山东大学921数字信号处理2014—2019年考研真题

合集下载

数字信号处理试卷及答案考试必过

数字信号处理试卷及答案考试必过

一、考试必过二、选择题(每题3分,共5题)1、 )63()(π-=n j e n x ,该序列是 。

A.非周期序列B.周期6π=N C.周期π6=N D. 周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。

A.a Z <B.a Z ≤C.a Z >D.a Z ≥ 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()(Λ=⋅=k k Y k X k F ,19,1,0)],([)(Λ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。

A.70≤≤nB.197≤≤nC.1912≤≤nD.190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N满足 。

A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。

A.有限长序列B.右边序列C.左边序列D.双边序列三、填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。

2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。

3、对两序列x(n)和y(n),其线性相关定义为 。

4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; 。

5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和______ 四种。

三、10)(-≤≥⎩⎨⎧-=n n ba n x n n求该序列的Z 变换、收敛域、零点和极点。

(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。

山东大学数字信号处理课程试题答案(A卷)

山东大学数字信号处理课程试题答案(A卷)
山东大学数字信号处理课程试题答案(A 卷)
1 (1)数字信号处理机,计算机的软件; (2)方块图,信号流图;加法器,延时器;精确度,误差,稳定性,经济性及)3,0.5rad/s 2 解:y(n)=x(n)+1/3 x(n-1)+3/4y(n-1)-1/8y(n-2) H(z)= a)
r ( N / 2+ k )
N / 2 −1 N / 2 −1 r (k + ) N rk ∴ G ( k + ) = ∑ g ( r )W N / 2 2 = ∑ g ( r )W N / 2 = G (k ) 2 r =0 r =0
N
同理: H (k +
( N +k )
N ) = H (k ) 2

z −1 − α ′ 得:G(1)=–1,G(–1)=1, wc 等效于高通滤波器的 π + wc ,而 −1 1 − αz
– wc 等效为高通滤波器的 wc ,则:

e − j ( − wc ) = −

e − jwc + α 1 + αe − jwc
c '

α [1 + e j ( w
j − ( wc ' − wc ) 2
∑1−W
H(
N −1
zk 1− r N z −N )= r N
∑ 1 − rW
k =0
N −1
H (k )
−k N
z −1
+
N / 2 −1 H (k ) = ∑ ∑ − k −1 k =0 k = 0 1 − rW N z
H (k ) 1 − re
2πk j N
z −1

山东大学数字信号处理期末试卷

山东大学数字信号处理期末试卷
A.L+P+1; B.L+P-1; C.L+P; D. L;
5)A Type IIIFIR Linear-Phase System can be used as a ( ).
A. low-pass filter; B.Band-stopfilter;
C. high-pass filter; D.Band-pass filter;
A two-sided sequence;B. a right-sided sequence, and maybe h[n]ǂ0, for n<0;
C. left-sided sequence, and h[n]=0, for n>0; D. right-sided sequence, and h[n]=0, for n<0;
3)Tables of properties of Discrete-time Fourier transform, z-transform and DFT are supplied to you onthe lastpage.
4)Unlessotherwiseindicated, answers must be derived or explained, not just simply written down.
得分
阅卷人
6.(10pts)The figurebelowshows the flow graph for an 8-point decimation-in-time FFT algorithm. Let x[n] be the sequence whose DFT is X[k]. In the flow graph, A[·], B[·], C[.], and D[·] represent separate arrays that are indexed consecutively in the same order as the indicated nodes.Determine and sketch the sequence C[r], r=0, 1, ... ,7, if the output Fourier transform is X[k]=1, k=0, 1, .. ,7.

数字信号处理试卷及答案考试必过

数字信号处理试卷及答案考试必过

一、 考试必过二、 选择题(每题3分,共5题)1、 )63()(π-=n j e n x ,该序列是 。

A.非周期序列B.周期6π=N C.周期π6=N D. 周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。

A.a Z < B.a Z ≤ C.a Z > D.a Z ≥3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()(Λ=⋅=k k Y k X k F ,19,1,0)],([)(Λ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。

A.70≤≤nB.197≤≤nC.1912≤≤nD.190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT的长度N 满足 。

A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。

A.有限长序列B.右边序列C.左边序列D.双边序列三、 填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是信号。

2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。

3、对两序列x(n)和y(n),其线性相关定义为 。

4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; 。

5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和______ 四种。

三、10)(-≤≥⎩⎨⎧-=n n ba n x n n求该序列的Z 变换、收敛域、零点和极点。

(10分) 四、求()()112111)(----=z z Z X ,21<<z 的反变换。

山东大学数字信号处理期末试卷

山东大学数字信号处理期末试卷

山 东 大 学 考 试 试 题课程名称:数字信号处理(B 卷) 2004—2005学年第二学期 任课教师: 姓名: 学号: 班级: (请考生注意:本试卷共有9道大题)一。

(8分) 已知确定序列x [k ]={1, -1, 2 ;k =0,1,2}, h [k ]={2, 1, 0, -1; k =0,1,2,3 }, 试计算:(1) 4点循环卷积x [k ]⊗h [k ]。

(2) 写出利用DFT 计算线性卷积的步骤。

二.(10分) 已知序列x 1[k ]={1, 0, 1; k =0,1,2},x 2[k ]={1, 0, 0, 0, 1; k =0,1,2,3,4}(1) 试求序列x 1[k ]和x 2[k ]的频谱X 1(e j Ω)和X 2(e j Ω); (2) 比较x 1[k ]和x 2[k ],X 1(e j Ω)和X 2(e j Ω),由此可以得出什么结论? (3) 若x 2[k ]的4点DFT 为X 2[m ],求IDFT { X 2[m ]}。

三.(15分)(1) 试推导基2频域抽取FFT 算法的递推公式; (2) 试画出N =4基2频域抽取FFT 的信号流图;(3) 只用一次(2)中流图,计算序列x [k ]=[0,1,0,-1,0,1,0,-1;k =0,1,⋯,7]的8点DFT X [m ].四.(10分)简述加窗在数字信号处理中的应用以及选择窗函数的原则.五.(14分) IIR 数字滤波器设计(1) 利用双线性变换法和模拟低通滤波器11)(+=s s H a ,设计一个参数为: Ωs1=π/3,Ωs2=π/2, A s =3dB 的数字带阻滤波器。

(2) 能否采用脉冲响应不变法设计该滤波器?试比较双线性变换法和脉冲响应不变法的优缺点.六.(15分) 利用频率取样法设计一个线性相位FIR 数字低通滤波器,使其逼近截频为ΩC =π/2理想低通数字滤波器设计。

(1) 确定线性相位FIR 数字低通滤波器的类型(I ,II ,III,IV );(2) 若滤波器的阶数M=6,试求频率取样H [m ]和所设计滤波器的单位脉冲响应h [k ]的表达式;(3) 画出该滤波器的线性相位直接型结构图,不带h [k ]的具体值; (4) 若所设计滤波器的阻带衰减不满足设计要求,应采取什么措施?七.(12分) 利用数字系统处理模拟信号的框图如下所示,图中T =0.08秒, x (t )=cos (πt )+ cos(5πt ) +cos (10πt ).(1) 写出x [k ]频谱与x (t )频谱的关系,并画出x [k ] 的频谱X (e j Ω); (2) 若图中数字系统在π),0[∈Ω 的频率响应为⎩⎨⎧≤≤=其它,0ππ7.0,1)(j ΩΩe H试画出y [k ]的频谱Y (e j Ω)及y (t )的频谱Y (j ω)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档