000,答:当销售价定为每件70元时会获得最大利润,最大利润是9000元.23.(1)作图见解析;(2)作图见解析;综合运用:(1)相切;(2)⊙O 的半径为103. 【分析】综合运用:(1)根据角平分线上的点到角两边的距离相等可得AB 与⊙O 的位置关系是相切;(2)首先根据勾股定理计算出AB 的长,再设半径为x ,则OC=OD=x ,BO=(12-x )再次利用勾股定理可得方程x 2+82=(12-x )2,再解方程即可.【详解】(1)⊙作⊙BAC 的平分线,交BC 于点O ;⊙以O 为圆心,OC 为半径作圆.AB 与⊙O 的位置关系是相切.(2)相切;⊙AC=5,BC=12,⊙AD=5,=13,⊙DB=AB -AD=13-5=8,设半径为x ,则OC=OD=x ,BO=(12-x )x 2+82=(12-x )2,解得:x=103. 答:⊙O 的半径为103. 【点睛】本题考查了作图—复杂作图,角平分线的性质,勾股定理,切线的判定,掌握以上知识是解题的关键.24.解:(1)2211(4)62244y x x x =--+=-++;(2)能够通过此隧道. 【分析】(1)根据题意可知抛物线顶点坐标,根据抛物线的顶点坐标设出抛物线的解析式,再求解析式即可;(2)令y=4,解出x 与2作比较即可得答案.【详解】解:(1)由题意可知抛物线的顶点坐标(4,6),设抛物线的方程为y=a (x -4)2+6,又因为点A (0,2)在抛物线上,所以有2=a (0-4)2+6.所以a=-14. 因此有:y=-14(x -4)2+6. (2)令y=4,则有4=-14(x -4)2+6,解得x 1x 2=4-|x 1-x 22,⊙货车可以通过.【点睛】本题考查了抛物线的性质及其应用,根据题意求得抛物线的解析式,从而利用二次函数的模型来解决实际问题.25.(1)2143555y x x =++;(2)6m ≤-;(3)38a =或3a =- 【分析】(1)把(2,3)代入243y ax ax a =++,解方程即可;(2)根据抛物线的增减性,列出关于m 的不等式求解即可;(3)根据开口方向分类讨论,利用最大值列方程求解即可.【详解】(1)把(2,3)代入243y ax ax a =++得,3483a a a =++ 解得:15a = 二次函数解析式为:2143555y x x =++; (2) ⊙抛物线的对称轴为直线422a x a ==--,0a >, ⊙抛物线开口向上,当2x ≤-时,二次函数y 随x 的增大而减小 ⊙3m x <时,此二次函数y 随x 的增大而减小 ⊙23m ≤-, 解得:6m ≤-;(3)将二次函数化为顶点式得:()22y a x a =+-⊙二次函数在31x -≤≤时有最大值3⊙当0a >时,开口向上,⊙当1x =时,y 有最大值,最大值为8a ,⊙83a =, ⊙38a =, ⊙当a<0时,开口向下⊙当2x =-时,y 有最大值,最大值为a -,⊙3a -=,⊙3a =-, 综上,38a =或3a =-. 26.(1)见解析(2)4【分析】(1)要证明DE 是O 的切线,想到连接OD ,只要证明90ODE ∠=︒即可,因为AB 是O 的直径,想到连接AD ,可得90ADB ∠=︒,然后利用直角三角形斜边上的中线等于斜边长的一半,证出ED EA =,再利用等边对等角即可解答;(2)根据已知易求2OB =,然后证明DOB ∆是等边三角形,求出60DBO ∠=︒,最后在Rt ABC 中,求出BC 的长即可解答.(1)证明:连接OD ,AB AC ⊥,90CAB ∴∠=︒,90CAD DAO ∴∠+∠=︒, AB 是O 的直径,90ADB ∴∠=︒,18090ADC ADB ∴∠=︒-∠=︒,点E 是AC 的中点,12EA ED AC ∴==,EAD EDA ∴∠=∠,OA OD =,OAD ODA ∠=∠∴,90EDA ODA ∴∠+∠=︒,90ODE ∴∠=︒, OD 是O 的半径,DE ∴是O 的切线;(2)解:30F ∠=︒,2BF =,90ODF ∠=︒,2OF OD ∴=,22OB OD ∴+=,OD OB =,2OD OB ∴==,9060DOF F ∠=︒-∠=︒,DOB ∴∆是等边三角形,60OBD ∴∠=︒,在Rt ABC 中,24AB OB ==,481cos602AB BC ∴===︒, ABC ∆外接圆的半径142BC ==, ABC ∴∆外接圆的半径为:4.【点睛】本题考查了切线的判定与性质,三角形的外接圆与外心,解题的关键是熟练掌握直角三角形外接圆的圆心在斜边中点处.27.(1)233384y x x =-++;(2)点E 的坐标是(2,3)时,⊙BEC 的面积最大,最大面积是3;(3)P 的坐标是(﹣3,218-)、(5,218-)、(﹣1,158). 【详解】解:(1)⊙直线y=﹣34x+3与x 轴交于点C ,与y 轴交于点B , ⊙点B 的坐标是(0,3),点C 的坐标是(4,0),⊙抛物线y=ax 2+34x+c 经过B 、C 两点, ⊙3164043a c c ⎧+⨯+=⎪⎨⎪=⎩,解得383a c ⎧=-⎪⎨⎪=⎩, ⊙y=﹣38x 2+34x+3. (2)如图1,过点E 作y 轴的平行线EF 交直线BC 于点M ,EF 交x 轴于点F ,⊙点E是直线BC上方抛物线上的一动点,⊙设点E的坐标是(x,﹣38x2+34x+3),则点M的坐标是(x,﹣34x+3),⊙EM=﹣38x2+34x+3﹣(﹣34x+3)=﹣38x2+32x,⊙S⊙BEC=S⊙BEM+S⊙MEC=12EM OC=12×(﹣38x2+32x)×4=﹣34x2+3x=﹣34(x﹣2)2+3,⊙当x=2时,即点E的坐标是(2,3)时,⊙BEC的面积最大,最大面积是3.(3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形.⊙如图2,由(2),可得点M的横坐标是2,⊙点M在直线y=﹣34x+3上,⊙点M的坐标是(2,32),又⊙点A的坐标是(﹣2,0),=,⊙AM所在的直线的斜率是:30322(2)8-=--;⊙y=﹣38x2+34x+3的对称轴是x=1,⊙设点Q的坐标是(1,m),点P的坐标是(x,﹣38x2+34x+3),则()22238418337313844x x x x m ⎪=⎪-⎨⎪⎛⎫-+-++-=⎪ ⎪⎝⎭⎩ 解得3218x y =-⎧⎪⎨=-⎪⎩或5218x y =⎧⎪⎨=-⎪⎩,⊙x <0,⊙点P 的坐标是(﹣3,﹣218).⊙如图3,由(2),可得点M 的横坐标是2,⊙点M 在直线y=﹣34x+3上,⊙点M 的坐标是(2,32),又⊙点A 的坐标是(﹣2,0),=⊙AM 所在的直线的斜率是:3322(2)8-=--;⊙y=﹣38x 2+34x+3的对称轴是x=1,⊙设点Q 的坐标是(1,m ),点P 的坐标是(x ,﹣38x 2+34x+3),则()22238418337313844x x x x m ⎪=⎪-⎨⎪⎛⎫-+-++-=⎪ ⎪⎝⎭⎩, 解得3218x y =-⎧⎪⎨=-⎪⎩或5218x y =⎧⎪⎨=-⎪⎩,⊙x >0,⊙点P 的坐标是(5,﹣218).⊙如图4,由(2),可得点M 的横坐标是2,⊙点M 在直线y=﹣34x+3上,⊙点M 的坐标是(2,32),又⊙点A 的坐标是(﹣2,0),=⊙y=﹣38x 2+34x+3的对称轴是x=1,⊙设点Q 的坐标是(1,m ),点P 的坐标是(x ,﹣38x 2+34x+3), 则23333084221(2)12222x x m x x ⎧-++-⎪-=⎪---⎨⎪+-=⎪⎩解得1158xy=-⎧⎪⎨=⎪⎩,⊙点P的坐标是(﹣1,158).综上,可得在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形,点P的坐标是(﹣3,﹣218)、(5,﹣218)、(﹣1,158).。
苏科版数学九年级上册期末试卷(带解析)
苏科版数学九年级上册期末试卷(带解析)一、选择题1.sin 30°的值为( ) A .3B .32C .12D .222.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O的位置关系是( ) A .点P 在O 上B .点P 在O 外C .点P 在O 内D .无法确定 3.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( )A .5B .4C .3D .24.已知3sin α=,则α∠的度数是( ) A .30°B .45°C .60°D .90°5.如图,⊙O 的直径BA 的延长线与弦DC 的延长线交于点E ,且CE =OB ,已知∠DOB =72°,则∠E 等于( )A .18°B .24°C .30°D .26°6.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x =7.某篮球队14名队员的年龄如表: 年龄(岁) 18 19 20 21 人数5432则这14名队员年龄的众数和中位数分别是( ) A .18,19 B .19,19 C .18,4 D .5,4 8.一个扇形的半径为4,弧长为2π,其圆心角度数是( )A .45B .60C .90D .1809.如图,已知等边△ABC 的边长为4,以AB 为直径的圆交BC 于点F ,CF 为半径作圆,D 是⊙C 上一动点,E 是BD 的中点,当AE 最大时,BD 的长为( )A .23B .25C .4D .610.方程2x x =的解是( ) A .x=0B .x=1C .x=0或x=1D .x=0或x=-111.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .12.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( ) A .40B .60C .80D .10013.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( ) A .35B .38C .58D .3414.如图,在平面直角坐标系xOy 中,二次函数21y ax bx =++的图象经过点A ,B ,对系数a 和b 判断正确的是( )A .0,0a b >>B .0,0a b <<C .0,0a b ><D .0,0a b <>15.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为( )A .2.5B .2.8C .3D .3.2二、填空题16.关于x 的一元二次方程20x a +=没有实数根,则实数a 的取值范围是 . 17.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x+8=0的解,则此三角形的周长是_____.18.已知线段4AB =,点P 是线段AB 的黄金分割点(AP BP >),那么线段AP =______.(结果保留根号)19.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .20.如图,二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1,则方程ax 2+bx +c =0的根为____.21.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)之间的函数关系式是h=12t ﹣6t 2,则小球运动到的最大高度为________米;22.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.23.圆锥的母线长是5 cm,底面半径长是3 cm,它的侧面展开图的圆心角是____.24.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________. 25.已知正方形ABCD 边长为4,点P 为其所在平面内一点,PD =5,∠BPD =90°,则点A 到BP 的距离等于_____.26.在Rt △ABC 中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____. 27.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n 个数据的平均数等于______.28.像23x +=x 这样的方程,可以通过方程两边平方把它转化为2x +3=x 2,解得x 1=3,x 2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x 1=3时,9=3满足题意;当x 2=﹣1时,1=﹣1不符合题意;所以原方程的解是x =3.运用以上经验,则方程x +5x +=1的解为_____.29.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD 的面积为________.30.如图,四边形ABCD 中,∠A =∠B =90°,AB =5cm ,AD =3cm ,BC =2cm ,P 是AB 上一点,若以P 、A 、D 为顶点的三角形与△PBC 相似,则PA =_____cm .三、解答题31.如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,点C 在OP 上,满足∠CBP =∠ADB . (1)求证:BC 是⊙O 的切线;(2)若OA =2,AB =1,求线段BP 的长.32.如图,在△ABC 中,BC 的垂直平分线分别交BC 、AC 于点D 、E ,BE 交AD 于点F ,AB=AD .(1)判断△FDB 与△ABC 是否相似,并说明理由; (2)BC =6,DE =2,求△BFD 的面积.33.如图,在▱ABCD 中,点E 是边AD 上一点,延长CE 到点F ,使∠FBC =∠DCE ,且FB 与AD 相交于点G . (1)求证:∠D =∠F ;(2)用直尺和圆规在边AD 上作出一点P ,使△BPC ∽△CDP ,并加以证明.(作图要求:保留痕迹,不写作法.)34.(1)(学习心得)于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ABC 中,,90AB AC BAC ∠==,D 是ABC 外一点,且AD AC =,求BDC ∠的度数.若以点A为圆心,AB 为半径作辅助A ,则C 、D 必在A 上,BAC ∠是A 的圆心角,而BDC ∠是圆周角,从而可容易得到BDC ∠=________.(2)(问题解决)如图2,在四边形ABCD 中,90BAD BCD ∠=∠=,25BDC ∠=,求BAC ∠的度数.(3)(问题拓展)如图3,,E F 是正方形ABCD 的边AD 上两个动点,满足AE DF =.连接交于点,连接CF交BD于点G,连接BE交于点H,若正方形的边长为2,则线段DH长度的最小值是_______.35.如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(﹣1,0)、B(5,0),与y轴相交于点C(0,53).(1)求该函数的表达式;(2)设E为对称轴上一点,连接AE、CE;①当AE+CE取得最小值时,点E的坐标为;②点P从点A出发,先以1个单位长度/的速度沿线段AE到达点E,再以2个单位长度的速度沿对称轴到达顶点D.当点P到达顶点D所用时间最短时,求出点E的坐标.四、压轴题36.阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2) ,分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为12,求k的值.(3)点B在x轴上,以B为圆心,3为半径画⊙B,若直线y=3x+3与⊙B的“最美三角形”的面积小于32,请直接写出圆心B的横坐标B x的取值范围.37.如图,⊙O的直径AB=26,P是AB上(不与点A,B重合)的任一点,点C,D为⊙O上的两点.若∠APD=∠BPC,则称∠DPC为直径AB的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠DPC是直径AB的“回旋角”吗?并说明理由;(2)猜想回旋角”∠DPC的度数与弧CD的度数的关系,给出证明(提示:延长CP交⊙O 于点E);(3)若直径AB的“回旋角”为120°,且△PCD的周长为3AP的长.38.已知,如图1,⊙O 是四边形ABCD 的外接圆,连接OC 交对角线BD 于点F ,延长AO 交BD 于点E ,OE=OF.(1)求证:BE=FD ;(2)如图2,若∠EOF=90°,BE=EF ,⊙O 的半径25AO =,求四边形ABCD 的面积; (3)如图3,若AD=BC ;①求证:22•AB CD BC BD +=;②若2•12AB CD AO ==,直接写出CD 的长. 39.如图,在平面直角坐标系中,直线l 分别交x 轴、y 轴于点A ,B ,∠BAO = 30°.抛物线y = ax 2 + bx + 1(a < 0)经过点A ,B ,过抛物线上一点C (点C 在直线l 上方)作CD ∥BO 交直线l 于点D ,四边形OBCD 是菱形.动点M 在x 轴上从点E ( -3,0)向终点A 匀速运动,同时,动点N 在直线l 上从某一点G 向终点D 匀速运动,它们同时到达终点.(1)求点D 的坐标和抛物线的函数表达式. (2)当点M 运动到点O 时,点N 恰好与点B 重合.①过点E 作x 轴的垂线交直线l 于点F ,当点N 在线段FD 上时,设EM = m ,FN = n ,求n 关于m 的函数表达式.②求△NEM 面积S 关于m 的函数表达式以及S 的最大值.40.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,BD =CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】直接利用特殊角的三角函数值求出答案. 【详解】 解:sin 30°=12故选C 【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.2.B解析:B 【解析】 【分析】求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断. 【详解】解:∵()8,6P -,∴10= , ∵O 的直径为10,∴r=5, ∵OP>5, ∴点P 在O 外.故选:B. 【点睛】本题考查点和直线的位置关系,当d>r时点在圆外,当d=r时,点在圆上,当d<r时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断.3.D解析:D【解析】【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.4.C解析:C【解析】【分析】根据特殊角三角函数值,可得答案.【详解】解:由sinα=,得α=60°,故选:C.【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.5.B解析:B【解析】【分析】根据圆的半径相等可得等腰三角形,根据三角形的外角的性质和等腰三角形等边对等角可得关于∠E的方程,解方程即可求得答案.【详解】解:如图,连接CO,∵CE=OB=CO=OD,∴∠E=∠1,∠2=∠D∴∠D=∠2=∠E+∠1=2∠E.∴∠3=∠E+∠D=∠E+2∠E=3∠E.由∠3=72°,得3∠E=72°.解得∠E=24°.故选:B.【点睛】本题考查了圆的认识,等腰三角形的性质,三角形的外角的性质.能利用圆的半径相等得出等腰三角形是解题关键.6.D解析:D【解析】【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.7.A解析:A【解析】【分析】根据众数和中位数的定义求解可得.【详解】∵这组数据中最多的数是18,∴这14名队员年龄的众数是18岁,∵这组数据中间的两个数是19、19,∴中位数是19192=19(岁),故选:A.【点睛】本题考查众数和中位数,将一组数据从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数的平均数称为这组数据的中位数;一组数据中出现次数最多的数据称为这组数据的众数;熟练掌握定义是解题关键.8.C解析:C【解析】【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为2π,∴4 2180nππ⨯=解得:90n=,即其圆心角度数是90︒故选C.【点睛】此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.9.B解析:B【解析】【分析】点E在以F为圆心的圆上运到,要使AE最大,则AE过F,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得CD⊥BC,根据勾股定理即可求得结论.【详解】解:点D在⊙C上运动时,点E在以F为圆心的圆上运到,要使AE最大,则AE过F,连接CD,∵△ABC是等边三角形,AB是直径,∴EF⊥BC,∴F是BC的中点,∵E为BD的中点,∴EF为△BCD的中位线,∴CD∥EF,∴CD⊥BC,BC=4,CD=2,故==故选:B.【点睛】本题主要考查等边三角形的性质,圆周角定理,三角形中位线的性质以及勾股定理,熟练并正确的作出辅助圆是解题的关键.10.C解析:C【解析】【分析】根据因式分解法,可得答案.【详解】=,解:2x x方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.11.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.12.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C,然后利用三角形内角和定理计算出∠C的度数,进而可得答案.【详解】解:∵△ABC≌△DEF,∴∠B=∠E=40°,∠F=∠C,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.13.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是3.8故选B.【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.14.D解析:D【解析】【分析】根据二次函数y=ax2+bx+1的图象经过点A,B,画出函数图象的草图,根据开口方向和对称轴即可判断.【详解】解:由二次函数y=ax2+bx+1可知图象经过点(0,1),∵二次函数y=ax2+bx+1的图象还经过点A,B,则函数图象如图所示,抛物线开口向下,∴a <0,,又对称轴在y 轴右侧,即02b a-> , ∴b >0,故选D 15.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD 的长,再利用ABD BED ,得出DE DB DB AD=,从而求出DE 的长,最后利用AE AD DE =-即可得出答案.【详解】连接BD,CD∵AB 为O 的直径90ADB ∴∠=︒22226511BD AB AD ∴=-=-∵弦AD 平分BAC ∠11CD BD ∴==CBD DAB ∴∠=∠ADB BDE ∠=∠ABD BED ∴DE DB DB AD∴=5 =解得115DE=115 2.85AE AD DE∴=-=-=故选:B.【点睛】本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题16.a>0.【解析】试题分析:∵方程没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.考点:根的判别式.解析:a>0.【解析】试题分析:∵方程20x a+=没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.考点:根的判别式.17.14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0解析:14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x ﹣2=0,x ﹣4=0,x 1=2,x 2=4,当x =2时,2+3<6,不符合三角形的三边关系定理,所以x =2舍去,当x =4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点睛】本题考查了因式分解法解一元二次方程以及三角形的三边关系,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,熟练掌握一元二次方程的解法是解法本题的关键.18.【解析】【分析】根据黄金比值为计算即可.【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.解析:2【解析】【分析】计算即可. 【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴1AP 22AB =⨯=故答案为:2.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.19.15【解析】【分析】由在比例尺为1:50000的地图上,量得A 、B 两地的图上距离AB=3cm ,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A 、B 两地的图上距离AB=3cm ,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A 、B 两地的实际距离3×500000=1500000cm=15km ,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.20.【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得:解析:123;1x x ==-【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得: 抛物线与x 轴交于(3,0)和(-1,0)即当y=0时,x=3或-1∴ax 2+bx +c =0的根为123;1x x ==-故答案为:123;1x x ==-【点睛】本题考查抛物线的对称性及二次函数与一元二次方程,利用对称性求出抛物线与x 轴的交点坐标是本题的解题关键.21.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6【解析】【分析】现将函数解析式配方得221266(1)6h tt t =--=+﹣,即可得到答案. 【详解】 221266(1)6h t t t =--=+﹣,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.22.【解析】【分析】在OA 上取使,得,则,根据点到直线的距离垂线段最短可知当⊥AB 时,CP 最小,由相似求出的最小值即可.【详解】解:如图,在OA 上取使,∵,∴,在△和△QOC 中,,【解析】【分析】在OA 上取'C 使'OC OC =,得'OPC OQC ≅,则CQ=C'P ,根据点到直线的距离垂线段最短可知当'PC ⊥AB 时,CP 最小,由相似求出C'P 的最小值即可.【详解】解:如图,在OA 上取'C 使'OC OC =,∵90AOC POQ ∠=∠=︒,∴'POC QOC ∠=∠,在△'POC 和△QOC 中,''OP OQ POC QOC OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△'POC ≌△QOC (SAS ),∴'PC QC =∴当'PC 最小时,QC 最小,过'C 点作''C P ⊥AB ,∵直线l :28y x =+与坐标轴分别交于A ,B 两点,∴A 坐标为:(0,8);B 点(-4,0),∵'4OC OC OB ===, ∴22228445AB OA OB ++=''4AC OA OC =-=. ∵'''OB C P sin BAO AB AC ∠==, ''445C P =, ∴4''55C P = ∴线段CQ 455 455【点睛】 本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.23.216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,解析:216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则π5180n ⨯=6π, 解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 24.6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.25.或【解析】【分析】由题意可得点P在以D为圆心,为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP的距离.【详解】解析:3352+或3352-【解析】【分析】由题意可得点P在以D为圆心,5为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP 的距离.【详解】∵点P满足PD=5,∴点P在以D为圆心,5为半径的圆上,∵∠BPD=90°,∴点P在以BD为直径的圆上,∴如图,点P是两圆的交点,若点P在AD上方,连接AP,过点A作AH⊥BP,∵CD=4=BC,∠BCD=90°,∴BD=2∵∠BPD=90°,∴BP22BD PD-3,∵∠BPD =90°=∠BAD ,∴点A ,点B ,点D ,点P 四点共圆,∴∠APB =∠ADB =45°,且AH ⊥BP ,∴∠HAP =∠APH =45°,∴AH =HP ,在Rt △AHB 中,AB 2=AH 2+BH 2,∴16=AH 2+(AH )2,∴AH =2(不合题意),或AH =2, 若点P 在CD 的右侧,同理可得AH ,综上所述:AH . 【点睛】本题是正方形与圆的综合题,正确确定点P 是以D BD 为直径的圆的交点是解决问题的关键.26.5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB ==10,∵∠ACB=90°,∴AB 是⊙O 的直径,∴这个三角形的外接圆直径是10;∴这解析:5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB =10,∵∠ACB =90°,∴AB 是⊙O 的直径,∴这个三角形的外接圆直径是10;∴这个三角形的外接圆半径长为5,故答案为5.【点睛】本题考查了90度的圆周角所对的弦是直径,熟练掌握是解题的关键.27..【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案. 【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的解析:mx ny m n++.【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数mx nym n+=+.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.28.x=﹣1【解析】【分析】根据等式的性质将x移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.【详解】解:将x移到等号右边得到:=1﹣x,两边平方,得x+5=1﹣2x解析:x=﹣1【解析】【分析】根据等式的性质将x移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.【详解】解:将x1﹣x,两边平方,得x+5=1﹣2x+x2,解得x1=4,x2=﹣1,检验:x=4时,=5,左边≠右边,∴x=4不是原方程的解,当x=﹣1时,﹣1+2=1,左边=右边,∴x=﹣1是原方程的解,∴原方程的解是x=﹣1,故答案为:x=﹣1.【点睛】本题主要考查解无理方程的知识点,去掉根号把无理式化成有理方程是解题的关键,注意观察方程的结构特点,把无理方程转化成一元二次方程的形式进行解答,需要同学们仔细掌握.29.16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM∴ ,∵F是CD的中点∴DF解析:16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD 中,∵AD=BC,AD ∥BC∴△DEF ∽△CHF, △DEM ∽△BHM ∴DE DF CH CF = ,2()DEM BMHS DE S BH ∆∆= ∵F 是CD 的中点∴DF=CF∴DE=CH∵E 是AD 中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵1DEM S ∆= ∴211()3BMH S ∆= ∴9BMH S ∆=∴9CFH BCFM S S ∆+=四边形∴9DEF BCFM S S ∆+=四边形∴9DME DFM BCFM S S S ∆∆++=四边形∴19BCD S ∆+=∴8BCD S ∆=∵四边形ABCD 是平行四边形∴2816ABCD S =⨯=四边形故答案为:16.30.2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则解析:2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则BP =AB ﹣AP =(5﹣x )cm以A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,①当AD :PB =PA :BC 时,352x x =-, 解得x =2或3.②当AD :BC =PA +PB 时,3=25x x-,解得x =3, ∴当A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,AP 的值为2或3. 故答案为2或3.【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.三、解答题31.(1)见解析;(2)BP =7.【解析】【分析】(1)连接OB ,如图,根据圆周角定理得到∠ABD=90°,再根据等腰三角形的性质和已知条件证出∠OBC=90°,即可得出结论;(2)证明△AOP ∽△ABD ,然后利用相似三角形的对应边成比例求BP 的长.【详解】(1)证明:连接OB ,如图,∵AD 是⊙O 的直径,∴∠ABD =90°,∴∠A+∠ADB =90°,∵OA=OB,∴∠A=∠OBA,∵∠CBP=∠ADB,∴∠OBA+∠CBP=90°,∴∠OBC=180°﹣90°=90°,∴BC⊥OB,∴BC是⊙O的切线;(2)解:∵OA=2,∴AD=2OA=4,∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∵∠A=∠A,∴△AOP∽△ABD,∴APAD =AOAB,即14BP=21,解得:BP=7.【点睛】本题考查了切线的判定、圆周角定理、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握圆周角定理和切线的判定是解题的关键.32.(1)相似,理由见解析;(2)94.【解析】【分析】(1)根据线段垂直平分线的性质得出BE=CE,根据等腰三角形的性质得出∠EBC=∠ECB,∠ABC=∠ADB,根据相似三角形的判定得出即可;(2)根据△FDB∽△ABC得出FDAB=BDBC=12,求出AB=2FD,可得AD=2FD,DF=AF,根据三角形的面积得出S△AFB=S△BFD,S△AEF=S△EFD,根据DE为BC的垂直平分线可得S△BDE=S△CDE,可求出△ABC的面积,再根据相似三角形的性质求出答案即可.【详解】(1)△FDB与△ABC相似,理由如下:∵DE是BC垂直平分线,∴BE=CE,∴∠EBC=∠ECB,∵AB=AD,∴∠ABC=∠ADB,∴△FDB∽△ABC.(2)∵△FDB ∽△ABC , ∴FD AB =BD BC =12, ∴AB =2FD ,∵AB =AD ,∴AD =2FD ,∴DF =AF ,∴S △AFB =S △BFD ,S △AEF =S △EFD ,∴S △ABC =3S △BDE =3×12×3×2=9, ∵△FDB ∽△ABC , ∴BFD ABC S S =(DB BC )2=(12)2=14, ∴S △BFD =14S △ABC =14×9=94. 【点睛】 本题考查线段垂直平分线的性质及相似三角形的判定与性质,线段存在平分线上的点到线段两端的距离相等;熟练掌握相似三角形的面积比等于相似比的平方是解题关键.33.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据四边形ABCD 是平行四边形可得AD ∥BC ,∠FGE =FBC ,再根据已知∠FBC =∠DCE ,进而可得结论;(2)作三角形FBC 的外接圆交AD 于点P 即可证明.【详解】解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC∴∠FGE =∠FBC∵∠FBC =∠DCE ,∴∠FGE =∠DCE∵∠FEG =∠DEC∴∠D =∠F .(2)如图所示:点P即为所求作的点.证明:作BC和BF的垂直平分线,交于点O,作△FBC的外接圆,连接BO并延长交AD于点P,∴∠PCB=90°∵AD∥BC∴∠CPD=∠PCB=90°由(1)得∠F=∠D∵∠F=∠BPC∴∠D=∠BPC∴△BPC∽△CDP.【点睛】此题主要考查圆的综合应用,解题的关键是熟知平行四边形的性质、外接圆的性质及相似三角形的判定与性质.34.(1)45;(2)25°;(351【解析】【分析】(1)利用同弦所对的圆周角是所对圆心角的一半求解.(2)由A、B、C、D共圆,得出∠BDC=∠BAC,(3)根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=12AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.【详解】(1)如图1,∵AB=AC,AD=AC,。
苏科版数学九年级上册《期末检测题》含答案
(2)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值,如果不能,说明理由;
(3)求y与t的函数关系式及相应t的取值范围.
28.如图,在平面直角坐标系xOy中,抛物线 ( )与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l: 与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC
A. B. C. D.
[答案]B
[解析]
[分析]
根据已知两根确定出所求方程即可.
[详解]以2和4为根的一元二次方程是x2﹣6x+8=0,
故选B.
[点睛]此题考查了根与系数的关系,弄清根与系数的关系是解本题的关键.
6.⊙O的半径为5,圆心O到直线l的距离为6,则直线l与⊙O的位置关系是()
A. 相交B. 相切C. 相离D. 无法确定
A. 1:3B. 2:5C. 3:5D. 4:9
10.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()
A. 9B. 10C. D.
二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)
A 3πcmB. 4πcmC. 5πcmD. 6πcm
[答案]D
[解析]
解:∵扇形纸片半径为5cm,用它围成一个圆锥的侧面,该圆锥的高是4cm,∴圆锥的底面半径为: =3(cm),∴该圆锥的底面周长是:2π×3=6π(cm).故选D.
9.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则S△CDF:S四边形ABFE等于()
最新苏科版数学九年级上册《期末考试试题》(含答案解析)
苏科版九年级上学期期末考试数学试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上). 1.方程x (x -1)=0的解是( )A. 0B. 1C. 0或1D. 0或-1 2.从单词“happy ”中随机抽取一个字母,抽中p 的概率为( )A. 15B. 14C.25 D. 12 3.某班准备举办一项体育比赛,为了使同学参与比赛热情更高,在全班进行普查,了解同学们对篮球、足球、乒乓球等三种运动项目的喜爱情况,则应关注的统计结果是各种运动项目的( )A. 众数B. 中位数C. 平均数D. 方差4.如图,已知C E ∠=∠,则不一定能使ABC ∆∽ADE ∆成立的条件是( )A. ∠BAD =∠CAEB. ∠B =∠DC. BC AC DE AE =D. AB AC AD AE= 5.某同学在用描点法画二次函数y =ax 2+bx +c 的图象时,列出了下面的表格:由于粗心,他算错了其中一个y 值,则这个错误..的数值是( ) A. -11 B. -5 C. 2 D. -26.如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点,PQ 切⊙O 于点Q ,则PQ 的最小值为( )A.B. C. 3 D. 2 二、填空题(本大题共有10小题,每小题2分,共20分)7.把二次函数y=x 2﹣12x 化为形如y=a (x ﹣h )2+k 的形式______.8.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是________分.9.将二次函数y = x 2的图像向右平移1个单位长度,再向下平移2个单位长度,得到的函数图像的对称轴是_______________10.已知23a b =,则a a b +=_______________ 11.若一个圆锥的侧面展开图是一个半径为6cm ,圆心角为120°的扇形,则该圆锥的侧面面积为______cm (结果保留π).12.如图,AB ∥CD ,S △ABE :S △CDE =1:4,则AB CD =___________13.如图,⊙O 中,∠AOB=110°,点C 、D 是AmB 上任两点,则∠C+∠D 的度数是____°.14.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边DE=40cm ,EF=20cm ,测得边DF 离地面的高度AC=1.5 m ,CD=8 m ,则树高AB= ▲ .15.如图,点A 、B 在二次函数y =ax 2+bx +c 的图像上,且关于图像的对称轴直线x =1对称,若点A 的坐标为(m ,2),则点B 的坐标为____________ .(用含有m 的代数式表示)16.四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠DCE=________°.三、解答题(本大题共有11小题,共88分)17.解方程:x2+4x=1.18.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲平均成绩为8环,求乙的平均成绩;(2)观察图形,直接指出甲,乙这10次射击成绩的方差s甲2,s乙2哪个大?(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选哪位参赛更合适?为什么?如果其他班级参赛选手的射击成绩都在9环左右,本班应该选哪位参赛更合适?为什么?19.甲、乙、丙三人站成一横排照相,因甲、乙两人是好友,照相时两人紧邻着站在一起不分开.(1)请按左、中、右的顺序列出所有符合要求的站位的结果;(2)按要求随机的站立,求丙站在甲左边的概率.20.关于的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.21.已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:(1)△ACE∽△BDE;(2)BE•DC=AB•DE.22.已知函数y=x2+2kx+k2+1.(1)求证:不论k取何值,函数y>0;(2)若函数图象与y轴的交点坐标为(0,5),求函数图象的顶点坐标.23.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?24.已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于D,DE∥AC交CB的延长线于E.(1)求证:DE是⊙O的切线;(2)若∠A=30°,求证:BD=BC.25.某水果店出售一种水果,每只定价20元时,每周可卖出300只.试销发现:①每只水果每降价1元,每周可多卖出25只;②每只水果每涨价1元,每周将少卖出10只;③水果定价不能低于18元.我们知道,销售收入=销售单价×销售量,设降价出售时的销售收入为y1元,涨价出售时的销售收入为y2元,水果的定价为x元/只.根据以上信息,回答下列问题:(1)请直接写出y1、y2与x的函数关系式,并写出x的取值范围;y1= ;y2= ;(2)你认为应当如何定价才能使一周的销售收入最多?请说明理由.26.定义:如果过三角形一个顶点的直线与对边所在直线相交,得到的三角形中有一个与原三角形相似,那么我们称这样的直线为三角形的相似线.如图1,△ABC中,直线CD与AB交于点D,若△ACD∽△ABC,则称直线CD是△ABC的相似线.解决问题:已知:如图2,在△ABC中,∠BAC>∠ACB>∠ABC.求作:△ABC的相似线.(1)小明用如下方法作出△ABC的一条相似线:作法:如图3,①作△ABC的外接圆⊙O;②以C为圆心,AC的长为半径画弧,与⊙O交于点P;③连接AP,交BC于点D.则直线AD为△ABC的相似线.请你证明小明的作法的正确性.(2)过A点还有其它△ABC的相似线,请你参考(1)中的作法与结论,利用尺规作图,在图3中再作出一条△ABC的相似线AE;(写出作法,保留作图痕迹,不要证明)(3)若△ABC中,∠BAC=90°,则△ABC中过A点的相似线有条,过B点的相似线有条.27.如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC.(1)求证:AC平分∠BAD;(2)若AB=6,AC=42,求EC和PB的长.答案与解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上). 1.方程x (x -1)=0的解是( )A. 0B. 1C. 0或1D. 0或-1【答案】C【解析】 【详解】解:∵x(x−1)=0∴x=0或x−1=0∴1x =0,2x =1故选C2.从单词“happy ”中随机抽取一个字母,抽中p 的概率为( ) A. 15B. 14C. 25D. 12【答案】C【解析】∵单词“happy ”中有两个p ,∴抽中p 的概率为:25 . 故选C. 3.某班准备举办一项体育比赛,为了使同学参与比赛热情更高,在全班进行普查,了解同学们对篮球、足球、乒乓球等三种运动项目的喜爱情况,则应关注的统计结果是各种运动项目的( )A. 众数B. 中位数C. 平均数D. 方差【答案】A【解析】根据题意,知要了解同学们对篮球、足球、乒乓球等三种运动项目的喜爱情况,就要看喜欢这三种运动项目的数量,即众数.故选A.4.如图,已知C E ∠=∠,则不一定能使ABC ∆∽ADE ∆成立的条件是( )A. ∠BAD=∠CAEB. ∠B=∠DC. BC AC DE AE=D.AB ACAD AE=【答案】D【解析】由题意得,∠C=∠E,A. 若添加∠BAD=∠CAE,则可得∠BAC=∠DAE,利用两角法可判断△ABC∽△ADE,故本选项错误;B. 若添加∠B=∠D,利用两角法可判断△ABC∽△ADE,故本选项错误;C. 若添加BC ACDE AE=,利用两边及其夹角法可判断△ABC∽△ADE,故本选项错误;D. 若添加AB ACAD AE=,不能判定△ABC∽△ADE,故本选项正确;故选D.点睛:相似三角形的判定:(1)三边法:三组对应边的比相等的两个三角形相似;(2)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(3)两角法:有两组角对应相等的两个三角形相似,由此判断即可.5.某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:由于粗心,他算错了其中一个y值,则这个错误..的数值是()A. -11B. -5C. 2D. -2【答案】B【解析】由函数图象关于对称轴对称,得(-1,-2),(0,1),(1,-2)在函数图象上,把(-1,-2),(0,1),(1,-2)代入函数解析式,得212a b cca b c-+=-⎧⎪=⎨⎪++=-⎩,解得31abc=⎧⎪=⎨⎪=⎩,则函数解析式为:y=-3x²+1,当x=±2时,y=-11,故错误的数值是-5.故选B.6.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ 的最小值为()A. B. C. 3 D. 2【答案】B【解析】【分析】因为PQ为切线,所以△OPQ是Rt△.又∵OQ为定值,所以当OP最小时,PQ最小.根据垂线段最短,知OP′=3时P′Q′最小.根据勾股定理得出结论即可.【详解】作OP′⊥l于P′点,则OP′=3,作P′Q′与⊙O相切于点Q′.根据题意,在Rt△OP′Q′中,22325-=.故选B.二、填空题(本大题共有10小题,每小题2分,共20分)7.把二次函数y=x2﹣12x化为形如y=a(x﹣h)2+k的形式______.【答案】y=(x﹣6)2﹣36【解析】【分析】将二次项系数化为1,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【详解】y =2x 2-12x =2(x²−6x +9)−18=2(x −3)² −18,即y =2(x −3)² −18. 故答案为y =2(x -3)2-18【点睛】本题考查了二次函数表达式三种形式的互化,掌握转化的技巧是解题的关键.8.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是________分.【答案】79【解析】【详解】解:本学期数学总评分=70×30%+80×30%+85×40%=79(分) 故答案为799.将二次函数y = x 2的图像向右平移1个单位长度,再向下平移2个单位长度,得到的函数图像的对称轴是_______________【答案】过点(1,2)且平行于y 轴的直线;(或直线x=1)【解析】∵抛物线y=x ²向右平移1个单位长度,再向下平移2个单位长度,∴平移后的解析式为:y=(x−1)²−2. ∴函数图像的对称轴是过点(1,2)且平行于y 轴的直线;(或直线x=1), 故答案为过点(1,2)且平行于y 轴的直线;(或直线x=1)10.已知23a b =,则a a b+=_______________ 【答案】25 【解析】 ∵23a b =, ∴b=32a , ∴a a b +=22355522a a a a a a a ==⨯=+ . 11.若一个圆锥的侧面展开图是一个半径为6cm ,圆心角为120°的扇形,则该圆锥的侧面面积为______cm (结果保留π).【答案】12π【解析】根据圆锥的侧面展开图是扇形可得,2120612360,∴该圆锥的侧面面积为:12π,故答案为12π.12.如图,AB∥CD,S△ABE:S△CDE=1:4,则ABCD=___________【答案】12【解析】∵AB∥CD,∴S△ABE∽S△CDE,∴2()ABECDESABCD S=, ∵S△ABE:S△CDE=1:4, ∴ABCD=1142=,故答案为12.13.如图,⊙O中,∠AOB=110°,点C、D是AmB上任两点,则∠C+∠D的度数是____°.【答案】110.【解析】∵∠AOB=110°,∴∠C=∠D=12∠AOB=55°,∴∠C+∠D=110°.故答案为110.14.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= ▲ .【答案】5.5【解析】【详解】试题分析:在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,即=,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m考点:相似三角形15.如图,点A、B在二次函数y=ax2+bx+c的图像上,且关于图像的对称轴直线x=1对称,若点A的坐标为(m,2),则点B的坐标为____________ .(用含有m的代数式表示)【答案】(2-m,2)【解析】∵二次函数y=ax2+bx+c的图象的对称轴为x=1,A的坐标为(m,2),由图象知点A 和点B关于直线x=1对称, ∴点B的坐标为(2-m,2)故答案(2-m,2).16.四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠DCE=________°.【答案】50°【解析】连结EF,如图,∵四边形ABCD内接于O,∴∠A+∠BCD=180°,而∠BCD=∠ECF,∴∠A+∠ECF=180°,∵∠ECF+∠1+∠2=180°,∴∠1+∠2=∠A,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°,∴∠A+80°+∠A=180°,∴∠A=50°. ∵四边形ABCD内接于O, ∴∠DCE=∠A=50°, 故答案为50.三、解答题(本大题共有11小题,共88分)17.解方程:x2+4x=1.【答案】1=52x-,2=52x--.【解析】分析:方程两边加上4得到(x+2)²=5,然后利用直接开平方法解方程.本题解析:解:()225x+=∴∴18.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接指出甲,乙这10次射击成绩的方差s甲2,s乙2哪个大?(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选哪位参赛更合适?为什么?如果其他班级参赛选手的射击成绩都在9环左右,本班应该选哪位参赛更合适?为什么?【答案】(1)8环;(2)s甲2>s乙2;(3)答案见解析.【解析】分析:(1)根据平均数的计算公式和折线统计图给出的数据即可得出答案;(2)根据图形波动的大小可直接得出答案;(3)根据射击成绩都在7环左右的多少可得出乙参赛更合适;根据射击成绩都在9环左右的多少可得出甲参赛更合适.本题解析:解:(1)乙的平均成绩是:(8+9+8+8+7+8+9+8+8+7)÷10=8(环);(2)根据图象可知:甲的波动小于乙的波动,则s甲2>s乙2;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;因射击成绩在7环以上的次数乙比甲多,所以乙参赛获胜可能性更大;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.因射击成绩在9环以上的次数甲比乙多,所以甲参赛获胜可能性更大.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.19.甲、乙、丙三人站成一横排照相,因甲、乙两人是好友,照相时两人紧邻着站在一起不分开.(1)请按左、中、右的顺序列出所有符合要求的站位的结果;(2)按要求随机的站立,求丙站在甲左边的概率.【答案】(1)答案见解析;(2)12. 【解析】 分析:(1)利用列举法写出所有6种等可能的结果;(2)再找出丙站在甲左边的结果数,然后根据概率公式求解.本题解析:(1)根据题意,甲、乙、丙三名同学从左向右的顺序所有可能站位的结果有6种,即甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲.(2)由(1)可知,符合条件丙站在甲左边的所有可能的结果有3种:乙丙甲,丙甲乙,丙乙甲,而所有等可能的站位的结果有6种,根据概率公式可得,丙站在甲左边位置的概率p=3162=. 20.关于的一元二次方程x 2+2x+k+1=0的实数解是x 1和x 2.(1)求k 的取值范围;(2)如果x 1+x 2﹣x 1x 2<﹣1且k 为整数,求k 的值.【答案】解:(1)k≤0.(2)k 的值为﹣1和0.【解析】【分析】(1)方程有两个实数根,必须满足△=b 2-4ac≥0,从而求出实数k 的取值范围;(2)先由一元二次方程根与系数的关系,得x 1+x 2=-2,x 1x 2=k+1.再代入不等式x 1+x 2-x 1x 2<-1,即可求得k 的取值范围,然后根据k 为整数,求出k 的值.【详解】(1)∵方程有实数根,∴△=22−4(k+1)≥0,解得k ≤0.故k 的取值范围是k ≤0. (2)根据一元二次方程根与系数的关系,得12x x +=−2,12x x =k+1, 12x x +−12x x =−2−(k+1).由已知,得−2−(k+1)<−1,解得k>−2.又由(1)k ≤0,∴−2<k ≤0.∵k 为整数,∴k 的值为−1或0.21.已知,如图,在四边形ABCD 中,∠ADB=∠ACB ,延长AD 、BC 相交于点E .求证:(1)△ACE ∽△BDE ;(2)BE•DC=AB•DE .【答案】(1)答案见解析;(2)答案见解析.【解析】【分析】(1)根据邻补角的定义得到∠BDE=∠ACE ,即可得到结论;(2)根据相似三角形的性质得到BE ED AE EC= ,由于∠E=∠E ,得到△ECD ∽△EAB ,由相似三角形的性质得到AE AB AC CD = ,等量代换得到BE AB ED CD =,即可得到结论. 本题解析:【详解】证明:(1)∵∠ADB=∠ACB ,∴∠BDE=∠ACE ,又∵∠E=∠E ,∴△ACE ∽△BDE ;(2)∵△ACE ∽△BDE ∴BE ED AE EC =,∵∠E=∠E ,∴△ECD ∽△EAB ,∴BE AB ED CD=,∴BE•DC=AB•DE . 【点睛】本题考查相似三角形的判定与性质,熟练掌握判定定理是关键.22.已知函数y =x 2+2kx +k 2+1.(1)求证:不论k 取何值,函数y >0;(2)若函数图象与y 轴的交点坐标为(0,5),求函数图象的顶点坐标.【答案】(1)答案见解析;(2)顶点坐标为(2,1)或(-2,1).【解析】分析:(1)由根的判别式小于0,可知抛物线与x 轴无交点,再由图象开口向上可得出结论;(2)由二次函数图像与y 轴的交点可得出k 2+1=5,得出k 的值,代入原函数即可.本题解析:解:(1)解法一:∵a=1,b=2k ,c=k 2+1∴b 2-4ac=(2k )2-4×1×(k 2+1)=-4<0∴二次函数图像与x 轴无交点∵a=1>0 ∴图像开口向上∴抛物线在x轴上方∴y>0即不论k取何值,函数y>0解法二:y=x2+2kx+k2+1=(x+k)2+1,∵不论k取何值(x+k)2≥0,∴y>0(2)∵二次函数图像与y轴交于点(0,5)∴当x=0时,y=5∴k2+1=5∴k=±2∴y=x2±4x+5=(x±2)2+1∴顶点坐标为(2,1)或(-2,1)23.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【答案】羊圈的边长AB,BC分别是20米、20米. 【解析】试题分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.试题解析:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20考点:一元二次方程的应用.24.已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于D,DE∥AC交CB的延长线于E.(1)求证:DE是⊙O的切线;(2)若∠A=30°,求证:BD=BC.【答案】(1)答案见解析;(2)答案见解析.分析:(1)连接OD ,由OB=OD ,得出∠ODB=∠OBD ,根据BD 是△ABC 的外角平分线,推出∠ODB=∠DBE ,得到OD ∥BE .推出BE ⊥DE ,根据AB 是⊙O 的直径,得到AC ⊥CE ,根据DE ∥AC ,即可推出OD ⊥DE ,从而证得直线DE 与⊙O 相切.(2)连接OC ,得出△BOC 是等边三角形,再利用平行线的性质得出结果.本题解析:解:(1)连接OD ,∵OB=OD ,∴∠ODB=∠OBD .∵BD 是△ABC 的外角平分线,∴∠DBE=∠OBD ,∴∠DBE=∠ODB ,∴BE ∥OD .∵AB 是⊙O 的直径,∴∠C=90°.∵DE ∥AC ,∴∠DEB=90°,∴OD ⊥DE 且点D 在⊙O 上,∴直线DE 与⊙O 相切.(2)连接OC ,∵∠A=30°,∴∠BOC=60°,∵OB=OC ,∴△BOC 是等边三角形,∴∠OBC=60°,∵BE ∥OD ,∴∠DOB=60°,∴∠DOB=∠BOC ,∴BD=BC . 点睛:本题主要考查切线的性质,三角形外角的性质,平行线的判定,圆周角定理,等腰三角形的性质等知识点的理解和掌握,综合运用这些性质进形推理是证此题的关键.25.某水果店出售一种水果,每只定价20元时,每周可卖出300只.试销发现:①每只水果每降价1元,每周可多卖出25只;②每只水果每涨价1元,每周将少卖出10只;③水果定价不能低于18元.我们知道,销售收入=销售单价×销售量,设降价出售时的销售收入为y 1元,涨价出售时的销售收入为y 2元,水果的定价为x 元/只.根据以上信息,回答下列问题:(1)请直接写出y 1、y 2与x 的函数关系式,并写出x 的取值范围;y 1= ;y 2= ;(2)你认为应当如何定价才能使一周的销售收入最多?请说明理由.【答案】(1)y 1=225800x x -+(18≤x≤20),y 2=210500x x -+(x≥20);(2)该水果应降价销售,当定价为18元每千克时,销售收入最多.分析:(1)设售价为x 元,根据销售量=原来销售量±增加(减少)销售量,就可以表示出y 1、y 2与x 之间案的关系式;(2)根据销售收入=售价×数量就可以表示出y 1、y 2与x 之间的关系式,由函数的性质就可以得出结论.本题解析:解:(1)y 1=(18≤x≤20) y 2=()2300-10-20-10500x x x x ⎡⎤=+⎣⎦(x≥20)(2)由(1)可得:y 1=∵18≤x≤20∴y 1最大值=y 2=()22-10500-10-256250x x x +=+∵x≥20y 2最大值=()2-1025-2562506250+=∴6300>6250∴该水果应降价销售,当定价为18元每千克时,销售收入最多.26.定义:如果过三角形一个顶点的直线与对边所在直线相交,得到的三角形中有一个与原三角形相似,那么我们称这样的直线为三角形的相似线.如图1,△ABC 中,直线CD 与AB 交于点D ,若△ACD ∽△ABC ,则称直线CD 是△ABC 的相似线.解决问题:已知:如图2,在△ABC 中,∠BAC >∠ACB >∠ABC .求作:△ABC的相似线.(1)小明用如下方法作出△ABC的一条相似线:作法:如图3,①作△ABC的外接圆⊙O;②以C为圆心,AC的长为半径画弧,与⊙O交于点P;③连接AP,交BC于点D.则直线AD为△ABC的相似线.请你证明小明的作法的正确性.(2)过A点还有其它的△ABC的相似线,请你参考(1)中的作法与结论,利用尺规作图,在图3中再作出一条△ABC的相似线AE;(写出作法,保留作图痕迹,不要证明)(3)若△ABC中,∠BAC=90°,则△ABC中过A点的相似线有条,过B点的相似线有条.【答案】(1)答案见解析;(2)答案见解析;(3)1条,3条.【解析】(1)连接CP,根据条件得出△ABC∽△DAC,即可求解;(2)截取BQ=BA,再作直线AQ,即可;(3)根据相似三角形的判定方法分别利用平行线及垂直平分线的性质得出对应角相等即可.(1)连接CP,由作图可得AC=PC,则=∴∠EAC=∠B∵∠C是公共角∴△ABC∽△DAC∴直线AD为△ABC的相似线.(2)如图,截取BQ=BA,交⊙O于点Q;作直线AQ,交BC于点E.则直线AE为所求作的相似线.画图正确(3)1条,3条27.如图,AB 是⊙O 的直径,点C 为⊙O 上一点,AE 和过点C 的切线互相垂直,垂足为E ,AE 交⊙O 于点D ,直线EC 交AB 的延长线于点P ,连接AC ,BC .(1)求证:AC 平分∠BAD ;(2)若AB =6,AC =42,求EC 和PB 的长.【答案】(1)答案见解析;(2)EC=423,PB=67. 【解析】 分析:(1)首先连接OC ,由PE 是 O 的切线,AE 和过点C 的切线互相垂直,可证得OC ∥AE ,又由OA=OC ,易证得∠DAC=∠OAC ,即可得AC 平分∠BAD ;(2)由Rt △ABC ∽Rt △ACE 得出CE 的值,再由Rt △ABC ∽Rt △ACE ,得出PB 的值.本题解析:(1)证明:连接OC ,∵PE 是⊙O 的切线,∴OC ⊥PE ,∵AE ⊥PE ,∴OC ∥AE ,∴∠DAC=∠OCA ,∵OA=OC ,∴∠OCA=∠OAC ,∴∠DAC=∠O AC ,∴AC 平分∠BAD ;(2)∵AB 是⊙O 的直径,∠ACB=90°在Rt △ABC 中,AB=6,AC=43()22226422AB AC -=-=,在Rt △ABC 和Rt △ACE中,∵∠DAC=∠OAC,∠AEC=∠ACB=90°,∴Rt△ABC∽Rt△ACE ,∴AC ECAB BC=,∴,∴EC=42 3在Rt△ACE中,AE=()2 2224216 4233AC EC ⎛⎫-=-=⎪⎪⎝⎭,OC==3又∵OC∥AE,∴Rt△ABC∽Rt△ACE,∴,∴331663PBPB+=+,解得:PB=67点睛:本题主要考查了的是相似三角形的性质和判定、切线的性质、圆周角定理的应用,熟练掌握相关定理是解题的关键.。
苏科版数学九年级上册期末试卷(含答案)
苏科版数学九年级上册期末试卷(含答案)一、选择题1.如图,已知AB 为O 的直径,点C ,D 在O 上,若28BCD ∠=︒,则ABD ∠=( )A .72︒B .56︒C .62︒D .52︒2.若将半径为24cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为( ) A .3cmB .6cmC .12cmD .24cm3.如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =1.5,BC =2,DE =1.8,则EF =( )A .4.4B .4C .3.4D .2.44.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( ) A .相离B .相切C .相交D .无法判断5.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据: 组 别 1 2 3 4 5 6 7 分 值90959088909285这组数据的中位数和众数分别是 A .88,90B .90,90C .88,95D .90,956.在Rt ABC ∆中,90C ∠=︒,3AC =,=1BC ,则sin A 的值为( ) A .10 B .310C .13D .10 7.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( ) A .2sin 3B =; B .2cos 3B =; C .2tan 3B =; D .以上都不对;8.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .9.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( ) A .2B .3C .4D .510.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值3 11.如图,BC 是O 的直径,A ,D 是O 上的两点,连接AB ,AD ,BD ,若70ADB ︒∠=,则ABC ∠的度数是( )A .20︒B .70︒C .30︒D .90︒12.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是x =1D .不存在实数根 13.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( ) A .40B .60C .80D .10014.cos60︒的值等于( ) A .12B 2C .32D 3 15.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x ,则下列方程中,正确的是( ) A .600(1+x )=950B .600(1+2x )=950C.600(1+x)2=950 D.950(1﹣x)2=600二、填空题16.如图,⊙O是△ABC的外接圆,∠A=30°,BC=4,则⊙O的直径为___.17.已知∠A=60°,则tan A=_____.18.已知扇形半径为5cm,圆心角为60°,则该扇形的弧长为________cm.19.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.20.如图,由边长为1的小正方形组成的网格中,点,,,A B C D为格点(即小正方形的顶点),AB与CD相交于点O,则AO的长为_________.21.如图,已知正方ABCD内一动点E到A、B、C三点的距离之和的最小值为13,则这个正方形的边长为_____________22.某校五个绿化小组一天的植树的棵数如下:9,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是_____.23.已知一个圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为_____cm2.(结果保留π)24.在▱ABCD中,∠ABC的平分线BF交对角线AC于点E,交AD于点F.若ABBC=35,则EFBF的值为_____.25.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 26.如图,抛物线214311515y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.27.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.28.若a b b -=23,则ab的值为________. 29.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.30.如图,已知矩形ABCD 的顶点A 、D 分别落在x 轴、y 轴,OD =2OA =6,AD :AB =3:1.则点B 的坐标是_____.三、解答题31.在矩形ABCD中,AB=3,AD=5,E是射线..DC上的点,连接AE,将△ADE沿直线AE 翻折得△AFE.(1)如图①,点F恰好在BC上,求证:△ABF∽△FCE;(2)如图②,点F在矩形ABCD内,连接CF,若DE=1,求△EFC的面积;(3)若以点E、F、C为顶点的三角形是直角三角形,则DE的长为.32.4张相同的卡片分别写有数字﹣1、﹣3、4、6,将这些卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字大于0的概率是______;(2)从中任意抽取1张,并将卡片上的数字记作二次函数y=ax2+bx中的a,再从余下的卡片中任意抽取1张,并将卡片上的数字记作二次函数y=ax2+bx中的b,利用树状图或表格的方法,求出这个二次函数图象的对称轴在y轴右侧的概率.33.解方程(1)(x+1)2﹣25=0(2)x2﹣4x﹣2=034.对于实数a,b,我们可以用{}max,a b表示a,b两数中较大的数,例如{}max3,13-=,{}max2,22=.类似的若函数y1、y2都是x的函数,则y=min{y1, y2}表示函数y1和y2的取小函数.(1)设1y x=,21 =yx ,则函数1max,y xx⎧⎫=⎨⎬⎩⎭的图像应该是___________中的实线部分.(2)请在下图中用粗实线描出函数()(){}22max 2,2y x x =---+的图像,观察图像可知当x 的取值范围是_____________________时,y 随x 的增大而减小.(3)若关于x 的方程()(){}22max 2,20x x t ---+-=有四个不相等的实数根,则t 的取值范围是_____________________. 35.如图,OA l ⊥于点,A B 是OA 上一点,O 是以O 为圆心,OB 为半径的圆.C 是O 上的点,连结CB 并延长,交l 于点D ,且AC AD =.(1)求证:AC 是O 的切线(证明过程中如可用数字表示的角,建议在图中用数字标注后用数字表示);(2)若O 的半径为5,6BC =,求线段AC 的长.四、压轴题36.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为(3,4),一次函数23y x b =-+的图像与边OC 、AB 分别交于点D 、E ,并且满足OD BE =,M 是线段DE 上的一个动点 (1)求b 的值;(2)连接OM ,若ODM △的面积与四边形OAEM 的面积之比为1:3,求点M 的坐标; (3)设N 是x 轴上方平面内的一点,以O 、D 、M 、N 为顶点的四边形是菱形,求点N 的坐标.37.如图,在平面直角坐标系中,直线1l:162y x=-+分别与x轴、y轴交于点B、C,且与直线2l:12y x=交于点A.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且COD△的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内里否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.38.如图,在Rt△AOB中,∠AOB=90°,tan B=34,OB=8.(1)求OA、AB的长;(2)点Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD,QC.①当t为何值时,点Q与点D重合?②若⊙P与线段QC只有一个公共点,求t的取值范围.39.如图,已知在矩形ABCD中,AB=2,BC=3P,Q分别是BC,AD边上的一个动点,连结BQ,以P为圆心,PB长为半径的⊙P交线段BQ于点E,连结PD.(1)若DQ=3且四边形BPDQ是平行四边形时,求出⊙P的弦BE的长;(2)在点P,Q运动的过程中,当四边形BPDQ是菱形时,求出⊙P的弦BE的长,并计算此时菱形与圆重叠部分的面积.40.如图,抛物线y=﹣(x+1)(x﹣3)与x轴分别交于点A、B(点A在B的右侧),与y轴交于点C,⊙P是△ABC的外接圆.(1)直接写出点A、B、C的坐标及抛物线的对称轴;(2)求⊙P的半径;(3)点D在抛物线的对称轴上,且∠BDC>90°,求点D纵坐标的取值范围;(4)E是线段CO上的一个动点,将线段AE绕点A逆时针旋转45°得线段AF,求线段OF的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD的度数,再根据直径所对的圆周角是90°,利用内角和求解.【详解】解:连接AD,则∠BAD=∠BCD=28°, ∵AB 是直径, ∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C. 【点睛】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.2.C解析:C 【解析】 【分析】易得圆锥的母线长为24cm ,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径. 【详解】解:圆锥的侧面展开图的弧长为:2π24224π⨯÷=, ∴圆锥的底面半径为:()24π2π12cm ÷=. 故答案为:C. 【点睛】本题考查的知识点是圆锥的有关计算,熟记各计算公式是解题的关键.3.D解析:D 【解析】 【分析】直接利用平行线分线段成比例定理对各选项进行判断即可. 【详解】 解:∵a ∥b ∥c , ∴AB DEBC EF=, ∵AB =1.5,BC =2,DE =1.8,∴1.5 1.82EF = , ∴EF=2.4 故选:D . 【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.4.A解析:A 【解析】 【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断. 【详解】解:∵圆心O 到直线l 的距离d=6,⊙O 的半径R=4, ∴d>R , ∴直线和圆相离. 故选:A . 【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..5.B解析:B 【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,90,90,90,92,95,∴中位数是按从小到大排列后第4个数为:90.众数是在一组数据中,出现次数最多的数据,这组数据中90出现三次,出现的次数最多,故这组数据的众数为90. 故选B .6.A解析:A 【解析】 【分析】先根据勾股定理求出斜边的长,再根据正弦的定义解答即可. 【详解】解:在Rt ABC ∆中,∵90C ∠=︒,3AC =,=1BC ,∴AB =∴10 sin10BCAAB===.故选:A.【点睛】本题考查了勾股定理和正弦的定义,属于基本题型,熟练掌握基本知识是解题关键. 7.C解析:C【解析】【分析】根据勾股定理求出AB,根据锐角三角函数的定义求出各个三角函数值,即可得出答案.【详解】如图:由勾股定理得:22222133AC BC++==,所以cosB=313BCAB=,sinB=21233AC ACtanBAB BC===,所以只有选项C正确;故选:C.【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.8.B解析:B【解析】【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB、CB、AC2、210只有选项B的各边为125B.【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.9.B解析:B【解析】【分析】根据题意由有唯一的众数4,可知x=4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x =4,∵将数据从小到大排列为:1,2,3,3,4,4,4,∴中位数为:3.故选B .【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.10.A解析:A【解析】【分析】把点(-1,-3)代入y =x 2+mx +n 得n=-4+m ,再代入mn +1进行配方即可.【详解】∵二次函数y =x 2+mx +n 的图像经过点(-1,-3),∴-3=1-m+n ,∴n=-4+m ,代入mn+1,得mn+1=m 2-4m+1=(m-2)2-3.∴代数式mn +1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.11.A解析:A【解析】【分析】连接AC ,如图,根据圆周角定理得到90BAC ︒∠=,70ACB ADB ︒∠=∠=,然后利用互余计算ABC ∠的度数.【详解】连接AC ,如图,∵BC 是O 的直径,∴90BAC ︒∠=,∵70ACB ADB ︒∠=∠=,∴907020ABC ︒︒︒∠=-=.故答案为20︒.故选A .【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.12.A解析:A【解析】【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根,1+8﹣c =0,解得c =9,∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.13.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.14.A解析:A【解析】【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=1 2 .故选A.【点睛】本题考查了特殊角的三角函数值.15.C解析:C【解析】【分析】设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x,依题意,得:600(1+x)2=950.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题16.8【解析】【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=解析:8【解析】【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直径为8,故答案为:8.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.17.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.3【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A=tan60°3.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.18.【解析】【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 解析:53π 【解析】【分析】 直接利用弧长公式180n R l π=进行计算. 【详解】 解:由题意得:605180l π==53π, 故答案是:53π 【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 19.4【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD 中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=12BC=3,∵OB=12AB=5,∴在Rt△OBD中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.20.【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=12BE=12,∵BF∥AD,∴△BOF∽△AOD,∴11248 BO BFAO AD===,∴89AO AB=,∵AB=∴8179 AO .故答案为:817 9【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.21.【解析】【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+E 解析:2【解析】【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC,表示Rt△GMC的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将△ABE绕点A旋转60°至△AGF的位置,连接EF,GC,BG,过点G作BC 的垂线交CB的延长线于点M.设正方形的边长为2m,∵四边形ABCD为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE绕点A旋转60°至△AGF,∴,,60,AG AB AF AE BAG EAF BE GF ==∠=∠=︒=,∴△AEF 和△ABG 为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC ,∴GC=1∵∠GBM=90°-∠ABG =30°,∴在Rt △BGM 中,GM=m ,,Rt △GMC 中,勾股可得222GC GM CM =+,即:2222)(1m m ++=+,解得:2m =,∴边长为2m =.【点睛】 本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC 是解决此题的关键.22.2【解析】【分析】首先根据平均数确定x 的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n ﹣)2],计算方差即可.【详解】∵组数据的平均数是10,∴(9+10+12+x+8解析:2【解析】【分析】首先根据平均数确定x 的值,再利用方差公式S 2=1n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2],计算方差即可.【详解】∵组数据的平均数是10, ∴15(9+10+12+x+8)=10, 解得:x =11,∴S2=15[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(8﹣10)2],=15×(1+0+4+1+4),=2.故答案为:2.【点睛】本题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.23.60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧解析:60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 24..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵B解析:38.【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵BF 是∠ABC 的角平分线,∴∠EBC =∠ABE =∠AFB ,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.25.4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm ,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm 2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm ,侧面积是20πcm 2, 根据圆锥的侧面展开扇形的弧长为:2405S l r π===8π, 再根据锥的侧面展开扇形的弧长等于圆锥的底面周长, 可得822l r πππ===4cm . 故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.26.【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令中y=0,得x1=【解析】【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.【详解】令21115y x =-中y=0,得x 1x 2∴直线AC 的解析式为1y =-, 设P (x ,31x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1∴PQ 2=PB 2-BQ 2,2+(31x )2-1, =24283753x x , ∵43a =0<,∴PQ 2有最小值24283475()3326443,∴PQ【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.27.【解析】【分析】根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.【详解】根据二次函数的图象可知:对称轴为,已知一个点为,根据抛物线的对称性,则点关于对称性对称解析:20x -<<【解析】【分析】根据3y >,则函数图象在直线3y =的上方,所以找出函数图象在直线3y =的上方x 的取值范围即可.【详解】根据二次函数的图象可知:对称轴为1x =-,已知一个点为()03,, 根据抛物线的对称性,则点()03,关于对称性对称的另一个点为()23-,, 所以3y >时,x 的取值范围是20x -<<.故答案为:20x -<<.【点睛】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点()03,的对称点是解题的关键. 28.【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.29.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.30.(5,1)【解析】【分析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=OD=2,DE=OA=1,于是得到结论.解析:(5,1)【解析】【分析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=13OD=2,DE=13OA=1,于是得到结论.【详解】解:过B作BE⊥x轴于E,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO+∠OAD=∠OAD+∠BAE=90°,∴∠ADO=∠BAE,∴△OAD∽△EBA,∴OD:AE=OA:BE=AD:AB∵OD=2OA=6,∴OA=3∵AD:AB=3:1,∴AE=13OD=2,BE=13OA=1,∴OE=3+2=5,∴B(5,1)故答案为:(5,1)【点睛】本题考查了矩形的性质,相似三角形的判定和性质,坐标与图形性质,正确的作出辅助线并证明△OAD∽△EBA 是解题的关键.三、解答题31.(1)证明见解析;(2)513;(3)53、5、15 【解析】【分析】(1)利用同角的余角相等,证明∠CEF =∠AFB ,即可解决问题;(2)过点F 作FG ⊥DC 交DC 与点G ,交AB 于点H,由△FGE ∽△AHF 得出AH=5GF ,再利用勾股定理求解即可;(3)分①当∠EFC=90°时; ②当∠ECF=90°时;③当∠CEF=90°时三种情况讨论解答即可.【详解】(1)解:在矩形ABCD 中,∠B =∠C =∠D =90°由折叠可得:∠D =∠EFA =90°∵∠EFA =∠C =90°∴∠CEF +∠CFE =∠CFE +∠AFB =90°∴∠CEF =∠AFB在△ABF 和△FCE 中∵∠AFB =∠CEF ,∠B =∠C =90°△ABF ∽△FCE(2)解:过点F 作FG ⊥DC 交DC 与点G ,交AB 于点H ,则∠EGF =∠AHF =90°在矩形ABCD 中,∠D =90°由折叠可得:∠D =∠EFA =90°,DE =EF =1,AD =AF =5∵∠EGF =∠EFA =90°∴∠GEF +∠GFE =∠AFH +∠GFE =90°∴∠GEF =∠AFH在△FGE 和△AHF 中∵∠GEF =∠AFH ,∠EGF =∠FHA =90°∴△FGE ∽△AHF ∴EF AF =GF AH ∴15=GF AH∴AH =5GF在Rt △AHF 中,∠AHF =90°∵AH 2+FH 2=AF 2∴(5 GF )2+(5 -GF )2=52∴GF =513∴△EFC的面积为12×513×2=513;(3)解:①当∠EFC=90°时,A、F、C共线,如图所示:设DE=EF=x,则CE=3-x,∵AC=22223534AD CD+=+=,∴CF=34-x, ∵∠CFE=∠D=90°, ∠DCA=∠DCA, ∴△CEF∽△CAD, ∴CE EFCA AD=,即534x=,解得:ED=x=5(345)-;②当∠ECF=90°时,如图所示:∵AD=1AF=5,AB=3, ∴1BF221AF AB-设1DE=x,则1E C=3-x,∵∠DCB=∠ABC=90°,111CF E F AB∠=∠∴11CE F∽1BF A,∴11111E C E FF B F A=,即345x x-=,解得:x=1E D=53;由折叠可得 :222E F E D= ,设2E C x=,则2223E F DE x==+,2549CF=+=,在RT△22E F C中,∵2222222CF CE E F +=,即9²+x²=(x+3)²,解得x=2E C =12, ∴231215DE =+=;③当∠CEF=90°时,AD=AF,此时四边形AFED 是正方形,∴AF=AD=DE=5,综上所述,DE 的长为:53、5、15、5(345)-. 【点睛】 本题考查了翻折的性质,相似三角形的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.32.(1)12;(2)23. 【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次函数的性质,找出a 、b 异号的结果数,然后根据概率公式求解.【详解】(1)∵共由4种可能,抽到的数字大于0的有2种,∴从中任意抽取1张,抽到的数字大于0的概率是12, 故答案为:12(2)画树状图为:共有12种等可能的结果数,其中a 、b 异号有8种结果,∴这个二次函数的图象的对称轴在y 轴右侧的概率为812=23. 【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比,熟练掌握a 、b 异号时,对称轴在y 轴右侧是解题关键.33.(1)x 1=4,x 2=﹣6;(2)x 1=,x 2=2【解析】【分析】(1)利用直接开平方法解出方程;(2)先求出一元二次方程的判别式,再解出方程.【详解】解:(1)(x +1)2﹣25=0,(x +1)2=25,x +1=±5,x =±5﹣1,x 1=4,x 2=﹣6;(2)x 2﹣4x ﹣2=0,∵a =1,b =﹣4,c =﹣2,∴△=b 2﹣4ac =(﹣4)2﹣4×1×(﹣2)=24>0,∴x =,即x 1=,x 2=2.【点睛】本题考查了一元二次方程的解法,熟练掌握求根公式是解题关键.34.(1)D ;(2)见解析;20x -<<或2x >;(3)40t -<<.【解析】【分析】(1)根据函数解析式,分别比较1x ≤- ,10x -<<,01x <≤,1x >时,x 与1x 的大小,可得函数1max ,y x x ⎧⎫=⎨⎬⎩⎭的图像;(2)根据{}max ,a b 的定义,当0x <时,()22x -+图像在()22x --图像之上,当0x =时,()22x --的图像与()22x -+的图像交于y 轴,当0x >时,()22x --的图像在()22x -+之上,由此可画出函数()(){}22max 2,2y x x =---+的图像;(3)由(2)中图像结合解析式()22x --与()22x -+可得t 的取值范围.【详解】(1)当1x ≤-时,1x x ≤, 当10x -<<时,1x x >, 当01x <≤时,1x x <, 当1x >时,1x x> ∴函数1max ,y x x ⎧⎫=⎨⎬⎩⎭的图像为故选:D .(2)函数()(){}22max 2,2y x x =---+的图像如图中粗实线所示:令()2=02x -+得,2x =-,故A 点坐标为(-2,0),令()2=02x --得,2x =,故B 点坐标为(2,0),观察图像可知当20x -<<或2x >时,y 随x 的增大而减小;故答案为:20x -<<或2x >;(3)将0x =分别代入()()2212, =22y x y x =---+,得12==4y y -,故C(0,-4), 由图可知,当40t -<<时,函数()(){}22max 2,2y x x =---+的图像与y t =有4个不同的交点.故答案为:40t -<<.【点睛】本题通过定义新函数综合考查一次函数、反比例函数与二次函数的图像与性质,关键是理解新函数的定义,结合解析式和图像进行求解.。
苏科版九年级上册数学《期末考试试卷》及答案
苏 科 版 数 学 九 年 级 上 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题1.下列方程中的一元二次方程是( )A. x 2+x ﹣3x =0B. x 2﹣2x =x 2C. x 2+y ﹣1=0D. x 2﹣x ﹣6=0 2.抛物线y =x 2﹣4x+4的顶点坐标为( )A. (﹣4,4)B. (﹣2,0)C. (2,0)D. (﹣4,0)3.下列说法正确的是( )A. 三点确定一个圆B. 一个三角形只有一个外接圆C. 和半径垂直的直线是圆的切线D. 三角形的内心到三角形三个顶点距离相等 4.一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别( )A. 4,4B. 3,4C. 4,3D. 3,3 5.在△ABC 中,若21cos (1tan )2A B -+-=0,则∠C 的度数是( ) A. 45° B. 60° C. 75° D. 105°6.在Rt △ABC 中,∠C=90°,若斜边AB 是直角边BC 的3倍,则tan B 的值是( )A. 13B. 3C. 24D. 227.如图,△DEF 和△ABC 是位似图形点O 是位似中心,点D ,E ,F ,分别是OA ,OB ,OC 的中点,若△ABC 的面积是8,△DEF 的面积是( )A. 2B. 4C. 6D. 88.如图,Rt △ABC 中,∠ACB =90°,AC =BC =2,在以AB 的中点O 为坐标原点、AB 所在直线为x 轴建立的平面直角坐标系中,将△ABC 绕点B 顺时针旋转,使点A 旋转至y 轴正半轴上的A′处,则图中阴影部分面积为()A. 43π﹣2B. 43πC. 23πD. 23π﹣2 二、填空题9.在Rt △ABC 中,∠C =90°,若BC =8,sinA =45,则AC =_____. 10.已知圆O 的半径是3cm ,点O 到直线l 的距离为4cm ,则圆O 与直线l 的位置关系是_____.11.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为______. 12.若关于x 的一元二次方程(m ﹣1)x 2+x +m 2﹣1=0有一个根为0,则m 的值为_____.13.如图,直线y =mx +n 与抛物线y =ax 2+bx +c 交于A (﹣1,p ),B (4,q )两点,则关于x 的不等式mx +n <ax 2+bx +c 的解集是____.14.如图,⊙O 直径AB 垂直于弦CD ,垂足E 是OB 的中点,若AB =6,则CD =_____.15.如图,如果从半径为5cm 的圆形纸片上剪去15圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高是cm.16.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的余弦值等于_____.17.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= ▲ .18.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于______.三、解答题19.(1)解方程:x2﹣3x+1=0.(2)计算:tan60°﹣cos45°•sin45°+sin30°.20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.若关于x 的一元二次方程(m+1)x 2﹣2x ﹣1=0有两个不相等的实数根,(1)求m 取值范围;(2)若x =1是方程的一个根,求m 的值和另一个根.22.已知二次函数的图象与x 轴交于A(﹣2,0)、B(4,0)两点,且函数经过点(3,10).(1)求二次函数的解析式;(2)设这个二次函数的顶点为P ,求△ABP 的面积;(3)当x 为何值时,y≤0.(请直接写出结果)23.如图,在△ABC 中,AB=AC ,∠BAC=54°,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,过点B 作⊙O 的切线,交AC 的延长线于点F .(1)求证:BE=CE ;(2)求∠CBF 的度数;(3)若AB=6,求AD 的长. 24.据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s ,在一条笔直公路BD 的上方A 处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B 点匀速向D 点行驶,测得∠ABD=31°,2秒后到达C 点,测得∠ACD=50°(tan31°≈0. 6,tan50°≈1.2,结果精确到1m ) (1)求B,C 的距离. (2)通过计算,判断此轿车否超速.25.如图,在ABC ∆中,AB AC =,以AC 边为直径作⊙O 交BC 边于点D ,过点D 作DE AB ⊥于点E ,ED 、AC 的延长线交于点F .(1)求证:EF 是⊙O 的切线;(2)若,且,求⊙O 的半径与线段的长.26.为鼓励贫困县农民尽快脱贫,某县政府出台了相关扶贫政策,由政策协调,某企业按成本价提供治理风沙的树苗给贫困县农民栽种,其余费用如运输、技术指导等由政府承担,张大爷一家按照相关政策投资栽种这种苗,已知这种树苗的成本价每棵10元(张大爷一家承担),政府承担其余费用每棵2元,栽种一定时期后外地商贩前来收购,销售量y(棵)与销售价x(元)之间的关系近似满足一次函数:y =﹣10x+500.(1)张大爷一家将销售单价定为20元,那么政府为他承担多少元?(2)设张大爷一家获得的利润为W(元),当销售单价定为多少元时,可获得最大利润?(3)物价部门规定,这种树苗的销售单价不得高于25元,如果张大爷一家想要获得的利润不低于3000元,那么政府为他承担的费用最少为多少元?27.在平面直角坐标系中,我们定义直线y=ax-a 为抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“衍生三角形”.已知抛物线2234323y x x =+“衍生直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“衍生直线”的解析式为,点A的坐标为,点B的坐标为;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN 为该抛物线的“衍生三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F,使得以点A、C、E、F 为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.答案与解析一.选择题1.下列方程中的一元二次方程是( )A. x2+x﹣3x=0 B. x2﹣2x=x2C. x2+y﹣1=0D. x2﹣x﹣6=0【答案】D【解析】【分析】根据一元二次方程的定义解答.一元二次方程必须满足条件:(1)含有一个未知数;(2)未知数的最高次数是2;(3)二次项系数不为0;(4)是整式方程.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A、是分式方程,不是整式方程,故此选项错误.B、方程含有一个未知数,整理后未知数最高次数为1,是一元一次方程,故此选项错误;C、方程含两个未知数,故此选项错误;D、符合一元二次方程的定义,故此选项正确;故选D.【点睛】本题考查了一元二次方程的定义,一元二次方程必须满足三个条件:首先判断方程是整式方程,若是整式方程,再把方程进行化简,化简后是含有一个未知数,并且未知数的最高次数是2,在判断时,一定要注意二次项系数不是0.2.抛物线y=x2﹣4x+4的顶点坐标为( )A. (﹣4,4)B. (﹣2,0)C. (2,0)D. (﹣4,0)【答案】C【解析】【分析】将抛物线解析式一般式用配方法转化为顶点式,可求顶点坐标.【详解】解:∵y=x2﹣4x+4=(x﹣2)2,∴抛物线顶点坐标为(2,0).故选C.【点睛】本查二次函数的性质,将解析式化为顶点式y=a(x-h)2+k,可得顶点坐标是(h,k),对称轴是x=h.3.下列说法正确的是( )A. 三点确定一个圆B. 一个三角形只有一个外接圆C. 和半径垂直的直线是圆的切线D. 三角形的内心到三角形三个顶点距离相等【答案】B【解析】【分析】根据确定圆的条件对A 、B 进行判断;根据切线的判定定理对C 进行判断;根据三角形内心的性质对D 进行判断.【详解】解:A 、不共线的三点确定一个圆,所以A 选项错误;B 、一个三角形只有一个外接圆,所以B 选项正确;C 、过半径的外端与半径垂直的直线是圆的切线,所以C 选项错误;D 、三角形的内心到三角形三边的距离相等,所以D 选项错误.故选B .【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了确定圆的条件和切线的判定.4.一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别( )A. 4,4B. 3,4C. 4,3D. 3,3【答案】D【解析】 【详解】解:∵这组数据有唯一的众数4,∴x=4,将数据从小到大排列为:1,2,3,3,4,4,4,则平均数=(1+2+3+3+4+4+4)÷7=3, 中位数为:3.故选D .【点睛】本题考查了众数、中位数及平均数的定义,属于基础题,掌握基本定义是关键.5.在△ABC 中,若21cos (1tan )2A B -+-=0,则∠C 的度数是( )A. 45°B. 60°C. 75°D. 105°【答案】C【解析】【分析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C 的度数.【详解】由题意,得 cosA=12,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.6.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tan B的值是( )A. 13B. 3C.2D. 22【答案】D【解析】【分析】先求出AC,再根据正切的定义求解即可. 【详解】设BC=x,则AB=3x,由勾股定理得,AC=22x,tanB=ACBC=22x=22,故选D.考点:1.锐角三角函数的定义;2.勾股定理.7.如图,△DEF和△ABC是位似图形点O是位似中心,点D,E,F,分别是OA,OB,OC的中点,若△ABC的面积是8,△DEF的面积是( )A. 2B. 4C. 6D. 8【答案】A【解析】【分析】根据点D,E,F分别是OA,OB,OC 的中点可知DFAC=12,再由位似图形性质得DEFABCSS=(DFAC)2,据此可得答案.【详解】解:∵点D,E,F分别是OA,OB,OC的中点,∴DFAC=12,∴△DEF与△ABC的相似比是1:2, ∴DEF ABC S S=(DF AC)2,即DEF S8=14, 解得:S△DEF=2, 故选A.【点睛】本题主要考查了三角形中位线定理、位似的定义及性质,掌握相似三角形面积的比等于相似比的平方是解题的关键.8.如图,Rt△ABC中,∠ACB=90°,AC=BC=2,在以AB的中点O为坐标原点、AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴正半轴上的A′处,则图中阴影部分面积为( )A. 43π﹣2 B.43πC.23πD.23π﹣2【答案】C【解析】【分析】阴影部分的面积等于扇形ABA′的面积+Rt△A′C′B的面积-Rt△ABC的面积-扇形BCC′的面积. 【详解】解:∵∠ACB=90°,AC=BC,∴△ABC是等腰直角三角形,∴AB=2OA=2OB=222AC = ∵△ABC 绕点B 顺时针旋转点A 在A′处,∴BA′=AB ,∴BA′=2OB ,∴∠OA′B=30°,∴∠A′BA=60°,即旋转角为60°,S 阴影=S 扇形ABA′+S △A′BC′-S △ABC -S 扇形CBC′,=S 扇形ABA′-S 扇形CB C′,2260(22)602360ππ⨯⨯=- 4233ππ=- 23π= 故选:C .二、填空题9.在Rt △ABC 中,∠C =90°,若BC =8,sinA =45,则AC =_____. 【答案】6【解析】【分析】根据已知结合锐角三角函数关系得出AB ,再根据勾股定理求得AC 的长即可.【详解】解:如图所示:∵∠C =90°,BC =8,sinA =45, ∴BC AB =8AB =45, ∴AB =10,∴AC =22108-=6,故答案为6.【点睛】此题主要考查了锐角三角函数关系以及勾股定理,正确记忆直角三角形中边角关系是解题关键.10.已知圆O的半径是3cm,点O到直线l的距离为4cm,则圆O与直线l的位置关系是_____.【答案】相离【解析】【分析】根据圆心O到直线l的距离大于半径即可判定直线l与⊙O的位置关系为相离.【详解】∵圆心O到直线l的距离是4cm,大于⊙O的半径为3cm,∴直线l与⊙O相离,故答案为相离【点睛】此题考查的是直线与圆的位置关系,根据圆心到直线的距离d与半径r的大小关系解答.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.11.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为______.【答案】4【解析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.解:设黄球的个数为x个,根据题意得:88x=2/3解得:x=4.∴黄球的个数为4.12.若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.【答案】﹣1.【解析】【分析】根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m2-1=0,由此可以求得m的值.【详解】解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案为﹣1.【点睛】本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.13.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n<ax2+bx+c的解集是____.【答案】﹣1<x<4.【解析】【分析】观察两函数图象的上下位置关系,即可得出结论.【详解】观察函数图象可知:当﹣1<x<4时,直线y=mx+n在抛物线y=ax2+bx+c的下方,∴不等式mx+n<ax2+bx+c的解集为﹣1<x<4.故答案为﹣1<x<4.【点睛】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.14.如图,⊙O直径AB垂直于弦CD,垂足E是OB的中点,若AB=6,则CD=_____.【答案】33【解析】【分析】连接OC,首先根据题意求得OE与OC,再在直角△OCE中,利用勾股定理即可求得CE的长,再利用垂径定理求得CD的长即可.【详解】解:连接OC.∵AB ⊥CD ,且AB 是⊙O 的直径,∴CE =DE =12CD ,OB =OC =12AB =3, ∵E 是OB 的中点,∴OE =32, ∴CE =22OC OE -=33, ∴CD =2CE =33.故答案是:33.【点睛】本题考查了垂径定理和勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15.如图,如果从半径为5cm 的圆形纸片上剪去15圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高是 cm .【答案】3.【解析】∵从半径为5cm 的圆形纸片上剪去15圆周的一个扇形, ∴留下的扇形的弧长=()4255π⋅=8π. ∵圆锥的底面周长等于它的侧面展开图的弧长,∴根据圆的周长公式,得2r=8ππ,解得r=4.∵圆锥的母线、高和底面半径构成直角三角形,∴根据勾股定理,2254-.考点:圆锥和扇形的计算,勾股定理.16.如图,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠BED 的余弦值等于_____.【答案】1 2【解析】【分析】根据同弧或等弧所对的圆周角相等得出∠DAB=∠DEB,再根据正切的定义求解即可.【详解】解:如图,在Rt ABC中,tan∠DAB=CB AB=12∵∠DAB=∠DEB,∴tan∠DAB=tan∠DEB=12.故答案为12.【点睛】本题主要考查圆周角定理及锐角三角函数的概念,在直角三角形中,正弦等于对比斜;余弦等于邻比斜;正切等于对比邻.正确得出相等的角是解题关键.17.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB= ▲ .【答案】5.5【解析】【详解】试题分析:在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,即=,解得BC=4, ∵AC=1.5m, ∴AB=AC+BC=1.5+4=5.5m 考点:相似三角形18.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于______.5【解析】【分析】此题考查了二次函数的最值,勾股定理,等腰三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.【详解】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE= 5设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出BFDE= ,OF CM AMOE DE AE,代入求出BF和CM,相加即可求出答案.过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,∵BF ⊥OA ,DE ⊥OA ,CM ⊥OA ,∴BF ∥DE ∥CM .∵OD=AD=3,DE ⊥OA ,∴OE=EA= 12OA=2, 由勾股定理得:DE= 22OD OE -=5,设P (2x ,0),根据二次函数的对称性得出OF=PF=x ,∵BF ∥DE ∥CM ,∴△OBF ∽△ODE ,△ACM ∽△ADE ,∴,BF OF CM AM DE OE DE AE==, ∵AM=PM=12(OA-OP )= 12(4-2x )=2-x , 即2,2255x x -==, 解得:55BF x,CM 5x 22==- ∴BF+CM= 5.5【点睛】考核知识点:二次函数综合题.熟记性质,数形结合是关键.三、解答题19.(1)解方程:x 2﹣3x+1=0.(2)计算:tan60°﹣cos45°•sin45°+sin30°.【答案】(1)x 135+x 2=352;3【解析】【分析】(1)先计算判别式的值,然后利用求根公式解方程;(2) 将特殊角的三角函数值代入求解即可.【详解】解:(1)△=(﹣3)2﹣4×1=5,x=35±,所以x1=35+,x2=35-;(2)原式=3﹣2×2+12=3﹣12+12=3.【点睛】本题考查了解一元二次方程-公式法和特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;(2)请你计算小悦拿到的两个粽子都是肉馅的概率.【答案】(1)树状图见解析;(2)1 6【解析】分析:(1)根据题意可以用树状图表示出所有的可能结果;(2)根据(1)中的树状图可以得到小悦拿到的两个粽子都是肉馅的概率.详解:(1)肉粽记为A、红枣粽子记为B、豆沙粽子记为C,由题意可得,(2)由(1)可得,小悦拿到的两个粽子都是肉馅的概率是:21= 126,即小悦拿到的两个粽子都是肉馅的概率是16.点睛:本题考查列表法与树状图法,解答本题的关键是明确题意,列出相应的树状图,求出相应的概率.21.若关于x的一元二次方程(m+1)x2﹣2x﹣1=0有两个不相等的实数根,(1)求m的取值范围;(2)若x=1是方程的一个根,求m的值和另一个根.【答案】(1)m>﹣2且m≠﹣1;(2)方程的另一个根为x=﹣13.【解析】【分析】(1)根据判别式的意义得到△=(-2)2+4(m+1)>0,然后解不等式即可;(2)先根据方程的解的定义把x=1代入原方程求出m的值,则可确定原方程变为3x2-2x-1=0,然后解方程得到方程的另一根.【详解】(1)根据题意得△=(﹣2)2+4(m+1)>0,解得m>﹣2,且m+1≠0,解得:m≠﹣1,所以m>﹣2且m≠﹣1;(2)把x=1代入原方程得m+1﹣2-1=0,解得m=2,∴原方程变为3x2﹣2x﹣1=0解方程得x1=1,x2=﹣13,∴方程的另一个根为x=﹣13.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程.22.已知二次函数的图象与x轴交于A(﹣2,0)、B(4,0)两点,且函数经过点(3,10).(1)求二次函数的解析式;(2)设这个二次函数的顶点为P,求△ABP的面积;(3)当x为何值时,y≤0.(请直接写出结果)【答案】(1)y=﹣2x2+4x+16;(2)54;(3)x≤﹣2或x≥4.【解析】【分析】(1)因为A(﹣2,0)、B(4,0)两点在x轴上,所以可设抛物线解析式为y=a(x+2)(x﹣4),然后把(3,10)代入求解;(2)把化为顶点式即可求出顶点坐标,然后根据三角形面积公式即可求出△ABP的面积;(3)根据二次函数的图像直接观察位于x轴下方部分图像对应的x的取值即可解答.【详解】(1)设抛物线解析式为y=a(x+2)(x﹣4),把(3,10)代入得5×(﹣1)a=10,解得a=﹣2,所以抛物线解析式为y=﹣2(x+2)(x﹣4),即y=﹣2x2+4x+16;(2)∵y=﹣2x2+4x+16=﹣2(x﹣1)2+18,∴顶点P的坐标为(1,18),∴△ABP的面积=12×(4+2)×18=54;(3)x≤﹣2或x≥4.【点睛】本题考查了待定系数法求二次函数解析式,一般式与顶点式的转化,二次函数的图像与性质,解答本题的关键是求出二次函数解析式.23.如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC 于点D,E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:BE=CE;(2)求∠CBF的度数;(3)若AB=6,求AD的长.【答案】(1)证明见解析;(2)∠CBF=27°;(3)6 AD5π=【解析】【分析】(1)连接AE,则根据直径所对圆周角是直角的性质得AE⊥BC,从而根据等腰三角形三线合一的性质得出结论.(2)由∠BAC=54°,AB=AC,根据等腰三角形等边对等角的性质和三角形内角和等于零180度求得∠ABC=63°;由切线垂直于过切点直径的性质得∠ABF=90°,从而由∠CBF=∠ABF一∠ABC得出结论.(3)连接OD,根据同弧所对圆周角是圆心角一半的性质,求得∠AOD=72°,根据弧长公式即可求.【详解】解:(1)如图,连接AE,∵AB是⊙O的直径,∴∠AEB=90°,即AE⊥BC.又∵AB=AC,∴BE=CE.(2)∵∠BAC=54°,AB=AC,∴∠ABC=63°.又∵BF是⊙O的切线,∴∠ABF=90°.∴∠CBF=∠ABF一∠ABC=27°.(3)连接OD,∵OA=OD,∠BAC=54°,∴∠BOD=72°,∠AOD=72°.又∵AB=6,∴OA=3.∴7236AD1805ππ⨯==.24.据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0. 6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.(2)通过计算,判断此轿车是否超速.【答案】(1)20m ;(2)没有超速.【解析】【分析】(1)在直角三角形ABD 与直角三角形ACD 中,利用锐角三角函数定义求出BD 与CD 的长,由BD-CD 求出BC 的长即可;(2)根据路程除以时间求出该轿车的速度,即可作出判断.【详解】解:(1)在Rt △ABD 中,AD=24m,∠B=31°, ∴tan31°=AD BD ,即BD=240.6=40m, 在Rt △ACD 中,AD=24m,∠ACD=50°,∴tan50°=AD CD,即CD=241.2=20m, ∴BC=BD ﹣CD=40﹣20=20m,则B,C 的距离为20m ;(2)根据题意得:20÷2=10m/s <15m/s,则此轿车没有超速.点睛:此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.25.如图,在ABC ∆中,AB AC =,以AC 边为直径作⊙O 交BC 边于点D ,过点D 作DE AB ⊥于点E ,ED 、AC 的延长线交于点F .(1)求证:EF 是⊙O 的切线;(2)若,且,求⊙O 的半径与线段的长. 【答案】(1)证明参见解析;(2)半径长为154,AE =6. 【解析】 【分析】 (1)已知点D 在圆上,要连半径证垂直,连结OD ,则OC OD =,所以ODC OCD ∠=∠,∵AB AC =,∴B ACD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .由DE AB ⊥得出OD EF ⊥,于是得出结论;(2)由35OD AE OF AF ==得到35OD AE OF AF ==,设3OD x =,则5OF x =.26AB AC OD x ===,358AF x x x =+=,362AE x =-,由363285x x -=,解得x 值,进而求出圆的半径及AE 长.【详解】解:(1)已知点D 在圆上,要连半径证垂直,如图2所示,连结OD ,∵AB AC =,∴B ACD ∠=∠.∵OC OD =,∴ODC OCD ∠=∠.∴B ODC ∠=∠,∴OD ∥AB .∵DE AB ⊥,∴OD EF ⊥.∴EF 是⊙O 的切线;(2)在Rt ODF ∆和Rt AEF ∆中,∵35OD AE OF AF ==,∴35OD AE OF AF ==. 设3OD x =,则5OF x =.∴26AB AC OD x ===,358AF x x x =+=.∵32EB =,∴362AE x =-.∴363285x x -=,解得x =54,则3x=154,AE=6×54-32=6,∴⊙O 的半径长为154,AE =6.【点睛】1.圆的切线的判定;2.锐角三角函数的应用.26.为鼓励贫困县农民尽快脱贫,某县政府出台了相关扶贫政策,由政策协调,某企业按成本价提供治理风沙的树苗给贫困县农民栽种,其余费用如运输、技术指导等由政府承担,张大爷一家按照相关政策投资栽种这种苗,已知这种树苗的成本价每棵10元(张大爷一家承担),政府承担其余费用每棵2元,栽种一定时期后外地商贩前来收购,销售量y(棵)与销售价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)张大爷一家将销售单价定为20元,那么政府为他承担多少元?(2)设张大爷一家获得的利润为W(元),当销售单价定为多少元时,可获得最大利润?(3)物价部门规定,这种树苗的销售单价不得高于25元,如果张大爷一家想要获得的利润不低于3000元,那么政府为他承担的费用最少为多少元?【答案】(1)政府为他承担600元;(2)当售价定为30元时,可获最大利润;(3)政府为他承担的费用最少为500元.【解析】【分析】(1)把x=20代入一次函数y=-10x+500中,得到销售量,再根据政府承担费用=2×销售量,即可得到答案,(2)根据总利润=每棵利润×销售量,设可获得总利润为W元,列出W关于x的二次函数,利用最值即可得到答案,(3)根据利润不低于3000元,列出当利润为3000元时的一元二次方程,再根据二次函数的性质结合销售单价不得高于25元,判断x的取值范围,进而判断出y的最小值,即可得到答案.【详解】解:(1)把x=20代入一次函数y=﹣10x+500中得:y=﹣10×20+500=300(棵),2×300=600元,答:政府为他承担600元,(2)设可获得总利润为W元,根据题意,得:W=(x﹣10)×(﹣10x+500)=﹣10(x﹣30)2+4000,即当售价定为30元时,可获最大利润,(3)令W=3000,即﹣10(x﹣30)2+4000=3000,解得:x1=40,x2=20,即20≤x≤40,又∵x≤25,∴20≤x≤25,一次函数:y=﹣10x+500,y随x的增大而减小,∴把x=25代入y=﹣10x+500,得y最小=250,2×250=500(元),答:政府为他承担的费用最少为500元.【点睛】本题考查二次函数的应用和一元二次方程的应用,根据等量关系列出函数关系式,并利用二次函数的最值和一次函数的增减性进行分析是解题的关键.27.在平面直角坐标系中,我们定义直线y=ax-a 为抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“衍生三角形”.已知抛物线2234323y x x =--+与其“衍生直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“衍生直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“衍生三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由.【答案】(1)2323y=x+33-;(-2,3;(1,0); (2)N 点的坐标为(0,3-3),(0,3+3);(3)E (-1,-433)、F (0,33)或E (-1,3-3),F (-4,1033) 【解析】【分析】 (1)由抛物线的“衍生直线”知道二次函数解析式的a 即可;(2)过A 作AD ⊥y 轴于点D,则可知AN=AC,结合A 点坐标,则可求出ON 的长,可求出N 点的坐标;(3)分别讨论当AC 为平行四边形的边时,当AC 为平行四边形的对角线时,求出满足条件的E 、F 坐标即可【详解】(1)∵2234323y x x =+,a=233-,则抛物线的“衍生直线”的解析式为2323y=x+33-;联立两解析式求交点22343232323y=x+y x x⎧=--+⎪⎪⎨⎪-⎪⎩,解得x=-2y=23⎧⎪⎨⎪⎩或x=1y=0⎧⎨⎩,∴A(-2,23),B(1,0);(2)如图1,过A作AD⊥y轴于点D,在223432333y x x=--+中,令y=0可求得x= -3或x=1,∴C(-3,0),且A(-2,23),∴AC=22-++2133=(23)()由翻折的性质可知AN=AC=13,∵△AMN为该抛物线的“衍生三角形”,∴N在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN=22AN-AD=13-4=3,∵OD=23,∴ON=23-3或ON=23+3,∴N点的坐标为(0,23-3),(0,23+3);(3)①当AC为平行四边形的边时,如图2 ,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF 且AC=EF,∴∠ ACK=∠ EFH ,在△ ACK 和△ EFH 中ACK=EFH AKC=EHF AC=EF ∠∠⎧⎪∠∠⎨⎪⎩∴△ ACK ≌△ EFH ,∴FH=CK=1,HE=AK=∵抛物线的对称轴为x=-1,∴ F 点的横坐标为0或-2,∵点F 在直线AB 上,∴当F 点的横坐标为0时,则F (0,3),此时点E 在直线AB 下方, ∴E 到y 轴的距离为EH-OF=3=3,即E 的纵坐标为-3, ∴ E (-1,; 当F 点的横坐标为-2时,则F 与A 重合,不合题意,舍去;②当AC 为平行四边形的对角线时,∵ C (-3,0),且A (-2,,∴线段AC 的中点坐标为(-2.5,,设E (-1,t ),F (x ,y ),则x-1=2×(-2.5),y+t=∴x= -4,y=,3×(-4)+3,解得t=-3, ∴E (-1,),F (-4,3); 综上可知存在满足条件的点F ,此时E (-1,)、(0E (-1,),F (-4)【点睛】本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题。
苏科版数学九年级上册《期末测试卷》(附答案解析)
九年级上册数学期末测试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. 下列函数中,二次函数的是A. y=2x2+1B. y=2x+1C. y=2xD. y=x2-(x-1)22. 下列说法中,正确的是A. 任意两个矩形都相似B. 任意两个菱形都相似C. 相似图形一定位似图形 D. 位似图形一定是相似图形3. 在△ABC中,∠C=90°,AC=1,BC=2,则cos A的值是()A.124. 已知圆锥的底面半径为2,母线长为4,则其侧面积为( )A. 6πB. 8πC. 16πD. 32π5. 某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:请你根据表中数据选一人参加比赛,最合适的人选是( )A. 甲B. 乙C. 丙D. 丁6. 若二次函数y=x2+(m+1)x-m的图象与坐标轴只有两个交点,则满足条件的m的值有A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上)7. 请写出一个关于x的一元二次方程,且有一个根为2: ____.8. 一组数据6,2,–1,5的极差为__________.9. 若△ABC∽△A'B'C',相似比为1:2,则△ABC与△A'B'C'的面积比为____.10. 一元二次方程x2-6x+5=0的两根分别是x1、x2,则x1·x2的值是____.11. 抛掷一枚质地均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是____.12. 将二次函数y=x2的图象向右平移1个单位,再向上平移3个单位,得到的新图象的函数表达式是____.13. 已知扇形的圆心角为120°,弧长为2 ,则它的半径为________.14. 已知二次函数y=x2-2x+2的图像上有两点A(-3,y1)、B(-2,y2),则y1____y2.(填”>”“<”或”=”号)15. 如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠A=____°.16. 如图,AB=5,P是线段AB上的动点,分别以AP、BP为边,在线段AB的同侧作正方形APCD和正方形BPEF,连接CF,则CF的最小值是____.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(1)解方程: x2-4x+2=0;(2)计算: sin30°-cos245°+tan60°·sin60°.18. 已知关于x的方程(k-2)x2-(k-2)x+14=0有两个相等的实数根.求k的值.19. 某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图,(1)求该校九年级学生本次数学测试成绩的平均数; (2)下列关于本次数学测试说法正确的是( ) A.九年级学生成绩的众数不平均数相等 B.九年级学生成绩的中位数不平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数. 20. 从甲、乙、丙、丁4名同学中随机抽取环保志愿者.求下列事件的概率: (1)抽取1名,恰好是甲; (2)抽取2名,甲在其中.21. 如图,点C 在⊙O 上,弦AB ⊥OC ,垂足为D ,AB=8,CD=2.求⊙O的半径.22. 如图,在△ABC 中,CD 是边AB 上的高,且=AD CDCD BD,求∠ACB 的大小.23. 已知二次函数y =-x 2+bx +c 的图象经过点(0,3)、(-1,0). (1)求二次函数的表达式,并写出顶点坐标.(2)在给定的平面直角坐标系中,画出这个二次函数的图象;(3)根据图象,直接写出当x满足什么条件时,y>0.24. 如图,平地上一幢建筑物AB与铁塔CD相距40m,在建筑物的顶部测得铁塔底部的俯角为37°,测得铁塔顶部的仰角为26.6°,求铁塔的高度.(参考数据: sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)25. 如图,△ABC中,∠B=∠C=30°,点O是BC边上一点,以点O为圆心、OB为半径的圆经过点A,与BC交于点D.⑴试说明AC与⊙O相切;AC 面积.⑵若2326. 2016年巴西里约奥运会期间,南京某奥运特许经营商店以每件10元的价格购进了一批奥运纪念玩具,定价为20元时,平均每天可售出80个.经调查发现,奥运纪念玩具的单价每降1元,每天可多售出40个;奥运纪念玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.27. 问题提出: 若一个四边形的两组对边乘积之和等于它的两条对角线的乘积,则称这个四边形为巧妙四边形.初步思考: (1)写出你所知道的四边形是巧妙四边形的两种图形的名称: ,.(2)小敏对巧妙四边形进行了研究,发现圆的内接四边形一定是巧妙四边形.如图①,四边形ABCD是⊙O的内接四边形.求证: AB·CD+BC·AD=AC·BD.小敏在解答此题时,利用了”相似三角形”进行证明,她的方法如下:在BD上取点M,使∠MCB=∠DCA.(请你在下面的空白处完成小敏的证明过程.)推广运用: 如图②,在四边形ABCD中,∠A=∠C=90°,AD=3,AB=6,CD=2.求AC的长.答案与解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. 下列函数中,二次函数的是A. y=2x2+1B. y=2x+1C. y=2xD. y=x2-(x-1)2【答案】A【解析】根据二次函数的定义,形如:()20,,,y ax bx c a a b c=++≠是常数,y关于x的二次函数,故选A. 点睛:本题考查二次函数定义,解决本题的关键是要熟练掌握二次函数的定义.2. 下列说法中,正确的是A.任意两个矩形都相似 B. 任意两个菱形都相似C. 相似图形一定是位似图形D. 位似图形一定是相似图形【答案】D【解析】因为对应边成比例且对应角相等的图形是相似图形,A选项,因为任意两个矩形的对应边不一定成比例,因此A选项错误,B选项,因为任意两个菱形对应角不一定相等,因此B选项错误,C选项,因为位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于位似比,如果两个多边形不仅相似,而且对应点顶点的连线所在的直线交于一点,对应边互相平行(或在一条直线上),像这样的两个图形叫做位似图形,因此C选项错误,D选项,因为位似图形一定是相似图形,因此D选项正确,故选D.点睛:本题主要考查相似图形和位似图形的相关概念,解决本题的关键是要熟练掌握相似图形和位似图形的概念.3. 在△ABC中,∠C=90°,AC=1,BC=2,则cos A的值是()A.12B. C. D.【答案】C【解析】【分析】根据勾股定理求出斜边AB的值,在利用余弦的定义直接计算即可.【详解】解: 在Rt△ACB中,∠C=90°,AC=1,BC=2,∴AB ==∴cosAC A AB ===, 故选: C .【点睛】本题主要考察直角三角形中余弦值的计算,准确应用余弦定义是解题的关键. 4. 已知圆锥的底面半径为2,母线长为4,则其侧面积为( ) A. 6π B. 8πC. 16πD. 32π【答案】B 【解析】因为圆锥侧面积公式S rl π=,所以S=2×4π=8π,故选B.点睛:本题主要考查圆锥侧面积公式,解决本题的关键是要熟练掌握圆锥侧面积的公式.5. 某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:请你根据表中数据选一人参加比赛,最合适的人选是( ) A. 甲 B. 乙 C. 丙 D. 丁【答案】D 【解析】根据方差的性质可知,方差越小,成绩越稳定,在方差相同情况下,比较平均数,平均数越高,成绩教好,故选D. 点睛:本题主要考查平均数和方差的性质,解决本题的关键是要熟练掌握方差和平均数的性质. 6. 若二次函数y =x 2+(m +1)x -m 的图象与坐标轴只有两个交点,则满足条件的m 的值有 A. 1个 B. 2个 C. 3个 D. 4个【答案】C 【解析】 由二次函数与坐标轴只有两个交点所以可得①:()21410m m =+-⨯⨯-=,2610m m ++=,3m =-±;②易得当0m =时也有两个交点,故满足条件的m 的值有3个,故选C.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7. 请写出一个关于x 的一元二次方程,且有一个根为2: ____. 【答案】x 2=4(答案不唯一). 【解析】根据一元二次方程的定义和一元二次方程根情况可得方程为:24x =,故答案为:24x =.(答案不唯一,符合题意即可) 8. 一组数据6,2,–1,5的极差为__________. 【答案】7 【解析】根据极差的定义,一组数据的最大值与最小值的差为极差,所以这组数据的极差是7,故答案为:7. 9. 若△ABC ∽△A'B'C',相似比为1:2,则△ABC 与△A'B'C'的面积比为____. 【答案】1: 4. 【解析】因为相似三角形的面积比等于相似比的平方,所以△ABC 与△A'B'C'的面积比为1:4,故答案为 1:4. 10. 一元二次方程x 2-6x +5=0的两根分别是x 1、x 2,则x 1·x 2的值是____. 【答案】5 【解析】【详解】根据韦达定理可得: x 1·x 2=5ca=, 故答案为:5.11. 抛掷一枚质地均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是____. 【答案】14【解析】试题分析: 列举出所有情况,看所求的情况占总情况的多少即可.共有正反,正正,反正,反反4种可能,则2次抛掷的结果都是正面朝上的概率为14. 故答案为14. 考点: 概率公式.12. 将二次函数y =x 2的图象向右平移1个单位,再向上平移3个单位,得到的新图象的函数表达式是____.【答案】y =(x -1) 2+3. 【解析】根据二次函数图象平移规律,左加右减,上加下减的平移规律,所以将二次函数y =x 2的图像向右平移1个单位,再向上平移3个单位,得到的新图像的函数表达式是y =(x -1) 2+3,故答案为: y =(x -1) 2+3. 13. 已知扇形的圆心角为120°,弧长为2π,则它的半径为________. 【答案】3 【解析】 【详解】∵180n R l π=,∴18023120R ππ⨯==14. 已知二次函数y =x 2-2x +2的图像上有两点A (-3,y 1)、B (-2,y 2),则y 1____y 2.(填”>”“<”或”=”号) 【答案】> 【解析】【详解】点A 和点B 分别代入二次函数解析式可得:1296217,44210y y =++==++=,所以y 1>y 2, 故答案为: >.15. 如图,四边形ABCD 内接于⊙O ,AD 、BC 的延长线相交于点E ,AB 、DC 的延长线相交于点F .若∠E +∠F =80°,则∠A =____°.【答案】50 【解析】试题分析: 连结EF ,如图,根据圆内接四边形的性质得∠A+∠BCD=180°,根据对顶角相等得∠BCD=∠ECF ,则∠A+∠ECF=180°,根据三角形内角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A ,再利用三角形内角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,则∠A+80°+∠A=180°,然后解方程即可. 试题解析: 连结EF ,如图,∵四边形ABCD 内接于⊙O , ∴∠A+∠BCD=180°, 而∠BCD=∠ECF , ∴∠A+∠ECF=180°, ∵∠ECF+∠1+∠2=180°, ∴∠1+∠2=∠A ,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°, ∴∠A+80°+∠A=180°, ∴∠A=50°.考点: 圆内接四边形的性质.16. 如图,AB =5,P 是线段AB 上的动点,分别以AP 、BP 为边,在线段AB 的同侧作正方形APCD 和正方形BPEF ,连接CF ,则CF 的最小值是____.5 【解析】设AP =x ,则BP=5-x ,所以EF=BP =5-x ,EC =5-x -x =5-2x ,在直角三角形EFC 中,根据勾股定理可得:()()()22255235CF x x x =-+-=-+当x =3时,CF 有最小值,CF 5故答案为: 5三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. (1)解方程: x 2-4x +2=0; (2)计算: sin30°-cos 245°+tan60°·sin60°.【答案】(1)122x =+,222x =-;(2)32. 【解析】 试题分析:(1)利用配方法,再直接开平方法解方程,(2)根据特殊三角函数值求解即可.试题解析:(1)x 2-4x =-2,(x -2)2=2,x -2=±2,x 1=2+2,x 2=2-2.(2) sin30°-cos 245°+tan60°·sin60°原式=2123322⎛⎫-+⨯ ⎪ ⎪⎝⎭, =113222-+, =32. 18. 已知关于x 的方程(k -2)x 2-(k -2)x +14=0有两个相等的实数根.求k 的值. 【答案】3.【解析】试题分析:根据一元二次方程根的情况可得:240b ac -=,可列出(k -2) 2-4×·(k -2)=0,且k -2≠0,即可求解. 试题解析:因为方程(k -2)x 2-(k -2)x +=0有两个相等的实数根,所以(k -2) 2-4×·(k -2)=0, 解方程,得k 1=2,k 2=3,又因为k -2≠0,所以k =3.19. 某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图,(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是( )A.九年级学生成绩的众数不平均数相等B.九年级学生成绩的中位数不平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数.【答案】(1)81分;(2)D.【解析】【分析】(1)用九年级学生的总分除以总人数即可得出答案;(2)根据条形统计图和扇形统计图不能求出众数和中位数,从而得出答案.【详解】解: (1)根据题意得: (80×1000×60%+82.5×1000×40%)÷1000=81(分),答: 该校九年级学生本次数学测试成绩的平均数是81分;(2)A、根据统计图不能求出九年级学生成绩的众数,故本选项错误;B.根据统计图不能求出九年级学生成绩的中位数,故本选项错误;C.随机抽取一个班,该班学生成绩的平均数不一定等于九年级学生成绩的平均数,故本选项错误;D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数,故本选项正确;故选D.【点睛】本题考查了众数、平均数和中位数的定义.一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.20. 从甲、乙、丙、丁4名同学中随机抽取环保志愿者.求下列事件的概率:(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.【答案】(1)14;(2)12. 【解析】试题分析: (1)根据概率的求法,找准两点: ①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,由从甲、乙、丙3名同学中随机抽取环保志愿者,直接利用概率公式求解即可求得答案.(2)利用列举法可得抽取2名,可得: 甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.试题解析: (1)∵从甲、乙、丙3名同学中随机抽取环保志愿者,∴抽取1名,恰好是甲的概率为: 13. (2)∵抽取2名,可得: 甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况, ∴抽取2名,甲在其中的概率为:23. 考点: 概率.21. 如图,点C 在⊙O 上,弦AB ⊥OC ,垂足为D ,AB=8,CD=2.求⊙O 的半径.【答案】5.【解析】试题分析:连接OB ,设半径为r ,在直角三角形ODB 中,BD =4,OD =r -2,OB =r ,根据勾股定理列出关于r 的方程,解方程即可求解.试题解析:连接OB ,∵ 在⊙O 中,弦AB ⊥OC ,垂足为D ,∴ AD =BD =12AB =4, 设⊙O 的半径为r ,在Rt △BOD 中,BD 2+OD 2=OB 2,即42+(r -2) 2=r 2,解方程,得r =5,所以⊙O 的半径为5.22. 如图,在△ABC 中,CD 是边AB 上的高,且=AD CD CD BD,求∠ACB 的大小.【答案】90°. 【解析】试题分析:利用两边对应成比例且夹角相等可以判定△CDA ∽△BDC,再根据相似三角形的性质可得∠A =∠DCB,根据互余可证∠DCB +∠ACD =90°,即可求证. 试题解析:∵ CD 是边AB 上的高,∴ CD ⊥AB ,∴ ∠CDA =∠BDC =90°,又 =AD CD CD BD, ∴△CDA ∽△BDC,∴ ∠A =∠DCB ,又 ∠A +∠ACD =90°,∴ ∠DCB +∠ACD =90°,即 ∠ACB =90°.23. 已知二次函数y =-x 2+bx +c 的图象经过点(0,3)、(-1,0).(1)求二次函数的表达式,并写出顶点坐标.(2)在给定的平面直角坐标系中,画出这个二次函数的图象;(3)根据图象,直接写出当x 满足什么条件时,y >0.【答案】(1) y=-x2+2x+3;(2)作图见解析;(3)-1<x<3.【解析】试题分析:(1)把(0,3),(-1,0)代入二次函数y=-x2+bx+c,列方程组即可求解,(2)通过列表,描点,连线画出图象,(3)根据图象找出二次函数图象在x轴上方的部分所对应的x的取值范围.试题解析:(1)将(0,3),(-1,0)代入y=-x2+bx+c可得:3 01cb c=⎧⎨=--+⎩,解得23 bc=⎧⎨=⎩,所以二次函数的表达式为y=-x2+2x+3,(2)画图略(3)-1<x<3.24.如图,平地上一幢建筑物AB与铁塔CD相距40m,在建筑物的顶部测得铁塔底部的俯角为37°,测得铁塔顶部的仰角为26.6°,求铁塔的高度.(参考数据: sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)【答案】50m.【解析】试题分析: 作AE⊥CD,垂足为E.分别在Rt△AEC和Rt△AED中,求出CE和DE的长,然后相加即可.试题解析: 作AE⊥CD,垂足为E.在Rt△AEC中,CE=AE•tan26.6°≈40×0.50=20m;在Rt△AED中,DE=AE•tan37°≈40×0.75=30m;∴CD=20+30=50m.答: 铁塔的高度为50米.考点: 解直角三角形的应用-仰角俯角问题.25. 如图,△ABC中,∠B=∠C=30°,点O是BC边上一点,以点O为圆心、OB为半径的圆经过点A,与BC交于点D.⑴试说明AC与⊙O相切;⑵若23AC=.【答案】(1)见解析;(2)2 233π-【解析】【分析】(1)连接O A ,先得出∠OAB =30°,再解得∠OAC =90°,从而可判断出AC 与⊙O 的位置关系;(2)连接AD ,设OA 的长度为x ,根据”阴影部分的面积=△OAC 的面积-扇形OAD 的面积”列出方程即可求解.【详解】⑴ 连接O A.∵ OA =OB∴ ∠OAB =∠B∵ ∠B =30°∴ ∠OAB =30°△ABC 中: ∠B =∠C =30°∴ ∠BAC =180°-∠B -∠C =120°∴ ∠OAC =∠BAC -∠OAB =120°-30°=90° ∴ OA ⊥AC∴ AC 是⊙O 的切线,即AC 与⊙O 相切.⑵ 连接A D.∵ ∠C =30°,∠OAC =90°∴ OC =2OA设OA 的长度为x ,则OC=2x在△OAC 中,∠OAC=90°,23AC =根据勾股定理可得: 222(23)(2)x x +=解得: 12x =,22x =-(不合题意,舍去) ∴1223232OAC S ∆=⨯⨯=,2602=2=3603OAD S ππ⨯⨯扇形 ∴2=233S π阴影 答: 图中阴影部分的面积为2233π-.【点睛】本题主要考查切线的判定与性质、解直角三角形、扇形面积的计算,正确作出辅助线是解题的关键.26. 2016年巴西里约奥运会期间,南京某奥运特许经营商店以每件10元的价格购进了一批奥运纪念玩具,定价为20元时,平均每天可售出80个.经调查发现,奥运纪念玩具的单价每降1元,每天可多售出40个;奥运纪念玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.【答案】当定价为16元时,每天的利润最大,最大利润是1440元.【解析】试题分析:本题分降价和涨价两种情况计算,(1)在降价情况下,设每件降价x元,则每天的利润为y1元,根据题意可得y1=-40x2+320x+800,配方求函数最值,在涨价的情况下,设每件涨价x元,则每天的利润为y2元,根据题意可得y2=-5x2+30x+800,配方求函数最值.试题解析:在降价的情况下,设每件降价x元,则每天的利润为y1元,y1=(20-10-x)(80+40x),即y1=-40x2+320x+800=-40(x-4) 2+1440,当x=4元时,即定价为16元时,y1最大,即最大利润,最大利润是1440元,在涨价的情况下,设每件涨价x元,则每天的利润为y2元,y2=(20-10+x)(80-5x),即y2=-5x2+30x+800=-5(x-3) 2+845,当x=3元时,即定价为23元时,y2最大,即最大利润,最大利润是845元,综上所述,当定价为16元时,每天的利润最大,最大利润是1440元.27. 问题提出: 若一个四边形的两组对边乘积之和等于它的两条对角线的乘积,则称这个四边形为巧妙四边形.初步思考: (1)写出你所知道的四边形是巧妙四边形的两种图形的名称: ,.(2)小敏对巧妙四边形进行了研究,发现圆的内接四边形一定是巧妙四边形.如图①,四边形ABCD是⊙O的内接四边形.求证: AB·CD+BC·AD=AC·BD.小敏在解答此题时,利用了”相似三角形”进行证明,她的方法如下:在BD上取点M,使∠MCB=∠DCA.(请你在下面的空白处完成小敏的证明过程.)推广运用: 如图②,在四边形ABCD中,∠A=∠C=90°,AD,AB,CD=2.求AC的长.【答案】(1)正方形,矩形(答案不惟一);(2)证明见解析;(3)15+263.【解析】试题分析:(1)根据巧妙四边形的定义可写出符合条件的四边形,等腰梯形,矩形,正方形等,(2)圆内接四边形对角线为圆内两条相交的弦,根据同弧所对圆周角相等可证等角,再根据两角分别对应相等的两个三角形相似可证相似三角形,根据相似三角形的性质可得对应边成比例,即可求证,(3)连接BD,可根据题目条件证明四点共圆,即四边形ABCD为圆内接四边形,再根据(2)的结论代入数值即可计算求解.试题解析:(1)正方形,矩形(答案不惟一),(2)∵在⊙O中,∠DAC和∠DBC是所对的圆周角,∴∠DAC=∠DBC,又∠MCB=∠DCA,∴△MCB∽△DCA,∴BC BM AC AD=,即BC·AD=AC·BM,∵在⊙O中,∠CDB和∠CAB是所对圆周角, ∴∠CDB=∠CAB.又∠DCM=∠ACB,∴△DCM∽△ACB,∴CD DM CA AB=,即AB·CD=AC·DM,AC·BM=AC·(DM+BM),即AB·CD+BC·AD=AC·BD,(3)连接BD,取BD中点M,连接AM,CM,在Rt△ABD中,BD22AB BD+在Rt△BCD中,BC22BD CD-5∵在Rt△ABD中,M是BD中点,∴AM=12 BD,∵在Rt△BCD中,M是BD中点,∴CM=12 BD,∴AM=CM=MB=MD,∴A,B,C,D四点在以点M为圆心,MA为半径的圆上, 即四边形ABCD是⊙O的内接四边形,由(2)的结论可知AB·CD+BC·AD=AC·BD,∴1526+.。
苏科版九年级上册数学期末试卷带答案
苏科版九年级上册数学期末试题一、单选题1.数据﹣2,5,4,﹣3,﹣1的极差是()A .8B .7C .6D .52.已知关于x 的方程x 2+3x+a=0有一个根为﹣2,则另一个根为()A .5B .﹣1C .2D .﹣53.如图,点O 是⊙O 的圆心,点A 、B 、C 在⊙O 上,48AOB ∠=︒,则ACB ∠的度数是()A .48︒B .24︒C .96︒D .42︒4.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣5,0),对称轴为直线x =﹣2,给出四个结论:①abc >0;②4a ﹣b =0;③若点B (﹣3,y 1).C (0,y 2)为函数图象上的两点,则y 1<y 2;④a+b+c =0;其中,正确结论的个数是()A .1B .2C .3D .45.一组数据1,2,2,3,4的众数是()A .1B .2C .3D .46.如图,抛物线y =ax 2+bx+c (a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①a >0;②b >0;③方程ax 2+bx+c =0的两个根是x 1=﹣1,x 2=3;④当y >0时,x 的取值范围是﹣1<x <3;其中结论正确的个数是()A .4个B .3个C .2个D .1个7.如图,下列条件不能判定△ADB ∽△ABC 的是()A .∠ABD=∠ACB B .∠ADB=∠ABCC .AB 2=AD•ACD .AD ABAB BC=8.二次函数y=(x+2)2-3的顶点坐标是()A .(﹣2,3)B .(2,3)C .(﹣2,﹣3)D .(2,﹣3)9.二次函数22y x x =+的图象可能是()A .B .C .D .10.如图,点A 、B 、C 在⊙O 上,若∠BOC =70°,则∠A 的度数为()A .35°B .40°C .55°D .70°二、填空题11.一组数据1,6,3,-4,5的极差是_________.12.关于x 的方程(k-1)x 2-x +6=0是一元二次方程,则k 满足的条件是________.13.将函数y =2x 2+x 的图象向下平移2个单位长度得到新函数的图象,则新函数的表达式是_________.14.如图,一个转盘,转盘上共有红、白两种不同的颜色,已知红色区域的圆心角为80︒,自由转动转盘,指针落在白色区域的概率是_________.15.如图,PA 、PB 分别切⊙O 于点A ,B ,点E 是⊙O 上一点,且50E ∠=︒,则P ∠的度数为______.16.若函数y =x 2-x +m 的图象与x 轴有两个公共点,则m 的范围是__________.17.已知圆锥的侧面积是8π,底面半径是2,则圆锥的母线长是_________.18.如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴正半轴上,顶点C 的坐标为(4,3),D 是抛物线y=﹣x 2+6x 上一点,且在x 轴上方,则△BCD 面积的最大值为__________.三、解答题19.解下列方程:(1)(x -5)2=x -5(2)x2+12x+27=020.(1)已知线段a=2,b=9,求线段a,b的比例中项.(2)已知x:y=4:3,求y xy的值.21.如图△ABC,用圆规和没有刻度的直尺作出△ABC的外接圆.(用黑水笔描清楚作图痕迹)22.某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据如图填写下表:平均数中位数众数方差甲班8.5乙班8.510 1.6(2)根据以上数据可以判断哪个班的数据比较稳定.23.疫情防控期间,任何人进入校园都必须测量体温,体温正常方可进校.甲、乙两位同学进校时可以从学校大门A、B、C三个入口处中的任意一处测量体温.(1)甲同学在A入口处测量体温的概率是;(2)请用画树状图或列表的方法,求甲、乙两位同学从同一入口处测量体温进校的概率.24.用一段长为30m 的篱笆围成一个靠墙的矩形菜园,墙的长度为18m .(1)设垂直于墙的一边长为xm ,则平行于墙的一边长为m (用含x 的代数式表示);(2)若菜园的面积为100m 2,求x 的值.25.如图,在ABC 中,AB AC =,以AB 为直径的O 与BC 相交于点D ,过点D 作DE AC ⊥,交AC 于点E .(1)求证:DE 是O 的切线;(2)若O 的直径为5,8BC =,求DE 的长.26.某商店销售一种进价50元/件的商品,经市场调查发现:该商品的每天销售量y (件)是售价x (元/件)的一次函数,其售价、销售量的二组对应值如下表:售价x (元/件)5565销售量y (件/天)9070(1)直接写出y 关于售价x 的函数关系式:;(2)若某天销售利润为800元,求该天的售价为多少元/件?(3)设商店销售该商品每天获得的利润为W (元),求W 与x 之间的函数关系式,并求出当销售单价定为多少时,该商店销售这种商品每天获得的利润最大?27.已知一次函数y =x +4的图象与二次函数y =ax (x -2)的图象相交于点A (-1,b )和点B,点P是线段AB上的动点(不与A、B重合),过点P作PC⊥x轴,与二次函数y =ax(x-2)的图象交于点C.(1)a=,b=,B点的坐标为;(2)求线段PC长的最大值.(3)连接AC,当△PAC是以AP为腰的等腰三角形时,直接写出点P的坐标.参考答案1.A【分析】先求出这组数据﹣2,5,4,﹣3,﹣1中最大值是5,最小值是-3,,根据极差的定义,最大值-最小值计算即可.【详解】解:数据﹣2,5,4,﹣3,﹣1中最大值是5,最小值是-3,数据﹣2,5,4,﹣3,﹣1的极差是5﹣(﹣3)=8,故选:A.【点睛】本题考查极差的定义,掌握极差的定义,一组数据的最大值-最小值是解题关键.2.B【分析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x 的方程x 2+3x+a=0有一个根为-2,设另一个根为m ,∴-2+m=−31,解得,m=-1,故选B .3.B【分析】利用圆周角定理解决问题即可.【详解】解:在⊙O 中 AB AB =,∴∠ACB =12∠AOB ,∠AOB =48°,∴∠ACB =24°,故选:B .【点睛】本题考查圆周角定理,解题的关键是记住同弧所对的圆周角是圆心角的一半.4.C【分析】根据二次函数图象的性质即可判断.【详解】解:由图象可知:开口向下,故a <0,抛物线与y 轴交点在x 轴上方,故c >0,∵对称轴x =﹣2ba <0,∴b <0,∴abc >0,故①正确;∵对称轴为x =﹣2,∴﹣2ba =﹣2,∴b =4a ,∴4a ﹣b =0,故②正确;当x <﹣2时,此时y 随x 的增大而增大,∵点B (﹣3,y 1)与对称轴的距离比C (0,y 2)与对称轴的距离小,∴y 1>y 2,故③错误;∵图象过点A (﹣5,0),对称轴为直线x =﹣2,∴点A关于x=﹣2对称点的坐标为:(1,0)令x=1代入y=ax2+bx+c,∴y=a+b+c=0,故④正确,故选C.【点睛】此题考查二次函数图象与系数的关系,解题关键在于根据函数图象进行解答5.B【分析】根据众数的定义判断即可.【详解】解:数据1,2,2,3,4中,2出现了两次,出现的次数最多,这组数据的众数是2,故选:B.【点睛】本题考查了众数的概念,解题关键是掌握众数的概念,注意:在一组数据中,众数可能不唯一.6.B【分析】根据抛物线与系数的关系判断即可.【详解】解:抛物线开口向下,a<0,故①错误;对称轴在y轴右侧,a、b异号,b>0,故②正确;抛物线与x轴交点为(﹣1,0),对称轴为直线x=1,根据对称性,另一个交点为(3,0),故③正确;根据图象可知,x的取值范围是﹣1<x<3时;抛物线在x轴上方,故④正确;故选:B.【点睛】本题考查二次函数图象与系数的关系,解题的关键是熟练正确理解二次函数图象与系数的关系,本题属于中等题型.7.D【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴AC AB AB AD =,∠A=∠A ,△ABC ∽△ADB ,故此选项不合题意;D 、AD AB AB BC=不能判定△ADB ∽△ABC ,故此选项符合题意.故选:D .【点睛】本题考查了相似三角形的判定,熟悉相似三角形的判定定理是解题的关键.8.C【分析】根据二次函数的性质直接求解.【详解】解:二次函数y=(x+2)2-3的顶点坐标是(-2,-3).故选:C .【点睛】本题考查了二次函数的性质:二次函数y=ax 2+bx+c (a≠0)的图象为抛物线,当a>0,抛物线开口向上;抛物线的顶点式为y=a (x-2b a )2+242ac b a-,对称轴为直线x=-2b a ,顶点坐标为(-2b a ,242ac b a-);抛物线与y 轴的交点坐标为(0,c ).9.C【分析】根据二次函数y=x 2+2x 的顶点坐标为(-1,-1),它的开口方向向上,且图象经过原点,即可解答.【详解】解:∵二次函数y=x 2+2x=(x+1)2-1,∴开口向上,顶点为(-1,-1),且经过原点.故选:C .【点睛】本题考查了二次函数的图象,解决本题的关键是明确二次函数的开口方向、顶点坐标以及与x 轴的交点.10.A【分析】根据圆周角定理,同弧所对圆周角等于圆心角的一半,即可得出答案.【详解】解:∵如图,∠BOC =70°,∴∠A =12∠BOC =35°.故选:A .【点睛】此题主要考查了圆周角定理,圆周角定理是中考中考查重点,熟练掌握圆周角定理是解决问题的关键.11.10【分析】根据极差的定义即可求得.【详解】解:由题意可知,极差为6-(-4)=10.故答案为10.【点睛】本题考查了极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.12.k≠1【分析】根据一元二次方程的定义,即可求解.【详解】解:∵关于x 的方程(k-1)x 2-x +6=0是一元二次方程,∴10k -≠,解得:k≠1.故答案为:k≠1【点睛】本题主要考查了一元二次方程的定义,熟练掌握只含有一个未知数,且未知数的最高次数为2的整式方程是一元二次方程是解题的关键.13.y =2x 2+x -2【分析】利用二次函数的平移规律即可得出新函数的表达式.【详解】解:由函数y =2x 2+x 的图象向下平移2个单位长度得到新函数的图象,则新函数的表达式是y =2x 2+x -2,故答案为:y =2x 2+x -2.【点睛】本题考查的是二次函数的图象的平移变换,熟练掌握“上加下减,左加右减”的平移规律是解题的关键.14.79【分析】先确定白色部分的面积是整个圆的面积的79,结合几何概率的含义可得答案.2807==,3609S S 白全部所以自由转动转盘,指针落在白色区域的概率是79,故答案为:7.9【点睛】本题考查的是简单随机事件的概率,几何概率的计算,掌握“几何概率的计算与图形面积的关系”是解本题的关键.15.80°【分析】连接AO 、BO ,根据圆的切线的性质可得90∠=∠=︒PAO PBO ,再根据圆周角定理可得2100AOB E ∠=∠=︒,最后根据四边形内角和为360︒,即可求出P ∠的度数.【详解】解:连接AO 、BO ,PA 、PB 分别切⊙O 于点A ,B ,90PAO PBO ∴∠=∠=︒50E ∠=︒2100AOB E ∴∠=∠=︒360360909010080P PAO PBO AOB ∴∠=︒-∠-∠-∠=︒-︒-︒-︒=︒故答案为:80°.【点睛】此题考查了圆的度数问题,解题的关键是掌握切线的性质、圆周角定理、四边形内角和为360︒.16.14m <【分析】根据一元二次方程根的判别式即可求得.【详解】解: 函数y =x 2-x +m 的图象与x 轴有两个公共点,∴令x 2-x +m=0,()214>0m D =--,解得14m <,故答案为:14m <.【点睛】本题考查了二次函数图象与x 轴的交点问题,熟练掌握和运用一元二次方程根的判别式是解决本题的关键.17.4【分析】设母线长为R ,可得底面周长为4π,再由圆锥的侧面积是8π,可得1482R ππ⨯⨯=,即可求解.【详解】解:设母线长为R ,∵底面半径是2,∴底面周长=2×2π=4π,∵圆锥的侧面积是8π,∴1482R ππ⨯⨯=,解得:R=4.故答案为:4【点睛】本题主要考查了求圆锥的母线长,熟记圆锥的侧面积公式是解答本题的关键,难度不大.18.15【详解】解:∵D 是抛物线26y x x =-+上一点,∴设2(,6)D x x x ,-+∵顶点C 的坐标为(4,3),5OC ,∴==∵四边形OABC 是菱形,5//BC OC BC x ∴==,轴,()()221556331522BCD S x x x ∴=⨯⨯-+-=--+ ,502 ,-<BCD S ∴ 有最大值,最大值为15,故答案为15.19.(1)x 1=5,x 2=6(2)x 1=-3,x 2=-9【分析】(1)利用因式分解法解答,即可求解;(2)利用因式分解法解答,即可求解.(1)解:()2x 5x 5-=-∴()()2550x x ---=,∴()()5510x x ---=,解得:x 1=5,x 2=6;(2)解:212270x x ++=∴()()390x x ++=解得:x 1=-3,x 2=-920.(1)(2)13-【分析】(1)设线段x 是线段a ,b 的比例中项,根据比例中项的定义列出等式,利用两内项之积等于两外项之积即可得出答案.(2)设x =4k ,y =3k ,代入计算,于是得到结论.【详解】解:(1)设线段x 是线段a ,b 的比例中项,∵a =3,b =6,x 2=3×6=18,x =±.∴线段a ,b 的比例中项是(2)设x =4k ,y =3k ,∴y x y -=343k k k -=13-.21.见解析【分析】作线段BC 的垂直平分线MN ,作线段AB 的垂直平分线EF ,直线EF 交MN 于点O ,连接OB ,以O 为圆心,OB 为半径作⊙O 即可.【详解】解:如图,⊙O 即为所求.【点睛】此题考查作图﹣应用与设计作图,三角形的外接圆与外心等知识,解题的关键是理解三角形的外心是三角形两边的垂直平分线的交点.22.(1)8.5,8,8.5,0.7;(2)甲班的成绩更稳定.【分析】(1)根据平均数和众数的概念求出甲的平均数与众数,根据方差的计算公式求出甲的方差;(2)根据方差的性质解答.【详解】解:(1)甲的平均数为8.57.588.5105++++=8.5,众数为:8.5,方差为:15[(8.5﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+(8.5﹣8.5)2+(10﹣8.5)2]=0.7,乙的中位数是8,(2)从方差看,甲班的方差小,所以甲班的成绩更稳定.【点睛】此题主要考查统计调查的应用,解题的关键是熟知平均数、方差、众数及中位数的求解方法.23.(1)1 3(2)1 3【分析】(1)直接根据概率公式求解即可;(2)根据题意画出树状图得出所有等情况数和甲、乙两位同学在同一入口处测量体温的情况数,然后根据概率公式即可得出答案.【详解】(1)解:∵学校有A、B、C三个大门入口,∴甲同学在A入口处测量体温的概率是1 3,故答案为:1 3;(2)根据题意画出树状图:由图可知共有9种等可能情况,其中甲、乙两位同学在同一入口处测量体温的情况有3种,则P(甲、乙两位同学在同一入口处测量体温)31 93 ==.【点睛】此题考查的是列表法与树状图法求概率.树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.24.(1)(30-2x)(2)10【分析】(1)根据图形直接可得答案;(2)由矩形面积公式列方程即可解得答案.【详解】(1)解:设垂直于墙的一边长为xm ,由图可得:平行于墙的一边长为(30−2x )m ,故答案为:30−2x ;(2)解:根据题意得:x (30−2x )=100,∴x 2−15x +50=0,因式分解得()()5100x x --=,解得x =5或x =10,当x =5时,30−2x =20>18;当x =10时,30−2x =10<18;∴x =5不合题意,舍去,即x =10,答:x 的值为10m .【点睛】本题考查根据题意列代数式及一元二次方程的应用,解题的关键是读懂题意、数形结合列出相应代数式及方程.25.(1)见解析;(2)125【分析】(1)连接OD ,根据等边对等角性质和平行线的判定和性质证得OD ⊥DE ,从而证得DE 是⊙O 的切线;(2)由等腰三角形的性质求出BD =CD ,由勾股定理求出AD 的长,根据三角形的面积得出答案.【详解】(1)证明:连接OD ,∵OB =OD ,∴∠B =∠ODB ,∵AB =AC ,∴∠B =∠C ,∴∠ODB =∠C ,∴OD //AC ,∵DE ⊥AC ,∴OD ⊥DE ,∴DE 是⊙O 的切线;(2)解:连接AD ,∵∠ADB =90°,AB =AC ,∴BD =CD ,∵⊙O 的直径为5,BC =8,∴AC =AB =5,CD =4,∴AD 3==,∵1122ADC S AC DE AD CD == ,∴DE =341255AD CD AC ⨯== .【点睛】本题考查了切线的判定与性质,圆周角定理,等腰三角形的性质和判定,三角形的内角和定理,勾股定理,三角形的面积等知识,掌握切线的判定与性质是解题的关键.26.(1)y =-2x +200(2)60元或者90元(3)w =-2x 2+300x -10000,75元【分析】(1)根据一次函数过(55,90)(65,70)可求出函数关系式,然后验证其它数据是否符合关系式,进而确定函数关系式,(2)根据利润为800元列方程解答即可,(3)先求出总利润W 与x 的函数关系式,再依据函数的增减性和自变量的取值范围确定何时获得最大利润.(1)解:设y 关于售价x 的函数关系式为y=kx+b ,把(55,90)(65,70)代入得:55906570k b k b +=⎧⎨+=⎩,∴2200 kb=-⎧⎨=⎩,∴y与x的之间的函数关系式为y=-2x+200,故答案为:y=-2x+200;(2)若某天销售利润为800元,则(x-50)(-2x+200)=800,解得:x1=60,x2=90,答:该天的售价为60元或者90元;(题意没有其它说明,无需取舍)(3)设总利润为w,根据题意得,w=(x-50)(-2x+200)=-2x2+300x-10000=-2(x-75)2+1250∵a=-2<0,∴当x=75时,w有最大值,答:当销售单价定为75元时利润最大.【点睛】本题考查一次函数、一元二次方程,二次函数的应用,求出相应的函数关系式和方程以及自变量的取值范围是解决问题的关键.27.(1)1;3;(4,8)(2)25 4(3)()2,6或(4-【分析】(1)先求得点A的坐标,代入二次函数求得a的值,得到抛物线的解析式,然后联立二次函数和一次函数求得点B的坐标;(2)设点P(m,m+4),则C(m,m2-2m),然后得到PC的长,进而利用二次函数的性质求得PC的最大值;(3)由直线y=x与直线y=x+4平行得到∠APC=45°,过点A作AH⊥PC于点H,则△APH 为等腰直角三角形,得到∠PAC>45°,即有AC≠PC,然后分情况讨论,①AP=AC时,PC=2AH,然后列出方程求得点P的坐标;②PA=PC时,AH=m+1,则(m+1),然后列出方程求得m的值,得到点P的坐标.(1)解:对y=x+4,当x=-1时,b=-1+4=3,∴点A 的坐标为(-1,3),将点A 代入y=ax (x-2)得,3a=3,∴a=1,∴抛物线的解析式为y=x (x-2)=x 2-2x ,由242y x y x x =+⎧⎨=-⎩,解得:13x y =-⎧⎨=⎩或48x y =⎧⎨=⎩,∴点B 的坐标为(4,8),故答案为:1,3,(4,8).(2)解:设P (m ,m +4),则C (m ,m 2-2m ),∴PC =(m +4)-(m 2-2m )=-m 2+3m +42325()24m =--+,∵-1<0,∴当32m =时,PC 有最大值,最大值为254;(3)解:∵直线y=x 与直线y=x+4平行,∴∠APC=45°,如图,过点A 作AH ⊥PC 于点H ,则△APH 为等腰直角三角形,∴∠PAC >45°,∴AC≠PC ,①AP=AC时,∠APC=∠ACP=45°,∴△APC是等腰直角三角形,∴PC=2AH,∵AH=m+1,PC=-m2+3m+4,∴-m2+3m+4=2(m+1),解得:m=2或m=-1(舍),∴点P的坐标为(2,6);②当PA=PC时,∵AH=m+1,△PAH是等腰直角三角形,∴(m+1),∴-m2m+1),解得:或m=-1(舍),∴点P的坐标为(,综上所述,点P的坐标为(2,6)或).故答案为:(2,6)或,.。
苏科版九年级上册数学期末测试卷及含答案
苏科版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知一组数据﹣,π,﹣,1 ,2 ,则无理数出现的频率是()A.20%B.40%C.60%D.80%2、一元二次方程2x2﹣6x+3=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.有两个实数根3、下列说法正确的是()A.真命题的逆命题都是真命题B.在同圆或等圆中,同弦或等弦所对的圆周角相等C.等腰三角形的高线、中线、角平分线互相重合D.对角线相等且互相平分的四边形是矩形4、如图,圆内接四边形ABCD的BA,CD的延长线交于P,AC,BD交于E,则图中相似三角形有()A.2对B.3对C.4对D.5对5、在某一次数学测验中,随机抽取了10份试卷,其成绩如下:85、81、89、81、72、82、77、81、79、83则这组数据的众数、平均数与中位数分别为( )A.81、82、81B.81、81、76.5C.83、81、77 D.81、81、816、如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM 和的长分别为()A.2,B.2 ,πC. ,D.2 ,7、如图,已知AB是⊙O的直径,∠CBA=25°,则∠D的度数为()A. B. C. D.8、如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A.15°B.20°C.25°D.30°9、已知圆的半径为3,扇形的圆心角为,则扇形的面积为()A. B. C. D.10、袋子中装有2个红球和4个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机从袋子中摸出1个球,则这个球是红球的概率是()A. B. C. D.11、已知方程 2x2﹣x﹣3=0 的两根为 x1, x2,那么=( )A.﹣B.C.3D.﹣312、一组数据:1,3,3,5,若添加一个数据3,则发生变化的统计量是()A.平均数B.众数C.中位数D.方差13、小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分14、下列命题中,正确的命题是()A.平分一条弧的直径,垂直平分这条弧所对的弦B.平分弦的直径垂直于弦,并平分弦所对的弧C.在⊙O中,AB、CD是弦,若BD=AC,则AB∥CDD.圆是轴对称图形,对称轴是圆的每一条直径15、下列说法中,正确的说法有()①对角线互相平分且相等的四边形是菱形;②一元二次方程x2﹣3x﹣4=0的根是x1=4,x2=﹣1;③依次连结任意四边形各边中点所得的四边形是平行四边形;④一元一次不等式2x+5≤11的整数解有3个;⑤某班演讲比赛,共有甲、乙、丙三位选手,班主任让三位选手抽签决定演讲先后顺序,从先到后恰好是甲、乙、丙的概率是.A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、已知扇形的圆心角为150°,它所对应的弧长20πcm,则此扇形的半径是________ cm.17、如图,将半径为2,圆心角为 120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为 O′,B′,连接 BB′,则图中阴影部分的面积是________.18、袋内装有标号分别为1,2,3,4的4个球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为________。
苏科版九年级上册数学期末试卷附答案
苏科版九年级上册数学期末试题一、单选题1.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为12C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次2.关于抛物线223=+-,下列说法正确的是()y x x2,3A.抛物线的开口向下B.抛物线经过点()x-对称C.抛物线最低点的纵坐标是-3D.抛物线关于直线=13.如图,AB是⊙O的弦,BC与⊙O相切于点B,连接OA、OB.若⊙ABC=70°,则⊙A等于()A.15°B.20°C.30°D.70°4.如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方∆的重心是()形的顶点上,则ABCA.点D B.点E C.点F D.点G5.如图,在圆内接四边形ABCD中,⊙A:⊙C=1:2,则⊙A的度数等于()A .30°B .45°C .60°D .80°6.一组数据0、-1、3、2、1的极差是( )A .4B .3C .2D .17.在同一坐标系内,一次函数y ax b =+与二次函数28y ax x b =++的图像可能是A .B .C .D .8.如图,BC 是O 的直径,A ,D 是O 上的两点,连接AB ,AD ,BD ,若70ADB ︒∠=,则ABC ∠的度数是( )A .20︒B .70︒C .30︒D .90︒9.一元二次方程x 2﹣3x =0的两个根是( )A .x 1=0,x 2=﹣3B .x 1=0,x 2=3C .x 1=1,x 2=3D .x 1=1,x 2=﹣310.已知二次函数y =x 2+mx +n 的图象经过点(﹣1,﹣3),则代数式mn +1有( )A .最小值﹣3B .最小值3C .最大值﹣3D .最大值3 二、填空题11.一元二次方程2410x x -+=的两根是则1x ,2x ,则12x x +=______.12.已知⊙O 的半径为5,若PO =3,则点P 与⊙O 的位置关系是:点P 在⊙O______. 13.二次函数21y x =-的图象与y 轴的交点坐标是______.14.半径为3的圆的内接正方形的边长是______.15.等边三角形的边长为x ,此三角形的面积S 表示成x 的函数为______.16.扇形的半径为6cm .圆心角为150°,用它做成圆锥的侧面,圆锥的底面圆的半径是______cm .17.某社区青年志愿者小分队年龄情况如下表所示:则这12名队员年龄的中位数是______.18.四条长短不同的线段长分别为10,6,x ,2,用它们拼成如图所示已的两个直角三角形,且AB ,CD 是其中两条线段,则x 可以取的有______个.19.在Rt AOB 中,⊙AOB =90°,OA =8,OB =10,以O 为圆心,4为半径作圆O ,交两边于点C ,D ,P 为劣弧CD 上一动点,则12PA PB +最小值为______.三、解答题20.解方程.(1)2220x x --=.(2)()()2131x x +=+.21.如图,在Rt ABC 中,⊙B =90°,5cos 7A ∠=,若AB =10,求BC 的长.22.已知点()0,3在二次函数2y ax bx c =++的图象上,且当x =1时,函数y 有最小值2.(1)求这个二次函数的表达式.(2)如果两个不同的点(),6C m ,(),6D n 也在这个函数的图象上,则m n +=______.(直接填空)23.如图,在⊙O 中,AB 为直径,C 为⊙O 上一点.过点C 作⊙O 的切线,与AB 的延长线交于点P .(1)若⊙CAB =25°,求⊙P 的大小;(2)求证:2PC PB PA =⋅.24.如图,在平面直角坐标系中,过格点A 、B 、C 作一圆弧.(1)直接写出该圆弧所在圆的圆心D 的坐标______.(2)求弧AC 的长(结果保留π).(3)连接AC 、BC ,则sin C =______.25.已知二次函数22443y x mx m =-++(m 为常数).(1)证明:不论m 为何值,该函数图象与x 轴没有公共点.(2)当自变量x 的值满足21x -≤≤时,与其对应的函数值y 的最小值为4,求m 的值.26.如图,有一块长为21m 、宽为10m 的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道,且人行通道的宽度不能超过3米.(1)如果两块绿地的面积之和为90m 2,求人行通道的宽度;(2)能否改变人行通道的宽度,使得每块绿地的宽与长之比等于3:5,请说明理由.27.如图,四边形ABCD 中,对角线AC 平分⊙BAD ,以AB 为直径的⊙O 交AC 于E ,延长DE 交BC 于F ,⊙ABC =⊙ADE =90°.(1)证明:DF 是⊙O 的切线.(2)若OA =4,CF =3,求cos⊙DAE 的值.28.如图,在平面直角坐标系中,二次函数y =x 2+bx+c 的图象与x 轴相交于点A 、B ,与y 轴相交于点C ,B 点的坐标为(6,0),点M 为抛物线上的一个动点.(1)若该二次函数图象的对称轴为直线x =4时:⊙求二次函数的表达式;⊙当点M位于x轴下方抛物线图象上时,过点M作x轴的垂线,交BC于点Q,求线段MQ 的最大值;(2)过点M作BC的平行线,交抛物线于点N,设点M、N的横坐标为m、n.在点M运动的过程中,试问m+n的值是否会发生改变?若改变,请说明理由;若不变,请求出m+n 的值.参考答案1.A【详解】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B错误;概率很小的事件也可能发生,故C错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;故选A.考点:随机事件.2.D【分析】根据题目中的函数解析式可以判断各个选项中的结论是否正确,本题得以解决.a=>,所以抛物线的开口向上,故错误,不符合题意;【详解】解:A、由题意得10y=+⨯-=+-=,所以图象经过(2,5),不经过(2,3),故错误,B、当2x=时,222234435不符合题意;C、由题意得2=+-,所以抛物线最低点的纵坐标是4-,故错误,不符合题意;y(x1)4D、由题意得2x-,故正确,符合题意.=+-,所以抛物线的对称轴是直线=1y(x1)4故选:D.【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征、二次函数的最值,解题的关键是明确题意,利用二次函数的性质解答.3.B【详解】⊙BC 与⊙O 相切于点B ,⊙OB⊙BC .⊙⊙OBC=90°.⊙⊙ABC=70°,⊙⊙OBA=⊙OBC ﹣⊙ABC=90°﹣70°=20°.⊙OA=OB ,⊙⊙A=⊙OBA=20°.故选B .4.A【分析】三角形三条中线的交点,叫做它的重心,据此解答即可.【详解】根据题意可知,直线CD 经过ABC ∆的AB 边上的中点,直线AD 经过ABC ∆的BC 边上的中点,⊙点D 是ABC ∆重心.故选A .【点睛】本题考查三角形的重心的定义,解题的关键是熟记三角形的中心是三角形中线的交点.5.C【分析】设⊙A 、⊙C 分别为x 、2x ,然后根据圆的内接四边形的性质列出方程即可求出结论.【详解】解:设⊙A 、⊙C 分别为x 、2x ,⊙四边形ABCD 是圆内接四边形,⊙x+2x =180°,解得,x =60°,即⊙A =60°,故选:C .【点睛】此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.6.A【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A .【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.7.C【分析】x=0,求出两个函数图像在y 轴上相交于同一点,再根据抛物线开口方向向上确定出a >0,然后确定出一次函数图像经过第一、三象限,从而得解.【详解】x=0时,两个函数的函数值y=b ,所以,两个函数图像与y 轴相交于同一点,故B 、D 选项错误;由A 、C 选项可知,抛物线开口方向向上,所以,a >0,所以,一次函数y=ax+b 经过第一三象限,所以,A 选项错误,C 选项正确.故选:C .【点睛】本题考查了二次函数图像,一次函数的图像,熟练掌握一次函数和二次函数图像特征和系数的关系是解题的关键.8.A【分析】连接AC ,如图,根据圆周角定理得到90BAC ︒∠=,70ACB ADB ︒∠=∠=,然后利用互余计算ABC ∠的度数.【详解】连接AC ,如图,⊙BC 是O 的直径,⊙90BAC ︒∠=,⊙70ACB ADB ︒∠=∠=,⊙907020ABC ︒︒︒∠=-=.故答案为20︒.故选A .【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.9.B【分析】利用因式分解法解一元二次方程即可.【详解】x 2﹣3x =0,x (x ﹣3)=0,x =0或x ﹣3=0,x 1=0,x 2=3.故选:B .【点睛】本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).10.A【分析】把(-1,-3)代入y=x 2+mx+n 确定m ,n 之间的数量关系,代入mn+1讨论.【详解】解:把(-1,-3)代入y=x 2+mx+n 得:-3=1-m+n ,⊙n=m -4,⊙mn+1=m (m -4)+1=m 2-4m+1=(m -2)2-3,所以mn+1有最小值-3,故选:A .【点睛】本题考查了二次函数图象上点的特征.根据二次函数性质确定m ,n 的数量关系是解答关键.11.4【分析】根据一元二次方程根与系数的关系即可解答.【详解】方程2410x x -+=的两根是1x 和2x , ⊙12441x x -+=-=. 故答案为:4.【点睛】本题考查一元二次方程根与系数的关系.掌握一元二次方程20(0)ax bx c a ++=≠的根1x 和2x 与系数的关系为:12b x x a+=-,12c x x a =是解题关键. 12.内部【分析】通过比较半径和OP 的的大小得出结果.【详解】解:35PO =<,⊙点P 在⊙O 内部,故答案为:内部.【点睛】本题考查点和圆得位置关系,当点的圆心的距离d >r 时,点在圆外;当点的圆心的距离d=r 时,点在圆上;当点的圆心的距离d <r 时,点在圆内;13.()0,1-【分析】令x=0,代入函数解析式求出y 值即可.【详解】解:当x =0时y =-1,⊙函数图象与y 轴交点为()0,1-,故答案为:()0,1-.14.【分析】由圆内接正四边形的性质知⊙OBE =45°,由垂径定理定理知BE =CE ,根据锐角三角函数的定义求出BE =,从而可求出BC 的值. 【详解】解:如图,⊙四边形ABCD 是⊙O 的内接正方形,⊙⊙OBE =45°,⊙OE BC ⊥,⊙BE =CE ,⊙OB =3,sin 45OE OB ︒=,cos 45BE OB︒=,⊙sin 453OE OB =⨯︒==cos 453BE OB =⨯︒==⊙BC BE CE =+==故半径为3的圆内接正方形的边长为故答案为:【点睛】本题考查了圆内接正多边形的性质,垂径定理及锐角三角函数的定义,熟练掌握圆内接正多边形的性质及垂径定理是解答本题的关键.15.2=S【分析】作出三角形的高,利用直角三角形的性质及勾股定理可求得高,那么三角形的面积=12×底×高,把相关数值代入即可求解.【详解】解:如图,ABC 为等边三角形,边长为x ,作AD⊙BC 于点D ,则⊙ADB =90°,⊙ABC 为等边三角形⊙BD =CD =12BC =12x 在Rt⊙ABD 中,⊙ADB =90°,AB =x ,BD =12x⊙AD x =⊙21122S BC AD x x =⨯⋅⋅==,⊙S 表示成x 的函数为2=S x .故答案为:2=S x . 【点睛】本题考查三角形的面积的求法,找到等边三角形一边上的高是重点.16.2.5【分析】根据弧长公式解答.【详解】设这个圆锥的底面圆半径为r , 根据题意得15062180r ππ⋅⋅=,解得r =2.5(cm ) 故答案为:2.5.【点睛】本题考查求圆锥底面圆半径,是基础考点,掌握相关知识是解题关键. 17.19【分析】根据中位数的定义,需将这组数据按照从小到大的顺序理清,找到中间两个数的值,然后求平均即可.【详解】12名队员的年龄数据里,第6个和第7个都是19,因而中位数是19.故填19. 18.4【分析】过B 作BE CD ∥,延长AC 交BE 于点E ,最长边AB =10或x ,进而分类讨论,根据勾股定理求解即可.【详解】过B 作BE CD ∥,延长AC 交BE 于点E ,根据题意BD AC ∥,⊙ACD =⊙D =90°,⊙BE =CD ,CE =BD ,⊙E =90°,⊙最长边AB =10或x ,x >0(负值舍去),⊙若AB =x ,CD =10时,则AE =6+2=8,⊙222AE BE AB +=,即222810x +=,解之得x =同理:⊙若AB =x ,CD =6时,则AE =12,⊙222612x +=,解之得x =⊙若AB =x ,CD =2时,则AE =16,⊙222216x +=,解之得x =⊙若AB =10,CD =6时,则AE =x +2,⊙()2222610x ++=,解之得x =6(舍去),⊙若AB =10,CD =x 时,则AE =8,⊙222810x +=,解之得x =6(舍去),⊙若AB =10,CD =2时,则AE =6+x ,⊙()2226210x ++=,解之得6x =.综上所述,x 值可取4个值,故答案为4.【点睛】本题考查了勾股定理,构成三角形的条件,分类讨论是解题的关键.19.【分析】如图所示,连接OP ,取OC 中点为M ,连接PM ,BM ,证明MOP POA △△∽,得到24OM PM OP PA ==,则12PM PA =,即可推出12PA PB PM PB BM +=+≥,故当点B 、P 、M 三点共线时,12PA PB +最小值为BM ,由此求解即可.【详解】解:如图所示,连接OP ,取OC 中点为M ,连接PM ,BM ,⊙圆O 半径为4,点P 为劣弧CD 上一动点,⊙OC =OP =4,又⊙点M 为OC 中点, ⊙114222OM OC ==⨯=, ⊙21OP OA OM OP ==,⊙MOP =⊙POA , ⊙MOP POA △△∽, ⊙24OM PM OP PA ==, ⊙12PM PA =, ⊙12PA PB PM PB BM +=+≥, 当点B 、P 、M 三点共线时,12PA PB +最小值为BM ,⊙⊙AOB =90°,⊙222BM OM OB =+,又OM =2,OB =10,⊙BM⊙12PA PB +最小值为故答案为:【点睛】本题主要考查了相似三角形的性质与判定,勾股定理,圆的基本性质,正确作出辅助线是解题的关键.20.(1)11x =21x =(2)11x =-,22x =【分析】(1)先移项,再配方,然后开方得出答案;(2)先移项,再因式分解,可得答案.(1)解:2220x x --=,22121x x -+=+,配方,得()213x -=,即1-=x .⊙11x =21x =(2)解:()()2131x x +=+移项,得()()21310x x +--=,因式分解,得()()1130x x ++-=,即()()120x x +-=,⊙11x =-,22x =.【点睛】本题主要考查了解一元二次方程,灵活选择解一元二次方程的方法是解题的关键.21.【分析】首先根据5cos 7AB A AC ∠==求出AC ,再根据勾股定理求出答案即可. 【详解】⊙⊙B =90°, ⊙5cos 7AB A AC ∠==. ⊙AB =10,⊙AC =14,⊙BC ==⊙BC 的长为22.(1)223y x x =-+(2)2【分析】对于(1),根据题意确定抛物线的顶点坐标,可得顶点式,再将点(0,3)代入求出关系式即可;对于(2),根据题意可知点C ,点D 关于对称轴对称,进而求出答案.(1)⊙二次函数2y ax bx c =++,当x =1时,函数y 有最小值2,⊙点()1,2为抛物线的顶点,于是可设抛物线的关系式为:()212y a x =-+,把()0,3代入得, a +2=3,解得a =1,⊙抛物线的关系式为()212y x =-+,即223y x x =-+.(2)⊙点(),6C m ,(),6D n 都在抛物线上,⊙点C 、D 关于直线x =1对称, ⊙12m n +=, ⊙m +n =2.故答案为:2.23.(1)40°(2)证明见解析【分析】(1)连接OC ,由三角形外角性质解得⊙COP =50°,再由圆的切线的性质解得⊙OCP =90°,最后由⊙P =180°-⊙OCP -⊙COP 解答;(2)连接BC 、OC ,由切线的性质解得⊙1+⊙BCP =90°,再根据直径所对的圆周角是90°得到⊙1+⊙ACO =90°,由此解得⊙BCP =⊙ACO ,再证明BPC CPA △△∽,据此解答. (1)解:如图所示,连接OC ,⊙OA =OC ,⊙⊙CAB =⊙ACO ,又⊙⊙CAB =25°⊙⊙ACO =25°⊙⊙COP =⊙CAB +⊙ACO =25°+25°=50°,⊙PC 为圆O 切线,OC 为半径,⊙⊙OCP =90°,⊙⊙P =180°-⊙OCP -⊙COP =180°-90°-50°=40°故⊙P 大小为40°.(2)证明:如图所示,连接BC 、OC ,⊙PC 为圆O 的切线,⊙⊙OCP =90°即⊙1+⊙BCP =90°,又⊙AB 为直径⊙⊙ACB =90°即⊙1+⊙ACO =90° ⊙⊙BCP =⊙ACO ,又⊙⊙ACO =⊙CAP ⊙⊙BCP =⊙CAP ,又⊙⊙BPC =⊙CPA ,⊙BPC CPA △△∽, ⊙PC PB PA PC=,⊙2PC PB PA =⋅.24.(1)()2,0【分析】(1)根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB 和BC 的垂直平分线,交点即为圆心,写出圆心坐标即可;(2)根据正方形的性质和勾股定理以及弧长公式计算即可;(3)根据正弦的定义计算即可.(1)根据垂径定理的推论:弦的垂直平分线必过圆心,作弦AB 和BC 的垂直平分线,交点D 即为圆心.如图1所示,则圆心D 的坐标是()20,.(2)由图1可知,⊙ADC =90°,AD =⊙弧AC =. (3)如图2,由勾股定理得AE AC ==⊙AEC =90°,则sin AE C AC ==【点睛】本题考查的是垂径定理、勾股定理、弧长的计算及三角函数的定义,掌握弦的垂直平分线经过圆心、弧长的计算公式及三角函数的定义是解题的关键.25.(1)证明见解析(2)m =1或32-【分析】(1)根据判别式的值得到∆=12-0<,然后根据判别式的意义得到结论; (2)利用配方法得到()223y x m =-+,则抛物线的对称轴为直线2x m =,讨论:当22m ≤-和21m ≥两种情况讨论即可得到答案.(1)解:已知函数22443y x mx m =-++,令y =0,224430x mx m -++=,则()222216443161612120m m m m ∆=-+=--=-<,⊙方程没有实数根,⊙不论m 为何值,该函数图象与x 轴没有公共点.(2)⊙二次函数22443y x mx m =-++,⊙10a =>,4b m =-,243c m =+,⊙图象开口向上,对称轴为直线22b x m a=-=, ⊙当21x -≤≤时,y 的最小值为4,⊙当22m ≤-即1m ≤-时,则x =-2时,y 取得最小值4,代入得248434m m +++=,解得32m =-或12-(舍去), 当221m -≤≤,即112m -≤≤时,则x =2m 时,y 取得最小值4, 代入,得22248434m m m -++=,方程无解,当21m ≥,即12m ≥时,则x =1时,y 取得最小值4, 代入,得214434m m -++=,解得m =1或m =0(舍去).综上所述,m =1或32-. 【点睛】本题考查了抛物线与x 的交点:把二次函数2y ax bx c =++(0a ≠)与x 轴的交点坐标问题转化为一元二次方程,也考查二次函数的性质.26.(1)2米;(2)不能改变人行横道的宽度使得每块绿地的宽与长之比等于3:5.【分析】(1)设人行通道的宽度为x 米,将两块矩形绿地的长和宽用含有x 的式子表示出来,根据“两块矩形绿地的面积共为90平方米”列出关于x 的一元二次方程,解之即可;(2)根据每块绿地的宽与长之比等于3:5列出方程求得人行横道的宽度后与3米比较即可得到答案.【详解】(1)设人行通道的宽度为x 米,则两块矩形绿地的长为(21﹣3x )(米),宽为(10﹣2x )(米),根据题意得:(21﹣3x )(10﹣2x )=90,解得:x 1=10(舍去),x 2=2,答:人行通道的宽度为2米;(2)设人行通道的宽为y 米时,每块绿地的宽与长之比等于3:5,根据题意得:(10﹣2y ):=3:5,解得:y =,⊙>3,⊙不能改变人行横道的宽度使得每块绿地的宽与长之比等于3:5.【点睛】本题考查了一元二次方程的应用,解题的关键是能够设出未知数并表示出矩形的长和宽,找出等量关系.27.(1)证明见解析 (2)45【分析】(1)如图所示,连接OE ,先证明⊙DAE =⊙OEA ,推出AD OE ∥,即可得到⊙ADE =⊙OEF =90°,由此即可证明DF 是⊙O 的切线;(2)连接OE ,OF ,BE ,先证明Rt Rt OBF OEF △△≌,推出⊙FBE =⊙FEB ,再由AB 是⊙O的直径,得到⊙BEC =90°,从而推出⊙FEC =⊙FCE ,得到BC =6,由勾股定理求出10AC =,则4cos 5AB BAC AC ∠==,由⊙DAE =⊙BAC ,即可得到4cos 5DAE ∠=. (1)解:如图所示,连接OE ,⊙AC 平分⊙BAD ,⊙⊙DAE =⊙OAE ,⊙OA =OE ,⊙⊙OAE =⊙OEA ,⊙⊙DAE =⊙OEA ,⊙AD OE ∥,⊙⊙ADE =⊙OEF =90°, ⊙OE DF ⊥,⊙OE 是⊙O 的半径, ⊙DF 是⊙O 的切线.(2)解:连接OE ,OF ,BE , ⊙⊙OBF =⊙OEF =90°, ⊙在Rt OBF △中和Rt OEF △中, OF OFOB OE =⎧⎨=⎩,⊙()Rt Rt HL OBF OEF △△≌, ⊙BF =EF ,⊙⊙FBE =⊙FEB ,⊙AB 是⊙O 的直径, ⊙⊙AEB =90°,⊙⊙BEC =90°,⊙⊙FEB +⊙FEC =90°, ⊙⊙FBE +⊙FCE =90°, ⊙⊙FEC =⊙FCE ,⊙EF =FC =BF =3, ⊙BC =6,⊙OA =OB =4,⊙AB =8,⊙在Rt ABC △中,10AC =,⊙4 cos5ABBACAC∠==,⊙⊙DAE=⊙BAC,⊙4 cos5DAE∠=.【点睛】本题主要考查了圆切线的判定,等腰三角形的性质与判定,全等三角形的性质与判定,角平分线的定义,平行线的性质与判定,勾股定理,解直角三角等等,正确作出辅助线是解题的关键.28.(1)⊙y=x2﹣8x+12;⊙线段MQ的最大值为9.(2)m+n的值为定值.m+n=6.【分析】(1)⊙根据点B的坐标和二次函数图象的对称轴即可求出二次函数解析式;⊙设M(m,m2﹣8m+12),利用待定系数法求出直线BC的解析式,从而求出Q(m,﹣2m+12),即可求出MQ的长与m的函数关系式,然后利用二次函数求最值即可;(2)将B(6,0)代入二次函数解析式中,求出二次函数解析式即可求出点C的坐标,然后利用待定系数法求出直线BC的解析式,根据一次函数的性质设出直线MN的解析式,然后联立方程结合一元二次方程根与系数的关系即可得出结论.【详解】(1)⊙由题意366042b cb++=⎧⎪⎨-=⎪⎩,解得812bc=-⎧⎨=⎩,⊙二次函数的解析式为y=x2﹣8x+12.⊙如图1中,设M(m,m2﹣8m+12),⊙B (6,0),C (0,12),⊙直线BC 的解析式为y =﹣2x+12,⊙MQ⊙x 轴,⊙Q (m ,﹣2m+12),⊙QM =﹣2m+12﹣(m 2﹣8m+12)=﹣m 2+6m =﹣(m ﹣3)2+9,⊙﹣1<0,⊙m =3时,QM 有最大值,最大值为9.(2)结论:m+n 的值为定值.理由:如图2中,将B (6,0)代入二次函数解析式中,得3660++=b c解得:366=--c b⊙二次函数解析式为2366=+--y x bx b⊙C (0,﹣36﹣6b ),设直线BC 的解析式为y =kx ﹣36﹣6b ,把(6,0)代入得到:k =6+b ,⊙直线BC的解析式为y=(6+b)x﹣36﹣6b,⊙MN⊙CB,⊙可以假设直线MN的解析式为y=(6+b)x+b′,由2366(6)y x bx by b x b⎧=+--⎨=++⎩,消去y得到:x2﹣6x﹣36﹣6b﹣b′=0,⊙x1+x2=6,⊙点M、N的横坐标为m、n,⊙m+n=6.⊙m+n为定值,m+n=6.【点睛】此题考查的是二次函数与一次函数的综合题型,掌握利用待定系数法求二次函数解析式、一次函数解析式、利用二次函数求最值、一元二次方程根与系数的关系是解决此题的关键.。
苏科版九年级上册数学期末测试卷及含答案
苏科版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若α,β是关于x的一元二次方程x2﹣2x+m=0的两实根,且=﹣,则m等于()A.﹣2B.﹣3C.2D.32、在一个不透明的盒子里有形状、大小完全相同的黄球2个、红球3个、白球4个,从盒子里任意摸出1个球,摸到红球的概率是()A. B. C. D.3、某班七个兴趣小组人数分别为4,4,5,5,x,6,7,已知这组数据的平均数是5,则这组数据的众数和中位数分别是()A.4,5B.4,4C.5,4D.5,54、如图,⊙O内切于Rt△ABC,点P、点Q分别在直角边BC、斜边AB上,PQ⊥AB,且PQ与⊙O相切,若AC=2PQ,则tan∠B的值为()A. B. C. D.5、如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个实数根,那么k的取值范围是()A.k>﹣B.k>﹣且k≠0C.k<﹣D.k 且k≠06、关于x的一元二次方程x2+(k2-4)x+k+1=0的两实数根互为相反数,则k的值()A.2B.0C.±2D.-27、下列方程没有实数解的是()A. =0B. =xC. =1D. ﹣2x+3=08、下列说法错误的是()A.某事件发生的概率为1,则它必然会发生B.某事件发生的概率为0,则它必然不会发生C.抛一个普通纸杯,杯口不可能向上D.从一批产品中任取一个为次品是可能的9、如图,正六边形ABCDEF,点P在直线AB上移动,若点P与正六边形六个顶点中的至少两个顶点距离相等,则直线AB上满足条件的点P共有()A.6个B.5个C.4个D.3个10、下列表述不正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④半圆是弧;⑤圆内接四边形对角互补.A.1个B.2个C.3个D.4个11、关于x的一元二次方程x2+4x+k=0有实数解,则k的取值范围是()A.k≥4B.k≤4C.k>4D.k=412、关于x的方程x2-mx-1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.不能确定13、如图,小明从半径为5cm的圆形纸片中剪下40%圆周的一个扇形,然后利用剪下的扇形制作成一个圆锥形玩具纸帽(接缝处不重叠),那么这个圆锥的高为()A.3cmB.4cmC. cmD. cm14、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD长()A.4 cmB.3 cmC.5 cmD.4 cm15、高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=10米,净高CD=7米,则此圆的半径OA=()A.5B.7C.D.二、填空题(共10题,共计30分)16、已知∠APB=90°,以AB为直径作⊙O,则点P与⊙O的位置关系是________.17、已知为方程的一个根,则代数式的值为________18、如图所示,在⊙O内有折线OABC,其中OA=4,AB=6,∠A=∠B=60°,则BC 的长为________.19、某中学初三(1)班的一次数学测试的平均成绩为80分,男生平均成绩为82分,女生平均成绩为77分,则该班男、女生的人数之比为________.20、甲箱中装有3个篮球,分别标号为1,2,3;乙箱中装有2个篮球.分别标号为1,2,现分别从每个箱中随机取出1个篮球,则取出的两个篮球的标号之和为3的概率是________.21、如图,在扇形中,,分别是半径上的点,以为邻边的的顶点在上,若,则阴影部分图形的面积是________(结果保留).22、如图,,,以点为圆心,为半径作弧交于点,点,交于点,若,则阴影部分的面积为________.23、如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2, C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是________.24、某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如表,则这20户家庭这个月的平均用水量是________吨.用水量(吨) 4 5 6 8户数 3 8 4 525、若关于的一元二次方程的两个不等实数根分别为,且,则的值为________.三、解答题(共5题,共计25分)26、解方程:27、如图,AB是⊙O的直径,点C在⊙O上,D是AB延长线上的一点,AE⊥DC 交DC的延长线于E,AC平分∠DAE.(1)直线DE与⊙O有怎样的位置关系?为什么?(2)若AC=,⊙O的半径为1,求CD的长及由弧BC、线段BD、CD所围成的阴影部分的面积.28、有甲乙两个不透明的口袋,甲袋中有3个球,分别标有0,2,5;乙袋中有3个球,分别标有0,1,4,这6个球除所标数字以外没有任何其他区别.从甲、乙两袋各随机模出1个球,用树状图(或列表)的方法,求摸出的两个球上数字之和是6的概率.29、如图,点A、E,是半圆周上的三等分点,直径=2,,垂足为,连接交于,过作∥交于.(1)判断直线与⊙的位置关系,并说明理由.(2)求线段的长.30、九(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表参赛同学答对题数答错题数未答题数A 19 0 1B 17 2 1C 15 2 3D 17 1 2E / / 7(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可)参考答案一、单选题(共15题,共计45分)1、B2、D3、A4、C5、D6、D7、D8、C9、B10、C11、B12、A13、C14、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
苏科版九年级上册数学期末测试卷及含答案
苏科版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,AC是⊙O的切线,切点为C , BC是⊙O的直径,AB交⊙O于点D ,连接OD .若∠BAC=55°,则∠COD的大小为()A.70°B.60°C.55°D.35°2、某射击选手在一次训练中的成绩如下表所示,该选手训练成绩的中位数是()成绩(环) 6 7 8 9 10次数 1 4 2 6 3A.2B.3C.8D.93、九年一班有12名同学报名参加校园踢毽子比赛,其中8名男生,4名女生,体育委员随机抽出一名同学代表班级参加比赛,则抽出的同学是女生的概率是()A. B. C. D.4、下列关于x的一元二次方程中,有两个不相等的实数的是( ).A. +2 =0B. +x-1=0C. +x+3=0D.4 -4x+1=0.5、一组数据的中位数是()A. B. C. D.6、下列说法错误的是()A.一组数据的众数,中位数和平均数不可能是同一个数B.一组数据的平均数既不可能大于,也不可能小于这组数据中的所有数据C.一组数据的中位数可能与这组数据的任何数据都不相等D.众数,中位数和平均数从不同角度描述了一组数据的集中趋势7、小明制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是( )A. B. C. D.8、用配方法解方程x2+10x+9=0,配方后可得()A.(x+5)2=16B.(x+5)2=1C.(x+10)2=91D.(x+10)2=1099、下列判断正确的是()A.北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B.一组数据6,5,8,7,9的中位数是8C.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则甲组学生的身高较整齐 D.命题“既是矩形又是菱形的四边形是正方形”是真命题10、如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在优弧AB上.若∠AOD=52°,则∠DEB的度数为()A. B. C. D.11、如图,PA、PB是⊙O的两条切线,切点分别是A、B,且∠APB=60°,⊙O 的半径为3,则阴影部分的面积为()A. B. C.18-6π D.18-3π12、已知Rt△ABC中,∠C=90°,AC=3,BC=4,若以2为半径作⊙C,则斜边AB与⊙C的位置关系是()A.相交B.相切C.相离D.无法确定13、一元二次方程的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根 D.不能确定14、如图,在△ABC中,∠BAC=90°,AB=AC=2,以AB为直径的圆交BC于D,则图中阴影部分的面积为()A.1B.2C.1+D.2﹣15、一元二次方程x2﹣2x=0的解是()A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=﹣2 D.x1=1,x2=﹣2二、填空题(共10题,共计30分)16、一组数据:24,58,45,36,75,48,80,则这组数据的中位数是________.17、一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.18、如图,中,,是的平分线,是的垂直平分线,交于点O.若,则外接圆的面积为________.19、如图,、分别是的直径和弦,且,,交于点.若,则弦的长等于________.20、如果圆锥的底面周长是20πcm,侧面展开后所得的扇形的圆心角为120°,则圆锥的母线长是________.21、如图,⊙O上有两定点A、B,点P是⊙O上一动点(不与A、B两点重合),若,则的度数是________.22、三角形两边的长分别是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为________.23、将半径为30cm,圆心角为120°的扇形围成一个圆锥的侧面,则圆锥底面半径的最大值为________cm.24、如图,在平面直角坐标系xOy中,△ABC外接圆的圆心坐标是________,半径是________.25、如图,在⊙O中,AB是⊙O的弦,CD是⊙O的直径,CD⊥AB于点M,若AB =CM=4,则⊙O的半径为________.三、解答题(共5题,共计25分)26、先化简,再求值:,其中x是方程x2+2x﹣3=0的解.27、小明在解方程x4﹣13x2+36=0时,注意到x4=(x2)2,于是引入辅助未知数t=x2,把原方程化为t2﹣13t+36=0,解得t=4或t=9,即x2=4或x2=9,进一步解得原方程的解为x1=2,x2=﹣2,x3=3,x4=﹣3.象这种把某个式子看成一个整体,用一个字母去代替它,从而使问题得到简化的方法叫换元法.请仿照上述方法解方程:x4﹣3x2﹣4=0.28、已知的一根为,求另一根和m的值.29、如图,已知三角形ABC的边AB是⊙0的切线,切点为B.AC经过圆心0并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.30、某旅游园区对团队入园购票规定:如团队人数不超过人,那么这个团队需交200元入园费;若团队人数超过人,则这个团队除了需交200元入园费外,超过部分游客还要按每人元交入园费,下表是两个旅游团队人数和入园缴费情况:旅游团队名称团队人数(人)入园费用(元)旅游团队1 80 350旅游团队2 45 200根据上表的数据,求某旅游园区对团队入园购票规定的人是多少?参考答案一、单选题(共15题,共计45分)1、A2、D3、B4、B5、B6、A7、C8、A9、D10、C11、B12、C13、B14、A15、A二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、30、。
苏科版数学九年级上册《期末检测试题》及答案
[解析]
因为点G为△ABC的重心,所以AG:GD=2:1,因为EF∥BC,点E是AC的中点,所以FE:DC=1:2,即AF:DF=1:1,所以AF:AG=3:4,故答案为: 3:4.
12.如图,圆的两条弦 、 相交于点 , 、 的度数分别为 、 , 的度数为 ,则 、 和 之间的数量关系为__________.
24.( )如图①,在 中, , ,垂足为 .求证 .
( )如图②,已知线段 、 ,用直尺和圆规作线段 ,使得 是 、 的比例中项.(保留作图的痕迹,不写作法)
25.在说明“周长一定的矩形中,正方形面积最大”时,小明的思路如下:
令矩形 周长为 ,如果设矩形的一边长为 ,面积为 ,利用 与 的函数关系,结合函数的性质进行解释.
A. B. C. D.
[答案]A
[解析]
先将二次函数 的图像先绕原点旋转 ,可得旋转后的二次函数 ,再将函数向上平移3个单位可得: ,故选A.
17.如图, 、 分别为 的两条中线, 、 相交于点 ,连接 ,若 的面积为 ,则 的面积为().
A. B. C. D.
[答案]D
[解析]
因为 , 分别为 的两条中线,所以可得: = ,因为 的面积为 ,且BE是中线,所以 的面积是6,在 中,DE是中线,所以 的面积是3,又因为 = ,所以 的面积为 ,故选D.
B. 3a=2b⇒a:b=2:3,故选项正确;
C. ⇒b:a=2:3,故选项错误;
D. ⇒a:b=3:2,故选项错误.
故选B.
15.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()
A. B. C. D.
[答案]B
苏科版数学九年级上册《期末考试题》含答案
苏科版数学九年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、单选题(共10小题)1.关于x的方程ax2+bx+c=0是一元二次方程,则满足()A.a≠0 B.a>0 C.a≥0 D.全体实数2.已知一元二次方程p2﹣p﹣3=0,q2﹣q﹣3=0,则p+q的值为()A.﹣B.C.﹣3 D.33.到三角形三条边的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高线4.在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:金额(元)20303550100学生数(人)20105105则在这次活动中,该班同学捐款金额的众数和中位数分别是()A.20元,30元B.20元,35元C.100元,35元D.100元,30元5.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.方差B.极差C.中位数D.平均数6.下列说法正确的是()①试验条件不会影响某事件出现的频率;②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.A.①②B.②③C.③④D.①③7.一个钢管放在V形架内,如图是其截面图,测得P点与钢管的最短距离PB=25cm,最长距离P A=75cm.若钢管的厚度忽略不计,则劣弧的长为()A.πcm B.50πcm C.πcm D.50πcm8.若数据x1,x2,…,x n的众数为a,方差为b,则数据x1+2,x2+2,…,x n+2的众数,方差分别是()A.a,b B.a,b+2 C.a+2,b D.a+2,b+29.如图,点A,B,C在圆O上,若∠BOC=72°,则∠BAC的度数是()A.72°B.54°C.36°D.18°10.已知关于x的一元二次方程M为ax2+bx+c=0、N为cx2+bx+a=0(a≠c),则下列结论:①如果5是方程M的一个根,那么是方程N的一个根;②如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;③如果方程M与方程N有一个相同的根,那么这个根必是x=1.其中正确的结论是()A.①②B.①③C.②③D.①②③二、填空题(共8小题)11.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的中位数是.12.方程x3+8=0在实数范围内的解是﹣.13.已知扇形的圆心角为120°,它所对弧长为20πcm,则扇形的半径为.14.已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=﹣.15.某药品经过两次降价,每盒零售价由105元降到88元,已知再次降价的百分率相同,设每次降价的百分率为x,根据题意可列方程为﹣.16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为.17.如图,AB为⊙O的直径,弦CD⊥AB于点E,点F在圆上,且,BE=2,CD=8,CF交AB于点G,则弦CF的长为,AG的长为.18.如图,在△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为.三、解答题(共10小题)19.解方程:(1)(2x+3)2﹣81=0.(2)x2﹣4x﹣5=020.新世纪超市今年3月底购进了一批水果1260千克,预计在4月份进行试销,购进价格为每千克10元,若售价为每千克12元,则可全部售出.若售价每千克涨价0.1元,销售量就减少2千克.(1)若超市4月份销售量不低于1200千克,则售价应不高于多少元?(2))因市场需求增加,5月份进价比3月底的进价每千克增加20%,该超市增加了进货量,并提高销售力度,结果5月份的销售量比4月份在(1)的条件下的最低销售量增加了a%(a>15),但售价比4月份在(1)的条件下的最高售价减少了%,结果5月份利润达到3696元,求a的值.21.(2019•濮阳模拟)某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类A B C D E F 上学方式电动车私家车公共交通自行车步行其他某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图根据以上信息,回答下列问题:(1)参与本次问卷调查的学生共有450人,其中选择B类的人数有63人.(2)在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.(3)若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.22.已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.(1)求证:方程有两个不相等的实数根;(2)以这个方程的的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=2时,△ABC是等腰三角形,求此时m的值;(3)若方程两个实数根为x1、x2,且x1<x2,满足=.求m的值.23.高新区教育局为了了解区内七年级学生参加社会实践活动情况,随机抽取了辖区部分学校的七年级学生2018﹣2019学年第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)扇形统计图中的a=,参加实践活动的天数为6天的学生对应的圆心角度数是;(2)请你补全条形统计图;本次抽样调查的中位数是.(3)若高新区共有七年级学生5000人,请你估计活动时间不少于6天的学生人数大约有多少人?24.如图,在⊙O的内接四边形ABCD中,∠BCD=120°,AC平分∠BCD.(1)求证:△ABD是等边三角形;(2)若BD=6cm,求⊙O的半径.25.2018年全国两会期间民生话题成为社会焦点.无锡市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了无锡市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.组别焦点话题频数(人数)A食品安全80B教育医疗mC就业养老nD生态环保120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m=,n=.扇形统计图中E组所占的百分比为%;(2)无锡市人口现有600万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?26.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,E为AC上一点,直线ED与AB延长线交于点F,若∠CDE=∠DAC,AC=12.(1)求⊙O半径;(2)求证:DE为⊙O的切线;27.如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F连接DF、DC.已知OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)求证:∠FDC=∠EDC;(3)已知:DE=10,DF=8,求CD的长.28.阅读下列材料:利用完全平方公式,可以将多项式ax2+bx+c(a≠0)变形为a(x+m)2+n的形式,我们把这种变形方法,叫做配方法.运用配方法及平方差公式能对一些多项式进行因式分解.例如:x2+11x+24=x2+11x+()2﹣()2+24=(x+)2﹣=(x++)(x+﹣)=(x+8)(x+3)根据以上材料,解答下列问题:(1)用配方法将x2+8x﹣1化成=(x+m)2+n的形式,则x2+8x﹣1=﹣;(2)用配方法和平方差公式把多项式x2﹣2x﹣8进行因式分解;(3)对于任意实数x,y,多项式x2+y2﹣2x﹣4y+16的值总为(填序号).①正数②非负数③0参考答案一、单选题(共10小题)1.关于x的方程ax2+bx+c=0是一元二次方程,则满足()A.a≠0 B.a>0 C.a≥0 D.全体实数[解答]解:由于关于x的方程ax2+bx+c=0是一元二次方程,所以二次项系数不为零,即a≠0.故选:A.[知识点]一元二次方程的定义2.已知一元二次方程p2﹣p﹣3=0,q2﹣q﹣3=0,则p+q的值为()A.﹣B.C.﹣3 D.3[解答]解:由题意可知:p、q是方程x2﹣x﹣3=0的两根,∴p+q=,故选:B.[知识点]根与系数的关系3.到三角形三条边的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高线[解答]解:到三角形三条边距离相等的点是三角形的内心,即三个内角平分线的交点.故选:A.[知识点]三角形的内切圆与内心4.在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:金额(元)20303550100学生数(人)20105105则在这次活动中,该班同学捐款金额的众数和中位数分别是()A.20元,30元B.20元,35元C.100元,35元D.100元,30元[解答]解:∵捐款金额为20元的学生数最多为20人,∴众数为20元,∵共有50位同学捐款,∴第25位同学和26位同学捐款数的平均数为中位数,即中位数为:=30元;故选:A.[知识点]众数、中位数5.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.方差B.极差C.中位数D.平均数[解答]解:13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:C.[知识点]统计量的选择、中位数6.下列说法正确的是()①试验条件不会影响某事件出现的频率;②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.A.①②B.②③C.③④D.①③[解答]解:①错误,实验条件会极大影响某事件出现的频率;②正确;③正确;④错误,“两个正面”、“两个反面”的概率为,“一正一反”的机会较大,为.故选:B.[知识点]概率的意义、利用频率估计概率、可能性的大小7.一个钢管放在V形架内,如图是其截面图,测得P点与钢管的最短距离PB=25cm,最长距离P A=75cm.若钢管的厚度忽略不计,则劣弧的长为()A.πcm B.50πcm C.πcm D.50πcm[解答]解:∵最短距离PB=25cm,最长距离P A=75cm,∴圆O的半径为25cm,则OM=25cm,OP=50cm,∵PM⊥OM,∴∠OPM=30°,∠MOP=60°,同理可得,∠NOP=60°,∴∠MON=120°,劣弧==πcm.故选:A.[知识点]弧长的计算、切线的性质8.若数据x1,x2,…,x n的众数为a,方差为b,则数据x1+2,x2+2,…,x n+2的众数,方差分别是()A.a,b B.a,b+2 C.a+2,b D.a+2,b+2[解答]解:∵数据x1,x2,…,x n的众数为a,方差为b,∴数据x1+2,x2+2,…,x n+2的众数为a+2,这组数据的方差是b,故选:C.[知识点]方差、众数9.如图,点A,B,C在圆O上,若∠BOC=72°,则∠BAC的度数是()A.72°B.54°C.36°D.18°[解答]解:∠BAC=∠BOC=×72°=36°.故选:C.[知识点]圆周角定理、圆心角、弧、弦的关系10.已知关于x的一元二次方程M为ax2+bx+c=0、N为cx2+bx+a=0(a≠c),则下列结论:①如果5是方程M的一个根,那么是方程N的一个根;②如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;③如果方程M与方程N有一个相同的根,那么这个根必是x=1.其中正确的结论是()A.①②B.①③C.②③D.①②③[解答]解:①如果5是方程M的一个根,那么25a+5b+c=0,方程两边同时除以25, 得a+b+c=0,即c+b+a=0,所以是方程N的一个根,故①正确,符合题意;②如果方程M有两个不相等的实数根,那么△=b2﹣4ac>0,所以方程N也有两个不相等的实数根,故②正确,符合题意;③如果方程M和方程N有一个相同的根,那么ax2+bx+c=cx2+bx+a,解得:x=±1,故③错误,不符合题意;故选:A.[知识点]一元二次方程的定义、根的判别式二、填空题(共8小题)11.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的中位数是.[解答]解:因图中是按从小到大的顺序排列的,最中间的环数是7环、8环,则中位数是=7.5(环);故答案为:7.5.[知识点]中位数12.方程x3+8=0在实数范围内的解是﹣.[解答]解:由x3+8=0,得x3=﹣8,x=﹣2,故答案为x=﹣2.[知识点]高次方程13.已知扇形的圆心角为120°,它所对弧长为20πcm,则扇形的半径为.[解答]解:根据题意得,r=30cm,故答案为30cm.[知识点]弧长的计算14.已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=﹣.[解答]解:根据题意得x1+x2=2,x1x2=﹣5,x12+x22+3x1x2=(x1+x2)2+x1x2=22+(﹣5)=﹣1.故答案为﹣1.[知识点]根与系数的关系15.某药品经过两次降价,每盒零售价由105元降到88元,已知再次降价的百分率相同,设每次降价的百分率为x,根据题意可列方程为﹣.[解答]解:设每次降价的百分率为x,依题意,得:105(1﹣x)2=88.故答案为:105(1﹣x)2=88.[知识点]由实际问题抽象出一元二次方程16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为.[解答]解:由题意可得:小立方体一共有27个,恰有三个面涂有红色的有8个,故取得的小正方体恰有三个面涂有红色的概率为:.故答案为:.[知识点]概率公式17.如图,AB为⊙O的直径,弦CD⊥AB于点E,点F在圆上,且,BE=2,CD=8,CF交AB于点G,则弦CF的长为,AG的长为.[解答]解:连结BC,DF,OC,连结DO并延长交CF于点H,∵弦CD⊥AB于点E,CD=8,∴CE==4,设OC=x,则OE=x﹣2,∵OE2+CE2=OC2,∴(x﹣2)2+42=x2,解得x=5,∴OC=5,∴OE=5﹣2=3,∵,∴DF=CD,∠CFD=∠COB,DH⊥CF,∴∠FHD=∠OEC=90°,∴△DHF∽△CEO,∴=,∴,∴FH=,DH=,∴CF=2FH=,OH=DH﹣OD=,∵∠CFD=∠COB=∠BOD,∠BOD=∠GOH,∴∠GOH=∠DFH,∵∠GHO=∠OEC=90°,∴△GHO∽△CEO,∴,∴,∴OG=,故答案为:,.[知识点]相似三角形的判定与性质、垂径定理、圆心角、弧、弦的关系、圆周角定理、勾股定理18.如图,在△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为.[解答]解:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,∵S△ABC=AC•BC=AB•CD,∴AC•BC=AB•CD,即CD==2.4,∴⊙C的半径为2.4,故答案为:2.4[知识点]勾股定理的逆定理、切线的性质三、解答题(共10小题)19.解方程:(1)(2x+3)2﹣81=0.(2)x2﹣4x﹣5=0[解答]解:(1)(2x+3)2=81,2x+3=±9,即2x+3=9或2x+3=﹣9,所以x1=3,x2=﹣6;(2)(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=﹣1.[知识点]解一元二次方程-因式分解法、解一元二次方程-直接开平方法20.新世纪超市今年3月底购进了一批水果1260千克,预计在4月份进行试销,购进价格为每千克10元,若售价为每千克12元,则可全部售出.若售价每千克涨价0.1元,销售量就减少2千克.(1)若超市4月份销售量不低于1200千克,则售价应不高于多少元?(2))因市场需求增加,5月份进价比3月底的进价每千克增加20%,该超市增加了进货量,并提高销售力度,结果5月份的销售量比4月份在(1)的条件下的最低销售量增加了a%(a>15),但售价比4月份在(1)的条件下的最高售价减少了%,结果5月份利润达到3696元,求a的值.[解答]解:(1)设4月份的售价为x元,根据题意得:1260﹣(x﹣12)÷0.1×2≥1200,解得:x≤15.答:若超市4月份销售量不低于1200千克,则售价应不高于15元.(2)设y=a%,根据题意得:1200(1+y)×[15(1﹣y)﹣10×(1+20%)]=3696,整理得:50y2﹣25y+2=0,解得:y1=0.4,y2=0.1,∴a=10(舍去)或a=40.答:a的值为40.[知识点]一元二次方程的应用21.(2019•濮阳模拟)某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类A B C D E F 上学方式电动车私家车公共交通自行车步行其他某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图根据以上信息,回答下列问题:(1)参与本次问卷调查的学生共有450人,其中选择B类的人数有63人.(2)在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.(3)若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.[解答]解:(1)参与本次问卷调查的学生共有162÷36%=450人,其中选择B类的人数有450×14%=63人, 故答案为:450、63;(2)E类对应的扇形圆心角α的度数360°×(1﹣36%﹣14%﹣20%﹣16%﹣4%)=36°,C方式的人数为450×20%=90人、D方式人数为450×16%=72人、E方式的人数为450×10%=45人,F方式的人数为450×4%=18人,补全条形图如下:(3)估计该校每天“绿色出行”的学生人数为3000×(1﹣14%﹣4%)=2460人.[知识点]垂径定理22.已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.(1)求证:方程有两个不相等的实数根;(2)以这个方程的的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=2时,△ABC是等腰三角形,求此时m的值;(3)若方程两个实数根为x1、x2,且x1<x2,满足=.求m的值.[解答](1)证明:∵a=1,b=﹣(2m+3),c=m2+3m+2,△=b2﹣4ac=(2m+3)2﹣4(m2+3m+2),=1>0,∴方程有两个不相等的实数根;(2)解:依题意可知,△ABC中AB或者AC=BC=2,∴方程有一实数根为2,将x=2代入方程得:22﹣2(2m+3)+m2+3m+2=0,解得:m1=0,m2=1,此时m的值为0或1;(3)根据根与系数的关系得:,∴x2﹣x1=|x1﹣x2|==(2m+3)2﹣4(m2+3m+2)=1,∴=,,解得:m1=0,m2=﹣3,经检验,m1=0,m2=﹣3都是方程的解,由(1)知m的值满足题意.∴m的值为0或﹣3.[知识点]等腰三角形的判定与性质、根与系数的关系、根的判别式23.高新区教育局为了了解区内七年级学生参加社会实践活动情况,随机抽取了辖区部分学校的七年级学生2018﹣2019学年第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)扇形统计图中的a=,参加实践活动的天数为6天的学生对应的圆心角度数是;(2)请你补全条形统计图;本次抽样调查的中位数是.(3)若高新区共有七年级学生5000人,请你估计活动时间不少于6天的学生人数大约有多少人?[解答]解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,参加实践活动的天数为6天的学生对应的圆心角度数是360°×20%=72°;故答案为:10%,72°;(2)参加社会实践活动的天数为8天的人数是:×10%=10(人),补图如下:抽样调查中总人数为100人,结合条形统计图可得:中位数是6天;故答案为:6;(3)根据题意得:5000×(25%+10%+5%+20%)=3000(人),答:活动时间不少于6天的学生人数大约有3000人.[知识点]条形统计图、用样本估计总体、中位数、扇形统计图24.如图,在⊙O的内接四边形ABCD中,∠BCD=120°,AC平分∠BCD.(1)求证:△ABD是等边三角形;(2)若BD=6cm,求⊙O的半径.[解答](1)证明:∵AC平分∠BCD,∠BCD=120°,∴∠ACD=∠ACB=60°,∵∠ACD=∠ABD,∠ACB=∠ADB,∴∠ABD=∠ADB=60°,∴△ABD是等边三角形;(2)解:作直径DE,连结BE,∵△ABD是等边三角形,∴∠BAD=60°,∴∠BED=∠BAD=60°,∵DE是直径,∴∠EBD=90°,∴∠EDB=30°,∴DE=2BE,设EB=x,则ED=2x,∴(2x)2﹣x2=62∵x>0,∴x=2,∴即⊙O的半径为2.[知识点]等边三角形的判定与性质、圆周角定理、圆内接四边形的性质25.2018年全国两会期间民生话题成为社会焦点.无锡市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了无锡市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.组别焦点话题频数(人数)A食品安全80B教育医疗mC就业养老nD生态环保120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m=,n=.扇形统计图中E组所占的百分比为%;(2)无锡市人口现有600万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?[解答]解:(1)总人数=80÷20%=400(人),m=400×10%=40(人),n=400﹣80﹣40﹣120﹣60=100,E组所占的百分比==15%,故答案为:40,100,15.(2)600×=180 (万人).答:无锡市人口现有600万人,估计其中关注D组话题的市民人数有180万人.(3)此人关注C组话题的概率==.[知识点]用样本估计总体、概率公式、统计表、扇形统计图26.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,E为AC上一点,直线ED与AB延长线交于点F,若∠CDE=∠DAC,AC=12.(1)求⊙O半径;(2)求证:DE为⊙O的切线;[解答]解:(1)∵AB为⊙O的直径,∴∠ADB=90°,∴AD⊥BC,又∵BD=CD,∴AB=AC=12,∴⊙O半径为6;(2)证明:连接OD,∵∠CDE=∠DAC,∴∠CDE+∠C=∠DAC+∠C,∴∠AED=∠ADB,由(1)知∠ADB=90°,∴∠AED=90°,∵DC=BD,OA=OB∴OD∥AC.∴∠ODF=∠AED=90°,∴半径OD⊥EF.∴DE为⊙O的切线.[知识点]切线的判定、圆周角定理27.如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F连接DF、DC.已知OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)求证:∠FDC=∠EDC;(3)已知:DE=10,DF=8,求CD的长.[解答](1)证明:连接OC.∵OA=OB,AC=CB,∴OC⊥AB,∵点C在⊙O上,∴AB是⊙O切线.(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC,∵OD=OF,∴∠ODF=∠OFD,∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD,∵OD=OC,∴∠ODC=∠OCD,∴∠ADC=∠CDF.(3)解:作ON⊥DF于N,延长DF交AB于M.∵ON⊥DF,∴DN=NF=4,在Rt△ODN中,∵∠OND=90°,OD=5,DN=4,∴=3,∵∠OCM+∠CMN=180°,∠OCM=90°,∴∠OCM=∠CMN=∠MNO=90°,∴四边形OCMN是矩形,∴ON=CM=3,MN=OC=5,在RT△CDM中,∵∠DMC=90°,CM=3,DM=DN+MN=9,∴CD===3.[知识点]圆周角定理、切线的判定与性质28.阅读下列材料:利用完全平方公式,可以将多项式ax2+bx+c(a≠0)变形为a(x+m)2+n的形式,我们把这种变形方法,叫做配方法.运用配方法及平方差公式能对一些多项式进行因式分解.例如:x2+11x+24=x2+11x+()2﹣()2+24=(x+)2﹣=(x++)(x+﹣)=(x+8)(x+3)根据以上材料,解答下列问题:(1)用配方法将x2+8x﹣1化成=(x+m)2+n的形式,则x2+8x﹣1=﹣;(2)用配方法和平方差公式把多项式x2﹣2x﹣8进行因式分解;(3)对于任意实数x,y,多项式x2+y2﹣2x﹣4y+16的值总为(填序号).①正数②非负数③0[解答]解:(1)x2+8x﹣1=x2+8x+16﹣16﹣1=(x+4)2﹣17,故答案为:(x+4)2﹣17;(2)原式=x2﹣2x+1﹣1﹣8=(x﹣1)2﹣9=(x﹣1+3)(x﹣1﹣3)=(x+2)(x﹣4);(3)x2+y2﹣2x﹣4y+16=x2﹣2x+1+y2﹣4y+4+11=(x﹣1)2+(y﹣2)2+11>0,故答案为:①.[知识点]因式分解-运用公式法、配方法的应用、因式分解-分组分解法、因式分解-十字相乘法等。
苏科版数学九年级上册《期末考试试卷》(附答案解析)
九 年 级 上 册 数 学 期 末 测 试 卷一.选择题(共8小题,满分24分)1.赣榆一月份某日的最高气温是8°C ,最低气温是﹣1°C ,这天气温的极差是( ) A. ﹣7°C B. 7°C C. ﹣9°C D. 9°C 2.方程2x 2﹣2=0的根是( ) A. x 1=x 2=1B. x 1=x 2=﹣1C. x 1=1,x 2=﹣1D. x 1=2,x 2=﹣23.掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是( ) A.16B.13C.12D.234.如图,在4×4的正方形网格中,是相似三角形的是( )A. ①③B. ①②C. ②③D. ②④5.如图,⊙O 中,弦AB 、CD 相交于点P ,若∠A =30°,∠APD =70°,则∠B 等于( )A. 30°B. 35°C. 40°D. 50°6.如图,抛物线()20yax bx c a =++≠与x 轴一个交点为()2,0-,对称轴为直线1x =,则0y <时x 范围是( )A. 4x >或2x <-B. 24x -<<C. 23x -<<D. 03x <<7.已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对的圆周角的度数是( ) A. 30°B. 60°C. 30°或150°D. 60°或120°8.已知二次函数y=ax 2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是( )A. 2040abc b ac >⎧⎨-<⎩B. 020abc a b <⎧⎨+>⎩C. 00abc a b c >⎧⎨++<⎩D. 2040abc b ac <⎧⎨->⎩二.填空题(共8小题,满分24分,每小题3分)9.若线段a ,b ,c ,d 成比例,其中a =1,b =2,c =3,则d =_____.10.如图,在△ABC 中,M 、N 分别是AB 、AC 上的点,MN ∥BC ,若S △MBC : S △CMN =3: 1,则S △AMN : S △ABC =_____.11.一组数据: 24,58,45,36,75,48,80,则这组数据的中位数是_____.12.现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能够构成三角形的概率是_____. 13.线段AB =10,点P 是AB 的黄金分割点,且AP >BP ,则AP =_____(用根式表示). 14.把抛物线y =﹣x 2向上平移2个单位,那么所得抛物线与x 轴的两个交点之间的距离是_____. 15.二次函数y =mx 2﹣2x +1,当x <13时,y 的值随x 值的增大而减小,则m 的取值范围是_____. 16.如图,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是_____(结果保留π)三.解答题(共10小题,满分102分)17.解方程: 3(x ﹣2)=x (x ﹣2) 18.已知:234x y z==.且2x +y ﹣z =6,求3x +2y ﹣z 的值. 19.求证: 不论k 取什么实数,方程x 2﹣(k +6)x +4(k ﹣3)=0一定有两个不相等的实数根.20.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位: kg ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m 的值为 ;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为2.0kg 的约有多少只?21.一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果; (2)求摸出的两个小球号码之和等于4的概率.22.如图,点E 是正方形ABCD 的对角线AC 上的一个动点(不与A 、C 重合),作EF ⊥AC 交边BC 于点F ,连接AF 、BE 交于点G . (1)求证: △CAF ∽△CBE ;(2)若AF 平分∠BAC ,求证: AC 2=2AG •AF .23.如图,已知AB 是⊙O 的直径,BC ⊥AB ,连结OC ,弦AD ∥OC ,直线CD 交BA 的延长线于点E . (1)求证: 直线CD 是⊙O 的切线;(2)若DE =2BC ,AD =5,求OC 的值.24.如图,抛物线y =ax 2+bx 经过点A (4,0)、B (2,2),连接OB 、AB . (1)求抛物线的解析式;(2)求证: △OAB 是等腰直角三角形.25.某企业信息部进行市场调研发现:信息一: 如果单独投资A 种产品,所获利润y A (万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表: x(万元) 1 2 2.5 3 5 y A (万元) 0.40.811.22信息二: 如果单独投资B 种产品,则所获利润y B (万元)与投资金额x(万元)之间存在二次函数关系: y B =ax 2+bx ,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元. (1)求出y B 与x 的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A 与x 之间的关系,并求出y A 与x 的函数关系式;(3)如果企业同时对A 、B 两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?26.如图,在平面直角坐标系中,抛物线2y ax bx c =++经过A (﹣6,0)、B (2,0)、C (0,6)三点,其顶点为D ,连接AD ,点P 是线段AD 上一个动点(不与A 、D 重合),过点P 作y 轴的垂线,垂足为点E ,连接AE .(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果点P的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)过点P(﹣3,m)作x轴的垂线,垂足为点F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点Pʹ,求出Pʹ的坐标.(直接写出结果)答案与解析一.选择题(共8小题,满分24分)1.赣榆一月份某日的最高气温是8°C,最低气温是﹣1°C,这天气温的极差是()A. ﹣7°CB. 7°CC. ﹣9°CD. 9°C【答案】B【解析】试题解析: 用最大值减去最小值即可求得极差.即: 极差为8-1=7℃,故选B.2.方程2x2﹣2=0的根是()A. x1=x2=1B. x1=x2=﹣1C. x1=1,x2=﹣1D. x1=2,x2=﹣2【答案】C【解析】【分析】先把方程变形为x2=1,再利用直接开平方法求方程的根.【详解】解: 方程变形得x2=1,∴x=±1.故选D.【点睛】本题考查了解一元二次方程--直接开平方法.(1)用直接开方法求一元二次方程的解的类型有: x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则: 要把方程化为”左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.3.掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()A. 16B.13C.12D.23【答案】C【解析】分析: 根据题意和题目中的数据可以求得点数为奇数的概率.详解: 由题意可得,点数为奇数的概率是: 31 =62,故选C.点睛: 本题考查概率公式,解答本题的关键是明确题意,利用概率的知识解答.4.如图,在4×4的正方形网格中,是相似三角形的是()A. ①③B. ①②C. ②③D. ②④【答案】A【解析】【分析】根据: 三组对应边的比相等的两个三角形相似;求出对应边的比可得.【详解】∵①中的三角形的三边分别是: 2,10②中的三角形的三边分别是: 2,5;③中的三角形的三边分别是: 22,2,25④中的三角形的三边分别是: 17,42∵①与③中的三角形的三边的比为: 2∴①与③相似.故答选: A【点睛】此题主要考查相似三角形的判定方法: (1)平行线法: 平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法: 三组对应边的比相等的两个三角形相似;(3)两边及其夹角法: 两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法: 有两组角对应相等的两个三角形相似.5.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A. 30°B. 35°C. 40°D. 50°【答案】C 【解析】分析: 欲求∠B 的度数,需求出同弧所对的圆周角∠C 的度数;△APC 中,已知了∠A 及外角∠APD 的度数,即可由三角形的外角性质求出∠C 的度数,由此得解. 解答: 解: ∵∠APD 是△APC 的外角, ∴∠APD=∠C+∠A ; ∵∠A=30°,∠APD=70°, ∴∠C=∠APD-∠A=40°; ∴∠B=∠C=40°; 故选C .6.如图,抛物线()20y ax bx c a =++≠与x 轴一个交点为()2,0-,对称轴为直线1x =,则0y <时x 的范围是( )A. 4x >或2x <-B. 24x -<<C. 23x -<<D. 03x <<【答案】B 【解析】因为抛物线与x 轴的一个交点为(−2,0),对称轴为直线x =1,所以抛物线另一个与x 轴的交点为(4,0),∴y <0时,−2<x <4.故选B .7.已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对的圆周角的度数是( ) A. 30° B. 60°C. 30°或150°D. 60°或120°【答案】D【分析】由图可知,OA=10,OD=5.根据特殊角的三角函数值求出∠AOB 的度数,再根据圆周定理求出∠C 的度数,再根据圆内接四边形的性质求出∠E 的度数即可. 【详解】由图可知,OA=10,OD=5,在Rt △OAD 中,∵OA=10,OD=5,AD=22OA OD -=53, ∴tan ∠1=3ADOD=,∴∠1=60°, 同理可得∠2=60°, ∴∠AOB=∠1+∠2=60°+60°=120°, ∴∠C=60°, ∴∠E=180°-60°=120°, 即弦AB 所对的圆周角的度数是60°或120°, 故选D .【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.8.已知二次函数y=ax 2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是( )A. 240abc b ac >⎧⎨-<⎩ B. 020abc a b <⎧⎨+>⎩C. 0abc a b c >⎧⎨++<⎩D. 240abc b ac <⎧⎨->⎩ 【答案】C【分析】利用抛物线开口方向得到a >0,利用抛物线的对称轴在直线x=1的右侧得到b <0,b <-2a ,即b+2a <0,利用抛物线与y 轴交点在x 轴下方得到c <0,也可判断abc >0,利用抛物线与x 轴有2个交点可判断b 2-4ac >0,利用x=1可判断a+b+c <0,利用上述结论可对各选项进行判断. 【详解】∵抛物线开口向上, ∴a >0,∵抛物线的对称轴在直线x=1的右侧, ∴x=-2ba>1, ∴b <0,b <-2a ,即b+2a <0, ∵抛物线与y 轴交点在x 轴下方, ∴c <0, ∴abc >0,∵抛物线与x 轴有2个交点, ∴△=b 2-4ac >0, ∵x=1时,y <0, ∴a+b+c <0. 故选C .【点睛】本题考查了二次函数图象与系数的关系: 二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置: 当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点: 抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定: △=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.二.填空题(共8小题,满分24分,每小题3分)9.若线段a ,b ,c ,d 成比例,其中a =1,b =2,c =3,则d =_____. 【答案】6 【解析】 【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb ,将a ,b 及c 的值代入即可求得d .【详解】∵a,b,c,d是成比例线段,∴ad=cb,∵a=1cm,b=2cm,c=3cm,∴d=6,则d=6cm.故答案为6.【点睛】本题考查的知识点是比例线段,解题的关键是熟练的掌握比例线段.10.如图,在△ABC中,M、N分别是AB、AC上的点,MN∥BC,若S△MBC: S△CMN=3: 1,则S△AMN: S△ABC =_____.【答案】1:9【解析】【分析】根据三角形相似的相关知识即可解答.【详解】解: ∵MN∥BC,且S△MBC: S△CMN=3: 1可得MN: BC=1: 3所以S△AMN: S△ABC= MN2: BC2=1:9.即答案为1:9.【点睛】本题考查了三角形相似时,面积比=边长比的平方,熟悉掌握是解题关键.11.一组数据: 24,58,45,36,75,48,80,则这组数据的中位数是_____.【答案】48【解析】【分析】把给出的此组数据中的数按一定的顺序排列,由于数据个数是7,7是奇数,所以处于最中间的数,就是此组数据的中位数;【详解】按从小到大的顺序排列为: 24 36 45 48 58 75 80;所以此组数据的中位数是48.【点睛】此题主要考查了中位数的意义与求解方法.12.现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能够构成三角形的概率是_____.【答案】3 10【解析】【分析】先列举出从1,2,3,4,5的木条中任取3根的所有等可能结果,再根据三角形三边间的关系从中找到能组成三角形的结果数,利用概率公式计算可得.【详解】从1,2,3,4,5的木条中任取3根有如下10种等可能结果:3、4、5;2、4、5;2、3、5;2、3、4;1、4、5;1、3、5;1、3、4;1、2、5;1、2、4;1、2、3;其中能构成三角形的有3、4、5;2、4、5;2、3、4这三种结果,所以从这5根木条中任取3根,能构成三角形的概率是310,故答案是:3 10.【点睛】考查列表法与树状图法,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.13.线段AB=10,点P是AB的黄金分割点,且AP>BP,则AP=_____(用根式表示).【答案】5【解析】【分析】根据黄金分割点的定义和AP>BP得出AP=AB,再进行计算即可.【详解】∵点P是AB的黄金分割点,AP>BP,∴AP=AB.∵线段AB=10,∴AP=10×125;故答案为5.【点睛】本题考查了黄金分割,关键是理解黄金分割点的概念,要熟记黄金比的值,计算时要注意AP>BP 的条件.14.把抛物线y=﹣x2向上平移2个单位,那么所得抛物线与x轴的两个交点之间的距离是_____.【答案】;【解析】【分析】先由平移规律求出新抛物线的解析式,然后求出抛物线与x轴的两个交点横坐标,利用坐标轴上两点间距离公式即可求得距离.【详解】所得抛物线为y=﹣x2+2,当y=0时,﹣x2+2=0,解得x=±2,∴两个交点之间的距离是|﹣2﹣2|22=.15.二次函数y=mx2﹣2x+1,当x<13时,y的值随x值的增大而减小,则m的取值范围是_____.【答案】0<m≤3.【解析】【分析】根据对称轴的左侧的增减性,可得m>0,根据增减性,可得对称轴大于或等于13,可得答案.【详解】∵当x13<时,y的值随x值的增大而减小,∴抛物线开口向上,m>0,且对称轴1m≥13,解得: m≤3.故答案为0<m≤3.【点睛】本题考查了二次函数的性质,利用二次函数的增减性得出抛物线的开口方向且1m≥13是解题的关键.16.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是_____(结果保留π)【答案】8﹣2π【解析】【分析】根据S阴=S△ABD-S扇形BAE计算即可.【详解】解: S阴=S△ABD-S扇形BAE=12×4×4-2454360π⨯⨯=8-2π,故答案为8-2π.【点睛】本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.三.解答题(共10小题,满分102分)17.解方程: 3(x ﹣2)=x (x ﹣2) 【答案】x 1=2,x 2=3. 【解析】 【分析】观察方程发现等号的左右两边都有x-2的因式,所以我们把x-2看成一个整体,把等号右边的式子移到等号的左边,然后提取公因式后,可化为两式相乘为0的形式,即可求出方程的两个解. 【详解】解: 方程移项得: 3(x ﹣2)﹣x (x ﹣2)=0, 分解因式得: (x ﹣2)(3﹣x )=0, 可得x ﹣2=0或3﹣x =0, 解得: x 1=2,x 2=3.【点睛】此题考查了学生用因式分解法来解一元二次方程,解本题时注意,不要把左右两边的式子乘开,通过先观察应把方程的右边整体移到左边,提取公因式后进而求解.最后还要注意方程解的形式的书写. 18.已知:234x y z==.且2x +y ﹣z =6,求3x +2y ﹣z 的值. 【答案】16 【解析】 【分析】根据比例设x=2k ,y=3k ,z=4k ,然后代入方程求出k 的值,再求解即可. 【详解】解: 设===k , 则x =2k ,y =3k ,z =4k , ∵2x+y ﹣z =6, ∴4k+3k ﹣4k =6, 解得: k =2, ∴x =4,y =6,z =8, 则3x+2y ﹣z =12+12﹣8=16.【点睛】本题考查了比例的性质,利用”设k 法”表示出x 、y 、z 求解更加简便.19.求证: 不论k 取什么实数,方程x 2﹣(k +6)x +4(k ﹣3)=0一定有两个不相等的实数根. 【答案】证明见解析 【解析】 【分析】对于一元二次方程ax +bx+c=0(a≠0),当b -4ac>0时,方程有两个不相等的实数根;当b -4ac=0时,方程有两个相等的实数根;当b -4ac<0时,方程没有实数根.【详解】证明: ∵△=(k+6)2﹣4×1×4(k﹣3)=(k﹣2)2+80,而(k﹣2)2≥0,∴(k﹣2)2+80>0,即△>0,所以不论k取什么实数,方程x2﹣(k+6)x+4(k﹣3)=0一定有两个不相等的实数根.【点睛】了解一元二次方程根判别以及根与系数的关系的知识点是解答此题的关键.20.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位: kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.【解析】分析: (Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解: (Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵1.05 1.211 1.514 1.8162.041.5251114164x⨯+⨯+⨯+⨯+⨯==++++,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.51.51.52+=, ∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg 的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%. 有25008%200⨯=.∴这2500只鸡中,质量为2.0kg 的约有200只.点睛: 此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数. 21.一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果; (2)求摸出的两个小球号码之和等于4的概率. 【答案】(1)见解析;(2)13. 【解析】 【分析】(1)画树状图列举出所有情况;(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率. 【详解】解: (1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种. (2)由树状图知摸出的两个小球号码之和等于4的有2种结果, ∴摸出的两个小球号码之和等于4的概率为=.【点睛】本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键.22.如图,点E 是正方形ABCD 的对角线AC 上的一个动点(不与A 、C 重合),作EF ⊥AC 交边BC 于点F ,连接AF 、BE 交于点G . (1)求证: △CAF ∽△CBE ;(2)若AF平分∠BAC,求证: AC2=2AG•AF.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)利用AA证明△CEF∽△CAB,再列出比例式利用SAS证明△CAF∽△CBE (2)根据题意求出△ABF∽△AGB,再转化相关关系即可解答.【详解】(1)证明: ∵四边形ABCD是正方形,∴∠ABC=90°,∵EF⊥AC,∴∠FEC=90°=∠ABC,又∵∠FCE=∠ACB,∴△CEF∽△CAB,∴=,又∵∠ACF=∠BCE,∴△CAF∽△CBE;(2)∵△CAF∽△CBE,∴∠CAF=∠CBE,∵AF平分∠BAC,∴∠BAF=∠CAF,∴∠BAF=∠CBE,∴∠BAF+∠AFB=∠CBE+∠AFB=90°,即∠ABF=∠BGA=90°,∵∠BAG=∠BAF,∴△ABF∽△AGB,∴=,∴AB 2=AG•AF ,∵正方形ABCD 中,AC 2=2AB 2, ∴AC 2=2AG•AF【点睛】本题考查了正方形的性质、相似三角形的判定与性质;熟练掌握正方形的性质,证明三角形相似是解决问题的关键.23.如图,已知AB 是⊙O 的直径,BC ⊥AB ,连结OC ,弦AD ∥OC ,直线CD 交BA 的延长线于点E . (1)求证: 直线CD 是⊙O 的切线;(2)若DE =2BC ,AD =5,求OC 的值.【答案】(1)证明见解析;(2)152OC . 【解析】试题分析: (1)首选连接OD ,易证得△COD ≌△COB (SAS ),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD 是⊙O 的切线;(2)由△COD ≌△COB .可得CD=CB ,即可得DE=2CD ,易证得△EDA ∽△ECO ,然后由相似三角形的对应边成比例,求得AD: OC 的值. 试题解析: (1)连结DO .∵AD ∥OC ,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.3分又∵CO=CO, OD=OB∴△COD≌△COB(SAS)4分∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线.(2)∵△COD≌△COB.∴CD=CB.∵DE=2BC,∴ED=2CD.∵AD∥OC,∴△EDA∽△ECO.∴,∴.考点: 1.切线的判定2.全等三角形的判定与性质3.相似三角形的判定与性质.24.如图,抛物线y=ax2+bx经过点A(4,0)、B(2,2),连接OB、AB.(1)求抛物线的解析式;(2)求证: △OAB是等腰直角三角形.【答案】(1)抛物线的解析式为: y=﹣12x2+2x;(2)证明见解析.【解析】【分析】(1)将A、B的坐标代入抛物线的解析式中,通过联立方程组即可求出抛物线的解析式;(2)过B作BC⊥x轴于C,根据A、B的坐标易求得OC=BC=AC=2,由此可证得∠BOC、∠BAC、∠OBC、∠ABC都是45°,即可证得△OAB是等腰直角三角形.【详解】(1)解: 由题意得,解得;∴该抛物线的解析式为: y=﹣x2+2x;(2)证明: 过点B作BC⊥x轴于点C,则OC=BC=AC=2;∴∠BOC=∠OBC=∠BAC=∠ABC=45°;∴∠OBA=90°,OB=AB;∴△OAB是等腰直角三角形;【点睛】此题主要考查了利用待定系数法求二次函数解析式、两点间的距离公式、勾股定理的逆定理.解题时,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段OB、AB间的关系.25.某企业信息部进行市场调研发现:信息一: 如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元) 1 2 2.5 3 5y A(万元) 0.4 0.8 1 1.2 2信息二: 如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系: y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x 的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?【答案】(1)y B =-0.2x 2+1.6x (2)一次函数,y A =0.4x (3)该企业投资A 产品12万元,投资B 产品3万元,可获得最大利润7.8万元【解析】【分析】(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式y B =ax 2+bx 求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系”总利润=投资A 产品所获利润+投资B 产品所获利润”列出函数关系式求得最大值【详解】解: (1)y B =-0.2x 2+1.6x,(2)一次函数,y A =0.4x,(3)设投资B 产品x 万元,投资A 产品(15-x )万元,投资两种产品共获利W 万元, 则W=(-0.2x 2+1.6x )+0.4(15-x )=-0.2x 2+1.2x+6=-0.2(x -3)2+7.8,∴当x=3时,W 最大值=7.8,答:该企业投资A 产品12万元,投资B 产品3万元,可获得最大利润7.8万元.26.如图,在平面直角坐标系中,抛物线2y ax bx c =++经过A (﹣6,0)、B (2,0)、C (0,6)三点,其顶点为D ,连接AD ,点P 是线段AD 上一个动点(不与A 、D 重合),过点P 作y 轴的垂线,垂足为点E ,连接AE .(1)求抛物线的函数解析式,并写出顶点D 的坐标;(2)如果点P 的坐标为(x ,y ),△PAE 的面积为S ,求S 与x 之间的函数关系式,直接写出自变量x 的取值范围,并求出S 的最大值;(3)过点P (﹣3,m )作x 轴的垂线,垂足为点F ,连接EF ,把△PEF 沿直线EF 折叠,点P 的对应点为点Pʹ,求出Pʹ的坐标.(直接写出结果)【答案】(1)抛物线解析式为: y =-12x 2﹣2x +6,抛物线的顶点D (﹣2,8);(2)9;(3)P ′(95,185). 【解析】【分析】1)由抛物线y=ax2+bx+c经过A、B、C三点,则代入求得a,b,c,进而得解析式与顶点D.(2)由P在AD上,则可求AD解析式表示P点.由S△APE=12•PE•yP,所以S可表示,进而由函数最值性质易得S最值.(3)求出点P,过点P′作P′M⊥y轴于点M,再根据相关条件解答即可.【详解】解: (1)∵抛物线y=ax2+bx+c经过点A(﹣6,0),B(2,0),C(0,6)三点,∴36604206a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:1226abc⎧=-⎪⎪=-⎨⎪=⎪⎩,∴抛物线解析式为: y=12-x2﹣2x+6,∵221222ba-==-⎛⎫⨯-⎪⎝⎭,214644281442ac ba⎛⎫⨯-⨯-⎪-⎝⎭==⎛⎫⨯- ⎪⎝⎭,∴抛物线的顶点D(﹣2,8);(2)∵A(﹣6,0),D(﹣2,8),∴设AD的解析式y=2x+12,∵点P在AD上,∴P(x,2x+12),∴S△APE=12PE•yP=12×(﹣x)•(2x+12)=﹣x2﹣6x,当x=-3时,S最大=9;(3)P′(95,185).点P在AD上,∴当﹣3时,y=2×(﹣3)+12=6,∴点P(﹣3,6),∴PF=6,PE=3,过点P′作P′M⊥y轴于点M,∵△PEF沿EF翻折得△P′EF,∴∠PFE=∠P′FE,PF=P′F=6,PE=P′E=3,∵PF∥y轴,∴∠PFE=∠FEN,∵∠PFE=∠P′FE,∴∠FEN=∠P′FE,∴EN=FN,设EN=a,则FN=a,P′N=6﹣a,Rt△P′EN中,P′N2+P′E2=EN2,即(6﹣a)2+32=a2,解得: a=154,∵S△P′EN=12P′N•P′E=12EN•P′M,∴P′M=95,在Rt△EMP′中,EM=22912355⎛⎫-=⎪⎝⎭,∴OM=EO﹣EM=6﹣125=185,∴P′(95,185).【点睛】本题考查了待定系数法求抛物线解析式,二次函数图象、性质及设边长利用勾股定理解直角三角形等常规考点,题目考点适中,考法新颖,适合学生练习巩固.。
苏教版九年级数学上册期末考试卷(及答案)
苏教版九年级数学上册期末考试卷(及答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2的倒数是( )A .2B .12C .12-D .-22.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣53. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( )A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯6.若3x >﹣3y ,则下列不等式中一定成立的是( )A .0x y +>B .0x y ->C .0x y +<D .0x y -<7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58°9.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为( )A .140°B .100°C .50°D .40°10.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)19 __________.2.分解因式:x 2-2x+1=__________.3.已知二次函数y =x 2,当x >0时,y 随x 的增大而_____(填“增大”或“减小”).4.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为__________.5.如图,点A ,B 是反比例函数y=k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S △BCD =3,则S △AOC =__________.6.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.三、解答题(本大题共6小题,共72分)1.解分式方程:214111x x x ++=--2.计算:()011342604sin π-----+().3.如图,在平面直角坐标系xOy中,一次函数152y x=+和2y x=-的图象相交于点A,反比例函数kyx=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数152y x=+的图象与反比例函数kyx=的图象的另一个交点为B,连接OB,求ABO∆的面积.4.如图,AB是⊙O的直径,C是BD的中点,CE⊥AB于 E,BD交CE于点F.(1)求证:CF﹦BF;(2)若CD﹦6, AC﹦8,则⊙O的半径和CE的长.5.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图①中m的值为;(2)求统计的这组数据的平均数、众数和中位数;(3)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?6.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、C5、C6、A7、D8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、32、(x-1)2.3、增大.4、25、5.6、8.三、解答题(本大题共6小题,共72分)1、3x=-2、33、(1)反比例函数的表达式为8yx-=;(2)ABO∆的面积为15.4、(1)略(2)5 ,24 55、(1)28. (2)平均数是1.52. 众数为1.8. 中位数为1.5. (3)200只.6、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版九年级上册数学期末测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题,满分30分,每小题3分)1.(3分)某县开展关于精准扶贫、精准扶贫的决策部署以来,贫困户2017年人均纯收入为3620元,经过帮扶到2019年人均纯收入为4850元,设该贫困户每年纯收入的平均增长率为x ,则下面列出的方程中正确的是( )A .23620(1)4850x -=B .3620(1)4850x +=C .3620(12)4850x +=D .23620(1)4850x +=2.(3分)如图,O 的直径CD 垂直弦AB 于点E ,且2CE =,8DE =,则BE 的长为( )A .2B .4C .6D .83.(3分)某校足球队有16名队员,队员的年龄情况统计如下:则这16名队员年龄的中位数和众数分别是( ) A .14,15B .15,15C .14.5,14D .14.5,154.(3分)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是( ) A .14B .13C .37D .475.(3分)使方程222525x mx m -+=的一根为整数的整数m 的值共有( ) A .1个B .2个C .3个D .4个6.(3分)点P 为O 外一点,PA 为O 的切线,A 为切点,PO 交O 于点B ,30P ∠=︒,4BP =,则线段AP 的长为( )A .4B .8C .D .7.(3分)如图,点A 、B 、C 在O 上,54ACB ∠=︒,则ABO ∠的度数是( )A .54︒B .27︒C .36︒D .108︒8.(3分)实数a ,b ,c 满足0a b c -+=,则( ) A .240b ac ->B .240b ac -<C .240b ac -D .240b ac -9.(3分)如图,四边形ABCD 内接于O ,AB CB =,30BAC ∠=︒,BD =AD CD +的值为()A .3B .C 1D .不确定10.(3分)如图,O 的直径AB 与弦CD 相交于点P ,且45APC ∠=︒,若228PC PD +=,则O 的半径为( )A B .2C .D .4二.填空题(共8小题,满分24分,每小题3分)11.(3分)如果关于x 的一元二次方程210ax bx +-=的一个解是1x =,则2021a b --= .12.(3分)如图AB 是O 的直径,弦CD OB ⊥于点E ,交O 于点D ,已知5OC cm =,8CD cm =,则AE =cm .13.(3分)已知数据1x ,2x ,3x 的平均数是5,则数据132x +,232x +,332x +的平均数是 . 14.(3分)在一个不透明的袋子中装有4个白球,a 个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为23,则a = . 15.(3分)在从小到大排列的五个数x ,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x 的值为 .16.(3分)一个不透明的盒子内装有大小、形状相同的六个球,其中红球1个、绿球2个、白球3个,小明摸出一个球是绿球的概率是 .17.(3分)一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A 、B 、C 、D 、E 五人的成绩,其余人的平均分是62分,那么在这次测验中,C 的成绩是 分.18.(3分)有五张正面分别标有数2-,0,1,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a ,则使关于x 的方程13(1)3ax x x --+=-的解是正整数的概率 . 三.解答题(共8小题,满分46分) 19.(4分)解一元二次方程:(1)290x-=;(2)2230--=.x x20.(4分)如图,在ABC∠=∠.∆中,D是边BC上一点,以BD为直径的O经过点A,且CAD ABC (1)请判断直线AC是否是O的切线,并说明理由;(2)若2CA=,求弦AB的长.CD=,421.(4分)疫情结束后,某广场推出促销活动,已知商品每件的进货价为30元,经市场调研发现,当该商品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.【销售利润=销售总额-进货成本】.(1)若该商品的的件单价为43元时,则当天的售商品是件,当天销售利润是元;(2)当该商品的销售单价为多少元时,该商品的当天销售利润是3450元.22.(6分)如图,在ABC∠的平分线交BC于点D,点O在AB上,以点O为圆心,∠=︒,BAC∆中,90COA为半径的圆恰好经过点D,分别交AC、AB于点E.F.(1)试判断直线BC与O的位置关系,并说明理由;(2)若BD=2BF=,求O的半径.23.(6分)2017年全国两会民生话题成为社会焦点.徐州市记者为了了解百姓”两会民生话题”的聚焦点,随机调查了徐州市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空: m=,n=.扇形统计图中E组所占的百分比为%;(2)徐州市市区人口现有170万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?24.(6分)某楼盘准备以每平方米6000元的均价对外销售,新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?25.(8分)已知: 如图,AB为O的直径,CE ABBF OC,连接BC,CF.⊥于E,//求证: OCF ECB∠=∠.26.(8分)密码锁有三个转轮,每个转轮上有十个数字: 0,1,2,9⋯.小黄同学是9月份中旬出生,用生日”月份+日期”设置密码: 9⨯⨯小张同学要破解其密码:(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是.(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.答案与解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)某县开展关于精准扶贫、精准扶贫的决策部署以来,贫困户2017年人均纯收入为3620元,经过帮扶到2019年人均纯收入为4850元,设该贫困户每年纯收入的平均增长率为x ,则下面列出的方程中正确的是( )A .23620(1)4850x -=B .3620(1)4850x +=C .3620(12)4850x +=D .23620(1)4850x +=【解答】解: 如果设该贫困户每年纯收入的平均增长率为x , 那么根据题意得: 23620(1)4850x +=. 故选: D .2.(3分)如图,O 的直径CD 垂直弦AB 于点E ,且2CE =,8DE =,则BE 的长为( )A .2B .4C .6D .8【解答】解: 2CE =,8DE =,5OB ∴=, 3OE ∴=, AB CD ⊥,∴在OBE ∆中,4BE ==,故选: B .3.(3分)某校足球队有16名队员,队员的年龄情况统计如下:则这16名队员年龄的中位数和众数分别是( ) A .14,15B .15,15C .14.5,14D .14.5,15【解答】解: 共有16个数,最中间两个数的平均数是(1415)214.5+÷=,则中位数是14.5; 15出现了6次,出现的次数最多,则众数是15; 故选: D .4.(3分)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是( ) A .14B .13C .37D .47【解答】解: 根据题意可得: 袋子中有3个白球,4个红球,共7个, 从袋子中随机摸出一个球,它是红球的概率47. 故选: D .5.(3分)使方程222525x mx m -+=的一根为整数的整数m 的值共有( ) A .1个 B .2个C .3个D .4个【解答】解:方程有一个整数根,∴△222258(25)9400m m m =--=+>,设△2(p p =为正整数), (3)(3)40m p m p ∴-+=-, 33m p m p -+且同奇偶, 34m p ∴-=-,10-,2-,20-, 310m p +=,4,20,2, 3m ∴=±,1±,经检验,均有一根为整数,∴符合条件的整数m 的值有4个,故选: D .6.(3分)点P 为O 外一点,PA 为O 的切线,A 为切点,PO 交O 于点B ,30P ∠=︒,4BP =,则线段AP 的长为( )A.4B.8C.D.【解答】解: 连接OA,如图:PA为O的切线,∴⊥,PA OA∴∠=︒,OAP90∠=︒,30POP OA OB∴==,AP,22OA OB BP∴===,4∴=AP故选: C.7.(3分)如图,点A、B、C在O上,54∠的度数是()ACB∠=︒,则ABOA.54︒B.27︒C.36︒D.108︒【解答】解: 54∠=︒,ACB∴圆心角2108AOB ACB ∠=∠=︒,OB OA =,1(180)362ABO BAO AOB ∴∠=∠=⨯︒-∠=︒,故选: C .8.(3分)实数a ,b ,c 满足0a b c -+=,则( ) A .240b ac ->B .240b ac -<C .240b ac -D .240b ac -【解答】解: 设一元二次方程为20ax bx c ++= 当1x =-时,原方程化为0a b c -+=所以一元二次方程为20ax bx c ++=有实数根, 所以240b ac -. 故选: C .9.(3分)如图,四边形ABCD 内接于O ,AB CB =,30BAC ∠=︒,BD =AD CD +的值为()A .3B .C 1D .不确定【解答】解: 如图,过点B 作BE AD ⊥于E ,BF DC ⊥交DC 的延长线于F .AB BC =,∴AB BC =,BDE BDF ∴∠=∠,90DEB DFB ∠=∠=︒,DB DB =,()BDE BDF AAS ∴∆≅∆,BE BF ∴=,DE DF =,90AEB F ∠=∠=︒,BA BC =,BE BF =,Rt BEA Rt BFC(HL)∴∆≅∆,AE CF ∴=,2AD DC DE AE DF CF DF ∴+=++-=,30BDF BAC ∠=∠=︒,BD =3cos302DF BD ∴=︒=, 3DA DC ∴+=, 故选: A .10.(3分)如图,O 的直径AB 与弦CD 相交于点P ,且45APC ∠=︒,若228PC PD +=,则O 的半径为( )AB .2 C.D .4【解答】解: 作CM AB ⊥于M ,DN AB ⊥于N ,连接OC ,OD ,45NDP MCP APC ∴∠=∠=∠=︒又OC OD =,ODP OCP ∴∠=∠,45COM OCD ∠=︒+∠,45ODB ODC ∠=︒+∠,NDO COM ∴∠=∠,在Rt ODN ∆与Rt COM ∆中,90OMC OND COM NDOOC OD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, Rt ODN Rt COM ∴∆≅∆,ON CM PM ∴==,OM ND PN ==又222OC CM OM =+,222OD DN ON =+222OC CM PN ∴=+,222OD DN PM =+222222228OC OD CM PN DN PM PC PD ∴+=+++=+=24OC ∴=,2OC ∴=,故选: B .二.填空题(共8小题,满分24分,每小题3分)11.(3分)如果关于x 的一元二次方程210ax bx +-=的一个解是1x =,则2021a b --= 2020 .【解答】解: 把1x =代入方程210ax bx +-=得10a b +-=,所以1a b +=,所以20212021()202112020a b a b --=-+=-=.故答案为: 2020.12.(3分)如图AB 是O 的直径,弦CD OB ⊥于点E ,交O 于点D ,已知5OC cm =,8CD cm =,则AE = 8 cm .【解答】解: CD OB ⊥,142CE DE CD ∴===,在Rt OCE ∆中,3OE ==,538()AE AO OE cm ∴=+=+=.故答案为8.13.(3分)已知数据1x ,2x ,3x 的平均数是5,则数据132x +,232x +,332x +的平均数是 17 .【解答】解: 数据1x ,2x ,3x 的平均数是5,1235315x x x ∴++=⨯=,则数据132x +,232x +,332x +的平均数是1231(323232)3x x x ⨯+++++ 1231[3()6]3x x x =⨯+++ 1(3156)3=⨯⨯+ 17=,故答案为: 17.14.(3分)在一个不透明的袋子中装有4个白球,a 个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为23,则a = 8 . 【解答】解: 根据题意,得:243a a =+, 解得8a =,经检验: 8a =是分式方程的解,故答案为: 8.15.(3分)在从小到大排列的五个数x ,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x 的值为 1 .【解答】解: 从小到大排列的五个数x ,3,6,8,12的中位数是6,再加入一个数,这六个数的中位数与原来五个数的中位数相等,∴加入的一个数是6, 这六个数的平均数与原来五个数的平均数相等, ∴11(36812)(366812)56x x ++++=+++++, 解得1x =.故答案为: 1.16.(3分)一个不透明的盒子内装有大小、形状相同的六个球,其中红球1个、绿球2个、白球3个,小明摸出一个球是绿球的概率是13 . 【解答】解: 一个盒子内装有大小、形状相同的六个球,其中红球1个、绿球2个、白球3个,∴小明摸出一个球是绿球的概率是: 211233=++. 故答案为: 1317.(3分)一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A 、B 、C 、D 、E 五人的成绩,其余人的平均分是62分,那么在这次测验中,C 的成绩是 100 分.【解答】解: 设A 、B 、C 、D 、E 分别得分为a 、b 、c 、d 、e .则[3867()](385)62a b c d e ⨯-++++÷-=,因此500a b c d e ++++=分.由于最高满分为100分,因此100a b c d e =====,即C 得100分.故答案为: 100.18.(3分)有五张正面分别标有数2-,0,1,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a ,则使关于x 的方程13(1)3ax x x --+=-的解是正整数的概率 25. 【解答】解: 将原方程整理可得4ax =,∴当1a =、4时,方程的解为正整数,∴使关于x 的方程13(1)3ax x x --+=-的解是正整数的概率为25, 故答案为: 25. 三.解答题(共8小题,满分46分)19.(4分)解一元二次方程:(1)290x -=;(2)2230x x --=.【解答】解: (1)290x -=,29x ∴=, 则13x =,23x =-;(2)2230x x --=,(1)(3)0x x ∴+-=,则10x +=或30x -=,解得11x=-,23x=.20.(4分)如图,在ABC∆中,D是边BC上一点,以BD为直径的O经过点A,且CAD ABC∠=∠.(1)请判断直线AC是否是O的切线,并说明理由;(2)若2CD=,4CA=,求弦AB的长.【解答】解: (1)直线AC是O的切线,理由如下: 如图,连接OA,BD为O的直径,90BAD OAB OAD∴∠=︒=∠+∠,OA OB=,OAB ABC∴∠=∠,又CAD ABC∠=∠,OAB CAD ABC∴∠=∠=∠,90OAD CAD OAC∴∠+∠=︒=∠,AC OA∴⊥,又OA是半径,∴直线AC是O的切线;(2)过点A作AE BD⊥于E,222OC AC AO=+,22(2)16OA OA∴+=+,3OA∴=,5OC∴=,8BC=,1122OAC S OA AC OC AE ∆=⨯⨯=⨯⨯, 341255AE ⨯∴==,95OE ∴=, 245BE BO OE ∴=+=,AB ∴==. 21.(4分)疫情结束后,某广场推出促销活动,已知商品每件的进货价为30元,经市场调研发现,当该商品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.【销售利润=销售总额-进货成本】.(1)若该商品的的件单价为43元时,则当天的售商品是 250 件,当天销售利润是 元;(2)当该商品的销售单价为多少元时,该商品的当天销售利润是3450元.【解答】解: (1)280(4340)10250--⨯=(件),当天销售利润是250(4330)3250⨯-=(元). 故答案为: 250,3250;(2)设该纪念品的销售单价为x 元(40)x >,则当天的销售量为[280(40)10]x --⨯件,依题意,得: (30)[280(40)10]3450x x ---⨯=,整理,得: 29823850x x -+=,整理,得: 153x =,245x =.答: 当该商品的销售单价为45元或53元时,该商品的当天销售利润是3450元.22.(6分)如图,在ABC ∆中,90C ∠=︒,BAC ∠的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC 、AB 于点E .F .(1)试判断直线BC 与O 的位置关系,并说明理由;(2)若BD =2BF =,求O 的半径.【解答】解: (1)线BC 与O 的位置关系是相切,理由是: 连接OD ,OA OD =,OAD ODA ∴∠=∠, AD 平分CAB ∠,OAD CAD ∴∠=∠,ODA CAD ∴∠=∠,//OD AC ∴,90C ∠=︒,90ODB ∴∠=︒,即OD BC ⊥, OD 为半径,∴线BC 与O 的位置关系是相切;(2)设O 的半径为R ,则OD OF R ==,在Rt BDO ∆中,由勾股定理得: 222OB BD OD =+,即222(2)R R +=+,解得: 4R =,即O 的半径是4.23.(6分)2017年全国两会民生话题成为社会焦点.徐州市记者为了了解百姓”两会民生话题”的聚焦点,随机调查了徐州市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空: m=,n=.扇形统计图中E组所占的百分比为%;(2)徐州市市区人口现有170万人,请你估计其中关注D组话题的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?【解答】解: (1)由题意可得,本次调查的市民有: 8020%400÷=(人),40010%40m=⨯=,400804012060100n=----=,扇形统计图中E组所占的百分比为: 604000.1515%÷==,故答案为: 40,100,15;(2)由题意可得,关注D组话题的市民有:12017051400⨯=(万人),答: 关注D组话题的市民有51万人;(3)由题意可得,在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是: 1001 4004=,答: 在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是14.24.(6分)某楼盘准备以每平方米6000元的均价对外销售,新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【解答】解: (1)设平均每次下调的百分率为x ,依题意,得26000(1)4860x -=,解得 10.110%x ==,2 1.9x =(不合题意,舍去),答: 平均每次下调的百分率为10%;(2)方案①可优惠: 4860100(198%)9720⨯⨯-=元;方案②可优惠: 100808000⨯=元,97208000>,∴方案①更划算.25.(8分)已知: 如图,AB 为O 的直径,CE AB ⊥于E ,//BF OC ,连接BC ,CF .求证: OCF ECB ∠=∠.【解答】证明: 延长CE 交O 于点G . AB 为O 的直径,CE AB ⊥于E ,BC BG ∴=,2G ∴∠=∠,//BF OC ,1F ∴∠=∠,又G F ∠=∠,12∴∠=∠.即OCF ECB ∠=∠.26.(8分)密码锁有三个转轮,每个转轮上有十个数字: 0,1,2,9⋯.小黄同学是9月份中旬出生,用生日”月份+日期”设置密码: 9⨯⨯小张同学要破解其密码:(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是1或2.(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.【解答】解: (1)小黄同学是9月份中旬出生∴第一个转轮设置的数字是9,第二个转轮设置的数字可能是1,2;故答案为1或2;(2)所有可能的密码是: 911,912,913,914,915,916,917,918,919,920;能被3整除的有912,915,918,;密码数能被3整除的概率310.(3)小张同学是6月份出生,6月份只有30天,∴第一个转轮设置的数字是6,第二个转轮设置的数字可能是0,1,2,3;第三个转轮设置的数字可能,0,1,2,9⋯(第二个转轮设置的数字是0时,第三个转轮的数字不能是0;第二个转轮设置的数字是3时,第三个转轮的数字只能是0;)∴一共有91010130+++=,∴小张生日设置的密码的所有可能个数为30种.(也可以直接根据6月份只有30天,有30个不同的数字,得出设置的密码的所有可能个数为30种)。