典型应用题归类复习(火车过桥、车长问题)

合集下载

火车过桥、车长问题__典型应用题归类练习

火车过桥、车长问题__典型应用题归类练习

火车过桥、车长问题__典型应用题归类练习火车过桥、车长问题典型应用题归类练习在解答普通的行程问题中,我们从不考虑人或者汽车等的自身长度的,但在解答火车行程问题时,一列火车有一百多米长,不能忽略不计。

1 、火车过桥:(1) 火车+有长度的物体S=桥长+车长(2) 火车+无长度的物体2、火车+人(1) 火车+迎面行走的人,相当于相遇问题S=车长解法:S=(火车速度+人的速度)X迎面错过的时间⑵ 火车+同向行走的人,相当于追及问题S=车长解法:S=(火车速度-人的速度)X追及时间3、火车+车(1) 错车问题,相当于相遇问题S= 两车车长之和,解法:S=(快车速度+慢车速度)X错车时间(2)超车问题:相当于追及问题S= 两车车长之和,解法:S=(快车速度-慢车速度)X错车时间4、火车上人看车从身边经过(1) 看见对车从身边经过,相当于相遇问题S= 对车车长,解法:S=两车速度之和X时间(2) 看见后车从身边经过(相当于追及问题)5=后车车长,解法:S=两车速度之差X时间1(一座大桥长3400米,一列火车通过大桥时每分钟行800 米,从车头开上桥到车尾离开桥共需4.5分,这列火车长多少米,2、一列货车要通过一条1800 米长的大桥。

已知从货车车头上桥到车尾离开桥共用120 秒,货车完全在桥上的时间为80 秒,这列货车长多少米,3(一列火车长700 米,以每小时24 千米的速度通过一座长900 米的大桥,从火车车头上桥到车尾离桥,共需要几分钟,4、305 次列车通过450米长的山洞用了23秒,经过一位站在铁路边的扳道工人用了8 秒,求列车每小时的速度和车身长度各是多少,5、一列火车,从车头到达桥头算起,用5 秒钟时间全部驶上一座大铁桥,26 秒后全部驶离铁桥,已知大桥全长525 米,求火车过桥时的速度和火车的长度。

6(一列火车以同一速度驶过两个遂道,第一个隧道长420米,用了27秒钟; 第二个隧道长480 米,用了30 秒钟。

小升初,小学数学典型应用题火车过桥专题

小升初,小学数学典型应用题火车过桥专题
(一)
考虑一下:火车过桥从什么位置开始计时? 从什么位置计时结束?
完全通过的路程是什么?
火车过桥问题
路程=桥长+车长
火车过桥是线的运动,要考虑火车车长。
【例1】一列火车长428米,火车的速度是24米/秒, 要经过6772米的大桥,需要多长时间?
提示:火车过桥的路程指的是什么?
路程÷速度=时间
路程=桥长+车长
速度×时间=路程
桥长
车长500米
桥长+车长: 727×25=8175(米) 桥长: 8175-500=7675(米) 727×25-500=7675(米) 答:这座大桥长7675米。
例3:一列火车通过第一个长2010米的隧道用了90 秒,接着通过第二个长1260米的隧道用了60秒, 求这列火车的速度和提车示长:先。把火车的速度求出来。
(1)两车相向而行,从两车头相接到两车尾相接, 求穿过的时间。
182+1304=1486(米)
1486÷(20+18)≈39(秒)
பைடு நூலகம்
小明站在铁路边,一列火车从他身边开过用了30秒。已 知这列火车长900米,以同样的速度通过一座大桥,用
了2分钟。这座大桥长多少米?
900 ÷30=30(米/秒) 2分=120秒
30x120=3600(米) 3600-900=2700(米) 答:这座桥长2700米。
例5:一列火车穿过一条长1260米的隧道用了60 秒,用同样的速度通过一条长2010米长的大桥用
了90秒。这列火车的速度和车长各是多少?
提示:画出示意图
用 示意图:
表示火车。
请问:这列火车通过隧道和大桥的路程差是什么?
(423÷3-1)×0.5

小学六年级总复习火车行程问题(学生版)

小学六年级总复习火车行程问题(学生版)

火车行程问题火车过大桥的行程问题要注意车身长,这种题的特征是计算路程时必须把火车车身的长度也考虑在内。

(车身的长度+桥的长度)÷车的速度=过桥时间解答:火车行程问题的关键是弄清楚路程的变化,一般分为以下三种情况。

1、火车过桥(或隧道)路程=车长+桥长2、火车过人(或物)路程=车长3、火车过火车路程=两车车车长(当然,如果遇上齐头或齐尾的问题,路程差等于其中一个火车的长度)例1:一列火车长150米,每秒行20米,全车通过一座450米长的大桥,需要多少时间?触类旁通:1、一列火车长180米,每秒钟行25米。

全车通过一条120米的山洞,需要多少时间?2.一列火车长350米,每秒行18米,全车通过一个隧道需要50秒钟,这个隧道长有多少米?例2、一列客车通过860米长的大桥需要45秒钟,用同样速度穿过620米长的隧道需要35秒钟。

求这列客车行驶的速度及车身的长度各多少米?触类旁通:1.一列火车通过340米的大桥需要100秒,用同样的速度通过144米的大桥用了72秒,求火车的速度和长度。

2.一列火车通过一座长456米的桥需要80秒,用同样的速度通过一条长399米的隧道要77秒。

求这列火车的速度和长度。

例3、甲列车每秒行20米,乙列车每秒行14米,若两列车齐头并进,则甲车行40秒超过乙车,若两列车齐尾并进,则甲车行30秒超过乙,求甲列车和乙列车各长多少米?触类旁通:1、快车每秒钟行18米,慢车每秒行10米,两列火车同时同方向齐头并进,行10秒钟后快车超过慢车,如果两列火车齐尾并进,则7秒后快车超过慢车。

求两列火车的车长。

2、一列快车长200米,每秒行驶20米,一列慢车长160米,每秒行驶15米,若两列车齐头并进,则快车超过慢车要多少时间?若两列车齐尾并进,则快车超过慢车要多少时间?若两列车齐尾并进,则快车超过慢车要多少时间?例4、一列客车每分钟行1000米,一列货车每分钟行750米,货车比客车的车身长135米。

火车过桥归类及练习

火车过桥归类及练习

火车过桥问题一、过桥问题a、完全过桥:指从车头上桥,到车尾离桥得过程。

因此这段时间里火车所走得总路程为:一个桥长加上车长。

b、完全在桥上:车尾上桥到车头开始离桥得过程。

因此这段时间里火车所走得总路程为:一个桥长减去车长。

注:一般所说得过桥问题都就是完全过桥这种情况。

二、错车问题a、人错车相遇问题:错车过程为:人瞧到火车头开始直到人瞧到车尾结束。

相当于车尾与人进行相遇问题。

基本公式:(车速+人速)×错车时间=总路程(人瞧到车得车长)追及问题:错车过程为:车头追上人开始直到车尾离开人结束。

相当于车尾与人进行追及问题。

基本公式:(车速-人速)×错车时间=路程差(人瞧到车得车长)b、车错车相遇问题:错车过程为:两车头见面开始直到两车尾见面结束。

相当于车尾与车尾进行相遇问题。

基本公式:(甲车速+乙车速)×错车时间=总路程(两车车长与)追及问题:错车过程为:快车车头与慢车车尾假面开始到快车车尾离开慢车车头。

相当于快车车尾与慢车车头进行追及问题。

基本公式:(快车速-慢车速)×错车时间=路程差(两车车长与)错车问题总结人错车问题,不管相遇还就是追及,路程都就是人瞧到车得车长;车错车问题,不管相遇还就是追及,路程都就是两车车长与。

三、例题分析过桥问题1、一列火车长450 米,铁路沿线得绿化带每两棵树之间得间隔为3 米,这列火车从车头到第1 棵树到车尾离开第101 棵树共用了1 分钟,求这列火车每分钟行驶多少米?提高练习:(1)一列火车通过440米得桥需要40秒,以同样得速度穿过310米得隧道需要30秒,求这列火车得速度与车长?(2)一列火车通过一座长430米得大桥用了30秒,它通过一条长2180米长得隧道时,速度提高了一倍,结果用了50秒,求车长?提示:若速度没有提高会怎样?答案:320米(3)已知某铁路桥长1000米,一列火车从桥上通过,侧得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上得时间为80秒,求火车得速度与长度?提示:对比120秒与80秒得差距,即40秒就是2个车长。

几种典型的行程问题

几种典型的行程问题

几种典型的行程问题1.火车车长问题:1)基本题型:这类问题需要注意两点:火车车长记入总路程;重点是车尾:火车与人擦肩而过,即车尾离人而去。

【例1】(火车过桥问题)火车通过一条长1140米的桥梁用了50秒,火车穿过1980米的隧道用了80秒,求这列火车的速度和车长。

【例2】(火车相遇问题)一列火车通过800米的桥需55秒,通过500米的隧道需40秒。

问该列车与另一列长384、每秒钟行18米的列车迎面错车需要多少秒钟?2)错车或者超车看哪辆车经过,路程和或差就是哪辆车的车长【例3】快、慢两列火车相向而行,快车的车长是50米,慢车的车长是80米,快车的速度是慢车的2倍,如果坐在慢车的人见快车驶过窗口的时间是5秒,那么,坐在快车的人见慢车驶过窗口的时间是多少?3)综合题:用车长求出速度;虽然不知道总路程,但是可以求出某两个时刻间两人或车之间的路程关系【例4】铁路旁有一条小路,一列长为110米的火车以每小时30千米的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北走的农民,12秒后离开这个农民。

问军人与农民何时相遇?2.时钟问题:两个速度单位:分针每分钟走6度,时针每分钟走0.5度时钟问题主要有3大类题型:第一类是追及问题(注意时针分针关系的时候往往有两种情况);第二类是相遇问题(时针分针永远不会是相遇的关系,但是当时针分针与某一刻度夹角相等时,可以求出路程和);第三种就是走不准问题,这一类问题中最关键的一点:找到表与现实时间的比例关系。

【例1】四点到五点之间,时钟的时针与分针在什么时刻成直角?【例2】爷爷在晚上7点多出去散步,出去的时候时针与分针正好在一条直线上,回来的时候时针与分针恰好重合,问爷爷出去散步了多长时间?【例3】一只钟表的时针与分针均指在4和6之间,且钟面上的"5"恰好在时针与分针的正中央,问这是什么时刻?。

奥数火车过桥(问题详解版)

奥数火车过桥(问题详解版)

火车过桥一、火车过桥四大类问题1、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程)=火车速度×通过的时间;3、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程)=(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程)=(火车速度−人的速度)×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程)=(火车速度 人的速度)×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程)=(快车速度+慢车速度)×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程)=(快车速度−慢车速度)×错车时间;二、火车过桥四类问题图示长度速度火车车长车速队伍队伍长(间隔,植树问题)队速长度速度方向树无无无桥桥长无无人无人速同向反向车车长车速同向反向例题1【提高】长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?【分析】 火车穿越隧道经过的路程为300150450+=(米),已知火车的速度,那么火车穿越隧道所需时间为4501825÷=(秒).【精英】小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.【分析】 火车40秒走过的路程是660米+车身长,火车10秒走过一个车身长,则火车30秒走660米,所以火车车长为6603220÷=(米).例题2【提高】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长________米.【分析】100名学生分成2列,每列50人,应该产生49个间距,所以队伍长为49149249352304⨯+⨯+⨯+⨯=(米),那么桥长为90430456⨯-=(米).【精英】一个车队以5米/秒的速度缓缓通过一座长200米的大桥,共用145秒.已知每辆车长5米,两车间隔8米.问:这个车队共有多少辆车?【分析】 由“路程=时间×速度”可求出车队145秒行的路程为5×145=725(米),故车队长度为725−200=525(米).再由植树问题可得车队共有车(525−5)÷(5+8)+1=41(辆).例题3【提高】一列火车通过一座长540米的大桥需要35秒.以同样的速度通过一座846米的大桥需要53秒.这列火车的速度是多少?车身长多少米?【分析】 火车用35秒走了——540米+车长;53秒走了——846米+车长,根据差不变的原则火车速度是:(846540)(5335)17-÷-=(米/秒),车身长是:173554055⨯-=(米).【精英】一列火车通过长320米的隧道,用了52秒,当它通过长864米的大桥时,速度比通过隧道时提高0.25倍,结果用了1分36秒.求通过大桥时的速度及车身的长度.【分析】 速度提高0.25倍用时96秒,如果以原速行驶,则用时96×(1+0.25)=120秒,(864−320)÷(120−52)=8米/秒,车身长:52×8−320=96米.【拓展1】已知某铁路桥长960米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用100秒,整列火车完全在桥上的时间为60秒,求火车的速度和长度?【分析】 完全在桥上,60秒钟火车所走的路程=桥长—车长;通过桥,100秒火车走的路程=桥长+车长,由和差关系可得:火车速度为()96021006012⨯÷+=(米/秒),火车长:9601260240-⨯=(米).【拓展2】一列火车的长度是800米,行驶速度为每小时60千米,铁路上有两座隧洞.火车通过第一个隧洞用2分钟;通过第二个隧洞用3分钟;通过这两座隧洞共用6分钟,求两座隧洞之间相距多少米?【分析】 注意单位换算.火车速度60×1000÷60=1000(米/分钟).第一个隧洞长1000×2−800=1200(米),第二个隧洞长1000×3−800=2200(米),两个隧洞相距1000×6−1200−2200−800=1800(米).【拓展3】小明坐在火车的窗口位置,火车从大桥的南端驶向北端,小明测得共用时间80秒.爸爸问小明这座桥有多长,于是小明马上从铁路旁的某一根电线杆计时,到第10根电线杆用时25秒.根据路旁每两根电线杆的间隔为50米,小明算出了大桥的长度.请你算一算,大桥的长为多少米?【分析】 从第1根电线杆到第10根电线杆的距离为:50(101)450⨯-=(米),火车速度为:4502518÷=(米/秒),大桥的长为:18801440⨯=(米).例题4【提高】两列火车相向而行,甲车每时行48千米,乙车每时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒.问:乙车全长多少米?【分析】390米.提示:乙车的全长等于甲、乙两车13秒走的路程之和.【精英】一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?【分析】8秒.提示:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为280118385⨯=(秒)例题5【提高】铁路旁边有一条小路,一列长为110米的火车以30千米/时的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民.问军人与农民何时相遇?【分析】 8点30分.火车每分行30100060500⨯÷=(米), 军人每分行115001106044⎛⎫⨯-÷= ⎪⎝⎭(米),农民每分行111105005055⎛⎫-⨯÷= ⎪⎝⎭(米). 8点时军人与农民相距(500+50)×6=3300(米),两人相遇还需3300÷(60+50)=30(分),即8点30分两人相遇.【精英】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【分析】 行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒.火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差.如果设火车的速度为x 米/秒,那么火车的车身长度可表示为(x −1)×22或(x −3)×26,由此不难列出方程.法一:设这列火车的速度是x 米/秒,依题意列方程,得(x −1)×22=(x −3)×26.解得x =14.所以火车的车身长为:(14−1)×22=286(米).法二:直接设火车的车长是x ,那么等量关系就在于火车的速度上.可得:x /26+3=x /22+1,这样直接也可以x =286米法三:既然是路程相同我们同样可以利用速度和时间成反比来解决.两次的追及时间比是:22:26=11:13,所以可得:(V 车−1):(V 车−3)=13:11,可得V 车=14米/秒,所以火车的车长是(14−1)×22=286(米),这列火车的车身总长为286米.【拓展4】甲、乙两辆汽车在与铁路并行的道路上相向而行,一列长180米的火车以60千米/时的速度与甲车同向前进,火车从追上甲车到遇到乙车,相隔5分钟,若火车从追上到超过甲车用时30秒.从与乙车相遇到离开用时6秒,求乙车遇到火车后再过多少分钟与甲车相遇?【分析】 由火车与甲、乙两车的错车时间可知,甲车速度为6018030 3.638.4-÷⨯=千米/时.乙车速度为1806 3.66048÷⨯-=千米/时,火车追上甲车时,甲、乙两车相距5(6048)960+⨯=千米.经过9(38.448)60 6.25÷+⨯=分钟相遇,那么乙车遇到火车后1.25分钟与甲车相遇【拓展5】红星小学组织学生排成队步行去郊游,每分步行60米,队尾的王老师以每分行150米的速度赶到排头,然后立即返回队尾,共用10分.求队伍的长度.【分析】 630米.设队伍长为x 米.从队尾到排头是追及问题,需15060x -分;从排头返回队尾是相遇问题,需15060x +分.由101506015060x x +=-+,解得630x =米【拓展6】甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍? (2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?【分析】 (1)11倍;(2)11分15秒.(1)设火车速度为a 米/秒,行人速度为b 米/秒,则由火车的长度可列方程()()1815a b a b -=+,求出11a b=,即火车的速度是行人速度的11倍;从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485−135)÷2=675(秒).例题6【提高】快车A 车长120米,车速是20米/秒,慢车B 车长140米,车速是16米/秒.慢车B 在前面行驶,快车A 从后面追上到完全超过需要多少时间?【分析】 从“追上”到“超过”就是一个“追及”过程,比较两个车头,“追上”时A 落后B 的车身长,“超过”时A领先B (领先A 车身长),也就是说从“追上”到“超过”,A 的车头比B 的车头多走的路程是:B 的车长A +的车长,因此追及所需时间是:(A 的车长B +的车长)÷(A 的车速B -的车速).由此可得到,追及时间为:(A 车长B +车长)÷(A 车速B -车速)1201402016=+÷-()()65=(秒).【精英】快车长106米,慢车长74米,两车同向而行,快车追上慢车后,又经过1分钟才超过慢车;如果相向而行,车头相接后经过12秒两车完全离开.求两列火车的速度.【分析】 根据题目的条件,可求出快车与慢车的速度差和速度和,再利用和差问题的解法求出快车与慢车的速度.两列火车的长度之和:106+74=180(米)快车与慢车的速度之差:180÷60=3(米)快车与慢车的速度之和:180÷12=15(米)快车的速度:(15+3)÷2=9(米)慢车的速度:(15−3)÷2=6(米)【拓展7】从北京开往广州的列车长350米,每秒钟行驶22米,从广州开往北京的列车长280米,每秒钟行驶20米,两车在途中相遇,从车头相遇到车尾离开需要多少秒钟?【分析】 从两车车头相遇到车尾离开时,两车行驶的全路程就是这两列火车车身长度之和.解答方法是:(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间也可以这样想,把两列火车的车尾看作两个运动物体,从相距630米(两列火车本身长度之和)的两地相向而行,又知各自的速度,求相遇时间.两车车头相遇时,两车车尾相距的距离:350280630+=(米)两车的速度和为:222042+=(米/秒);从车头相遇到车尾离开需要的时间为:6304215÷=(秒).综合列式:350280222015+÷+=()()(秒).例题7【提高】【精英】有两列同方向行驶的火车,快车每秒行33米,慢车每秒行21米.如果从两车头对齐开始算,则行20秒后快车超过慢车;如果从两车尾对齐开始算,则行25秒后快车超过慢车.那么,两车长分别是多少?如果两车相对行驶,两车从车头重叠起到车尾相离需要经过多少时间?【分析】 如图,如从车头对齐算,那么超车距离为快车车长,为:332120240-⨯=()(米); 如从车尾对齐算,那么超车距离为慢车车长,为332125300-⨯=()(米). 由上可知,两车错车时间为:300240332110+÷+=()()(秒).【拓展8】甲乙两列火车,甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车;若两车齐尾并进,则甲车行26秒超过乙车.求两车各长多少米?【分析】 两车齐头并进:甲车超过乙车,那么甲车要比乙车多行了一个甲车的长度.每秒甲车比乙车多行22−16=6米,30秒超过说明甲车长6×30=180米.两车齐尾并进:甲超过乙车需要比乙车多行一整个乙车的长度,那么乙车的长度等于6×26=156米.【拓展9】铁路货运调度站有A 、B 两个信号灯,在灯旁停靠着甲、乙、丙三列火车.它们的车长正好构成一个等差数列,其中乙车的的车长居中,最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A 信号灯处,而车头则冲着B 信号灯的方向.乙车的车尾则位于B 信号灯处,车头则冲着A 的方向.现在,三列火车同时出发向前行驶,10秒之后三列火车的车头恰好相遇.再过15秒,甲车恰好超过丙车,而丙车也正好完全和乙车错开,请问:甲乙两车从车头相遇直至完全错开一共用了几秒钟?【分析】8.75秒例题8【提高】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?【分析】 根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(250−210)÷(25−23)=40÷2=20(米/秒)某列车的车长为:20×25−250=500−250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒).【精英】在双轨铁道上,速度为54千米/小时的货车10时到达铁桥,10时1分24秒完全通过铁桥,后来一列速度为72千米/小时的列车,10时12分到达铁桥,10时12分53秒完全通过铁桥,10时48分56秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米?【分析】 先统一单位:54千米/小时15=米/秒,72千米/小时20=米/秒,1分24秒84=秒,48分56秒12-分36=分56秒2216=秒.货车的过桥路程等于货车与铁桥的长度之和,为:15841260⨯=(米);列车的过桥路程等于列车与铁桥的长度之和,为:20531060⨯=(米).考虑列车与货车的追及问题,货车10时到达铁桥,列车10时12分到达铁桥,在列车到达铁桥时,货车已向前行进了12分钟(720秒),从这一刻开始列车开始追赶货车,经过2216秒的时间完全超过货车,这一过程中追及的路程为货车12分钟走的路程加上列车的车长,所以列车的长度为()2015221615720280-⨯-⨯=(米),那么铁桥的长度为1060280780-=(米),货车的长度为1260780480-=(米).【补充1】马路上有一辆车身长为15米的公共汽车由东向西行驶,车速为每小时18千米.马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上了甲,6秒钟后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟汽车离开了乙.问再过多少秒以后甲、乙两人相遇?【分析】 车速为每秒:181********⨯÷=(米),由“某一时刻,汽车追上了甲,6秒钟后汽车离开了甲”,可知这是一个追及过程,追及路程为汽车的长度,所以甲的速度为每秒:56156 2.5⨯-÷=()(米);而汽车与乙是一个相遇的过程,相遇路程也是汽车的长度,所以乙的速度为每秒:15522 2.5-⨯÷=()(米).汽车离开乙时,甲、乙两人之间相距:5 2.50.560280-⨯⨯+=()()(米),甲、乙相遇时间:80 2.5 2.516÷+=()(秒).【补充2】甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?【分析】 火车开过甲身边用8秒钟,这个过程为追及问题:火车长=(V 车−V 人)×8;火车开过乙身边用7秒钟,这个过程为相遇问题火车长=(V 车+V 人)×7.可得8(V 车−V 人)=7(V 车+V 人),所以V 车=l 5V 人.甲乙二人的间隔是:车走308秒的路−人走308秒的路,由车速是人速的15倍,所以甲乙二人间隔15×308−308=14×308秒人走的路.两人相遇再除以2倍的人速.所以得到7×308秒=2156秒.练习1一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?【分析】 火车过桥时间为1分钟60=秒,所走路程为桥长加上火车长为60301800⨯=(米),即桥长为180********-=(米).2秒间隔距离甲乙练习2小红站在铁路旁,一列火车从她身边开过用了21秒.这列火车长630米,以同样的速度通过一座大桥,用了1.5分钟.这座大桥长多少米?【分析】 因为小红站在铁路旁边没动,因此这列火车从她身边开过所行的路程就是车长,所以,这列火车的速度为:630÷21=30(米/秒),大桥的长度为:30×(1.5×60)−630=2070(米).练习3一列火车长450米,铁路沿线的绿化带每两棵树之间相隔3米,这列火车从车头到第1棵树到车尾离开第101棵树用了0.5分钟.这列火车每分钟行多少米?【分析】 第1棵树到第101棵树之间共有100个间隔,所以第1棵树与第101棵树相距3100300⨯=(米),火车经过的总路程为:450300750+=(米),这列火车每分钟行7500.51500÷=(米).练习4一列火车长200米,通过一条长430米的隧道用了42秒,这列火车以同样的速度通过某站台用了25秒钟,那么这个站台长多少米?【分析】 火车速度为:2004304215+÷=()(米/秒),通过某站台行进的路程为:1525375⨯=(米),已知火车长,所以站台长为375200175-=(米).练习5小新以每分钟10米的速度沿铁道边小路行走,⑴ 身后一辆火车以每分钟100米的速度超过他,从车头追上小新到车尾离开共用时4秒,那么车长多少米? ⑵ 过了一会,另一辆货车以每分钟100米的速度迎面开来,从与小新相遇到离开,共用时3秒.那么车长是多少?【分析】 ⑴这是一个追击过程,把小新看作只有速度而没有车身长(长度是零)的火车.根据前面分析过的追及问题的基本关系式:(A 的车身长B +的车身长)÷(A 的车速B - 的车速)=从车头追上到车尾离开的时间,在这里,B 的车身长车长(也就是小新)为0,所以车长为:100104360-⨯=()(米);⑵这是一个相遇错车的过程,还是把小新看作只有速度而没有车身长(长度是零)的火车.根据相遇问题的基本关系式,(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间,车长为:100103330+⨯=()(米).练习6一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见块车驶过的时间是多少秒?【分析】 这个过程是火车错车,对于坐在快车上的人来讲,相当于他以快车的速度和慢车的车尾相遇,相遇路程和是慢车长;对于坐在慢车上的人来讲,相当于他以慢车的速度和快车的车尾相遇,相遇的路程变成了快车的长,相当于是同时进行的两个相遇过程,不同点在于路程和一个是慢车长,一个是快车长,相同点在于速度和都是快车速度加上慢车的速度.所以可先求出两车的速度和3851135÷=(米/秒),然后再求另一过程的相遇时间280358÷=(秒).练习7长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多长时间?【分析】 根据题目的条件,可求出客车与货车的速度差,再求出货车的速度,进而可以求出两车从相遇到完全离开需要的时间,两列火车的长度之和为:180100280+=(米)两列火车的速度之差为:2802810÷=(米/秒)货车的速度为:15105-=(米)两列火车从相遇到完全离开所需时间为:28015514÷+=()(秒).练习8某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?【分析】 通过前两个已知条件,我们可以求出火车的车速和火车的车身长.车速为:342234231718-÷-=()()(米),车长:182334272⨯-=(米),两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程和÷速度和=相遇时间”,可以求出两车错车需要的时间为728818224+÷+=()()(秒),所与两车错车而过,需要4秒钟.。

应用题板块-行程问题之火车过桥(小学五年级奥数题)

应用题板块-行程问题之火车过桥(小学五年级奥数题)

应用题板块-行程问题之火车过桥(小学五年级奥数题)【一、题型要领】1. 行程问题【基本概念】行程问题源自于研究物体运动,他研究的是物体运动速度、运动时间和经过路程三者之间的关系。

【基本公式】经过路程= 运动速度* 运动时间2. 火车过桥【基本概念】火车过桥是行程问题的一个经典问题,也有路程、速度和时间之间的数量关系。

他的特殊之处在于,经过路程是从车头上桥算起到车尾离桥为止的总路程,如下图所示,也就是列车车长和桥长之和。

【基本公式】列车车长+ 桥长= 火车速度* 运动时间【解题关键】列车车长不可忽略,如果只行进了桥的长度则不能算“过桥”,因此总路程需要加上列车的车长。

【举一反三】一是火车过隧道,过山洞等与火车过桥是相似的;二是由人或者车组成的队列过桥,则队伍本身的长度是不能忽略的。

【二、重点例题】例题1【题目】一列长90米的火车以30米/秒的速度匀速通过一座长1200米的桥,需要多长时间?【分析】这是最基本的火车过桥问题,需注意火车通过大桥所走的距离为桥长加上车身长度【解】(90 + 1200)÷ 30 = 43(秒)【答】火车过桥需要43秒例题2【题目】一列火车通过180米长的桥用时40秒,用同样的速度穿过300米长的隧道用时48秒,求这列火车的长度和速度。

【分析】火车过桥,可以理解为40秒的行程为桥长加上车身长;火车过隧道,可以理解为48秒的行程为隧道长加上车身长,两者相减,相当于火车8秒行驶了120米,由此可以计算出火车的速度,进而计算出火车的长度【解】火车的速度= (300 - 180) ÷ (48 - 40) = 15(米/秒)火车的长度= 15 * 40 - 180 = 420 (米)【答】火车的速度是15米/秒,车长是420米例题3【题目】某小学三、四年级学生共528人,排成四路纵队去看电影,队伍行经的速度是25米/分,前后两人都相距1米,现在队伍要走过一座桥,整个队伍从上桥到离桥用时16分,这座桥的长度有多少米?【分析】由人组成的队伍过桥,需要计算队伍本身的长度。

列车过桥问题

列车过桥问题

火车过桥问题火车过桥问题例题1、一列小火车长48米,以每小时16千米的速度通过一座752米的桥。

问:从车头上桥到车尾离桥共要多少时间?问:从车头上桥到车尾离桥共要多少时间?需要多少秒?1、一列列车车长150米,每秒行19米,全车通过420米的大桥,需要多少秒?2、一列火车长260米,每秒行20米,要经过一个800米长的隧道,问:这列火车通过这个隧道需要多少秒?火车通过这个隧道需要多少秒?3、一列火车长150米,每秒钟行19米。

全车通过长800米的大桥,需要多少时间?4、一列火车长200米,它以每秒10米的速度穿过200米长的隧道,从车头进入隧道到车尾离开隧道共需要多少秒?5、一列火车长700米,以每分钟400米的速度通过一座长900米的大桥.从车头上桥到车尾离要多少分钟?6、一条隧道长760米.现有一列长240米的火车以每秒25米的速度经过这条隧道要用多少时间?7.一列火车长200米,它以每秒10米的速度穿过300米长的隧道,从车头进入隧道到车尾离开隧道共需要多长时间?道到车尾离开隧道共需要多长时间?8.一列火车长180米,米,每秒行每秒行20米,米,这列火车通过这列火车通过320米长的大桥,米长的大桥,需要多需要多少时间?少时间?9. 长150米的火车以每秒18米的速度穿越一条300米的隧道。

问火车穿越隧道(进入隧道直到完全离开)要多少时间?隧道(进入隧道直到完全离开)要多少时间?10、夏令营的小同学们要过一座296米长的大桥。

米长的大桥。

他们共有他们共有162人,人,排成两路排成两路纵队,每两个人相距50厘米,队伍行进的速度是每分钟56米。

问整个队伍通过桥共需多少分钟?过桥共需多少分钟?11、少先队员248人排成两路纵队去参观科技展览,队伍行进的速度是每分钟28米,前后两人都相距1米,现在队伍要通过一座长45米的地下通道,整个队伍从进通道到离开通道需几分钟?队伍从进通道到离开通道需几分钟?2、一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾6、少先队员628人排成两路纵队去春游,队伍行进的速度是每分钟行24米,前后两人都相距1米,途中队伍要通过一座长143米的桥,这个队伍从上桥到离桥共需几分钟?离桥共需几分钟?7、有644名解放军官兵排成4路纵队去参加抗洪抢险,队伍行进速度是每秒4路纵队去参加抗洪抢险,队伍行进速度是每秒米,前后两排的间隔距离是1米,现在要通过一座长312米的大桥,整个队伍从开始上桥到全部离桥需要多少时间?从开始上桥到全部离桥需要多少时间?8、铁路沿线的电杆间隔是40米,某旅客在运行的火车中,从看到第一根电线杆到看到第51根电线杆正好是2分钟,火车每小时行多少千米?9. 一列火车长400米,铁路沿线的电线杆间隔都是40米,这列火车从车头到达第一根电线杆到车尾离开第51根电线杆用了2分钟.这列火车每小时行多少千米?10. 夏令营的小同学们要通过一座296米长的大桥.他们共有162人,排成两路纵队,每两个人相距半米,队伍行进的速度是每分钟56米.问整个队伍通过桥共需多少分钟?11. 一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒钟.已知每辆车长5米,两车间隔10米,问这个车队共有多少辆车?4 、一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟。

(完整版)奥数:火车过桥(标准答案版)

(完整版)奥数:火车过桥(标准答案版)

火车过桥一、火车过桥四大类问题1、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程)=火车速度×通过的时间;3、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程)=(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程)=(火车速度−人的速度)×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程)=(火车速度 人的速度)×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程)=(快车速度+慢车速度)×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程)=(快车速度−慢车速度)×错车时间;长度速度方向二、火车过桥四类问题图示例题1【提高】长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?【分析】 火车穿越隧道经过的路程为300150450+=(米),已知火车的速度,那么火车穿越隧道所需时间为4501825÷=(秒).【精英】小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.【分析】 火车40秒走过的路程是660米+车身长,火车10秒走过一个车身长,则火车30秒走660米,所以火车车长为6603220÷=(米).例题2【提高】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长________米.【分析】100名学生分成2列,每列50人,应该产生49个间距,所以队伍长为49149249352304⨯+⨯+⨯+⨯=(米),那么桥长为90430456⨯-=(米).【精英】一个车队以5米/秒的速度缓缓通过一座长200米的大桥,共用145秒.已知每辆车长5米,两车间隔8米.问:这个车队共有多少辆车?【分析】 由“路程=时间×速度”可求出车队145秒行的路程为5×145=725(米),故车队长度为725−200=525(米).再由植树问题可得车队共有车(525−5)÷(5+8)+1=41(辆).例题3【提高】一列火车通过一座长540米的大桥需要35秒.以同样的速度通过一座846米的大桥需要53秒.这列火车的速度是多少?车身长多少米?【分析】 火车用35秒走了——540米+车长;53秒走了——846米+车长,根据差不变的原则火车速度是:(846540)(5335)17-÷-=(米/秒),车身长是:173554055⨯-=(米).【精英】一列火车通过长320米的隧道,用了52秒,当它通过长864米的大桥时,速度比通过隧道时提高0.25倍,结果用了1分36秒.求通过大桥时的速度及车身的长度.【分析】 速度提高0.25倍用时96秒,如果以原速行驶,则用时96×(1+0.25)=120秒,(864−320)÷(120−52)=8米/秒,车身长:52×8−320=96米.【拓展1】已知某铁路桥长960米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用100秒,整列火车完全在桥上的时间为60秒,求火车的速度和长度?【分析】 完全在桥上,60秒钟火车所走的路程=桥长—车长;通过桥,100秒火车走的路程=桥长+车长,由和差关系可得:火车速度为()96021006012⨯÷+=(米/秒),火车长:9601260240-⨯=(米).【拓展2】一列火车的长度是800米,行驶速度为每小时60千米,铁路上有两座隧洞.火车通过第一个隧洞用2分钟;通过第二个隧洞用3分钟;通过这两座隧洞共用6分钟,求两座隧洞之间相距多少米?【分析】 注意单位换算.火车速度60×1000÷60=1000(米/分钟).第一个隧洞长1000×2−800=1200(米),第二个隧洞长1000×3−800=2200(米),两个隧洞相距1000×6−1200−2200−800=1800(米).【拓展3】小明坐在火车的窗口位置,火车从大桥的南端驶向北端,小明测得共用时间80秒.爸爸问小明这座桥有多长,于是小明马上从铁路旁的某一根电线杆计时,到第10根电线杆用时25秒.根据路旁每两根电线杆的间隔为50米,小明算出了大桥的长度.请你算一算,大桥的长为多少米?【分析】 从第1根电线杆到第10根电线杆的距离为:50(101)450⨯-=(米),火车速度为:4502518÷=(米/秒),大桥的长为:18801440⨯=(米).例题4【提高】两列火车相向而行,甲车每时行48千米,乙车每时行60千米,两车错车时,甲车上一乘客从乙车车头经过他的车窗时开始计时,到车尾经过他的车窗共用13秒.问:乙车全长多少米?【分析】390米.提示:乙车的全长等于甲、乙两车13秒走的路程之和.【精英】一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?【分析】8秒.提示:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为280118385⨯=(秒)例题5【提高】铁路旁边有一条小路,一列长为110米的火车以30千米/时的速度向南驶去,8点时追上向南行走的一名军人,15秒后离他而去,8点6分迎面遇到一个向北行走的农民,12秒后离开这个农民.问军人与农民何时相遇?【分析】8点30分.火车每分行30100060500⨯÷=(米),军人每分行115001106044⎛⎫⨯-÷=⎪⎝⎭(米),农民每分行111105005055⎛⎫-⨯÷=⎪⎝⎭(米).8点时军人与农民相距(500+50)×6=3300(米),两人相遇还需3300÷(60+50)=30(分),即8点30分两人相遇.【精英】铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?【分析】行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒.火车的车身长度既等于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差.如果设火车的速度为x米/秒,那么火车的车身长度可表示为(x−1)×22或(x−3)×26,由此不难列出方程.法一:设这列火车的速度是x米/秒,依题意列方程,得(x−1)×22=(x−3)×26.解得x=14.所以火车的车身长为:(14−1)×22=286(米).法二:直接设火车的车长是x,那么等量关系就在于火车的速度上.可得:x/26+3=x/22+1,这样直接也可以x=286米法三:既然是路程相同我们同样可以利用速度和时间成反比来解决.两次的追及时间比是:22:26=11:13,所以可得:(V车−1):(V车−3)=13:11,可得V车=14米/秒,所以火车的车长是(14−1)×22=286(米),这列火车的车身总长为286米.【拓展4】甲、乙两辆汽车在与铁路并行的道路上相向而行,一列长180米的火车以60千米/时的速度与甲车同向前进,火车从追上甲车到遇到乙车,相隔5分钟,若火车从追上到超过甲车用时30秒.从与乙车相遇到离开用时6秒,求乙车遇到火车后再过多少分钟与甲车相遇?【分析】由火车与甲、乙两车的错车时间可知,甲车速度为6018030 3.638.4-÷⨯=千米/时.乙车速度为1806 3.66048÷⨯-=千米/时,火车追上甲车时,甲、乙两车相距5(6048)960+⨯=千米.经过9(38.448)60 6.25÷+⨯=分钟相遇,那么乙车遇到火车后1.25分钟与甲车相遇【拓展5】红星小学组织学生排成队步行去郊游,每分步行60米,队尾的王老师以每分行150米的速度赶到排头,然后立即返回队尾,共用10分.求队伍的长度.【分析】 630米.设队伍长为x 米.从队尾到排头是追及问题,需15060x -分;从排头返回队尾是相遇问题,需15060x +分.由101506015060x x +=-+,解得630x =米 【拓展6】甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍? (2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?【分析】 (1)11倍;(2)11分15秒.(1)设火车速度为a 米/秒,行人速度为b 米/秒,则由火车的长度可列方程()()1815a b a b -=+,求出11a b=,即火车的速度是行人速度的11倍;从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485−135)÷2=675(秒).例题6【提高】快车A 车长120米,车速是20米/秒,慢车B 车长140米,车速是16米/秒.慢车B 在前面行驶,快车A 从后面追上到完全超过需要多少时间?【分析】 从“追上”到“超过”就是一个“追及”过程,比较两个车头,“追上”时A 落后B 的车身长,“超过”时A领先B (领先A 车身长),也就是说从“追上”到“超过”,A 的车头比B 的车头多走的路程是:B 的车长A +的车长,因此追及所需时间是:(A 的车长B +的车长)÷(A 的车速B -的车速).由此可得到,追及时间为:(A 车长B +车长)÷(A 车速B -车速)1201402016=+÷-()()65=(秒). 【精英】快车长106米,慢车长74米,两车同向而行,快车追上慢车后,又经过1分钟才超过慢车;如果相向而行,车头相接后经过12秒两车完全离开.求两列火车的速度.【分析】 根据题目的条件,可求出快车与慢车的速度差和速度和,再利用和差问题的解法求出快车与慢车的速度.两列火车的长度之和:106+74=180(米)快车与慢车的速度之差:180÷60=3(米)快车与慢车的速度之和:180÷12=15(米)快车的速度:(15+3)÷2=9(米)慢车的速度:(15−3)÷2=6(米)【拓展7】从北京开往广州的列车长350米,每秒钟行驶22米,从广州开往北京的列车长280米,每秒钟行驶20米,两车在途中相遇,从车头相遇到车尾离开需要多少秒钟?【分析】 从两车车头相遇到车尾离开时,两车行驶的全路程就是这两列火车车身长度之和.解答方法是:(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间也可以这样想,把两列火车的车尾看作两个运动物体,从相距630米(两列火车本身长度之和)的两地相向而行,又知各自的速度,求相遇时间.两车车头相遇时,两车车尾相距的距离:350280630+=(米)两车的速度和为:222042+=(米/秒);从车头相遇到车尾离开需要的时间为:6304215÷=(秒).综合列式:350280222015+÷+=()()(秒).例题7【提高】【精英】有两列同方向行驶的火车,快车每秒行33米,慢车每秒行21米.如果从两车头对齐开始算,则行20秒后快车超过慢车;如果从两车尾对齐开始算,则行25秒后快车超过慢车.那么,两车长分别是多少?如果两车相对行驶,两车从车头重叠起到车尾相离需要经过多少时间?【分析】 如图,如从车头对齐算,那么超车距离为快车车长,为:332120240-⨯=()(米); 如从车尾对齐算,那么超车距离为慢车车长,为332125300-⨯=()(米). 由上可知,两车错车时间为:300240332110+÷+=()()(秒). 【拓展8】甲乙两列火车,甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车;若两车齐尾并进,则甲车行26秒超过乙车.求两车各长多少米?【分析】 两车齐头并进:甲车超过乙车,那么甲车要比乙车多行了一个甲车的长度.每秒甲车比乙车多行22−16=6米,30秒超过说明甲车长6×30=180米.两车齐尾并进:甲超过乙车需要比乙车多行一整个乙车的长度,那么乙车的长度等于6×26=156米.【拓展9】铁路货运调度站有A 、B 两个信号灯,在灯旁停靠着甲、乙、丙三列火车.它们的车长正好构成一个等差数列,其中乙车的的车长居中,最开始的时候,甲、丙两车车尾对齐,且车尾正好位于A 信号灯处,而车头则冲着B 信号灯的方向.乙车的车尾则位于B 信号灯处,车头则冲着A 的方向.现在,三列火车同时出发向前行驶,10秒之后三列火车的车头恰好相遇.再过15秒,甲车恰好超过丙车,而丙车也正好完全和乙车错开,请问:甲乙两车从车头相遇直至完全错开一共用了几秒钟?【分析】8.75秒 例题8【提高】某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?【分析】 根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),某列车的速度为:(250−210)÷(25−23)=40÷2=20(米/秒)某列车的车长为:20×25−250=500−250=250(米),两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒).【精英】在双轨铁道上,速度为54千米/小时的货车10时到达铁桥,10时1分24秒完全通过铁桥,后来一列速度为72千米/小时的列车,10时12分到达铁桥,10时12分53秒完全通过铁桥,10时48分56秒列车完全超过在前面行使的货车.求货车、列车和铁桥的长度各是多少米?【分析】 先统一单位:54千米/小时15=米/秒,72千米/小时20=米/秒,1分24秒84=秒,48分56秒12-分36=分56秒2216=秒.货车的过桥路程等于货车与铁桥的长度之和,为:15841260⨯=(米);列车的过桥路程等于列车与铁桥的长度之和,为:20531060⨯=(米).考虑列车与货车的追及问题,货车10时到达铁桥,列车10时12分到达铁桥,在列车到达铁桥时,货车已向前行进了12分钟(720秒),从这一刻开始列车开始追赶货车,经过2216秒的时间完全超过货车,这一过程中追及的路程为货车12分钟走的路程加上列车的车长,所以列车的长度为()2015221615720280-⨯-⨯=(米),那么铁桥的长度为1060280780-=(米),货车的长度为1260780480-=(米).【补充1】马路上有一辆车身长为15米的公共汽车由东向西行驶,车速为每小时18千米.马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑.某一时刻,汽车追上了甲,6秒钟后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟汽车离开了乙.问再过多少秒以后甲、乙两人相遇?【分析】 车速为每秒:181********⨯÷=(米),由“某一时刻,汽车追上了甲,6秒钟后汽车离开了甲”,可知这是一个追及过程,追及路程为汽车的长度,所以甲的速度为每秒:56156 2.5⨯-÷=()(米);而汽车与乙是一个相遇的过程,相遇路程也是汽车的长度,所以乙的速度为每秒:15522 2.5-⨯÷=()(米).汽车离开乙时,甲、乙两人之间相距:5 2.50.560280-⨯⨯+=()()(米),甲、乙相遇时间:80 2.5 2.516÷+=()(秒). 【补充2】甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?【分析】 火车开过甲身边用8秒钟,这个过程为追及问题:火车长=(V 车−V 人)×8;火车开过乙身边用7秒钟,这个过程为相遇问题2秒间隔距离甲乙火车长=(V 车+V 人)×7.可得8(V 车−V 人)=7(V 车+V 人),所以V 车=l 5V 人.甲乙二人的间隔是:车走308秒的路−人走308秒的路,由车速是人速的15倍,所以甲乙二人间隔15×308−308=14×308秒人走的路.两人相遇再除以2倍的人速.所以得到7×308秒=2156秒.练习1 一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?【分析】 火车过桥时间为1分钟60=秒,所走路程为桥长加上火车长为60301800⨯=(米),即桥长为180********-=(米).练习2小红站在铁路旁,一列火车从她身边开过用了21秒.这列火车长630米,以同样的速度通过一座大桥,用了1.5分钟.这座大桥长多少米?【分析】 因为小红站在铁路旁边没动,因此这列火车从她身边开过所行的路程就是车长,所以,这列火车的速度为:630÷21=30(米/秒),大桥的长度为:30×(1.5×60)−630=2070(米).练习3一列火车长450米,铁路沿线的绿化带每两棵树之间相隔3米,这列火车从车头到第1棵树到车尾离开第101棵树用了0.5分钟.这列火车每分钟行多少米?【分析】 第1棵树到第101棵树之间共有100个间隔,所以第1棵树与第101棵树相距3100300⨯=(米),火车经过的总路程为:450300750+=(米),这列火车每分钟行7500.51500÷=(米).练习4一列火车长200米,通过一条长430米的隧道用了42秒,这列火车以同样的速度通过某站台用了25秒钟,那么这个站台长多少米?【分析】 火车速度为:2004304215+÷=()(米/秒),通过某站台行进的路程为:1525375⨯=(米),已知火车长,所以站台长为375200175-=(米).练习5小新以每分钟10米的速度沿铁道边小路行走,⑴ 身后一辆火车以每分钟100米的速度超过他,从车头追上小新到车尾离开共用时4秒,那么车长多少米? ⑵ 过了一会,另一辆货车以每分钟100米的速度迎面开来,从与小新相遇到离开,共用时3秒.那么车长是多少?【分析】 ⑴这是一个追击过程,把小新看作只有速度而没有车身长(长度是零)的火车.根据前面分析过的追及问题的基本关系式:(A 的车身长B +的车身长)÷(A 的车速B - 的车速)=从车头追上到车尾离开的时间,在这里,B 的车身长车长(也就是小新)为0,所以车长为:100104360-⨯=()(米);⑵这是一个相遇错车的过程,还是把小新看作只有速度而没有车身长(长度是零)的火车.根据相遇问题的基本关系式,(A 的车身长B +的车身长)÷(A 的车速B +的车速)=两车从车头相遇到车尾离开的时间,车长为:100103330+⨯=()(米). 练习6一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见块车驶过的时间是多少秒?【分析】 这个过程是火车错车,对于坐在快车上的人来讲,相当于他以快车的速度和慢车的车尾相遇,相遇路程和是慢车长;对于坐在慢车上的人来讲,相当于他以慢车的速度和快车的车尾相遇,相遇的路程变成了快车的长,相当于是同时进行的两个相遇过程,不同点在于路程和一个是慢车长,一个是快车长,相同点在于速度和都是快车速度加上慢车的速度.所以可先求出两车的速度和3851135÷=(米/秒),然后再求另一过程的相遇时间280358÷=(秒).练习7长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多长时间?【分析】 根据题目的条件,可求出客车与货车的速度差,再求出货车的速度,进而可以求出两车从相遇到完全离开需要的时间,两列火车的长度之和为:180100280+=(米)两列火车的速度之差为:2802810÷=(米/秒)货车的速度为:15105-=(米)两列火车从相遇到完全离开所需时间为:28015514÷+=()(秒). 练习8某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?【分析】 通过前两个已知条件,我们可以求出火车的车速和火车的车身长.车速为:342234231718-÷-=()()(米),车长:182334272⨯-=(米),两车错车是从车头相遇开始,直到两车尾离开才是错车结束,两车错车的总路程是两个车身之和,两车是做相向运动,所以,根据“路程和÷速度和=相遇时间”,可以求出两车错车需要的时间为728818224+÷+=()()(秒),所与两车错车而过,需要4秒钟.。

火车过桥(精选题型)

火车过桥(精选题型)
火车过桥
课前检测
(1)兄弟两人从100米的跑道的起点同时出发,沿同一方 向跑步,弟弟每分钟跑120米,哥哥每分钟跑140米。几分 钟后哥哥追上弟弟?
(2)骑摩托车的晓辉要追上前面35千米处骑自行车的晓康(两 人同时出发),摩托车每小时行40千米,自行车每小时行15 千米,途中摩托车发生故障,修理了1个小时后继续追,问晓 辉追上晓康共用了多少小时?
(130+250)÷(23+15)= 10(秒)
例5.一列火车通过2400米的大桥需要3 分钟,用同样的速度从路边的一根电 线杆旁边通过,只用了1分钟。求这列 火车的长度。
2400 ÷(3-1)=1200(秒) 1200 x 1 = 1200(米)
【例6】一列火车通过一座长540米的大桥需要35秒。 以同样的速度通过一座846米的大桥需要53秒。这列火 车的速度是多少?车身长多少米?
答: 快车从后面追上到完全超过慢车需要70秒。
例3. 一列火车长180米,每秒行25米。 全车通过一条120米长的山洞,需要 多少时间?
(120+180)÷ 25 = 12(秒)
例4.有两列火车,一列长130米,每秒 行23米。另一列长250米,每秒行15米, 现在两车相向而行,问从相遇到相离 需要几秒钟?
在通过中山桥的时候所走的路程为队伍的长+桥长。
172+58=230(米) 230÷23=10(分)
归纳总结:
(1)一列火车过桥(隧道)所走的路程为:桥长+车长。 (2)两列火车同向行驶,快车从后面追上到完全超过慢车需要追上
两个列车长的路程。 (3)两列车相向行驶,从两车相遇到两车相离,两车合走了:
分析:火车穿过大桥要走 1个桥长+1 个车长。

最新典型应用题归类复习(火车过桥、车长问题)

最新典型应用题归类复习(火车过桥、车长问题)

典型应用题归类复习(火车过桥、车长问题)学习目标:理解掌握有关火车过桥或车长等问题。

学习过程:一、知识点掌握:1、火车过桥:S=桥长+车长2、火车+人:(1)火车+迎面行走的人,相当于相遇问题S=(火车速度+人的速度)×迎面错过的时间(2)火车+同向行走的人,相当于追及问题S=(火车速度-人的速度)×追及时间3、火车+车(1)错车问题,相当于相遇问题S=(快车速度+慢车速度)×错车时间(2)超车问题:相当于追及问题S=(快车速度-慢车速度)×错车时间4、火车上人看车从身边经过(1)看见对车从身边经过,相当于相遇问题S=两车速度之和×时间(2)看见后车从身边经过(相当于追及问题)S=两车速度之差×时间二、练习题:1、一座大桥长3400米,一列火车通过大桥时每分钟行800米,从车头开上桥到车尾离开桥共需4.5分,这列火车长多少米?2、一列火车长700米,以每小时24千米的速度通过一座长900米的大桥,从火车车头上桥到车尾离桥,共需要几分钟?3、一列火车,从车头到达桥头算起,用5秒钟时间全部驶上一座大铁桥,26秒后全部驶离铁桥,已知大桥全长525米,求火车过桥时的速度和火车的长度。

4、一列火车匀速行驶,经过一条长300M的隧道需要20S的时间。

隧道的顶上有一盏灯,垂直向下发光。

灯光照在火车上的时间是10S,火车的长是多少5、在一段复线铁道上两辆火车迎面驶来,A列车车速为20米/秒,B车列车车速为25米/秒,若A车全长200米,B列车全场160米,两列车错车的时间为多少秒?6、甲乙两列火车的长分别为144m和180m,甲车比乙车每秒多行4m,两列火车相向行驶,重相遇到全部错开需9秒,问两列火车的速度各是多少7、一列客车以每小时72千米的速度行驶,客车司机发现对面开来一列货车,速度是每小时54千米,这列货车从他身边驶过,共用了10秒钟,求这列货车的长度是多少米?三、拓展提高:1、甲乙两列火车,甲的速度是15 m/s,乙的速度是11 m/s。

小学六年级数学应用题汇总:列车问题

小学六年级数学应用题汇总:列车问题

小学六年级数学应用题汇总:列车问题这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。

【数量关系】火车过桥:过桥时间=(车长+桥长)÷车速火车追及:追及时间=(甲车长+乙车长+距离)÷(甲车速-乙车速)火车相遇:相遇时间=(甲车长+乙车长+距离)÷(甲车速+乙车速)【解题思路和方法】大多数情况可以直接利用数量关系的公式。

例1、一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。

这列火车长多少米?解:火车3分钟所行的路程,就是桥长与火车车身长度的和。

(1)火车3分钟行多少米?900×3=2700(米)(2)这列火车长多少米?2700-2400=300(米)列成综合算式900×3-2400=300(米)答:这列火车长300米。

例2、一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?解:火车过桥所用的时间是2分5秒=125秒,所走的路程是(8×125)米,这段路程就是(200米+桥长),所以,桥长为8×125-200=800(米)答:大桥的长度是800米。

例3、一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间?解从追上到追过,快车比慢车要多行(225+140)米,而快车比慢车每秒多行(22-17)米,因此,所求的时间为(225+140)÷(22-17)=73(秒)答:需要73秒。

例4、一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间?解:如果把人看作一列长度为零的火车,原题就相当于火车相遇问题。

150÷(22+3)=6(秒)答:火车从工人身旁驶过需要6秒钟。

例5、一列火车穿越一条长2000米的隧道用了88秒,以同样的速度通过一条长1250米的大桥用了58秒。

火车过桥应用题全列

火车过桥应用题全列
火车过桥问题
行程问题
ห้องสมุดไป่ตู้车过桥
火车经过不动的物体
火车过桥:
过桥路程=桥长+车长;
车速=(桥长+车长)÷过桥时间;
火车

火车
火车的路程
桥长=车速×过桥时间-车长;
车长=车速×过桥时间-桥长; 过桥时间=(桥长+车长)÷过桥时间。 若为火车过人(树)时,不存在桥长。
【例1】(1)一列火车长200米,它以每秒10米的速度通过路旁的一棵小树,从车头遇见树到车尾离开树需要多少秒?
思考:200米是什么?题目要求什么? 题目要求的是过桥时间。 200米是车长。
公式:过桥时间=车长÷车 速 过桥时间:200÷10=200(秒)
路程(一个车长) 火车 树 火车
【例1】(2)150米的火车以18米/秒的速度穿越一300米隧道。火车穿越隧道(进入隧道直至完全离开)要多长时间?
公式:过桥时间 =(桥长+车长)÷过桥时 思考:公式是什么? 间 (150+300)÷18=25(秒)

火车过桥问题(教材p99习题)

火车过桥问题(教材p99习题)
火车过桥问题
例题1. 一列火车长300米,它以30米每秒的速度经过 路边一棵树,需要多长的时间?
火车过树:路程=车长
火车车长
300 ÷30 =10(秒) 答:这列火车经过树需要10秒钟。
例题2.一列火车长180米,每秒行20米,这列火车通过 320米长的大桥需要多长时间?
例题2.一列火车长180米,每秒行20米,这列火车通过 320米长的大桥需要多长时间?
桥长+车长
例题3. 一列火车通过一座长1000米的桥,从火车车头 上桥,到车尾离开桥共用120秒,而火车完全在桥上的 时间是80秒,你知道火车有多长吗?
桥长+车长
120秒 什么是不变的? 如何列方程?
桥长-车长
80秒
例4 一列火车匀速行驶,隧道的顶上有一
盏灯,垂直向下发光,灯光照在火车上的 时间是10秒,经过一条长300米的隧道需要20
x x 300 10 20
x= 300答:火车的长源自是300 米。秒的时间,则火车的长度是多少米?
第一种情况:
路 程 灯光照在火车上 时 间 速 度
10秒
火车完全通过隧道是指:从车头进入隧道至车尾离开隧道。
隧道长度:300m 车身长度x米 通过隧道的路程:(x+300)m
第二种情况:
路 程
火车过隧道 (x+300)米
时间
20秒
速 度
解:设火车的长度是x米
由题意得:
桥长
火车车长
火车过桥:路程=桥长+车长
桥长+车长
(320 + 180)÷20 =20(秒) 答:这列火车经过桥需要20秒钟。
例题3. 一列火车通过一座长1000米的桥,从火车车头 上桥,到车尾离开桥共用120秒,而火车完全在桥上的 时间是80秒,你知道火车有多长吗?

典型应用题归类复习(火车过桥、车长问题)

典型应用题归类复习(火车过桥、车长问题)

欢迎共阅典型应用题归类复习(火车过桥、车长问题)
学习目标:理解掌握有关火车过桥或车长等问题。

学习过程:一、知识点掌握:
1、火车过桥:S=桥长+车长???
2、火车+人:
(1)火车+迎面行走的人,相当于相遇问题S=(火车速度+人的速度)×迎面错
三、拓展提高:
1、甲乙两列火车,甲的速度是15 m/s,乙的速度是11 m/s。

两辆车同向行驶的超车时间比两辆车相向行驶时的错车时间多55s,若甲车长150m,求乙车的长度?
2、甲乙两列火车长分别为144米和180米,甲车比乙车每秒多行4米,(1)、两列车相向行驶,从相遇到错开,需9秒,求两车的车速?(2).两车若同向行驶,甲车的头从乙车的尾追及到全部超过,乙车需要几秒?
四、反思与疑惑:。

四年级数学应用题专题-火车过桥问题

四年级数学应用题专题-火车过桥问题

四年级数学应用题专题—火车过桥问题【知识要点】:“火车过桥”也是行程问题的一种情况。

首先要清楚列车通过一段桥,是从车头上桥到车尾离桥,火车运动的总路程是桥长加车长,这是解题的关键。

其它问题可以按照行程问题的一般数量关系来解决。

我们在学习这个专题时可以利用身边现成的东西,如橡皮、铅笔等,根据题意动手演示,使题目的内容形象化,从而找到解题的线索。

基本关系是:火车走过的路程=车长+桥长。

(火车长度+桥的长度)÷通过时间=火车速度【基础练习】一、复习行程问题的数量关系。

1、小明每分钟走60米,照这样的速度,10分钟能走多少米?60×10=600(米)数量关系:速度×时间=路程2、改编成两道除法题。

(1)小明每分钟走60米,照这样的速度,走完600米需要多长时间?600÷60=10(分钟)数量关系:路程÷速度=时间(2)小明10分钟能走600米,平均每分钟走多少米?600÷10=60(米/分)数量关系:路程÷时间=速度【题型精选】(一)基本题。

1、一列客车经过南京长江大桥,桥长6700米,这列客车车长100米,火车每分钟行400米,这列客车经过长江大桥需要多少分钟?分析:火车经过南京长江大桥行驶的总路程是桥长加车长,然后根据“路程÷速度=时间”这个数量关系式就能求出经过大桥所需时间。

(6700+100)÷400=6800÷400=17(分钟)答:这列客车经过长江大桥需要17分钟。

2、一列火车长160米,全车通过440米的桥需要30秒钟,这列火车每秒行多少米?分析:这是过桥问题中求车速的问题。

利用“路程÷时间=速度”这个关系式。

注意火车所行驶的总路程是车长+桥长。

(160+440)÷30=600÷30=20(米/秒)答:这列火车每秒行20米。

3、一列火车长240米,这列火车每秒行15米,从车头进洞到全车出洞共用20秒,山洞长多少米?分析:火车过山洞和火车过桥道理一样。

火车过桥问题专题练习讲解

火车过桥问题专题练习讲解

火车过桥问题专题练习讲解你知道吗火车过桥是行程问题中一类有趣的小问题。

通常,在行程中所涉及的运动物体(人或车)是不考虑本身长度的,但火车的长度不能忽略不计。

火车通过大桥是指从车头上桥到车尾离桥,也就是火车运动的总路程是车长加桥长。

过桥问题的基本数量关系:车速=(桥长+车长)÷通过时间通过时间=(桥长+车长)÷车速桥长=车速×通过时间-车长车长=车速×通过时间-桥长这类问题经常涉及到错车和超车:(甲车身长+乙车身长)÷(甲速+乙速)=错车时间;(甲车身长+乙车身长)÷(甲速-乙速)=超车时间。

典例精讲例题1一列火车以每分钟600米的速度通过一座长2200米的大桥,如果火车全长200米,从车头上桥到车尾离开大桥另一端,共需多少分钟?例题2 慢车车身长125米,车速为每秒17米;快车车身长140米,车速为每秒22米。

慢车在前面行驶,快车在后面从追上到完全超过需要多少秒?例题3 一列火车通过一座长1260米的桥(车身上桥直至车尾离桥)用了60秒,火车穿越长2010米的隧道用了90秒。

问:这列火车的车速和车身长各是多少?例题4 两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米。

两车错车时,甲车上一乘客发现:乙车车头经过他的车窗开始到车尾离开他的车窗共用了14秒。

求乙车的车长。

试一试1、一列火车通过450米长的隧道用了23秒,从头到尾经过一个站在铁路边的扳道工人用了8秒。

问:这列火车的速度和车身长度各是多少?2、两列火车,长度都是270米,从甲乙两地都以每小时54千米的速度相对开出,求这两列火车从相遇到相离,要用几秒钟?答3、长135米的列车以每秒12米的速度行驶,后面开来长126米的另一列车,每秒行驶17米。

求这列车从车头遇到前面的车到完全超过前面的车用了多少秒?4、长90米的列车以每小时54千米的速度行驶,它追上并超过长50米的列车用了14秒。

火车过桥例题及练习

火车过桥例题及练习

火车过桥过桥问题也是行程问题的一种。

首先要弄清列车通过一座桥是指从车头上桥到车尾离桥。

列车过桥的总路程是桥长加车长,这是解决过桥问题的关键。

过桥问题也要用到一般行程问题的基本数量关系:过桥问题的一般数量关系是:因为:过桥的路程= 桥长+ 车长所以有:通过桥的时间=(桥长+ 车长)÷车速车速= (桥长+ 车长)÷过桥时间公式的变形:桥长= 车速×过桥时间—车长车长= 车速×过桥时间—桥长后三个都是根据第二个关系式逆推出的。

火车通过隧道的问题和过桥问题的道理是一样的,也要通过上面的数量关系来解决。

一、例题与方法指导例1. 一列客车经过南京长江大桥,大桥长6700米,这列客车长100米,火车每分钟行400米,这列客车经过长江大桥需要多少分钟思路导航:从火车头,到火车尾离桥,这之间是火车通过大桥的过程,也就是过桥的路程是桥长+车长。

通过“过桥的路程”和“车速”就可以求出火车过桥的时间。

(1)过桥路程:6700+100=6800(米)(2)过桥时间:6800÷400=17(分)答:这列客车通过南京长江大桥需要17分钟。

例2:一列火车长160米,全车通过440米的桥需要30秒钟,这列火车每秒行多少米思路导航:要想求火车过桥的速度,就要知道“过桥的路程”和过桥的时间。

(1)过桥的路程:160+440=600(米)(2)火车的速度:600÷30=20(米)答:这列火车每秒行20米。

例3:某列火车通过360米的隧道用了24秒钟,接着通过第二个长216米的隧道用了16秒钟,求这列火车的长度思路导航:火车通过第一个隧道比通过第二个隧道多用了8秒,为什么多用8秒呢原因是第一个隧道比第二个隧道长360—216 = 144(米),这144米正好和8秒相对应,这样可以求出车速。

火车24秒行进的路程包括隧道长和火车长,减去已知的隧道长,就是火车长。

(1)第一个隧道比第二个长多少米360—216 = 144(米)(2)火车通过第一个隧道比第二个多用几秒24—16 = 8(秒)(3)火车每秒行多少米144÷8 = 18(米)(4)火车24秒行多少米18×24 = 432(米)(5)火车长多少米432—360 = 72(米)答:这列火车长72米。

六年级上册数学《火车过桥问题》数量关系+分类

六年级上册数学《火车过桥问题》数量关系+分类

六年级上册数学必考《火车过桥问题》数量关系+练习过桥问题的一般数量关系是:路程=桥长+车长车速=(桥长+车长)÷通过时间通过时间=(桥长+车长)÷车速桥长=车速×通过时间-车长车长=车速×通过时间-桥长◎注:通过隧道的问题和过桥问题的道理是一样的,也要通过上面的数量关系来解决。

在解决过桥问题时,对于火车所行驶的路程要特别注意,火车完全通过桥梁或者隧道时的路程包括两段:车长+桥长(或隧道长)1、最简单的过桥问题,火车过桥。

例:一列长120米的火车,通过长400米的桥,火车的速度是10米/秒,求火车通过桥需多长时间?解题思路:火车行的路程是一个车长+桥长,然后利用公式时间=路程÷速度即可求出通过桥的时间。

答案:(120+400)÷10=52(秒)答:火车通过桥需要52秒。

2、两列火车错车问题。

例1:两列火车相向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,当两车错车时,甲车一乘客,看到乙车火车头从她的窗前经过,到乙车车尾离开他的窗户,共用时8秒,求乙车的长度。

解题思路:这类问题类似于相遇问题,路程是乙车车长,然后利用公式路程=速度和x时间算出乙车车长。

答案:(20+25)x8=360(米)答:乙车长360米。

例2:两列火车相向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,已知甲车长250米,乙车长200米,从两车车头到两车车尾离开,需要多少时间?解题思路:这类问题类似于相遇问题,路程是两车车长,然后利用公式时间=路程÷速度和算出错时间。

答案:(200+250)÷(25+20)=10(秒)答:需要10秒。

3、两列火车超车问题。

例:两列火车同向而行,甲火车的速度是20米/秒,乙火车的速度是25米/秒,已知甲车长250米,乙车长200米,从乙车车头追上甲车车尾到乙车车尾离开甲车头需多少时间?解题思路:此类问题相当于追及问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型应用题归类复习(火车过桥、车长问题)
学习目标:理解掌握有关火车过桥或车长等问题。

学习过程:一、知识点掌握:
1、火车过桥:s=桥长+车长
2、火车+人:
(1)火车+迎面行走的人,相当于相遇问题S=(火车速度+人的速度)泌面错过的时间
(2)火车+同向行走的人,相当于追及问题S=(火车速度-人的速度)槌及时间
3、火车+车
(1)错车问题,相当于相遇问题S=(快车速度+慢车速度)>错车时间
(2)超车问题:相当于追及问题S=(快车速度-慢车速度)x错车时间
4、火车上人看车从身边经过
(1)看见对车从身边经过,相当于相遇问题S=两车速度之和X寸间
(2)看见后车从身边经过(相当于追及问题)S=两车速度之差X时间
二、练习题:
1、一座大桥长3400米,一列火车通过大桥时每分钟行800米,从车头开上桥到车尾离开桥共需4.5分,这列火车长多少米?
2、一列火车长700米,以每小时24千米的速度通过一座长900米的大桥,从火车车头上桥到车尾离桥,共需要几分钟?
3、一列火车,从车头到达桥头算起,用5秒钟时间全部驶上一座大铁桥,26秒后全部驶离
铁桥,已知大桥全长525米,求火车过桥时的速度和火车的长度。

4、一列火车匀速行驶,经过一条长300M的隧道需要20S的时间。

隧道的顶上有一
盏灯,垂直向下发光。

灯光照在火车上的时间是10S,火车的长是多少
5、在一段复线铁道上两辆火车迎面驶来,A列车车速为20米/秒,B车列车车速为25米/秒,若A车全长200米,B列车全场160米,两列车错车的时间为多少秒?
&甲乙两列火车的长分别为144m和180m,甲车比乙车每秒多行4m,两列火车相向行驶,重相遇到全部错开需9秒,问两列火车的速度各是多少
7、一列客车以每小时72千米的速度行驶,客车司机发现对面开来一列货车,速度是每小时54千米,这列货车从他身边驶过,共用了10秒钟,求这列货车的长度是多少米?
三、拓展提高:
1、甲乙两列火车,甲的速度是15 m/s,乙的速度是11 m/s。

两辆车同向行驶的超车时间比两辆车相向行驶时的错车时间多55s,若甲车长150m,求乙车的长度?
2、甲乙两列火车长分别为144米和180米,甲车比乙车每秒多行4米,(1)、两列车相向行驶,从相遇到错开,需9秒,求两车的车速?(2).两车若同向行驶,甲车的头从乙车的尾追及到全部超过,乙车需要几秒?
四、反思与疑惑:。

相关文档
最新文档