旋转经典例题

合集下载

旋转相似经典例题知识讲解

旋转相似经典例题知识讲解

旋转与全等、相似中的线段数量关系基本例题:1、如图,△ABC 中,∠C =90°.(1)将△ABC 绕点B 逆时针旋转90,画出旋转后的三角形;(2)若BC =3,AC =4,点A 旋转后的对应点为A′,求A′A 的长变式1,如图 Rt △AB'C'是由Rt △ABC,绕点A 顺时针旋转得到的,连接C C'交AB 于E, (1) 证明:△CA C'∽△BA B'(2) 延长C C'交B B'于F ,证明:△CA E ∽△FBE变式2,△ABC 绕点B 逆时针旋转90°得到△DBE,若恰好得到C 、E 、D 三点共线,则AC 、BC 、CD 的数量关系是变式3,△ABC 绕点B 逆时针旋转a °得到△DBE,若恰好得到C 、E 、D 三点共线,则AC 、BC 、CD 的数量关系是EB'C'CA E DBACEBAC变式4、Rt △ABC 中,AC=BC,∠ACB=∠ADB=90°,连接CD,求:AD 、CD 、BD 的数量关系变式5、Rt △ABC 中,AC=kBC,∠ACB=∠ADB=90°,连接CD,探究:AD 、CD 、BD 的数量关系变式6、如图,在△OAB 和△OCD 中,∠A <90°,OB=KOD (K >1),∠AOB=∠COD ,∠OAB 与∠OCD 互补,试探索线段AB 与CD 的数量关系,并证明你的结论。

变式7.如图AB ∥CD ,BC ∥ED , ∠BCD+∠ACE=180°。

(1)当BC=CD 且∠ACE=90°时 如图3探究线段AC 和CE 之间的数量关系 (2)当BC=CD 时如图2探究线段AC 和CE 之间的数量关系(3)当BC=kCD 时如图1探究线段AC 和CE 之间的数量关系(用含k 的式子表示)E BC AD CAD B80中田凌志老师提供1如图R t △ABC ,∠ACB=90°,AC=3,BC=4,过点B 作直线MN ∥AC,点P 在直线BC 上,∠EPF=∠CAB ,且两边分别交直线AB 于E ,交直线MN 于F 。

旋转经典例题

旋转经典例题

°﹣∠EAC,
∴EM= ,
∴∠BAE=∠DAC, ∴AM=

∴△DAC≌△EAB, ∴CD=BE.)
∵△ADE,△ABC,△AMN为等边三角形, ∴S△ADE:S△ABC:S△AMN =a :2 (2a)2 :( )2 =1:4: =4:16:7
∴∠1=∠2,∠3=∠4, 而∠1+∠3=90°, ∴∠2+∠4=90°, 而∠ADC=90°, ∴∠EDF=180°,即E,D,F共线; 由旋转的性质得到△APE,△CPF均为等腰直角三角形, 并且ED=PB=2,DF=PB=2, ∴S△APE=0.5×1×1=0.5; S△CPF=0.5×3×3=4.5, 在△PEF中,PE=√2,PF=3√2,EF=4,
(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC, ∴CO=CD,∠OCD=60°, ∴△COD是等边三角形. (2)答:当α=150°时,△AOD是直角三角形. 理由是:∵△BOC≌△ADC, ∴∠ADC=∠BOC=150°, 又∵△COD是等边三角形, ∴∠ODC=60°, ∴∠ADO=∠ADC﹣∠ODC=90°, 即△AOD是直角三角形. (3)解:①要使AO=AD,需∠AOD=∠ADO, ∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°, ∴190°﹣α=α﹣60°, ∴α=125°; ②要使OA=OD,需∠OAD=∠ADO. ∵∠OAD=180°﹣(∠AOD+∠ADO)=180°﹣(190°﹣α+α﹣60°)=50°, ∴α﹣60°=50°, ∴α=110°; ③要使OD=AD,需∠OAD=∠AOD. ∵∠OAD=360°﹣110°﹣60°﹣α=190°﹣α, ∠AOD==120°﹣, ∴190°﹣α=120°﹣, 解得α=140°. 综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.

七年级角旋转的经典例题

七年级角旋转的经典例题

七年级角旋转的经典例题
摘要:
1.角旋转的定义和概念
2.七年级角旋转的经典例题
2.1 例题一:计算旋转后的图形
2.2 例题二:计算旋转角度
2.3 例题三:综合应用
3.角旋转的性质和应用
4.角旋转的解题技巧和方法
正文:
【1.角旋转的定义和概念】
角旋转是指将一个图形绕着某一点旋转一定的角度,得到一个新的图形。

这个过程叫做角旋转,被绕的点称为旋转中心,旋转的角度称为旋转角。

【2.七年级角旋转的经典例题】
【2.1 例题一:计算旋转后的图形】
题目:将图形ABC 绕点A 逆时针旋转90 度,得到新的图形A"B"C",请画出A"B"C"。

【2.2 例题二:计算旋转角度】
题目:将图形ABC 绕点A 逆时针旋转后,与x 轴的夹角为30 度,求旋转的角度。

【2.3 例题三:综合应用】
题目:将图形ABC 绕点A 逆时针旋转后,与y 轴的夹角为45 度,求旋转后的图形与x 轴的夹角。

【3.角旋转的性质和应用】
角旋转具有以下性质:
1.旋转前后的两个图形全等。

2.旋转前后对应点的连线所成的角等于旋转角。

3.旋转中心在旋转线上的点到旋转中心的距离等于旋转半径。

角旋转在实际生活中有广泛的应用,例如:钟表指针的运动、风车的旋转等。

【4.角旋转的解题技巧和方法】
1.确定旋转中心和旋转角。

2.利用旋转的性质,找到对应点之间的联系。

3.根据题目要求,计算旋转后的图形或旋转角度。

中考数学折叠,旋转问题专题含答案

中考数学折叠,旋转问题专题含答案

【经典例题1】如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将沿弦CE翻折,交CD于点F,求图中阴影部分的面积.【解析】(1)连接AO,如右图1所示,∵CD为⊙O的直径,AB⊥CD,AB=8,∴AG==4,∵OG:OC=3:5,AB⊥CD,垂足为G,∴设⊙O的半径为5k,则OG=3k,∴(3k)2+42=(5k)2,解得,k=1或k=﹣1(舍去),∴5k=5,即⊙O的半径是5;(2)如图2所示,将阴影部分沿CE翻折,点F的对应点为M,∵∠ECD=15°,由对称性可知,∠DCM=30°,S阴影=S弓形CBM,连接OM,则∠MOD=60°,∴∠MOC=120°,过点M作MN⊥CD于点N,∴MN=MO•sin60°=5×,∴S阴影=S扇形OMC﹣S△OMC==,即图中阴影部分的面积是:.练习1-1如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB 的中点D,连接AC,CD.则下列结论中错误的是()A.AC=CD B.+=C.OD⊥AB D.CD平分∠ACB 【解析】A、过D作DD'⊥BC,交⊙O于D',连接CD'、BD',由折叠得:CD=CD',∠ABC=∠CBD',∴AC=CD'=CD,故①正确;B、∵AC=CD',∴,由折叠得:,∴=,故②正确;C、∵D为AB的中点,∴OD⊥AB,故③正确;D、延长OD交⊙O于E,连接CE,∵OD⊥AB,∴∠ACE=∠BCE,∴CD不平分∠ACB,故④错误;故选:D.练习1-2如图,AB是⊙O的弦,点C在上,点D是AB的中点.将在沿AC 折叠后恰好经过点D,若⊙O的半径为2,AB=8.则AC的长是()A.6B.C.2D.4【解析】如图,延长BO交⊙O于E,连接AE,OA,OD,OC,BC,作CH⊥AB 于H.∵AD=DB,∴OD⊥AB,∴∠ADO=90°,∵OA=2,AD=DB=4,∴OD==2,∵BE是直径,∴∠BAE=90°,∵AD=DB,EO=OB,∴OD∥AE,AE=2OD=4,∴AE=AD,∴=,∴=,∴∠CAE=∠CAH=45°,∴∠BOC=2∠CAB=90°,∴BC=OC=2,∵CH⊥AB,∴∠CAH=∠ACH=45°,∴AH=CH,设AH=CH=x,则BH=8﹣x,在Rt△BCH中,∵CH2+BH2=BC2,∴x2+(8﹣x)2=(2)2,∴x=6或2(舍弃),在Rt△ACH中,∵AC=,∴AC=6.故选:A.练习1-3在扇形AOB中,∠AOB=75°,半径OA=12,点P为AO上任一点(不与A、O重合).(1)如图1,Q是OB上一点,若OP=OQ,求证:BP=AQ.(2)如图2,将扇形沿BP折叠,得到O的对称点O'.①若点O'落在上,求的长.②当BO'与扇形AOB所在的圆相切时,求折痕的长.(注:本题结果不取近似值)【解析】(1)证明:∵BO=AO,∠O=∠O,OP=OQ,∴△BOP≌△AOQ(SAS).∴BP=AQ.(2)解:①如图1,点O'落在上,连接OO',∵将扇形沿BP折叠,得到O的对称点O',∴OB=O'B,∵OB=OO',∴△BOO'是等边三角形,∴∠O'OB=60°.∵∠AOB=75°,∴∠AOO'=15°.∴的长为.②BO'与扇形AOB所在的圆相切时,如图2所示,∴∠OBO'=90°.∴∠OBP=45°.过点O作OC⊥BP于点C,∵OA=OB=12,∠COB=∠OBP=45°,∴.又∵∠AOB=75°,∠COB=45°,∴∠POC=30°,∴.∴.∴折痕的长为.旋转类【经典例题2】如图1,在锐角△ABC中,AB=5,AC=42,∠ACB=45∘. 计算:求BC的长;操作:将图1中的△ABC绕点B按逆时针方向旋转,得到△A1BC1.如图2,当点C1在线段CA的延长线上时。

七年级角旋转的经典例题

七年级角旋转的经典例题

七年级角旋转的经典例题
一、七年级角旋转的概念
在初中数学课程中,角旋转是图形的变换之一。

它指的是在平面内,将一个角绕着其顶点旋转一定角度,使其边的位置发生变化。

角旋转可分为正旋转和逆旋转两种。

七年级的学生需要掌握基础的角旋转概念,以便能在实际问题中灵活运用。

二、七年级角旋转的性质
1.角旋转前后,旋转角的大小和形状不变。

2.角旋转前后,顶点位置不变。

3.角旋转前后,旋转轴不变。

4.角旋转可以沿着任意一条射线进行。

三、七年级角旋转的经典例题解析
例题1:已知角α的顶点为O,边分别为OA、OB,α的旋转轴为OC,旋转角度为90°,求角α的旋转后的角α"的度数。

解:根据角旋转的性质,旋转前后角的大小不变,故α"的度数为90°。

例题2:已知角α的顶点为O,边分别为OA、OB,α的旋转轴为OC,旋转角度为180°,求角α"的度数。

解:根据角旋转的性质,旋转前后角的大小不变,故α"的度数为180°。

四、解题思路与技巧总结
1.熟记角旋转的性质,灵活运用旋转前后角的大小、形状不变这一关键点。

2.根据题目所给条件,判断旋转角度,从而求得旋转后的角。

3.在解题过程中,注意画图,直观地展示角旋转的过程。

通过以上四个步骤,我们可以更好地理解和解决七年级角旋转的经典例题。

数学旋转问题练习题

数学旋转问题练习题

数学旋转问题练习题在数学中,旋转是一个常见且重要的概念,它在几何学、代数学和物理学等领域中都有广泛的应用。

旋转问题是数学中常见的问题之一,它需要我们根据给定条件,灵活运用旋转的概念来解决问题。

下面将给出一些数学旋转问题的练习题,帮助读者加深对旋转的理解和运用能力。

练习题1:平面上的旋转问题描述:平面上有三个点A、B和C,以点A为中心,将线段BC顺时针旋转90度得到线段A'D,若点B的坐标为(2,3),点C的坐标为(4,5),则点D的坐标为多少?解题思路:根据旋转的性质,我们知道点D的坐标可以通过将BC绕点A逆时针旋转90度得到。

首先,我们需要计算向量AB和向量AC的坐标表示。

向量AB的坐标表示为(2-0, 3-0) = (2, 3),向量AC的坐标表示为(4-0, 5-0) = (4, 5)。

根据旋转的性质,向量A'D的坐标表示为(-3, 2)。

最后,我们可以通过点A的坐标(0, 0)和向量A'D的坐标(-3, 2)计算出点D的坐标为(0-3, 0+2) = (-3, 2)。

练习题2:三维空间的旋转问题描述:在三维空间中,点O(0,0,0)为坐标原点,点P(2,3,4)为某点的坐标。

将点P绕坐标轴x轴逆时针旋转90度,得到点P',求点P'的坐标。

解题思路:首先,我们需要计算点P绕坐标轴x轴逆时针旋转90度后的变化。

根据旋转的性质,点P'(x',y',z')可以表示为点P(x,y,z)绕坐标轴x轴旋转后的坐标。

对于点P(x,y,z),绕坐标轴x轴逆时针旋转90度后,x'保持不变,y'和z'的坐标可以表示为y' = y*cos(90°) - z*sin(90°) = y*0 - z*1 = -z,z' = y*sin(90°) + z*cos(90°) = y*1 + z*0 = y。

九年级数学上册第二十三章旋转经典大题例题(带答案)

九年级数学上册第二十三章旋转经典大题例题(带答案)

九年级数学上册第二十三章旋转经典大题例题单选题1、如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4√2,DE=4,则BC的长是()A.1B.√2C.2D.4答案:C分析:根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.设OD=x,则OE=OA=DE-OD=4-x.∵AB是⊙O的直径,OD垂直于弦AC于点,AC=4√2∴AD=DC=1AC=2√22∴OD是△ABC的中位线∴BC=2OD∵OA2=OD2+AD2∴(4−x)2=x2+(2√2)2,解得x=1∴BC=2OD=2x=2故选:C小提示:本题考查垂径定理、中位线的性质,根据垂径定理结合勾股定理求出OD的长是解题的关键.2、如图,有①~⑤5个条形方格图,每个小方格的边长均为1,则②~⑤中由实线围成的图形与①中由实线围成的图形全等的有()A.②③④B.③④⑤C.②④⑤D.②③⑤答案:C分析:根据旋转变换及全等图形的定义对应边相等,对应角相等的图形是全等图形对个图进行一一分析判断即可解:②以右下角顶点为定点顺时针旋转90°后,两个实线图形刚好重合,③中为平行四边形,而①中为梯形,所以不能和①中图形完全重合,④可上下反转成②的情况,然后旋转可和①中图形完全重合,⑤可旋转180°后可和①中图形完全重合,∴与①中由实线围成的图形全等的有②④⑤.故选择C.小提示:本题考查多边形全等的判定,掌握全等图形的定义,关键是会通过图形的旋转使它们全等.3、在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为()A.﹣4B.4C.12D.﹣12答案:D分析:首先根据关于原点对称的点的坐标特点可得a+2+4=0,2−b=0,可得a,b的值,再代入求解即可得到答案.解:∵点(a+2,2)关于原点的对称点为(4,﹣b),∴a+2+4=0,2−b=0,解得:a=−6,b=2,∴ab=−12,故选D小提示:本题主要考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的横纵坐标都互为相反数.4、如图,△OAB中,∠AOB=60°,OA=4,点B的坐标为(6,0),将△OAB绕点A逆时针旋转得到△CAD,当点O的对应点C落在OB上时,点D的坐标为()A.(7,3√3)B.(7,5)C.(5√3,5)D.(5√3,3√3)答案:A分析:如图,过点D作DE⊥x轴于点E.证明△AOC是等边三角形,解直角三角形求出DE,CE,可得结论.解:如图,过点D作DE⊥x轴于点E.∵B(6,0),∴OB=6,由旋转的性质可知AO=AC=4,OB=CD=6,∠ACD=∠AOB=60°,∵∠AOC=60°,∴△AOC是等边三角形,∴OC=OA=4,∠ACO=60°,∴∠DCE=60°,∴CE=1CD=3,DE=√CD2−CE2=3√3,2∴OE=OC+CE=4+3=7,∴D(7,3√3),故选:A.小提示:本题考查了旋转变换,含30度角的直角三角形的性质,勾股定理,等边三角形的判定和性质等知识,解题的关键是掌握旋转变换的性质.5、如图,在由小正方形组成的网格图中再涂黑一个小正方形,使它与原来涂黑的小正方形组成的新图案为轴对称图形,则涂法有()A.1种B.2种C.3种D.4种答案:C分析:根据轴对称图形的概念,找到对称轴即可得答案.解:如下图,∵图形是轴对称图形,对称轴是直线AB,∴把1、2、3三个正方形涂黑,与原来涂黑的小正方形组成的新图案仍然是轴对称图形,故选:C.小提示:本题考查了轴对称图形的概念,解题的关键是找到对称轴.6、连接正八边形的三个顶点,得到如图所示的图形,下列说法不正确的是()A.四边形ABCH与四边形EFGH的周长相等B.连接HD,则HD平分∠CHEC.整个图形不是中心对称图形D.△CEH是等边三角形答案:D分析:根据正八边形和圆的性质进行解答即可.解:A.∵根据正八边形的性质,四边形ABCH与四边形EFGH能够完全重合,即四边形ABCH与四边形EFGH 全等∴四边形ABCH与四边形EFGH的周长相等,故选项正确,不符合题意;B.连接DH,如图1,∵正八边形是轴对称图形,直线HD是对称轴,∴HD平分∠CHE故选项正确,不符合题意;C.整个图形是轴对称图形,但不是中心对称图形,故选项正确,不符合题意;D.∵八边形ABCDEFGH是正八边形,∴B=BC=CD=DE=EF=FG=GH,CH=EH,设正八边形的中心是O,连接EO、DH,如图2,∠DOE=360°=45°8∵OE=OH∠DOE=22.5°∴∠OEH=∠OHE=12∴∠CHE=2∠OHE=45°∴∠HCE=∠HEC=1(180°-∠CHE)=67.5°2∴△CEH不是等边三角形,故选项错误,符合题意.故选:D.小提示:本题考查了正多边形和圆,熟记正八边形与等腰三角形的性质是解题的关键.7、平面直角坐标系中,O为坐标原点,点A的坐标为(−5,1),将OA绕原点按逆时针方向旋转90°得OB,则点B 的坐标为()A.(−5,1)B.(−1,−5)C.(−5,−1)D.(−1,5)答案:B分析:根据题意证得△AOC≌△OBD,可得结论.解:如图,根据题意得∶∠AOB=90°,∠ACO=∠BDO=90°,OA=OB,∴∠AOC+∠BOD=90°,∠AOC+∠OAC=90°,∴∠BOD=∠OAC,∴△AOC≌△OBD,∴BD=OC,OD=AC,∵点A的坐标为(−5,1),∴BD=OC=1,OD=AC=5,∴B(−1,−5).故选:B.小提示:本题考查坐标与图形变化−旋转,解题的关键是熟练掌握旋转的性质,属于中考常考题型.8、如图,正方形OABC的边长为√2,将正方形OABC绕原点O顺时针旋转45°,则点B的对应点B1的坐标为()A.(−√2,0)B.(−√2,0)C.(0,√2)D.(0,2)答案:D分析:连接OB,由正方形ABCD绕原点O顺时针旋转45°,推出∠A1OB1=45°,得到△A1OB1为等腰直角三角形,点B1在y轴上,利用勾股定理求出O B1即可.解:连接OB,∵正方形ABCD绕原点O顺时针旋转45°,∴∠AOA1=45°,∠AOB=45°,∴∠A1OB1=45°,∴△A1OB1为等腰直角三角形,点B1在y轴上,∵∠B1A1O=90°,A1B1=OA1=√2,∴OB1=√A1B12+OA12=√2+2=2,∴B1(0,2),故选:D.小提示:本题考查了正方形的性质,旋转的性质,特殊三角形的性质.关键是根据旋转角证明点B1在y轴上.9、在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(−3,2)C.(−3,−2)D.(−2,−3)答案:C分析:根据坐标系中对称点与原点的关系判断即可.关于原点对称的一组坐标横纵坐标互为相反数,所以(3,2)关于原点对称的点是(-3,-2),故选C.小提示:本题考查原点对称的性质,关键在于牢记基础知识.10、已知两点M1(x1,y1),M2(x2,y2),若x1+x2=0,y1+y2=0,则点M1与M2()A.关于y轴对称B.关于x轴对称C.关于原点对称D.以上均不对答案:C分析:首先利用等式求出x1=−x2,y1=−y2,然后可以根据横纵坐标的关系得出结果.∵x1+x2=0,y1+y2=0,∴x1=−x2,y1=−y2,∵两点M1(x1,y1),M2(x2,y2),∴点M1与M2关于原点对称,故选:C.小提示:本题主要考查平面直角坐标系中关于原点对称的点,属于基础题,利用等式找到点M1与M2横纵坐标的关系是解题关键.填空题11、如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,AB=5,BC=9,则BD=______.答案:√106分析:连接BE,如图,根据旋转的性质得∠BCE=60°,CB=CE,BD=AE,再判断△BCE为等边三角形得到BE=BC=9,∠CBE=60°,从而有∠ABE=90°,然后利用勾股定理计算出AE即可.解:连接BE,如图,∵△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,∴∠BCE=60°,CB=CE,BD=AE,∴△BCE为等边三角形,∴BE=BC=9,∠CBE=60°,∵∠ABC=30°,∴∠ABE=90°,在Rt△ABE中,AE=√52+92=√106.所以答案是:√106.小提示:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12、以原点为中心,把M(3,4)逆时针旋转90°得到点N,则点N的坐标为______.答案:(−4,3)分析:建立平面直角坐标系,根据旋转的性质得出N点坐标,由此即可得出答案.解:如图:由旋转的性质可得:M点横坐标等于N点纵坐标的值,M点纵坐标的值等于N点横坐标的绝对值,又∵M(3,4),∴N(-4,3),所以答案是:(-4,3).小提示:此题考查有关点的坐标旋转的性质,结合坐标轴和旋转的特点确定坐标即可.13、如图,在平面直角坐标系xOy中,点A的坐标为(0,4),P是x轴上一动点,把线段PA绕点P顺时针旋转60°得到线段PF,连接OF,则线段OF长的最小值是__________.答案:2分析:点F 运动所形成的图象是一条直线,当OF ⊥F 1F 2时,垂线段OF 最短,当点F 1在x 轴上时,由勾股定理得:P 1O =F 1O =4√33,进而得P 1A =P 1F 1=AF 1=8√33,求得点F 1的坐标为(4√33,0),当点F 2在y 轴上时,求得点F 2的坐标为(0,-4),最后根据待定系数法,求得直线F 1F 2的解析式为y =√3x -4,再由线段中垂线性质得出F 1F 2=AF 1=8√33,在Rt △OF 1F 2中,设点O 到F 1F 2的距离为h ,则根据面积法得12×OF 1×OF 2=12×F 1F 2×ℎ,即12×4√33×4=12×8√33×ℎ,解得h =2,根据垂线段最短,即可得到线段OF 的最小值为2.解:∵将线段PA 绕点P 顺时针旋转60°得到线段PF ,∴∠APF =60°,PF =PA ,∴△APF 是等边三角形,∴AP =AF ,如图,当点F 1在x 轴上时,△P 1AF 1为等边三角形,则P 1A =P 1F 1=AF 1,∠AP 1F 1=60°,∵AO ⊥P 1F 1,∴P 1O =F 1O ,∠AOP 1=90°,∴∠P 1AO =30°,且AO =4,由勾股定理得:P 1O =F 1O =4√33, ∴P 1A =P 1F 1=AF 1=8√33, ∴点F 1的坐标为(4√33,0), 如图,当点F 2在y 轴上时,∵△P 2AF 2为等边三角形,AO ⊥P 2O ,∴AO =F 2O =4,∴点F 2的坐标为(0,-4),∵tan∠OF 1F 2=OF 2OF 1=4√33=√3,∴∠OF 1F 2=60°,∴点F 运动所形成的图象是一条直线,∴当OF ⊥F 1F 2时,线段OF 最短,设直线F 1F 2的解析式为y =kx +b , 则{4√33k +b =0b =−4,解得{k =√3b =−4, ∴直线F 1F 2的解析式为y =√3x -4,∵AO =F 2O =4,AO ⊥P 1F 1,∴F 1F 2=AF 1=8√33, 在Rt △OF 1F 2中,OF ⊥F 1F 2,设点O 到F 1F 2的距离为h ,则12×OF 1×OF 2=12×F 1F 2×ℎ,∴12×4√33×4=12×8√33×ℎ,解得h =2,即线段OF的最小值为2,故答案为2.小提示:本题属于三角形的综合题,主要考查了旋转的性质,勾股定理的应用,等边三角形的性质以及待定系数法的运用等,解决问题的关键是作辅助线构造等边三角形以及面积法求最短距离,解题时注意勾股定理、等边三角形三线合一以及方程思想的灵活运用.14、已知点P(m−2,m)关于原点对称的点在第三象限,则m的取值范围是_______.答案:m>2分析:根据关于原点对称的点的性质可得点P在第一象限,进而得出不等式组,再解不等式组即可.解:∵点P(m−2,m)关于原点对称的点在第三象限,∴点P(m−2,m)在第一象限,∴{m−2>0,m>0解得:m>2,所以答案是:m>2.小提示:此题主要考查了关于原点对称的点的坐标特点,解一元一次不等式组,关键是掌握各象限内点的坐标符号.15、如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,将△AOB绕顶点O,按顺时针方向旋转到△AB,则线段B1D的长度为______.A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,OD=12答案:1.5cm##3cm2分析:先在直角△AOB中利用勾股定理求出AB=5cm,再利用直角三角形斜边上的中线等于斜边的一半得出ODAB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,则问题得解.=12∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=√OA2+OB2=5cm,∴OD=1AB=2.5cm,2∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1-OD=1.5cm.所以答案是:1.5cm.小提示:本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握勾股定理是解题的关键.解答题16、如图,在平面直角坐标系中,线段AB的两个端点的坐标分别是A(﹣1,4),B(﹣3,1).(1)画出线段AB向右平移4个单位后的线段A1B1;(2)画出线段AB绕原点O旋转180°后的线段A2B2.答案:(1)画图见解析,(2)画图见解析分析:(1)分别确定A,B向右平移4个单位后的对应点A1,B1,再连接A1B1即可;(2)分别确定A,B绕原点O旋转180°后的对应点A2,B2,再连接A2B2即可.解:(1)如图,线段A1B1即为所求作的线段,(2)如图,线段A2B2即为所求作的线段,小提示:本题考查的是平移的作图,中心对称的作图,掌握平移的性质与中心对称的性质是解题的关键. 17、如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为2的等边三角形.(1)写出△OAB各顶点的坐标;(2)以点O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,写出A′,B′的坐标.答案:(1)A(-2,0),B(-1,√3),C(0,0)(2)A′(−1,√3),B′(1,√3)分析:(1)作高线BC,根据等边三角形的性质和勾股定理求OC和BC的长,写出三点的坐标,注意象限的符号问题;(2)如图2,由旋转可知:A′与B重合,B与B′关于y轴对称,可得:A′,B′的坐标.(1)解:如图1,过B作BC⊥OA于C,∵△AOB是等边三角形,且OA=2,OA=1,∴OC=12由勾股定理得:BC=√22−12=√3,∴A(−2,0),B(−1,√3),O(0,0);(2)解:如图2,∵∠AOB=60°,OA=OB,∴A′与B重合,∴A′(−1,√3),由旋转得:∠BOB′=60°,OB=OB′,∵∠AOD=90°,∴∠BOD=30°,∴∠DOB′=30°,∴BB′⊥OD,DB=DB′,∴B′(1,√3).小提示:本题考查了坐标与图形变换、等边三角形的性质、旋转的性质,熟练掌握旋转和等边三角形的性质是关键,并注意点所在象限的符号问题.18、如图,一伞状图形,已知∠AOB=120°,点P是∠AOB角平分线上一点,且OP=2,∠MPN=60°,PM与OB交于点F,PN与OA交于点E.(1)如图一,当PN与PO重合时,探索PE,PF的数量关系(2)如图二,将∠MPN在(1)的情形下绕点P逆时针旋转α度(0<α<60°),继续探索PE,PF的数量关系,并求四边形OEPF的面积.答案:(1)PE=PF,证明详见解析;(2)PE=PF,√3分析:(1)根据角平分线定义得到∠POF=60°,推出△PEF是等边三角形,得到PE=PF;(2)过点P作PQ⊥OA,PH⊥OB,根据角平分线的性质得到PQ=PH,∠PQO=∠PHO=90°,根据全等三角形的性质得到PE=PF,S四边形OEPF=S四边形OQPH,求得OQ=1,QP=√3,根据三角形的面积公式即可得到结论.解:(1)∵∠AOB=120°,OP平分∠AOB,∴∠POF=60°,∵∠MPN=60°,∴∠MPN=∠FOP=60°,∴ΔPEF是等边三角形,∴PE=PF;(2)过点P作PQ⊥OA,PH⊥OB,∵OP平分∠AOB,∴PQ=PH,∠PQO=∠PHO=90°,∵∠AOB=120°,∴∠QPH=60°,∴∠QPE+∠FPH+∠EPH,∴∠QPE=∠EPF,在ΔQPE与ΔHPF中{∠EQP=∠FHP ∠QPE=∠HPFPQ=PH,∴ΔQPE≌ΔHPF(AAS),∴PE=PF,S四边形OEPF =S四边形OQPH,∵PQ⊥OA,PH⊥OB,OP平分∠AOB,∴∠QPO=30°,∴OQ=1,QP=√22−12=√3,∴SΔOPQ=12×1×√3=√32,∴四边形OEPF的面积=2SΔOPQ=√3小提示:本题考查了旋转的性质,角平分线的性质,全等三角形的判定和性质,三角形的面积,正确的作出辅助线是解题的关键.。

旋转求阴影面积经典例题

旋转求阴影面积经典例题

旋转求阴影面积经典例题1. 哇塞,来看这道题呀!有个圆形被分成了好多部分,然后其中一部分旋转起来,形成的阴影可复杂啦!就像在玩拼图游戏一样,你能算出那阴影面积吗?比如这个圆的半径是 5 厘米,那阴影面积会是多少呢?2. 嘿,这道题可有意思啦!一个正方形里有个图形在旋转,产生的阴影让人摸不着头脑,这不是跟走迷宫似的嘛!像那个正方形边长是 8 分米,你来挑战下算出阴影面积呀!3. 哎呀呀,这道经典例题可难倒我啦!一个三角形在那转呀转,弄出的阴影面积可不好算哟!这简直就像解一个超级大谜团!要是这个三角形底是6 米,高是 4 米,你能搞定阴影面积不?4. 哇哦,瞧瞧这道题!一个扇形在那旋转,产生的阴影好奇怪呀!就如同天空中变幻的云朵一样让人好奇。

那要是扇形的圆心角是 60 度,半径是3 厘米,谁能算出那神秘的阴影面积呢?5. 哈哈,这道题太特别啦!一个图形旋转后出现的阴影,简直就像变魔术一样!好比一个圆形和一个长方形组合起来,然后旋转,那阴影面积会给我们带来怎样的惊喜呢?要是圆形直径是 4 厘米,长方形长是 6 厘米宽是2 厘米,你来试试呗!6. 哟呵,这道旋转求阴影面积的题可不简单呐!就像攀登一座高峰一样有挑战性!比如有个不规则图形在旋转,那阴影面积得费点脑筋了吧!要是这个不规则图形有好多边和角,你敢挑战吗?7. 哇,这道例题可真让人兴奋呀!一个图形转呀转,阴影面积可不好找呢!这不就是在大海里捞针嘛!像有个图形是由几个半圆组成的,然后旋转,那阴影面积会是怎样的呢?要是半圆半径分别是 2 厘米和 3 厘米,快来算算呀!8. 嘿嘿,这道题有趣吧!一个图形旋转产生的阴影,就好像隐藏在森林里的宝藏一样等你去发现!要是有个梯形在旋转,那阴影面积得怎么算呢?比如梯形上底 3 厘米下底 5 厘米高 4 厘米,能算出那神秘的阴影面积吗?9. 哎呀,这道旋转求阴影面积的题真的好特别呀!就像夜空中一颗独特的星星一样吸引人!像有个菱形在旋转,那阴影面积可不好琢磨呀!要是菱形对角线分别是 6 厘米和 8 厘米,你来试试看能不能算出呀!10. 哇塞,最后这道题啦!一个图形旋转后带来的阴影,简直太神奇啦!就如同打开一个神秘的盒子一样让人期待。

七年级角旋转的经典例题

七年级角旋转的经典例题

七年级角旋转的经典例题:例题:已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)当OB、OC重合时,∠AOE-∠BOF=__________°;(2)当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t 秒(0<t<10),在旋转过程中∠AOE-∠BOF的值是否会因t的变化而变化,若不发生变化,请求出该定值;若发生变化,请说明理由.【分析】(1)首先根据角平分线的定义求得∠AOE和∠BOF的度数,然后根据∠AOE-∠BOF求解;(2)首先由题意得∠BOC=3t°,再根据角平分线的定义得∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,然后由角平分线的定义解答即可.本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键,本题也可以借助数轴动点题的思想来表示角的度数.【解答】解:(1)根据角平分线的定义有∠AOE=∠BOE,∠BOF=∠COF,当OB、OC重合时,有∠AOE=∠BOE=55°,∠COF=∠BOF=55°,∴∠AOE-∠BOF=55°-55°=0°;(2)当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t 秒时,有∠BOC=3t°,∴∠AOC=∠AOB+3t°=140°+3t°,∵OE平分∠AOC,∴∠AOE=70°+1.5t°,又OF平分∠BOD,∴∠BOF=0.5×(140°−3t°)=70°−1.5t°,∴∠AOE-∠BOF=(70°+1.5t°)-(70°−1.5t°)=3t°.不随时间的变化而变化,定值为3t°.。

旋转相似经典例题

旋转相似经典例题

旋转与全等、相似中的线段数量关系基本例题:1、如图,△ABC 中,∠C =90°.(1)将△ABC 绕点B 逆时针旋转90,画出旋转后的三角形;(2)若BC =3,AC =4,点A 旋转后的对应点为A′,求A′A 的长变式1,如图 Rt △AB'C'是由Rt △ABC,绕点A 顺时针旋转得到的,连接C C'交AB 于E, (1) 证明:△CA C'∽△BA B'(2) 延长C C'交B B'于F ,证明:△CA E ∽△FBE变式2,△ABC 绕点B 逆时针旋转90°得到△DBE,若恰好得到C 、E 、D 三点共线,则AC 、BC 、CD 的数量关系是变式3,△ABC 绕点B 逆时针旋转a °得到△DBE,若恰好得到C 、E 、D 三点共线,则AC 、BC 、CD 的数量关系是变式4、Rt △ABC 中,AC=BC,∠ACB=∠ADB=90°,连接CD,求:AD 、CD 、BD 的数量关系EB'C'CA E DBACEBA C变式5、Rt △ABC 中,AC=kBC,∠ACB=∠ADB=90°,连接CD,探究:AD 、CD 、BD 的数量关系变式6、如图,在△OAB 和△OCD 中,∠A <90°,OB=KOD (K >1),∠AOB=∠COD ,∠OAB 与∠OCD 互补,试探索线段AB 与CD 的数量关系,并证明你的结论。

变式7.如图AB ∥CD ,BC ∥ED , ∠BCD+∠ACE=180°。

(1)当BC=CD 且∠ACE=90°时 如图3探究线段AC 和CE 之间的数量关系 (2)当BC=CD 时如图2探究线段AC 和CE 之间的数量关系(3)当BC=kCD 时如图1探究线段AC 和CE 之间的数量关系(用含k 的式子表示)80中田凌志老师提供1如图R t △ABC ,∠ACB=90°,AC=3,BC=4,过点B 作直线MN ∥AC,点P 在直线BC 上,∠EPF=∠CAB ,且两边分别交直线AB 于E ,交直线MN 于F 。

专题08 旋转中的最值问题(解析版)

专题08 旋转中的最值问题(解析版)

专题08 旋转中的最值问题考点一 费马点问题求最值【方法点拨】费马点证明都是依据旋转思想,构造三角形全等,然后将三条线段之和转化到是否在一条直线上来决定最小值。

这个思路一定要掌握,因为它会应用在实际的考试题目中。

【典例剖析】1.(经典例题)已知:P 是边长为1的正方形ABCD 内的一点,求P A +PB +PC 的最小值.【点拨】顺时针旋转△BPC 60度,可得△PBE 为等边三角形,若P A +PB +PC =AP +PE +EF 要使最小只要AP ,PE ,EF 在一条直线上,求出AF 的值即可.【解析】解:顺时针旋转△BPC 60度,可得△PBE 为等边三角形.即得P A +PB +PC =AP +PE +EF 要使最小只要AP ,PE ,EF 在一条直线上,即如下图:可得最小P A +PB +PC =AF .此时∠EBC +∠CBP =∠FBE +∠EBC =60°=∠FBC ,所以∠ABF =90°+60°=150°,∠MBF =30°,BM =BF •cos30°=BC •cos30°=√32,MF =12,则AM =1+√32=2+√32, 在△AMF 中,勾股定理得:AM 2+MF 2=AF 2AF =√2+√3=(√22)2+2×√22×√62+(√62)2=(√2+√62)2=√2+√62.2.(朝阳区二模)阅读下列材料:小华遇到这样一个问题,如图1,△ABC中,∠ACB=30°,BC=6,AC=5,在△ABC内部有一点P,连接P A、PB、PC,求P A+PB+PC的最小值.小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC绕点C顺时针旋转60°,得到△EDC,连接PD、BE,则BE的长即为所求.(1)请你写出图2中,P A+PB+PC的最小值为√61;(2)参考小华的思考问题的方法,解决下列问题:①如图3,菱形ABCD中,∠ABC=60°,在菱形ABCD内部有一点P,请在图3中画出并指明长度等于P A+PB+PC最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD的边长为4,请直接写出当P A+PB+PC值最小时PB的长.【点拨】(1)先由旋转的性质得出△APC≌△EDC,则∠ACP=∠ECD,AC=EC=5,∠PCD=60°,再证明∠BCE=90°,然后在Rt△BCE中,由勾股定理求出BE的长度,即为P A+PB+PC的最小值;(2)①将△APC绕点C顺时针旋转60°,得到△DEC,连接PE、DE,则线段BD即为P A+PB+PC最小值的线段;②当B、P、E、D四点共线时,P A+PB+PC值最小,最小值为BD.先由旋转的性质得出△APC≌△DEC,则CP=CE,再证明△PCE是等边三角形,得到PE=CE=CP,然后根据菱形、三角形外角的性质,等腰三角形的判定得出BP=CP,同理,得出DE=CE,则BP=PE=ED=13BD.【解析】解:(1)如图2.∵将△APC绕点C顺时针旋转60°,得到△EDC,∴△APC≌△EDC,∴∠ACP=∠ECD,AC=EC=5,∠PCD=60°,∴∠ACP+∠PCB=∠ECD+∠PCB,∴∠ECD+∠PCB=∠ACB=30°,∴∠BCE=∠ECD+∠PCB+∠PCD=30°+60°=90°.在Rt△BCE中,∵∠BCE=90°,BC=6,CE=5,∴BE=√BC2+CE2=√62+52=√61,即P A+PB+PC的最小值为√61;(2)①将△APC绕点C顺时针旋转60°,得到△DEC,连接PE、DE,则线段BD等于P A+PB+PC最小值的线段;②如图,当B、P、E、D四点共线时,P A+PB+PC值最小,最小值为BD.∵将△APC绕点C顺时针旋转60°,得到△DEC,∴△APC≌△DEC,∴CP=CE,∠PCE=60°,∴△PCE是等边三角形,∴PE=CE=CP,∠EPC=∠CEP=60°.∵菱形ABCD中,∠ABP=∠CBP=12∠ABC=30°,∴∠PCB=∠EPC﹣∠CBP=60°﹣∠30°=30°,∴∠PCB=∠CBP=30°,∴BP=CP,同理,DE=CE,∴BP=PE=ED.连接AC,交BD于点O,则AC⊥BD.在Rt △BOC 中,∵∠BOC =90°,∠OBC =30°,BC =4,∴BO =BC •cos ∠OBC =4×√32=2√3,∴BD =2BO =4√3,∴BP =13BD =4√33.即当P A +PB +PC 值最小时PB 的长为4√33. 故答案为:4√33.3.(延庆县一模)阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB =2,AC =4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP 逆时针旋转60°得到△A ′BC ,连接A ′A ,当点A 落在A ′C 上时,此题可解(如图2).(1)请你回答:AP 的最大值是 6 .(2)参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt △ABC .边AB =4,P 为△ABC 内部一点,请写出求AP +BP +CP 的最小值长的解题思路.提示:要解决AP+BP+CP的最小值问题,可仿照题目给出的做法.把△ABP绕B点逆时针旋转60,得到△A′BP′.①请画出旋转后的图形②请写出求AP+BP+CP的最小值的解题思路(结果可以不化简).【点拨】(1)由旋转得到△A′BC,有△A′BA是等边三角形,当点A′A、C三点共线时,A′C=AA′+AC,最大即可;(2)由旋转得到结论P A+PB+PC=P1A1+P1B+PC,只有,A1、P1、P、C四点共线时,(P1A+P1B+PC)最短,即线段A1C最短,根据勾股定理,即可.【解析】解:(1)∵△ABP逆时针旋转60°得到△A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;故答案是:6.(2)①旋转后的图形如图1;②如图2,∵Rt△ABC是等腰三角形,∴AB=BC.以B为中心,将△APB逆时针旋转60°得到△A1P1B.则A1B=AB=BC=4,P A=P1A1,PB=P1B,∴P A+PB+PC=P1A1+P1B+PC.∵当A1、P1、P、C四点共线时,(P1A+P1B+PC)最短,即线段A1C最短,∴A1C=P A+PB+PC,∴A1C长度即为所求.过A1作A1D⊥CB延长线于D.∵∠A1BA=60°(由旋转可知),∴∠A1BD=30°.∵A1B=4,∴A1D=2,BD=2√3∴CD=4+2√3;在Rt△A1DC中,A1C=√A1D2+DC2=√22+(4+2√3)2=2√2+2√6.4.(2019春•灞桥区校级期末)问题探究将几何图形按照某种法则或规则变换成另一种几何图形的过程叫做几何变换.旋转变换是几何变换的一种基本模型.经过旋转,往往能使图形的几何性质明白显现.题设和结论中的元素由分散变为集中,相互之间的关系清楚明了,从而将求解问题灵活转化.问题提出:如图1,△ABC是边长为1的等边三角形,P为△ABC内部一点,连接P A、PB、PC,求P A+PB+PC 的最小值.方法分析:通过转化,把由三角形内一点发出的三条线段(星型线)转化为两定点之间的折线(化星为折),再利用“两点之间线段最短”求最小值(化折为直).问题解决:如图2,将△BP A绕点B逆时针旋转60°至△BP'A',连接PP'、A'C,记A′C与AB交于点D,易知BA'=BA=BC=1,∠A'BC=∠A'BA+∠ABC=120°.由BP'=BP,∠P'BP=60°,可知△P'BP 为正三角形,有PB=P'P.故PA+PB+PC=P′A+P′P+PC≥A′C=√3.因此,当A'、P'、P、C共线时,P A+PB+PC有最小值是√3.学以致用:(1)如图3,在△ABC中,∠BAC=30°,AB=4,CA=3,P为△ABC内部一点,连接P A、PB、PC,则的最小值是5.(2)如图4,在△ABC中,∠BAC=45°,AB=2√2,CA=3,P为△ABC内部一点,连接P A、PB、PC,求√2PA+PB+PC的最小值.(3)如图5,P是边长为2的正方形ABCD内一点,Q为边BC上一点,连接P A、PD、PQ,求P A+PD+PQ 的最小值.【点拨】(1)将△APC绕点A逆时针旋转60°得到△AFE,易知△AFP是等边三角形,∠EAB=90°,转化为两定点之间的折线(化星为折),再利用“两点之间线段最短”求最小值(化折为直).(2)将△APB绕点A逆时针旋转90°得到△AFE,易知△AFP是等腰直角三角形,∠EAB=135°,作EH⊥BA交BA的延长线于H.转化为两定点之间的折线(化星为折),再利用“两点之间线段最短”求最小值(化折为直).(3)如图5中,将△APD绕点A逆时针旋转60°得到△AFE,则易知△AFP是等边三角形,转化为两定点之间的折线(化星为折),再利用“垂线段最短”求最小值.【解析】解:(1)如图3中,将△APC绕点A逆时针旋转60°得到△AFE,易知△AFP是等边三角形,∠EAB=90°,在Rt△EAB中,BE=√AE2+AB2=5,∵P A+PB+PC=EF+FP+PB≥BE,∴P A+PB+PC≥5,∴P A+PB+PC的最小值为5.故答案为5.(2)如图4中,将△APB绕点A逆时针旋转90°得到△AFE,易知△AFP是等腰直角三角形,∠EAB=135°,作EH⊥BA交BA的延长线于H.在Rt△EAH中,∵∠H=90°,∠EAH=45°,AE=AB=2√2∴EH=AH=2,在Rt△EHC中,EC=√22+52=√29∵√2P A+PB+PC=FP+EF+PC≥CE,∴P A+PB+PC≥√29,∴P A+PB+PC的最小值为√29.(3)如图5中,将△APD绕点A逆时针旋转60°得到△AFE,则易知△AFP是等边三角形,作EH ⊥BC 于H ,交AD 于G .∵P A +PD +PQ =EF +FP +PQ ≤EH ,易知EG =AE •sin60°=√3,GH =AB =2,∴EH =2+√3,∴P A +PD +PQ ≤√3+2,∴P A +PD +PQ 的最小值为√3+2.考点二 其它旋转中的最值问题【方法点拨】正确的作出辅助线构造全等三角形是解决此类题的关键,学会用转化的思想思考问题,掌握旋转法添加辅助线.【典例剖析】1.(无锡一模)如图,正方形ABCD 的边长为1,点P 为BC 上任意一点(可以与B 点或C 重合),分别过B ,C ,D 作射线AP 的垂线,垂足分别是B ',C ',D ',则BB '+CC '+DD '的最大值与最小值的和为 2+√2 .【点拨】连接AC ,DP ,根据正方形的性质可得出AB =CD ,S正方形ABCD =1,由三角形的面积公式即可得出12AP •(BB ′+CC ′+DD ′)=1,结合AP 的取值范围即可得出BB ′+CC ′+DD ′的范围,将其最大值与最小值相加即可得出结论.【解析】解:连接AC ,DP ,如图所示.∵四边形ABCD 是正方形,正方形ABCD 的边长为1,∴AB =CD ,S 正方形ABCD =1,∵S △ADP =12S 正方形ABCD =12,S △ABP +S △ACP =S △ABC =12S 正方形ABCD =12,∴S △ADP +S △ABP +S △ACP =1,∴12AP •BB ′+12AP •CC ′+12AP •DD ′=12AP •(BB ′+CC ′+DD ′)=1, 则BB ′+CC ′+DD ′=2AP, ∵1≤AP ≤√2, ∴当P 与B 重合时,有最大值2;当P 与C 重合时,有最小值 √2.∴√2≤BB ′+CC ′+DD ′≤2,∴BB '+CC '+DD '的最大值与最小值的和为2+√2.故答案为:2+√2.2.(2019•金台区二模)如图,正方形ABCD 的边长为2√3,点E 为正方形外一个动点,∠AED =45°,P 为AB 中点,线段PE 的最大值是 √15+√6 .【点拨】当点E 在正方形右侧时,连接AC ,BD 交于点O ,连接PO ,EO ,根据A ,C ,E ,D 四点共圆,可得OE =OD =12BD =√6,再根据PE ≤OP +OE =√6+√3,可得当点O 在线段PE 上时,PE =OP +OE =√6+√3,则线段PE 的最大值为√6+√3;当点E 在正方形上方时,作斜边为AD 的等腰直角△AOD ,则点E 在以O 为圆心,OA 为半径的圆上,当点P ,点O ,点E 共线时,PE 的值最大,求得此时PE 最大值为√15+√6;比较两个最大值,可得最终结果.【解析】解:如图,若点E在正方形右侧,连接AC,BD交于点O,连接PO,EO,∵∠AED=45°,∠ACD=45°,∴A,C,E,D四点共圆,∵正方形ABCD的边长为2√3,∴OE=OD=12BD=√6,∵P为AB的中点,O是BD的中点,∴OP=12AD=√3,∵PE≤OP+OE=√6+√3,∴当点O在线段PE上时,PE=OP+OE=√6+√3,即线段PE的最大值为√6+√3,如图,点E在正方形ABCD上方,作斜边为AD的等腰直角△AOD,∠AOD=90°,则点E在以O为圆心,OA为半径的圆上,∴当点P,点O,点E共线时,PE的值最大,过点O作ON⊥AB,交BA延长线于点N,∵AD=2√3,AO=DO,∠AOD=90°∴AO=√6,∠OAD=45°,∵ON⊥AB,AD⊥AB∴∠NAO=∠NOA=45°∴AN=NO=√3∴PO=√PN2+ON2=√12+3=√15∴PE最大值为√15+√6>√6+√3,故答案为:√15+√63.(2018•无锡一模)【发现问题】爱好数学的小明在做作业时碰到这样的一道题目:如图①,点O为坐标原点,⊙O的半径为1,点A(2,0).动点B在⊙O上,连结AB,作等边△ABC (A,B,C为顺时针顺序),求OC的最大值【解决问题】小明经过多次的尝试与探索,终于得到解题思路:在图①中,连接OB,以OB为边在OB 的左侧作等边三角形BOE,连接AE.(1)请你找出图中与OC相等的线段,并说明理由;(2)线段OC的最大值为3.【灵活运用】(3)如图②,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB 外一动点,且P A=2,PM=PB,∠BPM=90°,求线段AM长的最大值及此时点P的坐标.【迁移拓展】(4)如图③,BC=4√2,点D是以BC为直径的半圆上不同于B、C的一个动点,以BD为边作等边△ABD,请直接写出AC的最值.【点拨】(1)结论:OC=AE.只要证明△CBO≌△ABE即可;(2)利用三角形的三边关系即可解决问题;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=P A=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2√2+3;过P作PE⊥x轴于E,根据等腰直角三角形的性质,即可得到结论;(4)如图4中,以BC为边作等边三角形△BCM,由△ABC≌△DBM,推出AC=MD,推出欲求AC的最大值,只要求出DM的最大值即可,由BC=4√2=定值,∠BDC=90°,推出点D在以BC为直径的⊙O上运动,由图象可知,当点D在BC上方,DM⊥BC时,DM的值最大;【解析】解:(1)如图①中,结论:OC=AE,理由:∵△ABC,△BOE都是等边三角形,∴BC=BA,BO=BE,∠CBA=∠OBE=60°,∴∠CBO=∠ABE,∴△CBO≌△ABE,∴OC=AE.(2)在△AOE中,AE≤OE+OA,∴当E、O、A共线,∴AE的最大值为3,∴OC的最大值为3.故答案为3.(3)如图1,连接BM,菁优网∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=P A=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值(如图2中)最大值=AB+AN,∵AN=√2AP=2√2,∴最大值为2√2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=√2,∴OE=BO﹣AB﹣AE=5﹣3−√2=2−√2,∴P(2−√2,√2).(4)如图4中,以BC为边作等边三角形△BCM,∵∠ABD=∠CBM=60°,∴∠ABC=∠DBM,∵AB=DB,BC=BM,∴△ABC≌△DBM,∴AC=MD,∴欲求AC的最大值,只要求出DM的最大值即可,∵BC=4√2=定值,∠BDC=90°,∴点D在以BC为直径的⊙O上运动,由图象可知,当点D在BC上方,DM⊥BC时,DM的值最大,最大值=2√2+2 √2,∴AC的最大值为2√2+2√6.当点A在线段BD的右侧时,同法可得AC的最小值为2√6−2√2.4.如图1正方形ABCD,边CD在等腰三角形DEF的边DE上,AB=3,DE=5,连接AE、CF,点M、N 分别是AE、CF的中点,连DM、DN、MN.(1)直接写出AE与CF的关系和△DMN的形状.(2)如图2,将等腰直角三角形DEF绕点D顺时针旋转α°(0°≤α≤45°),连接AE、CF,点M、N分别是AE、CF的中点,连DM、DF、MN.此时(1)中的两个结论是否成立?若成立,给出证明;若不成立,说明理由.(3)在(2)的条件下,△ECF的面积在旋转过程中变化吗?若没有变化,请直接写出面积;若有变化,请直接写出它的最大值和最小值.【点拨】(1)如图1中,结论:AE=CF,AE⊥CF,△DMN是等腰直角三角形.证明△ADE≌△CDF(SAS)即可解决问题.(2)如图2中,结论成立.证明△ADE≌△CDF(SAS),再证明△ADM≌△CDN(SSS)即可解决问题.(3)△DMN的面积是变化的.求出△DMN面积的最小值或最大值即可解决问题.【解析】解:(1)如图1中,结论:AE=CF,AE⊥CF,△DMN是等腰直角三角形.理由:延长FC交AE于H.∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,∵△DEF是等腰直角三角形,∴DE=DF,∠DEF=90°,∵AD=DC,∠ADE=∠CDE,DE=DF,∴△ADE≌△CDF(SAS),∴AE=CF,∠DCF=∠EAD,∵∠EAD+∠AED=90°,∠HCE=∠DCF,∴∠HCE+∠AED=90°,∴∠CHE=90°,∴AE⊥CF,∵AM=EM,CN=NF,∴DM=12AE=AM=ME,DN=12CF=CN=NF,∴DM=DN,∠ADM=∠MAD,∠DCN=∠NDC,∴∠ADM=∠CDN,∴∠NDM=∠ADC=90°,∴△MDN是等腰直角三角形.(2)如图2中,结论成立.理由:延长FC交AE于H.∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,∵AD=DC,DE=DF,∴△ADE≌△CDF(SAS),∴AE=CF,∠DCF=∠EAD,∵∠DCF+∠DCH=180°,∴∠DAH+∠DCH=180°,∴∠ADC+∠AHC=180°,∵∠ADC=90°,∴∠AHC=90°,∴AE⊥CF,∵△ADE≌△CDF,DM,DN是三角形的中线,∴DM=DN,AM=CN,∵AD=DC,∴△ADM≌△CDN(SSS),∴∠ADM=∠CDN,∴∠NDM=∠ADC=90°,∴△MDN是等腰直角三角形.(3)如图3中,△ECF的面积在旋转过程中有变化.①当DE与DC重合时,DM的长最小,此时△DMN的值最小,DM最小值=12•√AD2+DE2=12•√32+52=√342,此时△DMN的面积=12×√342×√342=174.②当旋转角为45°时,DM 的值最大,此时△DMN 的面积最大.如图3中,DA =3,DE =5,∠ADM =45°,作 EH ⊥DA 交DA 的延长线于H ,MK ⊥AH 于K . 则HE =DH =5√22,∵MK ∥EH ,AM =ME ,∴AK =KH =12(DH ﹣AD )=12(5√22−3),MK =12EH =5√24, ∴DM 2=MK 2+DK 2=(5√24)2+[3+12(5√22−3)]2=172+15√24, ∴△DMN 的面积的最大值=12DM 2=174+15√28.。

《旋转例题》课件

《旋转例题》课件

05
旋转的未来发展
旋转在科技领域的应用
旋转科技在机器人领域的应用
01
利用旋转技术,机器人可以实现灵活自如的移动和操作,提高
工作效率和适应性。
旋转科技在航天领域的应用
02
旋转可以为航天器提供稳定的姿态控制,提高航天器的自主导
航和稳定运行能力。
旋转科技在医疗领域的应用
03
旋转技术可以应用于医疗设备中,例如旋转式手术机器人可以
在平面直角坐标系中,设点$P(x, y)$绕点$O(h, k)$旋转$θ$ 角后到达点$P'(x', y')$,则旋转公式为:$x' = (x - h)cosθ + (y - k)sinθ + h$,$y' = (y - k)cosθ - (x - h)sinθ + k$。
旋转的特性
01
02
03
旋转中心不变性
THANKS
感谢观看
旋转的坐标变换
坐标变换定义
坐标变换是指将一个坐标系中的 点或向量变换到另一个坐标系中 的过程,这个过程可以用线性变
换矩阵表示。
旋转坐标变换
当物体绕某点或某轴旋转时,其上 任意一点或向量也会随之旋转,这 个过程可以用旋转矩阵进行坐标变 换。
坐标变换的顺序
在实际应用中,坐标变换的顺序可 能会影响最终结果,因此需要遵循 一定的变换顺序规则。
例题四:旋转的陀螺
总结词:儿童玩具
详细描述:旋转的陀螺是一种传统的儿童玩具,通过旋转运动产生稳定性和趣味性。陀螺通常由一根细长的轴和一个圆盘组 成,轴的一端插入圆盘中心,另一端着地。当陀螺被旋转时,它会以轴心为中心点旋转,展现出独特的物理现象和美学效果 。

旋转经典例题与练习

旋转经典例题与练习

一、选择题1.将叶片图案旋转180°后,得到的图形是( )2.如图,在等腰直角△ABC中,B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则等于()A.60°B.105°C.120°D.135°3.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在位置,A点落在位置,若,则的度数是( )A.50°B.60°C.70°D.80°4.在平面直角坐标系中,A点坐标为(3,4),将OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标是( )A.(-4,3)B.(-3,4)C.(3,-4)D.(4,-3)5.在平面直角坐标系中,将点A1(6,1)向左平移4个单位到达点A2的位置,再向上平移3个单位到达点A3的位置,△A1A2A3绕点A2逆时针方向旋转900,则旋转后A3的坐标为( )A.(-2,1)B.(1,1)C.(-1,1)D.(5,1)6.在平面直角坐标系中,点P(2,—3)关于原点对称的点的坐标是()A.(2,3)B.(—2,3)C.(—2,—3)D.(—3,2)7.在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )8.如图,边长为1的正方形绕点逆时针旋转到正方形,图中阴影部分的面积为( )A. B.C. D.二、填空题9.写出两个你熟悉的中心对称的几何图形名称,它们是____________.10.如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为_____________.11.如图,直线与双曲线交于A、C两点,将直线绕点O顺时针旋转度角(0°<≤45°),与双曲线交于B、D两点,则四边形ABCD的形状一定是_________.12.如图,若将△ABC绕点O顺时针旋转180°后得到△A′B′C′,则A点的对应点A′点的坐标是_____________.13.在平面直角坐标系xOy中,直线y=-x绕点O顺时针旋转90°得到直线,直线与反比例函数的图象的一个交点为A(a,3),则反比例函数的解析式是______.14.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是__________.三、解答题15. 已知:如图在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△FEC.(1)试猜想AE与BF有何关系?说明理由.(2)若△ABC的面积为3cm2,求四边形ABFE的面积;(3)当∠ACB为多少度时,四边形ABFE为矩形?说明理由.16.如图,矩形ABCD中,BC=4,AB=3,将它绕C顺时针旋转90°,得到矩形A′B′CD′,求旋转过程中线段AD扫过的面积(即阴影部分面积).17.如图1,若四边形ABCD 、四边形CFED 都是正方形.(1)当正方形GFED 绕D 旋转到如图2位置时,AG=CE 是否成立?若成立,请给出证明;若不成立,请说明理由.(2)当正方形GFED 绕D 旋转到如图3位置时,延长CE 交AG 于H ,交AD 于M. 求证:AG ⊥CH;AB CDEF图1GAD图2F EBCGADBCEFH M图3。

初中几何旋转经典例题

初中几何旋转经典例题

初中几何旋转经典例题 旋转是初中几何学中的重要概念之一,它涉及到物体在平面上以一定角度绕旋转中心旋转的运动。

在几何学中,旋转可以通过不同的方法来表示和计算,而初中几何旋转的例题则是学生们常见的练习题目类型之一。

下面将介绍几个经典的例题,以帮助学生们更好地理解初中几何旋转的概念和运用。

例题1:如图所示,长方形ABCD的顶点A经过顺时针旋转90°后得到顶点A',连接AA'所得线段与BC延长线的交点为E。

求证:线段BD与线段AE互相垂直。

解析:首先,我们可以通过观察图形得知旋转中心为矩形的中心点。

由于顶点A经过顺时针旋转90°后得到顶点A',所以图形经过旋转后变成了一个正方形。

因此,线段BD与直线AE是正方形的对角线,而正方形的对角线互相垂直。

因此,线段BD与线段AE互相垂直,得证。

例题2:如图所示,正方形ABCD的顶点A经过顺时针旋转60°后得到顶点A',连接AA'所得线段与AC相交于点E。

求证:线段BE与BC垂直,并且线段BE的长度等于线段BC的一半。

解析:首先,我们可以观察图形得知旋转中心为正方形的中心点。

由于顶点A经过顺时针旋转60°后得到顶点A',所以图形经过旋转后变为一个新的正方形。

连接AA'所得线段与AC相交于点E,根据旋转的特性,线段AE与直线AC重合。

因此,线段BE与线段AC互相垂直,并且线段BE的长度等于线段BC的一半,得证。

例题3:如图所示,正方形ABCD的顶点A经过顺时针旋转120°后得到顶点A',连接AA'所得线段与AC延长线的交点为E。

求证:直线BE平分线段AC。

解析:同样地,我们可以观察图形得知旋转中心为正方形的中心点。

由于顶点A经过顺时针旋转120°后得到顶点A',所以图形经过旋转后变成了一个新的正方形。

连接AA'所得线段与AC延长线相交于点E,根据旋转的特性,线段AE与直线AC平行。

旋转练习题带答案

旋转练习题带答案

旋转练习题带答案旋转是数学中的一个重要概念,它涉及到图形在平面或空间中的转动。

下面是一些关于旋转的练习题,以及它们的答案。

练习题1:在平面直角坐标系中,点A(3, 4)绕原点O(0, 0)顺时针旋转90度后,求点A的新坐标。

答案:点A绕原点O顺时针旋转90度后,其坐标变为(-4, 3)。

练习题2:如果一个正方形的四个顶点在平面直角坐标系中分别位于(1, 1), (1, -1), (-1, -1), (-1, 1),求这个正方形绕其中心点旋转180度后的顶点坐标。

答案:正方形绕其中心点(0, 0)旋转180度后,顶点坐标变为(-1, -1), (-1, 1), (1, 1), (1, -1)。

练习题3:一个圆心位于(2, 2)的圆,半径为3,求这个圆绕原点O(0, 0)顺时针旋转45度后,圆上任意一点P(x, y)的新坐标。

答案:由于圆的旋转不改变其形状和大小,只是位置发生变化,所以具体点P(x, y)的新坐标取决于其在圆上的位置。

但可以确定的是,圆心的新坐标会发生变化。

通过计算,圆心的新坐标为(1, 2 + √2)。

练习题4:在三维空间中,一个立方体的一个顶点位于(1, 1, 1),求这个立方体绕通过(1, 1, 1)且与x轴成30度角的直线旋转90度后,该顶点的新坐标。

答案:这个问题较为复杂,需要使用三维空间旋转矩阵来解决。

但一般来说,通过适当的旋转矩阵变换,我们可以找到新的坐标。

具体计算需要用到三角函数和矩阵乘法。

练习题5:考虑一个由四个点组成的矩形,其顶点坐标分别为A(0, 0), B(4, 0), C(4, 3), D(0, 3)。

求矩形绕点A旋转60度后,各顶点的新坐标。

答案:矩形绕点A旋转60度后,可以使用旋转矩阵来计算新坐标。

新坐标分别为:- A点不变,坐标仍为(0, 0)。

- B点新坐标为(2√3, -2)。

- C点新坐标为(2√3, 2)。

- D点新坐标为(-2√3, 2)。

请注意,这些练习题的答案需要根据具体的旋转公式和几何知识来计算得出。

中考数学几何旋转经典例题

中考数学几何旋转经典例题

临床研究对象的基线资料目录一、一般信息 (4)1.1 基本人口统计学特征 (4)1.2 病史采集 (5)1.2.1 既往病史 (6)1.2.2 家族病史 (7)1.2.3 过敏史 (8)1.2.4 用药史 (9)1.2.5 现病史 (9)二、生活方式 (10)2.1 饮食习惯 (11)2.1.1 膳食结构 (12)2.1.2 饮食频率与量 (13)2.1.3 特殊饮食要求 (14)2.2 运动情况 (15)2.2.1 运动频率 (16)2.2.2 运动类型 (17)2.2.3 运动强度 (18)2.3 生活作息 (18)2.3.1 睡眠模式 (19)2.3.2 工作与休息时间安排 (20)2.3.3 生活压力 (21)三、体征检查 (21)3.1 一般检查 (23)3.2 皮肤黏膜 (24)3.2.1 皮肤颜色 (25)3.2.2 皮肤完整性 (26)3.3 淋巴结与肿大 (28)3.3.1 淋巴结位置 (29)3.3.2 淋巴结大小 (29)3.3.3 淋巴结活动度 (30)四、实验室检查 (31)4.1 血液检查 (32)4.1.1 血红蛋白 (33)4.1.2 血小板计数 (34)4.1.3 白细胞计数与分类 (35)4.1.4 血清生化指标 (35)4.2 尿液检查 (37)4.2.1 尿液颜色 (38)4.2.2 尿液比重与透明度 (39)4.2.3 尿蛋白 (40)4.3 粪便检查 (41)4.3.1 大便常规 (42)4.3.2 肠道寄生虫检查 (43)4.4 其他实验室检查 (44)4.4.1 肝肾功能 (45)4.4.2 血清免疫学指标 (45)4.4.3 血清病毒学指标 (46)五、影像学检查 (47)六、其他基线资料 (49)6.1 健康行为问卷调查 (50)6.1.1 吸烟与饮酒情况 (51)6.1.2 药物使用情况 (52)6.1.3 心理健康状况 (53)6.2 家族史与遗传病史 (54)6.2.1 家族成员疾病史 (55)6.2.2 遗传性疾病筛查 (56)6.3 可能影响研究结果的疾病或症状 (57)6.3.1 糖尿病 (58)6.3.2 高血压 (60)6.3.3 心脏病 (62)6.4 其他特殊人群信息 (63)6.4.1 儿童与青少年 (64)6.4.2 老年人 (66)6.4.3 孕妇与哺乳期妇女 (67)一、一般信息职业背景:患者来自不同的职业领域,包括工人、农民、职员、学生等。

初中三角形旋转经典例题

初中三角形旋转经典例题

初中三角形旋转经典例题示例文章篇一:哎呀呀,说起初中三角形旋转的经典例题,那可真是让我又爱又恨呢!记得有一次上数学课,老师在黑板上画了一个三角形,然后神秘兮兮地说:“同学们,今天咱们来研究一下这个三角形旋转的问题。

” 我当时心里就嘀咕:“这能有多难?”老师给出的例题是这样的:有一个等腰直角三角形ABC,直角顶点是C,把这个三角形绕着点C 顺时针旋转90 度,得到三角形A'B'C,让咱们求旋转后的三角形和原来三角形重合部分的面积。

我看着那个图,眼睛都快花了,心里直犯愁:“这可咋整啊?” 同桌小明倒是挺自信,他拿着笔在纸上比划着,嘴里还念念有词:“这还不简单,先找出旋转后的对应边和对应角呗。

” 我白了他一眼,说:“你倒是会说,那你快做出来给我看看呀!”这时,前桌的小红转过头来,说:“别着急,咱们一起想想。

” 我们三个人就凑在一起,开始研究起来。

我就想啊,这三角形旋转就好像是一个人在跳舞,转了一圈又一圈,但是它的形状和大小可没变。

这不就跟咱们玩的万花筒似的,看起来图案变来变去,其实那些碎片还是那些碎片嘛。

我们先把能找到的条件都标出来,发现重合部分也是个三角形。

小明突然一拍脑袋,说:“我知道啦,咱们可以通过三角形的相似来求面积。

” 我赶紧问:“咋相似啊?” 他说:“你看,这两个三角形的对应角相等,对应边成比例,不就是相似嘛。

” 小红也点点头,说:“对呀对呀,那咱们就能算出边长的比例,进而求出面积啦。

”经过一番计算,我们终于算出了答案。

老师看到我们做出来了,笑着说:“不错不错,继续努力!” 那一刻,我心里别提多高兴了,就像吃了蜜一样甜。

你说,这三角形旋转的问题是不是很有趣?它就像是一个藏着宝藏的迷宫,只要我们认真思考,就能找到通往答案的路。

我觉得啊,数学虽然有时候让人头疼,但当我们解开难题的时候,那种成就感真是无与伦比!所以,可别害怕难题,只要咱们勇敢去探索,就一定能战胜它们!示例文章篇二:哎呀,一提到初中三角形旋转的经典例题,我这脑袋瓜就开始嗡嗡响啦!你们能想象得到吗?那一个个三角形就像调皮的小精灵,不停地转呀转。

旋转相似经典例题

旋转相似经典例题

选择题:
下列哪个图形旋转后能与原图形相似?
A. 等腰三角形
B. 矩形
C. 等边三角形(正确答案)
D. 梯形
一个正方形绕其中心旋转45度后,得到的图形与原图形是什么关系?
A. 全等
B. 相似(正确答案)
C. 既不全等也不相似
D. 无法确定
下列哪个图形绕某一点旋转180度后,能与原图形相似?
A. 平行四边形
B. 等腰直角三角形(正确答案)
C. 菱形
D. 不规则四边形
一个正六边形绕其中心旋转60度后,新图形与原图形的相似比是?
A. 1:2
B. 1:1(正确答案)
C. 2:1
D. 无法确定
下列哪个图形不能通过旋转得到与自身相似的图形?
A. 正五边形
B. 正八边形
C. 正十五边形
D. 任意三角形(正确答案)
一个等边三角形绕其一个顶点旋转120度后,新图形与原图形的关系是?
A. 全等且相似(正确答案)
B. 全等但不相似
C. 相似但不全等
D. 既不全等也不相似
下列哪个图形绕其某一点旋转任意角度后,总能与原图形相似?
A. 圆形(正确答案)
B. 椭圆形
C. 抛物线形
D. 双曲线形
一个正方形绕其一条边的中点旋转90度后,新图形与原图形的关系是?
A. 全等
B. 相似(正确答案)
C. 既不全等也不相似
D. 无法确定
下列哪个图形绕其中心旋转任意非零角度后,总能保持与原图形相似?
A. 正多边形(正确答案)
B. 任意四边形
C. 任意五边形
D. 任意多边形。

中考旋转经典例题

中考旋转经典例题

同学们做完这道题,你有什么新的启发?不妨试试口算B´、C´点 的坐标。
解得:点B´坐标是(-3,-6)、点C´坐标是(-4,-2)
总 结:
• 在平面坐标系中,若点A(x,y)关于一点 P(a,b)成中心对称,则点A的对应点A´ 的坐标(2a-x,2b-y)。
若过点A,点A´分别作y轴垂线,轻松得出点A,点A´ 横坐标关于y轴对称,纵坐标关于直线y=-1对称,
ቤተ መጻሕፍቲ ባይዱ
则P点横、纵坐标分别是点A,点A´横、纵坐标的中 点坐标。
解:设点A´坐标为(x,y)
x 1 0 2
y 2 1 2
得 x=-1,y=-4
B
A C
-1·P C´


所以:点A´坐标为(-1,-4)
中考数学旋转问题
例1、如图,△ABC三点坐标分别是A(1,2),B(3,4),
C(4,1);△ABC绕点P(0,-1)旋转180°得△A´B´C´,则
△A´B´C´中A´点的坐标是
.
解析:由题意得△ABC与△A´B´C´关于点P成中心对称, 则点A与其对应点A´点、旋转中心点P三点共线,且对 应点到旋转中心的距离相等(即AP=A´P),如图。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)△AMN是等边三角形.理由如下: 解:(1)CD=BE. ∵△ABE≌△ACD,M、N分别是BE、CD的中点, 理由如下: ∴AM=AN,NC=MB. ∵△ABC和△ADE为 ∵AB=AC, 等边三角形, ∴△ABM≌△ACN, ∴AB=AC,AE=AD, ∴∠MAB=∠NAC, ∠BAC=∠EAD=60°, ∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°, ∴△AMN是等边三角形,(7分) ∵∠BAE=∠BAC﹣∠EAC=60 设AD=a,则AD=AE=DE=a,AB=BC=AC=2a, °﹣∠EAC, 易证BE⊥AC, ∠DAC=∠DAE﹣∠EAC=60 ∴BE= , °﹣∠EAC, ∴EM= , ∴AM= , ∴∠BAE=∠DAC, ∵△ADE,△ABC,△AMN为等边三角形, ∴△DAC≌△EAB, ∴S△ADE:S△ABC:S△AMN ∴CD=BE.)
2
例6:如图,正方形ABCD中,E、F分别在BC、CD上 ,EF=BE+DF. (1)求证:∠EAF=45° (2)若将EF=BE+DF与∠EAF=45°互换,其他条件不变,结论 是否仍然成立 ?说明理由. ⑴证明: 把⊿ABE绕A逆时针旋转90º,到达⊿ADG ∵EF=BE+DF FG=FD+BE ∴FG=FE又 AE=AG AF=AF∴ΔAFE≌ΔAFG ﹙SSS﹚ ∴∠FAE=½ ∠FAG=45º ⑵ 成立. 理由如下: 把⊿ABE绕A逆时针旋转90º,到达⊿ADG, ∠FAG=90º-∠FAE=45º=∠FAE ∴ΔAFE≌ΔAFG ﹙SAS﹚ ∴EF=GF=BE+DF
:
=a :(2a):(
2
2பைடு நூலகம்
)=1:4: =4:16:7
2
例1. 如图1,P是正三角形ABC内的一点, 且PA=6,PB=8,PC=10,求∠APB的度数。
B B
F P A C A P C
(1)
(2)
解:如图2,∵△ABC是等边
三角形,
∴∠APP′=60°,PP′=PA=6, ∴AB=AC,∠BAC=60°, ∵PP′2+PB2=62+82=100=P′B2, ∴△BPP′是直角三角形, 把△APC绕点A逆时针旋转60° ∠BPP′=90°, 得到△AP′B, ∴∠APB=∠APP′+∠BPP′= 由旋转的性质,AP′=AP,P′B=PC=10, 60°+90°=150°, ∠PAP′=60°, 故∠APB的度数是150°. ∴△APP′是等边三角形,
解:如图,连接CP,当△ABC旋转到E、C、P三点共线时,EP最长, 此时θ=∠ACA′=120°, ∵∠B′=30°,∠A′CB′=90°, ∴A′C=AC=1/2 A′B′=2, ∵AC中点为E,A′B′中点为P,∠A′CB′=90° ∴CP=1/2 A′B′=2,EC=1/2×2=1, ∴EP=EC+CP=1+2=3. 故答案为:120;3.
例5;如图,等腰直角△ABC中, ∠ABC=90°,点D在AC上,将△ABD绕顶 点B沿顺时针方向旋转90°后得到△CBE.
⑴求∠DCE的度数; ⑵当AB=4,AD∶DC=1∶3时,求DE的长.
解:(1)∵△CBE是由△ABD旋转得到的, ∴△ABD≌△CBE, ∴∠A=∠BCE=45°, ∴∠DCE=∠DCB+∠BCE=90° (2)在等腰直角三角形ABC中,∵AB=4,∴AC=4 又∵AD︰DC=1︰3, ∴AD= 2 ,DC=3 2 由(1)知AD=CE且∠DCE=90°, ∴DE 2 =DC 2 +CE 2 =2+18=20,∴DE=2 5
例3:如图(1),P为正方形ABCD内一点,PA=1,PB=2,PC=3 (1)∠APB=______. (2)求此正方形ABCD面积。
(1) (2)
(3)
解:如图(2)将△APB绕B点顺时针旋转90° 并连接PE, ∵将△APB绕B点顺时针旋转90°,得△BEC, ∴△BEC≌△BPA,∠APB=∠BEC, ∴△BEP为等腰直角三角形, ∴∠BEP=45°, ∵PB=2, ∴PE=2 2 ∵PC=3,CE=PA=1, ∴PC 2=PE 2+CE 2 , ∴∠PEC=90°, ∴∠APB=∠BEC=∠BEP+∠PEC=45°+90°=135°.
例2:如图,点O是等边△ABC内一点,∠AOB=110°, ∠BOC=a.将△BOC绕点C按顺时针方向旋转60° 得△ADC,连接OD. (1)求证:△COD是等边三角形; (2)当a=150°时,试判断△AOD的形状,并说明理由; (3)探究:当a为多少度时,△AOD是等腰三角形?
(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC, ∴CO=CD,∠OCD=60°, ∴△COD是等边三角形. (2)答:当α=150°时,△AOD是直角三角形. 理由是:∵△BOC≌△ADC, ∴∠ADC=∠BOC=150°, 又∵△COD是等边三角形, ∴∠ODC=60°, ∴∠ADO=∠ADC﹣∠ODC=90°, 即△AOD是直角三角形. (3)解:①要使AO=AD,需∠AOD=∠ADO, ∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°, ∴190°﹣α=α﹣60°, ∴α=125°; ②要使OA=OD,需∠OAD=∠ADO. ∵∠OAD=180°﹣(∠AOD+∠ADO)=180°﹣(190°﹣α+α﹣60°)=50°, ∴α﹣60°=50°, ∴α=110°; ③要使OD=AD,需∠OAD=∠AOD. ∵∠OAD=360°﹣110°﹣60°﹣α=190°﹣α, ∠AOD==120°﹣, ∴190°﹣α=120°﹣, 解得α=140°. 综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.
例7:(2009湖南常德)如图1,若△ABC和△ADE为等边三角形,M, N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形. (1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立? 若成立请证明,若不成立请说明理由; (2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角 形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及 △AMN的面积之比;若不是,请说明理由.
例:4:在△ABC中,∠ACB=90°,∠ABC=30°, 将△ABC绕顶点C顺时针旋转,旋转角为 (0°<<180°),得到△A1B1C. (1)如图1,当AB∥CB1时,设A1B1与BC相交于点D. 证明:△A1CD是等边三角形; (2)如图2,连接AA1、BB1,设△ACA1和△BCB1的 面积分别为S1、S2.求证:S1∶S2=1∶3; (3)如图3,设AC的中点为E,A1B1的中点为P,AC=a, 连接EP.当= °时,EP的长度最大,最大值为
(2)如图(3)四边形ABCD为正方形,PA=1,PB=2,PC=3, 把△PAB绕A点逆时针旋转90°得△EAD,把△CPB绕C点 顺时针旋转90°得△CFD,连PE,PF,如图, ∴∠1=∠2,∠3=∠4, 而∠1+∠3=90°, ∴∠2+∠4=90°, 而∠ADC=90°, ∴∠EDF=180°,即E,D,F共线; 由旋转的性质得到△APE,△CPF均为等腰直角三角形, 并且ED=PB=2,DF=PB=2, ∴S△APE=0.5×1×1=0.5; S△CPF=0.5×3×3=4.5, 在△PEF中,PE=√2,PF=3√2,EF=4, ∴PF2=PE2+EF2, ∴△PEF为直角三角形,∠PEF=90°, ∴S△PEF=0.5×EP×EF=0.5×√2×4=2√2 ∴S正方形ABCD=S五边形APCFE=S△PEF+S△APE+S△CPF=√2+5.
相关文档
最新文档