复变函数积分PPT课件

合集下载

复变函数的积分Cauchy积分定理PPT课件

复变函数的积分Cauchy积分定理PPT课件

L


L v(x, y)dx u(x, y)dy {v[x(t), y(t)]x(t) v[x(t), y(t)]y(t)}dt


L f (z)dz {u[x(t), y(t)] iv[x(t), y(t)][x(t) iy(t)]}dt

f [z(t)]z(t)dt
计算积分
zdz,(1)L
L
C1, (2)L

C2
C3.
分析:
y z0 1 i
(1)C1的方程为z=(1 i)x,x:0 1
1
zdz [(1 i)x (1 i)]dx 1
C1
0
C1
C3
(2)C2的方程为z=x,x:0 1,C3的方程为o z=1+iyC,2y:0z1 1 x
r n1 0
0
当n 1时, dz 0
C (z z0 )n
当n 1时,
C
dz (z z0 )n
2 i
曲线积分与曲面积分
5
结论 :
dz 2 i n 1
C (z z0 )n

0
n 1
曲线积分与曲面积分
6
例2:设C1是从原点到z0 =1+i的直线段,C2是从原 点到z1=1直线段,C3是从z1=1到z0 =1+i的直线段,
1 z
z
曲线积分与曲面积分
26
定义2
若在区域D中(z)=f(z),则称(z)是f(z)在单连通 域D中的一个原函数。
曲线积分与曲面积分
27
定义2
若在区域D中(z)=f(z),则称(z)是f(z)在单连通 域D中的一个原函数。

复变函数与积分变换PPT_图文_图文

复变函数与积分变换PPT_图文_图文

x y=-3
§1.4 复数域的几何模型---复球面
N
0
对复平面内任一 点z, 用直线将z 与N相连, 与球面 相交于P点, 则球 面上除N点外的 所有点和复平面 上的所有点有一 一对应的关系, 而N点本身可代 表无穷远点, 记 作.
这样的球面称作 x1
复球面.
x
x1
x3
除了复数的平
面表示方法外,
加减法与平行四边形 法则的几何意义:
乘、除法的几何意义
:
,
,
,
定理1 两个复数乘积的模等于它们的模的乘积, 两个复 数乘积的幅角等于它们幅角的和.
几何上 z1z2 相 当于将 z2 的 模扩大 |z1| 倍 并旋转一个角
度Arg z1 .
0
1
等式 Arg(z1z2)=Arg z1+Arg z2, 的意思是等式的两 边都是无限集合, 两边的集合相等, 即每给定等式左边 的一个数, 就有等式右边的一个数与之对应, 反之亦然 .
复变函数与积分变换PPT_图文_图文.ppt
引言
在十六世纪中叶,G. Cardano (1501-1576) 在研究一元二次
方程
时引进了复数。他发现这个方程没有根,并
把这个方程的两个根形式地表为
。在当时,
包括他自己在内,谁也弄不清这样表示有什麽好处。事实上,
复数被Cardano引入后,在很长一段时间内不被人们所理睬,并 被认为是没有意义的,不能接受的“虚数”。直到十七与十八世纪,
解:
设 z = x + i y , 方程变为
y
O
x
-i
几何上, 该方程表示到点2i和-2的距离相等的点的轨 迹, 所以方程表示的曲线就是连接点2i和-2的线段的垂直

复变函数与积分变换-PPT课件

复变函数与积分变换-PPT课件
i i 1 2 1 2
推广至有限个复数的乘法
i i i n 1 2 z z z r e r e r e 12 n 1 2 n i ( ) 1 2 n r r r e 12 n
浙江大学
除法运算
z1 0
z2 z2 z1 z1
z2 z2 , z1 z1
n 1 1 n
浙江大学
x iy z1 x1 iy1 1 iy 1 x 2 2 x2 iy iy z2 x2 iy2 2 x 2 2

x x y y i x y x y 1 2 1 2 2 1 1 2
x y
2 2 2 2
b) 按上述定义容易验证 加法交换律、结合律
当k=0,1,2,…,n-1时,得到n个相异的根:
w r (cos isin ) 0 n n 1 2 2 n w r (cos i sin ) 1 n n 1 4 4 n w r (cos i sin ) 2 n n
1 n


2 ( n 1 ) 2 ( n 1 ) w r (cos i sin )
z z ( z z ) e 3 1 2 1 1 3 ( 1i)( i) 2 2 1 3 1 3 i 2 2
3 3 1 3 z i 3 2 2
i 3
z3
z2
x
O
z1
3 3 1 3 z i 3 2 2
浙江大学
复数的乘幂
n个相同复数z的乘积成为z的n次幂
z1
O 加法运算 x
z z z z 1 2 1 2
浙江大学
y
z1
z2

复变函数与积分变换复数与复变函数PPT课件

复变函数与积分变换复数与复变函数PPT课件

将它们代入所给的直线方程ax+bx=c,有
化简得
记α=a+ib,β=2c,便得结论.
(3)方程|z-i|=|z+2i|表示到点i和-2i的距离相等的点z的轨迹,
即连接复数i和-2i的线段的垂直平分线.
(4) 方程
表示一个圆周.
第31页/共75页
1.1.5无穷远点与扩充复平面 取一个与 相切于坐标原点O的球面S. 过O作与复平面相垂直的直线,该直线 与球面S交于另一点N,O和N分别称为 球面的南极和北极(图1.7).
第1页/共75页
1.1.1复数域 形如
1.1复数
的数称为复数,其中x和y是任意的实数,分别称为复数z的实部与虚
部,记作x=Re z,y=lm z;而i(也可记为 )称为纯虚数单位.
当Im z=0时,z=Re z可视为实数;而当Re z=0,Im z≠0时,z称
为纯虚数;特别地,当Re z=Im z=0时,记z=0+i0=0.
第4页/共75页
1.1.2复平面、复数的模与辐角 由于一个复数z=x+iy可以由有序实数对(x,y)唯一确定,而有序实 数对(x,y)与平面直角坐标系xOy中的点一一对应,因此可以用坐标 为(x,y)的点P来表示复数z=x+iy (图1.1),此时x轴上的点与实数 对应,称x轴为实轴,y轴上的点(除原点外)与纯虚数对应,称y轴 为虚轴.像这样表示复数的平面称为复平面,或按照表示复数的字母 是z,w,…,而称为z平面、w平面,等等.
图1.5
第21页/共75页
例1.5设n为自然数,证明等式
证明令
,/共75页
1.1.4共轭复数 设复数z=x+iy,称复数x-iy为z的共轭复数,记为 于实轴对称的(图1.6). 由定义,容易验证下列关系成立:

复变函数与积分变换全套精品课件

复变函数与积分变换全套精品课件
复变函数与积分变换
全套课件
§1.1 复 数
1. 复数的概念
形如 z a ib 或 z a bi 的数称为复数。 i称为虚单位,即满足 i2 1 a和b为实数,分别称为复数z的实部和虚部,记作 a Re z, b Im z. •当且仅当虚部b=0时,z=a是实数; •当且仅当a=b=0时,z就是实数0; •当虚部b≠0时,z叫做虚数; •当实部a=0且虚部b≠0时,z=ib称为纯虚数. 全体复数的集合称为复数集,用C表示. 实数集R是复数集C的真子集.
Hale Waihona Puke 1 1 1) Re z ( z z ), Im z ( z z ). 2 2i z z 2)( z w) z w, zw z w, ( ) ( w 0). w w 3) zw z w . z 4) z . w w 5) z z .
复数的模和共轭复数的性质
乘法
z1 z2 ac ibc iad i 2bd (ac bd ) i(bc ad )
z zz
2
除法
z1 a ib (a ib)(c id ) ac bd bc ad 2 i 2 , z2 0 2 2 z2 c id (c id )(c id ) c d c d
4. 复数的三角表示和复数的方根
复平面C的不为零的点 z x iy 极坐标 (r, ) : x r cos , y r sin
r z,
是正实轴与从原点O到z的射线的 夹角,称为复数z的幅角,记为 Argz
满足条件 π π 的幅角称为Argz的主值,记为 =argz,于是有=Argz=argz+2k, k=0,±1,±2,…. 复数的三角表示 z=r(cos+isin)

复变函数与积分变换课堂PPT课件

复变函数与积分变换课堂PPT课件
完全类似在此基础上,也可以得出类似于微积分学中的 基本定理和牛顿-莱布尼兹公式。先引入原函数的概念。
第45页/共104页
定义 即
如果函数 , 则称
在区域D内的导数等于 f (z), 为 f (z)在区域B内的原函数。
定理二表明
是 f (z)的一个原函数。
• 容易证明,f (z)的任何两个原函数相差一个常数。
,因此有

第48页/共104页
有了原函数、不定积分和积分计算公式,复变函数
E'
E
C
B'
B
C1
即 或
第30页/共104页
上式说明如果将 C 及 沿C逆时针, 沿
看成一条复合闭路G, 其正向为: 顺时针, 则
上式说明在区域内的一个解析函数沿闭曲线的积分, 不 因闭曲线在区域内作连续变形而改变它的值, 只要在变 形过程中不经过函数
D
f (z)不解析的点。这 一重要事实,称为 闭路变形原理。
今后讨论积分,如无特别说明,总假定被积函数是连续 的,曲线C是按段光滑的。
第10页/共104页
例1 计算
, 其中C为原点到点3+4i的直线段。
[解]直线的方程可写作
或 在C上,
。于是
又因
第11页/共104页
容易验证,右边两个线积分都与路线C无关,所以 的值,不论C是怎样的连接原点到3+4i的曲线,
第27页/共104页
在上一节中,讨论了柯西-古萨定理是在单连通域
里,现将柯西-古萨基本定理推广到多连通域的情况。
设函数 f (z)在多连通域D内解析,C为D内的任意一条
简单闭曲线,当C的内部不完全含于D时,沿C的积分 就不一定为零。

复变函数与积分变换第3章积分PPT课件

复变函数与积分变换第3章积分PPT课件

0
0
22
例2 计算 zdz, zdz的值, 其中
C1
C2
C1是单位圆 z 1的上半圆周, 顺时针方向;
C2是单位圆 z 1的下半圆周,逆时针方 向.
解: 1)C1 : z ei ,0 .
zdz
0 e i ie i d i
0
dt i
C1
2)C2 : z ei , 0.
第三章 复变函数的积分
(与实函数中二型线积分类比)
• §3.1复积分的概念 • §3.2 Cauchy积分定理 • §3.3 Cauchy积分公式 • §3.4解析函数的高阶导数
§3.1复积分的概念
1. 积分的定义 2. 积分存在的条件及其计算法 3. 积分性质
1. 积分的定义
y
定义 设(1)w f (z) z D (2)C为区域D内点A 点B
zdz
0 e i ie i d i
0
dt i
C2
可见,在本题中,C的起点与终点虽然相同,但路径
不同,积分的值也不同.
练习 计算 z dz. (1)C : i i的直线段; C
(2)C:左半平面以原点为中心逆时针方向的单位半圆周。
解(1)线段 的参数方程为 z it t :1 1
i
例3
计算
C
(z
dz z0
)n1
这里C表示以
z0为中心,
r为半径的正向圆周, n为整数.
解 C : z z0 rei 0 2
y z z0 rei
dz C (z z0 )n1
2 0
ire i r e n1 i(n1)
d
o
z
z0
2 i 0 r ne in

复变函数与积分变换PPT课件

复变函数与积分变换PPT课件
11 2i (2 i )( 5i) 11 2i 5 10i 25 5i (5i) 25 25
16 8 i 25 25
所以
16 8 Re z , Im z 25 25
16 8 16 8 64 zz ( i)( i) 25 25 25 25 125
1. 复数的乘幂 设 n 为正整数, n 个非零相同复数 z 的乘 z 的 n 次幂,记为 z n ,即 积,称为
z n z z z
n个
若 z r(cos i sin ) ,则有
z n r n (cos n i sin n )
当 r 1 时,得到著名的棣莫弗公式 (cos i sin ) n cos n i sin n
所以 r z ( 1) 2 ( 3) 2 2 设 arg z, 则
3 tan t 3 1
又因为 z 1 i 3 位于第II象限 2 所以 arg z 3 于是
2 2 z 1 i 3 2(cos i sin ) 3 3
y arctan x , z在第一、四象限 y y arg z arctan , z在第二象限 其中 arctan 2 x 2 x y arctan x , z在第三象限
说明:当 z 在第二象限时, arg z 0 2 2 y y arctan tan( ) tan( ) tan
z0
25



开集 如果点集 D 的每一个点都是D 的内 点,则称 D 为开集. 闭集 如果点集 D 的余集为开集,则称D 为闭集. 连通集 设是 D 开集,如果对于 D 内任意两 点,都可用折线连接起来,且该折线上的 点都属于 D ,则称开集 D 是连通集.

复变函数PPT第03章复变函数的积分

复变函数PPT第03章复变函数的积分

那么

y
C
f ( z ) dz = ∫
T t0
f [ z ( t )] z′( t ) dt
C
z
Z = z (T )
z0 = z ( t 0 )
z = x+iy
o
x
积分的存在性及求法
证 f⎡ ⎣ z(t )⎤ ⎦ = u⎡ ⎣ x ( t ) , y ( t )⎤ ⎦ + i v⎡ ⎣ x(t ), y(t )⎤ ⎦ 所以
∑ ( u Δy
k =1 k
n
k
+ v k Δxk )
因为 u( x , y ) , v ( x , y ) 沿 C 连续 ,
所以
lim ∑ ( uk Δxk −vk Δyk ) = ∫ udx − vdy
δ→ 0 k =1 n C
n
lim ∑ ( uk Δyk +vk Δxk ) = ∫ vdx + udy
δ→ 0 k =1
ζk
z k −1
zk
Z
z n −1
o
x
积分的存在性及求法
∫ ∫

C
zdz = lim ∑ zk Δzk = lim ∑ zk ( zk − zk −1 )
δ→ 0 k =1 n δ→ 0 k =1
n
n
C
zdz = lim ∑ zk −1Δzk = lim ∑ zk −1 ( zk − zk −1 )

C
f ( z )d z . 即 f ( z )dz = lim∑ f ( ζ k )Δzk
δ→0 k =1 n

C
积分的存在性及求法 三、积分的存在性及求法

第3章复变函数的积分.ppt

第3章复变函数的积分.ppt

2
x 2
2
y 2
0
那么称(x, y) 为区域D内的调和函数.
定理 任何在区域D内解析的函数,它的实 部和虚部都是D内的调和函数.
共轭调和函数 设 u(x, y)为区域D内给定的调和函数,我们把
使 u iv 在D内构成解析函数的调和函数
分记作 f (z)dz.
C
3.1.2 积分存在的条件及其计算方法
1) 当 f (z)是连续函数且 C 是光滑(或按段 光滑)曲线时,积分是一定存在的。
2) C f (z)dz可以通过两个二元实变函数的
积分来计算。
设 C 由参数方程 z(t) x(t) iy(t), t 给出,
3.2 柯西—古萨(Cauchy—Goursat)基本 定理
如果函数 f (z) 在单连通域 B 内处处解析, 那末函数 f (z) 沿 B 内的任何一条封闭曲线
C 的积分值为零。即
c f zdz 0
3.3 基本定理的推广-复合闭路定理 闭路变形原理
在区域内的一个解析函数沿闭曲线的积分 不因闭曲线在区域内作连续变形而改变它 的值. 复合闭路定理
1 [( 2!
cos z
z
)''
]z
2
8i
3)f
(z)

C3 内有两个奇点
z1
0,z2
2
,故
I
cos z C1 (z 2)3
dz z
cos z dz C2 z (z 2)3
(8
16
2
)i
3.7 解析函数与调和函数的关系 调和函数
如果二元实变函数(x, y) 在区域D内具有二 阶连续偏导数并且满足拉普拉斯方程

复变函数的积分课件

复变函数的积分课件

C
2
例2
zdz
zdz 1
C1
C
C2 zdz 1 i
f (z)不满足C-R方程, 在复平面内处处不解 析.此时积分与路线有关.
例4
dz 2 i f (z)在以z0为中心的圆周内不是处处
解析的,z此z0 时r z z0
1 dz 2 虽i 然0.在除z0外的圆内处处解
析,但此区域已不c z是 z单0 连通域
Sn 有唯一极限, 那么称这极限值为函数
y
D
1 A
2
z1
z2
B
C zn1
k zk zk 1
f (z) 沿曲线 C 的积分, 记为
o
x
n
C
f
( z )dz
lim
n
k 1
f
( k ) zk
3
第三页,共79页。
关于定义的说明:
(1) 如果 C 是闭曲线, 那么沿此闭曲线的积分
记为 f (z)dz.
(0 t 1),
于是 Re(z) t, dz (1 2ti)dt,
Re(z)dz C
1
t(1 2it)dt
0
t2 2
2i 3
t3
1
0
1 2
2 3
i;
15
第十五页,共79页。
(3) 积分路径由两段直线段构成
y
i
1 i
x轴上直线段的参数方程为
z(t) t (0 t 1),
于是 Re(z) t, dz dt,
k 1
k 1
所以 C f (z)dz C f (z)ds ML.
[证毕]
18
第十八页,共79页。
例6 设 C 为从原点到点 3 4i 的直线段,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3.3)
复积分的变量代换公式
.
13
证明
C
Hale Waihona Puke f (z)dzudxvdyi vdxudy
C
C
{ u [x (t),y (t)]x (t) v [x ( t),y ( t)]y ( t)} d t
i{ v [x ( t) ,y ( t) ]x ( t) u [x ( t) ,y ( t) ]y ( t) } d t
把曲线C分成若干弧段,
在 每 个 弧 段 z¼ k1zk上 任 意 y
取 一 点k(k1,2,L,n),
n
作和式 Sn f (k)zk,
a
1
2
z1
z2
b
C zn1
k zk z k 1
k1
o
x
.
5
n
Sn f (k)zk, k1
其中zk zk zk1, 当分点无限增多, 而这些弧段 长度的最大值趋于零时,如果和数Sn的极限存在且等于 J,则称f(z)沿C(从a到b)可积,而称J为f(z)沿C(从a到b)
径的正 ,n为 向整 .圆数 周 y z
解 积分路径的参数方程为
z0 r
z z 0 rie( 0 2 π ),o
x
C
(z
1 z0)n1
dz
2π irie
0 rn1ei(n1)
d
rin
2πeind,
0
.
15
当 n0时 ,
C
设 kkik,
因 z k z k z k 1 为 x k i k ( y x k 1 i k 1 ) y ( x k x k 1 ) i ( y k y k 1 )
xki yk,
.
9
n
所以 Sn f (k )zk
n k1
[u (k,k) iv (k,k) ]x k ( i y k)
如果A到B作为曲线C的正向, y
B
那么B到A就是曲线C的负向,
记为 C.
A
o
x
.
3
关于曲线方向的说明:
在今后的讨论中,常把两个端点中的一个作 为起点, 另一个作为终点, 除特殊声明外, 正方 向总是指从起点到终点的方向.
简单闭曲线正向的定义:
简单闭曲线C(周线)的正向 y
是指当曲线上的点P顺此方
P
即复函数积分可表为两个实积分.
.
12
二. 复变函数积分的计算问题
设有向曲线C
z z ( t) x ( t) iy ( t) ,( t)
f(z)沿C连续,则
C f(z)d z f[z(t)]z(t)d t (3 .2 )
或 Cf(z)dzRe{f[z(t)]z(t)}dt
iIm {f[z(t)]z(t)}dt
C f(z ) d z C u d x v d y iC v d x u d y
证明 设光滑曲 C由线参数方程给出
zz(t)x(t)i y(t), t
正方向为参数增加的方向,
参数 及 对应A 于 及起 终 B , 点 点
.
8
并 z ( t) 且 0 , t,
如f(果 z) u (x ,y) iv(x ,y)在 D 内处 , 处 那u 么 (x,y)和 v(x,y)在 D内均为连 , 续函
第三章 复变函数的积分
Department of Mathematics
.
1
第一节 复积分的概念及其简单性质
1、复变函数积分的的定义 2、积分的计算问题 3、基本性质
Department of Mathematics
.
2
一、复变函数积分的定义
1.有向曲线:
设C为平面上给定的一条光滑(或按段光滑) 曲线, 如果选定C的两个可能方向中的一个作 为正方向(或正向), 那么我们就把C理解为带 有方向的曲线, 称为有向曲线.
J的 值 不 仅 和 a,b有 关 ,而 且 和 积 分 路 径 C 有 关 .
( 2 ) f ( z ) 沿 C 可 积 的 必 要 条 件 是 ,f ( z ) 沿 C 有 界 .
n
(3) Cf(z)dzlni m k1f(k)zk.
.
7
3. 定理3.1 若 函 数 f(z) u (x ,y ) iv (x ,y )沿 曲 线 C 连 续 , 则 f(z)沿 C 可 积 ,且
的积分,并记号Cf(z)dz表示:
J C f (z)dz.
y
b
C
C称 为 积 分 路 径 .
zn1
Cf(z)d z表 示 沿 C 正 方 向 积 分 , 1 a
2
z1
z2
k zk z k 1
C f(z)d z表 示 沿 C 负 方 向 积 分 .o
x
.
6
关于定义的说明:
(1)如 果 J存 在 ,一 般 不 能 把 J写 成 bf(z)dz,因 为 a
k1
k1
n
i[v(k,k)xku(k,k)yk]
k1
C f(z)dz CudxvdyiCvdxudy
.
11
公式 C f(z)dz Cudxvdyi Cvdxudy
在形式上可以看成是 f(z)uiv与 dzdxidy相乘后求 : 积
C f(z)dz C (uiv )d (xid y) C u d x id v x id u y v d y C u d x v d y iC v d x u d y .
k 1
n
[u(k,k)xkv(k,k)yk] k1 n i [v(k,k)xku(k,k)yk] k1
由于u,v都是连续,函 根据数 线积分的存在定理,
.
10
当 n 无限增大而弧段长度的最大值趋于零时,
不论 C的 对分法 ,点 (任 k,k)的 何取法 , 如
下式两端 , 极限存在
n
n
f(k)zk [u(k,k)xkv(k,k)yk]
{ u [ x ( t ) y ( t , ) i ] [ x v ( t ) y ( t , )x ] ( t ) } i y ( t { ) d t}
f[z(t)z](t)dt.
注 用公式(3.2)或(3.3)计算复变函数的积分,是从积分
路径的参数方程着手,称为参数方程法.
.
14
例1 求C(z1 z0)n1dz,C为z0 以 为中 ,r为 心 半
向前进时, 邻近P点的曲线
的内部始终位于P点的左方. o
与之相反的方向就是曲线的负方向.
P
P
P
x
.
4
2. 定义3.1 设有向曲线C
zz(t),(t)
以 a z()为 起 点 ,b z()为 终 点 ,f(z)沿 C 有
定 义 , 顺 着 C 从 a 到 b 的 方 向 取 设 分 点
a z 0 ,z 1 ,L ,z k 1 ,z k ,L ,z n b ,
相关文档
最新文档