历年高考数学真题精选44 几何概型

合集下载

高中数学概率几何概型古典概型精选题目(附答案)

高中数学概率几何概型古典概型精选题目(附答案)

高中数学概率几何概型古典概型精选题目(附答案)一、古典概型1.互斥事件与对立事件的概率(1)互斥事件是不可能同时发生的两个事件;对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生.因此对立事件一定是互斥事件,但互斥事件不一定是对立事件,对立事件是互斥事件的特殊情况.(2)当事件A与B互斥时,P(A+B)=P(A)+P(B),当事件A与B对立时,P(A+B)=P(A)+P(B)=1,即P(A)=1-P(B).(3)求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式P(A)=1-P(A)求解.2.古典概型的求法对于古典概型概率的计算,关键是分清基本事件的总数n与事件A包含的基本事件的个数m,有时需用列举法把基本事件一一列举出来,再利用公式P(A)=mn求出事件发生的概率,这是一个形象、直观的好方法,但列举时必须按照某种顺序,以保证不重复、不遗漏.1.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.[解]甲校两名男教师分别用A,B表示,女教师用C表示;乙校男教师用D 表示,两名女教师分别用E,F表示.(1)从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共9种.从中选出的2名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F),共4种,所以选出的2名教师性别相同的概率为P=4 9.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.从中选出的2名教师来自同一学校的结果有:(A,B),(A,C),(B,C),(D,E),(D,F),(E,F),共6种.所以,选出的2名教师来自同一学校的概率为P=615=25.注:解决与古典概型问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.2.某导演先从2个金鸡奖和3个百花奖的5位演员名单中挑选2名演主角,后又从剩下的演员中挑选1名演配角.这位导演挑选出2个金鸡奖演员和1个百花奖演员的概率为()A.13 B.110C.25 D.310解析:选D设2个金鸡奖演员编号为1,2,3个百花奖演员编号为3,4,5.从编号为1,2,3,4,5的演员中任选3名有10种挑选方法:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种.其中挑选出2名金鸡奖和1名百花奖的有3种:(1,2,3),(1,2,4),(1,2,5),故所求的概率为P=3 10.3.随着经济的发展,人们生活水平的提高,中学生的营养与健康问题越来越得到学校与家长的重视.从学生体检评价报告单了解到我校3 000名学生的体重发育评价情况,得下表:0.15.(1)求x的值;(2)若用分层抽样的方法,从这批学生中随机抽取60名,问应在肥胖学生中抽多少名?(3)已知y ≥243,z ≥243,求肥胖学生中男生不少于女生的概率.解:(1)由题意得,从这批学生中随机抽取1名学生,抽到偏痩男生的概率为0.15,可知x3 000=0.15,所以x =450.(2)由题意,可知肥胖学生人数为y +z =500(人).设应在肥胖学生中抽取m 人,则m 500=603 000.所以m =10.即应在肥胖学生中抽10名.(3)由题意,可知y +z =500,且y ≥243,z ≥243,满足条件的基本事件如下: (243,257),(244,256),…,(257,243),共有15组.设事件A :“肥胖学生中男生不少于女生”,即y ≤z ,满足条件的(y ,z )的基本事件有:(243,257),(244,256),…,(250,250),共有8组,所以P (A )=815.所以肥胖学生中男生不少于女生的概率为815.二、几何概型(1)几何概型满足的两个特点:①等可能性;②无限性. (2)几何概型的概率求法公式P (A )=构成事件A 的区域长度(面积、体积)试验的全部结果长度(面积、体积).4.(1)已知平面区域D 1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )| ⎩⎨⎧|x |<2,|y |<2,D 2={}(x ,y )|(x -2)2+(y -2)2<4.在区域D 1内随机选取一点P ,则点P 恰好取自区域D 2的概率是( )A.14 B.π4 C.π16D.π32(2)把一根均匀木棒随机地按任意点折成两段,则“其中一段长度大于另一段长度2倍”的概率为________.[解析] (1)因区域D 1和D 2的公共部分是一个半径为2的圆的14,从而所求概率P =14×22π42=π16,故选C.(2)将木棒折成两段的折点应位于距木棒两端点小于13木棒长度的区域内,故所求概率为2×13=23.[答案] (1)C (2)23 注:几何概型问题的解题方法(1)由于基本事件的个数和结果的无限性,其概率就不能应用P (A )=mn 求解,因此需转化为几何度量(如长度、面积、体积等)的比值求解.(2)在解题时要准确把握,要把实际问题作合理的转化;要注意古典概型和几何概型的区别,正确地选用几何概型的类型解题.5.如图,两个正方形的边长均为2a ,左边正方形内四个半径为a2的圆依次相切,右边正方形内有一个半径为a 的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P 1,P 2,则P 1,P 2的大小关系是( )A .P 1=P 2B .P 1>P 2C .P 1<P 2D .无法比较解析:选A 由题意知正方形的边长为2a .左图中圆的半径为正方形边长的14,故四个圆的面积和为πa 2,右图中圆的半径为正方形边长的一半,圆的面积也为πa 2,故P 1=P 2.6.在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为( )A.34B.23C.13D.14解析:选A 不等式-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1可化为log 122≤log 12⎝ ⎛⎭⎪⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.7.圆具有优美的对称性,以圆为主体元素构造的优美图案在工艺美术、陶瓷、剪纸等上有着广泛的应用,如图1,图2,图3,图4,其中图4中的3个阴影三角形的边长均为圆的半径,记图4中的阴影部分区域为M ,现随机往图4的圆内投一个点A ,则点A 落在区域M 内的概率是( )A.34πB.334πC.2πD.3π解析:选B 设圆内每一个小正三角形的边长为r , 则一个三角形的面积为12×r ×32r =34r 2, ∴阴影部分的面积为334r 2. 又圆的面积为πr 2,∴点A 落在区域M 内的概率是334r 2πr 2=334π.。

高三数学立体几何历年高考题(2011年-2017年)完整版.doc

高三数学立体几何历年高考题(2011年-2017年)完整版.doc

(Ⅱ)平面 BDC 1 分此棱柱为两部分,求这两部分体积的比。
16 (2014 课标全国Ⅰ )如图 1-1 所示,三棱柱 ABC - A1B1C1中,点 A1 在平面 ABC 内的射影 D 在 AC 上,∠ ACB= 90°, BC= 1,AC= CC1= 2. (1)证明: AC1⊥ A1B; (2)设直线 AA1 与平面 BCC1B1 的距离为 3, 求二面角 A1-AB -C 的大小.
12.( 2017 年 16)已知三棱锥 S-ABC 的所有顶点都在球 O 的球面上, SC 是球 O 的直径。若平 面 SCA⊥平面 SCB,SA=AC,SB=BC,三棱锥 S-ABC 的体积为 9,则球 O 的表面积为 ________。
13(2011 年).如图,四棱锥 P ABCD 中,底面 ABCD 为平行四边形,
17.(2015 年新课标 1)如图四边形 ABCD 为菱形,
G 为 AC 与 BD 交点, BE 平面 ABCD , (1) 证明:平面 AEC 平面 BED ; (2) 若 ABC 120o , AE EC, 三棱锥
E ACD 的体积为 6 ,求该三棱锥的侧面积 . 3
18 (2016 年新课标 1)如图,已知正三棱锥 P-ABC 的侧面是直角三角形, PA=6,顶点 P 在平面 ABC 内的正投影为点 D, D 在平面 PAB 内的正投影为点 E,连结 PE 并延长交 AB 于点 G. ( I)证明: G 是 AB 的中点; ( II )在图中作出点 E 在平面 PAC 内的正投影 F(说明作法及理由) ,并求四面体 PDEF 的体积.
PD 底面 ABCD . ( I)证明: PA BD ;
( II )设 PD=AD=1 ,求棱锥 D-PBC 的高.

高考数学专练题 随机事件、古典概型与几何概型(试题部分)

高考数学专练题 随机事件、古典概型与几何概型(试题部分)

专题十一概率与统计【真题探秘】11.1随机事件、古典概型与几何概型探考情悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.随机事件的概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.(3)理解古典概型及其概率计算公式.2019课标Ⅰ,6,5分古典概型排列与组合★★★2018课标Ⅱ,8,5分古典概型组合2018课标Ⅰ,10,5分与面积有关的几何概型圆的面积和三角形的面积2.古典概型2017课标Ⅰ,2,5分与面积有关的几何概型圆的面积3.几何概型2016课标Ⅰ,4,5分与长度有关的几何概型(4)会计算一些随机事件所含的基本事件数及事件发生的概率.(5)了解随机数的意义,能运用模拟方法估计概率. (6)了解几何概型的意义2016课标Ⅱ,10,5分与面积有关的几何概型随机模拟分析解读本节是高考的热点,常以选择题或填空题的形式出现,主要考查利用频率估计随机事件的概率,常涉及对立事件、互斥事件,古典概型及与长度、面积有关的几何概型,有时也与其他知识进行交汇命题,以解答题的形式出现,如概率与统计和统计案例的综合,主要考查学生的逻辑思维能力和数学运算能力.破考点练考向【考点集训】考点一随机事件的概率1.(2019山东烟台一模,3)已知甲袋中有1个红球1个黄球,乙袋中有2个红球1个黄球,现从两袋中各随机取一个球,则取出的两球中至少有1个红球的概率为()A.13B.12C.23D.56答案D2.(2019山西太原模拟,2)已知随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,则P(A)=()A.0.5B.0.1C.0.7D.0.8答案A考点二古典概型1.(2020届河南百校联盟9月联合检测,4)2019年7月1日,《上海市生活垃圾管理条例》正式实施,生活垃圾要按照“可回收物”“有害垃圾”“湿垃圾”“干垃圾”的分类标准进行分类,没有垃圾分类和未投放到指定垃圾桶内等会被罚款和行政处罚.若某上海居民提着厨房里产生的“湿垃圾”随意地投放到楼下的垃圾桶,若楼下分别放有“可回收物”“有害垃圾”“湿垃圾”“干垃圾”四个垃圾桶,则该居民会被罚款和行政处罚的概率为()A.13B.23C.14D.34答案D2.(2019江西南昌一模,6)2021年广东新高考将实行3+1+2模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年上高一的小明与小芳都准备选历史与政治,假若他们都对后面三科没有偏好,则他们选课相同的概率为()A.12B.13C.16D.19答案B考点三几何概型1.(2020届贵州贵阳8月月考,7)某学校星期一至星期五每天上午共安排五节课,每节课的时间为40分钟,第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间随机到达教室,则他听第二节课的时间不少于20分钟的概率为()A.15B.14C.13D.12答案B2.(2018湖南三湘名校教育联盟第三次联考,3)已知以原点O为圆心,1为半径的圆以及函数y=x3的图象如图所示,则向圆内任意投掷一粒小米(视为质点),则该小米落入阴影部分的概率为()A.12B.14C.16D.18答案B炼技法提能力【方法集训】方法1古典概型概率的求法1.(2019安徽蚌埠二模,4)从1,2,3,4中选取两个不同数字组成两位数,则这个两位数能被4整除的概率为()A.13B.14C.16D.112答案B2.(2019江西九江一模,4)洛书,古称龟书,是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图案,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,其各行各列及对角线点数之和皆为15.如图,若从四个阴数中随机抽取两个数,则能使这两数与居中阳数之和等于15的概率是()A.12B.23C.14D.13答案D方法2几何概型概率的求法1.(2020届河南安阳第一次调研月考,10)从[-2,3]中任取一个实数a,则a的值能使函数f(x)=x+asin x在R上单调递增的概率为()A.45B.35C.25D.15答案C2.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是()A.1-π4B.π12C.π4D.1-π12答案A【五年高考】A组统一命题·课标卷题组考点一古典概型(2018课标Ⅱ,8,5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.112B.114C.115D.118答案C考点二几何概型1.(2018课标Ⅰ,10,5分)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3答案A2.(2017课标Ⅰ,2,5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.14B.π8C.12D.π4答案B3.(2016课标Ⅰ,4,5分)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.13B.12C.23D.34答案B4.(2016课标Ⅱ,10,5分)从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n个数对(x1,y1),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4nm B.2nmC.4mnD.2mn答案CB组自主命题·省(区、市)卷题组考点一古典概型1.(2017山东,8,5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是()A.518B.49C.59D.79答案C2.(2019江苏,6,5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.答案7103.(2018江苏,6,5分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.答案310考点二几何概型1.(2015陕西,11,5分)设复数z=(x-1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.34+12πB.14-12πC.12-1πD.12+1π答案 B2.(2017江苏,7,5分)记函数f(x)=√6+x -x 2的定义域为D.在区间[-4,5]上随机取一个数x,则x ∈D 的概率是 . 答案593.(2015福建,13,4分)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f(x)=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .答案512C 组 教师专用题组考点一 古典概型1.(2014课标Ⅰ,5,5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.18B.38C.58D.78答案 D2.(2016江苏,7,5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 . 答案563.(2015江苏,5,5分)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为 . 答案564.(2013课标Ⅱ,14,5分)从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n= . 答案 85.(2016天津,16,13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率;(2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望. 解析 (1)由已知,有P(A)=C 31C 41+C 32C 102=13.所以,事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2. P(X=0)=C 32+C 32+C 42C 102=415,P(X=1)=C 31C 31+C 31C 41C 102=715,P(X=2)=C 31C 41C 102=415.所以,随机变量X 的分布列为X 01 2 P415 715 415随机变量X 的数学期望E(X)=0×415+1×715+2×415=1.6.(2015陕西,19,12分)设某校新、老校区之间开车单程所需时间为T,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:T(分钟) 25 30 35 40 频数(次)20304010(1)求T 的分布列与数学期望ET;(2)刘教授驾车从老校区出发,前往新校区作一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解析 (1)由统计结果可得T 的频率分布为T(分钟)25 3035 40频率0.2 0.3 0.4 0.1以频率估计概率得T 的分布列为T 25 30 35 40 P0.2 0.3 0.4 0.1从而ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟).(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.解法一:P(A)=P(T 1+T 2≤70)=P(T 1=25,T 2≤45)+P(T 1=30,T 2≤40)+P(T 1=35,T 2≤35)+P(T 1=40,T 2≤30) =0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.解法二:P(A )=P(T 1+T 2>70)=P(T 1=35,T 2=40)+P(T 1=40,T 2=35)+P(T 1=40,T 2=40) =0.4×0.1+0.1×0.4+0.1×0.1=0.09. 故P(A)=1-P(A )=0.91.考点二 几何概型1.(2015湖北,7,5分)在区间[0,1]上随机取两个数x,y,记p 1为事件“x+y ≥12”的概率,p 2为事件“|x-y|≤12”的概率,p 3为事件“xy ≤12”的概率,则( ) A.p 1<p 2<p 3 B.p 2<p 3<p 1 C.p 3<p 1<p 2 D.p 3<p 2<p 1答案 B2.(2016山东,14,5分)在[-1,1]上随机地取一个数k,则事件“直线y=kx 与圆(x-5)2+y 2=9相交”发生的概率为 . 答案34【三年模拟】一、选择题(每小题5分,共35分)1.(2020届陕西百校联盟九月联考,4)“沉鱼、落雁、闭月、羞花”是由精彩故事组成的历史典故.“沉鱼”讲的是西施浣纱的故事;“落雁”指的就是昭君出塞的故事;“闭月”是述说貂蝉拜月的故事;“羞花”谈的是杨贵妃醉酒观花的故事.她们分别是中国古代的四大美女,某艺术团要以四大美女为主题排演一部舞蹈剧,甲、乙、丙、丁抽签决定扮演的对象,则甲不扮演貂蝉且乙不扮演杨贵妃的概率为()A.13B.712C.512D.12答案B2.(2020届四川成都青羊石室中学10月月考,9)2021年广东新高考将实行3+1+2模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年高一的小明与小芳都准备选历史,假若他们都对后面四科没有偏好,则他们选课相同的概率为()A.136B.116C.18D.16答案D3.(2018重庆九校联盟第一次联考,4)已知随机事件A,B发生的概率满足条件P(A∪B)=34,某人猜测事件A∩B发生,则此人猜测正确的概率为()A.1B.12C.14D.0答案C4.(2019河北石家庄3月教学质量检测,9)袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都被摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数:343432341342234142243331112342241244431233214344142134由此可以估计,恰好第三次就停止摸球的概率为()A.16B.29C.518D.19答案B5.(2020届安徽合肥一中、安庆一中第一次素质测试,8)2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜湖举行.长三角城市群包括上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”.现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游,则恰有一个地方未被选中的概率为()A.2764B.916C.81256D.716答案B6.(2020届四川石室中学高三开学考试,7)一个平面封闭图形的周长与面积之比为“周积率”,如图是由三个半圆构成的图形,最大半圆的直径为6,若在最大的半圆内随机取一点,该点取自阴影部分的概率为49,则阴影部分图形的“周积率”为()A.2B.3C.4D.5答案B7.(2019山西阳泉二模,8)赵爽是我国古代数学家、天文学家,大约在公元222年赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的,如图1).类比“赵爽弦图”,可构造如图2所示的图形,它是由3个全等的三角形与中间的一个小等边三角形组成的一个大等边三角形,设DF=2AF,若在大等边三角形中随机取一点,则此点取自小等边三角形内的概率是()图1 图2A.2√1313B.413C.2√77D.47 答案 B二、填空题(每小题5分,共10分)8.(2020届山西静乐第一中学高三月考,15)如图所示,阴影部分是由曲线y=x 2和圆x 2+y 2=2及x 轴围成的封闭图形.在圆内随机取一点,则此点取自阴影部分的概率为 .答案 18-112π9.(2018广东江门一模,16)两位教师对一篇初评为“优秀”的作文复评,若批改成绩都是两位正整数,且十位数字都是5,则两位教师批改成绩之差的绝对值不超过2的概率为 .答案 0.44。

几何概型的经典题型及答案汇编

几何概型的经典题型及答案汇编

几何概型的常见题型及典例分析一.几何概型的定义1.定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.特点:(1)无限性,即一次试验中,所有可能出现的结果(基本事件)有无限多个;(2)等可能性,即每个基本事件发生的可能性均相等.3.计算公式:.)(积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A A P = 说明:用几何概率公式计算概率时,关键是构造出随机事件所对应的几何图形,并对几何图形进行度量.4.古典概型和几何概型的区别和联系:(1)联系:每个基本事件发生的都是等可能的.(2)区别:①古典概型的基本事件是有限的,几何概型的基本事件是无限的;②两种概型的概率计算公式的含义不同.二.常见题型(一)、与长度有关的几何概型例1、在区间]1,1[-上随机取一个数x ,2cosx π的值介于0到21之间的概率为( ). A.31 B.π2 C.21 D.32 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件.所取的数是区间]1,1[-的任意一个数,基本事件是无限多个,而且每一个基本事件的发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的区间长度有关,符合几何概型的条件.解:在区间]1,1[-上随机取一个数x ,即[1,1]x ∈-时,要使cos2x π的值介于0到21之间,需使223x πππ-≤≤-或322x πππ≤≤ ∴213x -≤≤-或213x ≤≤,区间长度为32, 由几何概型知使cos 2x π的值介于0到21之间的概率为 31232===度所有结果构成的区间长符合条件的区间长度P . 故选A. 例2、 如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C,D,问A 与C,B 与D 之间的距离都不小于10米的概率是多少?思路点拨 从每一个位置安装都是一个基本事件,基本事件有无限多个,但在每一处安装的可能性相等,故是几何概型.解 记 E :“A 与C,B 与D 之间的距离都不小于10米”,把AB 三等分,由于中间长度为30×31=10米, ∴313010)(==E P . 方法技巧 我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解.例3、在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,求任意画的弦的长度不小于R 的概率。

高考数学最新真题专题解析—古典概型与几何概型(理科)

高考数学最新真题专题解析—古典概型与几何概型(理科)

高考数学最新真题专题解析—古典概型与几何概型考向一 古典概型【母题来源】2022年高考全国甲卷(理科)【母题题文】 从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________. 【答案】635. 【试题解析】从正方体的8个顶点中任取4个,有48C 70n ==个结果,这4个点在同一个平面的有6612m =+=个,故所求概率1267035m P n ===.故答案为:635. 【命题意图】本题主要考查古典概型的的概率计算公式,属于基础题.【命题方向】这类试题在考查题型上主要以选择填空形式出现,试题难度不大,多为抵挡题目,是历年高考的热点. 常见的命题角度有:(1)列举法求古典概型的概率;(2)树状图法求古典概型的概率. 【得分要点】(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率. 考向二 几何概型【母题来源】2021年高考全国卷(理科)【母题题文】在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为( )A .79B .2332C .932D .29【答案】B【试题解析】设从区间()()0,1,1,2中随机取出的数分别为,x y ,则实验的所有结果构成区域为(){},01,12x y x y Ω=<<<<,设事件A 表示两数之和大于74,则构成的区域为()7,01,12,4A x y x y x y⎧⎫=<<<+⎨⎬⎩⎭,分别求出,A Ω对应的区域面积,根据几何概型的的概率公式即可解出. 【详解】 如图所示:设从区间()()0,1,1,2中随机取出的数分别为,x y ,则实验的所有结果构成区域为(){},01,12x y x y Ω=<<<<,其面积为111S Ω=⨯=.设事件A 表示两数之和大于74,则构成的区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,即图中的阴影部分,其面积为133********A S =-⨯⨯=,所以()2332A S P A S Ω== 【命题意图】本题主要考查几何概型的的概率计算公式,属于基础题.【命题方向】这类试题在考查题型上主要以选择填空形式出现,试题难度不大,多为抵挡题目,是历年高考的热点. 常见的命题角度有:(1)由长度比求几何概型的概率;(2)由面积比求几何概型的概率;(3)由体积比求几何概型的概率; (4)由角度比求几何概型的概率. 【得分要点】(1)能运用模拟方法估计概率. (2)了解几何概型的意义.真题汇总及解析 一、单选题1.(2022·河南许昌·高二期末(理))若分配甲、乙、丙、丁四个人到三个不同的社区做志愿者,每个社区至少分配一人,每人只能去一个社区.若甲分配的社区已经确定,则乙与甲分配到不同社区的概率是( ) A .14B .56C .13D .512【答案】B 【解析】 【分析】计算出甲单独去分配的社区,甲和乙,丙,丁三人的一人去分配的社区,从而得到总的分配方法,再计算出甲乙分配到同一舍去的方法,得到乙与甲分配到不同社区的方法,根据古典概型求概率公式进行计算. 【详解】甲单独去分配的社区,有将乙,丙,丁三人分为两组,再和另外两个社区进行全排列,有212312C C A 6 种方法;甲和乙,丙,丁三人的一人去分配的社区,其余两人和另外两个社区进行全排列,有1232C A 6=种方法;其中甲乙分配到同一社区的方法有22A 2=种,则乙与甲分配到不同社区的方法有66210+-=种, 所以乙与甲分配到不同社区的概率是105666=+ 故选:B2.(2022·广东茂名·二模)甲、乙、丙三人是某商场的安保人员,根据值班需要甲连续工作2天后休息一天,乙连续工作3天后休息一天,丙连续工作4天后休息一天,已知3月31日这一天三人均休息,则4月份三人在同一天工作的概率为( ) A .13B .25C .1130D .310【答案】B 【解析】 【分析】列举出三人所有工作日,由古典概型公式可得. 【详解】解:甲工作的日期为1,2,4,5,7,8,10,...,29. 乙工作的日期为1,2,3,5,6,7,9,10,...,30. 丙工作的日期为1,2,3,4,6,7,8,9, (29)在同一天工作的日期为1,2,7,11,13,14,17,19,22,23,26,29 ∴三人同一天工作的概率为122305P ==. 故选:B .3.(2022·辽宁实验中学模拟预测)某国计划采购疫苗,现在成熟的疫苗中,三种来自中国,一种来自美国,一种来自英国,一种由美国和德国共同研发,从这6种疫苗中随机采购三种,若采购每种疫苗都是等可能的,则买到中国疫苗的概率为( ) A .16B .12C .910D .1920【答案】D 【解析】 【分析】由对立事件的概率公式计算. 【详解】没有买到中国疫苗的概率为13611C 20P ==,所以买到中国疫苗的概率为119120P P =-=. 故选:D .4.(2022·河南安阳·模拟预测(文))为推动就业与培养有机联动、人才供需有效对接,促进高校毕业生更加充分更高质量就业,教育部今年首次实施供需对接就业育人项目.现安排甲、乙两所高校与3家用人单位开展项目对接,若每所高校至少对接两家用人单位,则两所高校的选择涉及到全部3家用人单位的概率为( ) A .12 B .23C .34D .1316【答案】D 【解析】【分析】由古典概型与对立事件的概率公式求解即可【详解】因为每所高校至少对接两家用人单位,所以每所高校共有2333314C C+=+=种选择,所以甲、乙两所高校共有4416⨯=种选择,其中甲、乙两所高校的选择涉及两家用人单位的情况有233C=种,所以甲、乙两所高校的选择涉及到全部3家用人单位的概率为31311616P=-=,故选:D5.(2022·全国·模拟预测(理))2022年2月4日,北京冬季奥林匹克运动会开幕式于当晩20点整在国家体育场隆重举行.在开幕式入场环节,91个国家(地区)按顺序入场.入场顺序除奥林匹克发祥地希腊(首先入场)、东道主中国(最后入场)、下届2026年冬季奥运会主办国意大利(倒数第二位入场)外,其余代表团根据简体中文的笔划顺序入场,诠释了中文之美.现若以抽签的方式决定入场顺序(希腊、中国、意大利按照传统出场顺序,不参与抽签),已知前83位出场的国家(地区)均已确定,仅剩乌兹别克斯坦、北马其顿、圣马力诺、安道尔、阿根廷、泰国末抽签,求乌兹别克斯坦、安道尔能紧挨出场的概率()A.25B.13C.16D.14【答案】B【解析】【分析】先求出这六个国家的所有可能出场的顺序的排列数,再求出乌兹别克斯坦、安道尔能紧挨出场的排列数,将即乌兹别克斯坦、安道尔看作一个国家,利用捆绑法,根据古典概型的概率公式求得答案.【详解】由题意得,乌兹别克斯坦、北马其顿、圣马力诺、安道尔、阿根廷、泰国所有可能的出场顺序有66A种,其中乌兹别克斯坦、安道尔能紧挨出场的顺序有2525A A种,故乌兹别克斯坦、安道尔能紧挨出场的概率为252566A A1A3=,故选:B6.(2022·北京·北大附中三模)有一副去掉了大小王的扑克牌(每副扑克牌有4种花色,每种花色13张牌),充分洗牌后,从中随机抽取一张,则抽到的牌为“红桃”或“A”的概率为()A.152B.827C.413D.1752【答案】C【解析】【分析】直接根据古典概型概率计算公式即可得结果.【详解】依题意,样本空间包含样本点为52,抽到的牌为“红桃”或“A”包含的样本点为16,所以抽到的牌为“红桃”或“A”的概率为1645213=,故选:C.7.(2022·湖北省仙桃中学模拟预测)定义:10000100010010,(,,,,)abcde a b c d e a b c d e Z=++++∈,当a b c d e><><时,称这个数为波动数,由1,2,3,4,5组成的没有重复数字的五位数中,波动数的概率为()A .115B .215C .760D .112【答案】B 【解析】 【分析】先判断出由1,2,3,4,5组成的没有重复数字的五位数有120种,列举出波动数有 个,即可求出波动数的概率. 【详解】由1,2,3,4,5组成的没有重复数字的五位数一共有55A 120=种.而构成波动数,需满足a b c d e ><><,有:31425,31524,41325,41523,51324,51423,32415,32514,42315,42513,52314,52413,21435,21534,53412,43512一共16个. 所以波动数的概率为16212015=. 故选:B.8.(2022·河南省杞县高中模拟预测(理))在区间[]0,1上随机取两个数,则这两个数差的绝对值大于12的概率为( ) A .34B .12C .14D .18【答案】C 【解析】 【分析】设在[]0,1上取的两数为x ,y ,满足12x y ->,画出不等式表示的平面区域,结合面积比的几何概型,即可求解.设在[]0,1上取的两数为x ,y ,则12x y ->,即12x y ->,或12x y -<-.画出可行域,如图所示,则12x y ->,或12x y -<-所表示的区域为图中阴影部分,易求阴影部分的面积为14,故所求概率11414P ==; 故选:C.9.(2022·全国·哈师大附中模拟预测)若在区间[]1,1-内随机取一个实数t ,则直线y tx =与双曲线2214xy -=的左、右两支各有一个交点的概率为( )A .14B .12C .18D .34【答案】B 【解析】 【分析】求出双曲线渐近线的斜率,根据已知条件可得出t 的取值范围,结合几何概型的概率公式可求得所求事件的概率. 【详解】双曲线的渐近线斜率为12±,则12t <,即1122t -<<,故所求概率为12P =,10.(2022·陕西·西北工业大学附属中学模拟预测(理))甲、乙两人约定某日上午在M 地见面,若甲是7点到8点开始随机到达,乙是7点30分到8点30分随机到达,约定,先到者没有见到对方时等候10分钟,则甲、乙两人能见面的概率为( ). A .13B .16C .59D .38【答案】B 【解析】 【分析】从早上7点开始计时,设甲经过x 十分钟到达,乙经过y 十分钟到达,可得x 、y 满足的不等式线组对应的平面区域为如图的正方形ABCD ,而甲乙能够见面,x 、y 满足的平面区域是图中的四边形EFGH .分别算出图中正方形和四边形的面积,根据面积型几何概型的概率公式计算可得. 【详解】解:从早上7点开始计时,设甲经过x 十分钟到达,乙经过y 十分钟到达, 则x 、y 满足0639x y ≤≤⎧⎨≤≤⎩,作出不等式组对应的平面区域,得到图中的正方形ABCD ,若甲乙能够见面,则x 、y 满足||1x y -≤, 该不等式对应的平面区域是图中的四边形EFGH ,6636ABCD S =⨯=,114422622EFGH BEHBFGS SS=-=⨯⨯-⨯⨯= 因此,甲乙能见面的概率61366EFGH ABCD S P S ===故选:B .二、填空题11.(2022·上海青浦·二模)受疫情防控需求,现有四位志愿者可自主选择到三个不同的核酸检测点进行服务,则三个核酸检测点都有志愿者到位的概率是_________.(结果用最简分数表示) 【答案】49【解析】【分析】先计算总共的选择数,再计算三个核酸检测点都有志愿者到位的数量,即可得答案.【详解】解:四个志愿者总的选择共333381N =⨯⨯⨯=种,要满足三个核酸检测点都有志愿者到位,则必有2个人到同一核酸检测点,故从4人中选择2人出来,共有24C 6=种,再将这2人看成整体1人和其他2人共3人,选择三个核酸检测点,共33A 6=种,所以6636n =⨯=,所以364819n P N ===.故答案为:49.12.(2022·黑龙江·哈尔滨三中一模(理))关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学,每人随机写下一个x 、y都小于1的正实数对(),x y ,再统计x 、y 两数能与1构成钝角三角形时的数对(),x y 的个数m ,最后再根据m 来估计π的值.假如统计结果是36m =,那么π的估计值为______.【答案】3.2【解析】【分析】(,)x y 表示的点构成一个正方形区域,x 、y 两数能与1构成钝角三角形时的数对(),x y 表示的点构成图中阴影部分,分别求出其面积,由几何概型概率公式求得其概率后可得.【详解】(,)x y 表示的点构成一个正方形区域,如图正方形OABC (不含边界),x 、y 两数能与1构成钝角三角形满足条件2211x y x y +>⎧⎨+<⎩,(,)x y 表示的点构成的区域是图中阴影部分(不含边界), 因此所求概率为1136********P ππ-==-=,估计 3.2π≈.故答案为:3.213.(2022·河南·模拟预测)现有四张正面分别标有数字-1,0,-2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张记作m 不放回,再从余下的卡片中取一张记作n .则点(),P m n 在第二象限的概率为______. 【答案】16【解析】【分析】列出所有可能的情况,根据古典概型的方法求解即可【详解】由题,点(),P m n 所有可能的情况为()1,0-,()1,2--,()1,3-,()0,1-,()0,2-,()0,3,()2,1--,()2,0-,()2,3-,()3,1-,()3,0,()3,2-共12种情况,其中在第二象限的为()2,3-,()1,3-,故点(),P m n 在第二象限的概率为21126= 故答案为:1614.(2021·江西·新余市第一中学模拟预测(理))寒假即将来临,小明和小强计划去图书馆看书,约定上午8:00~8:30之间的任何一个时间在图书馆门口会合.两人商量好提前到达图书馆的人最多等待对方10分钟,如果对方10分钟内没到,那么等待的人先进去.则两人能够在图书馆门口会合的概率是_________________. 【答案】59【解析】先把两人能够会合转化为几何概型,利用几何概型的概率公式直接求解.【详解】设小明到达的时刻为8时x 分,小强到达的时刻为8时y 分,其中030,030x y ≤≤≤≤, 则当|x-y |≤10时,两人能够在图书馆门口会合.如图示:两人到达时刻(x ,y )构成正方形区域,记面积为S ,而事件A :两人能够在图书馆门口会合构成阴影区域,记其面积为S 1 所以1900-22005()=9009S P A S ⨯==. 故答案为:59.【点睛】(1)几何概型的两个特征——无限性和等可能性,只有同时具备这两个特点的概型才是几何概型;(2)几何概型通常转化为长度比、面积比、体积比。

2022年新高考数学总复习:几何概型

2022年新高考数学总复习:几何概型

2022年新高考数学总复习:几何概型知识点一几何概型的定义如果每个事件发生的概率只与构成该事件区域的__长度(面积或体积)__成比例,则称这样的概率模型为几何概率模型,简称几何概型.知识点二几何概型的特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性.知识点三几何概型的概率公式P (A )=__构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)__.知识点四随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是:①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M 和总的随机数个数N ;③计算频率f n (A )=MN作为所求概率的近似值.归纳拓展几种常见的几何概型(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关.(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题.(3)与体积有关的几何概型,可借助空间几何体的体积公式解答问题.双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)在一个正方形区域内任取一点的概率是零.(√)(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.(√)(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.(√)(4)随机模拟方法是以事件发生的频率估计概率.(√)(5)与面积有关的几何概型的概率与几何图形的形状有关.(×)(6)从区间[1,10]内任取一个数,取到1的概率是P =19.(×)题组二走进教材2.(P 140T1)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是(A)[解析]∵P (A )=38,P (B )=14,P (C )=13,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).故选A .3.(P 146B 组T4)≤x ≤2,≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(D)A .π4B .π-22C .π6D .4-π4[解析]如图所示,正方形OABC 及其内部为不等式组表示的平面区域D ,且区域D的面积为4,而阴影部分(不包括AC ︵)表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是4-π4,故选D .题组三走向高考4.(2017·全国Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是(B)A .14B .π8C .12D .π4[解析]不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4.由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知,所求概率P =S 黑S 正方形=π24=π8.故选B .5.(2019·全国)在Rt △ABC 中,AB =BC ,在BC 边上随机取点P ,则∠BAP <30°的概率为(B)A .12B .33C .33D .32[解析]在Rt △ABC 中,AB =BC ,Rt △ABC 为等腰直角三角形,令AB =BC =1,则AC =2;在BC 边上随机取点P ,当∠BAP =30°时,BP =tan 30°=33,在BC 边上随机取点P ,则∠BAP <30°的概率为:P =BP BC =33,故选B .考点突破·互动探究考点一与长度有关的几何概型——自主练透例1(1)(2021·山西运城模拟)某单位试行上班刷卡制度,规定每天8:30上班,有15分钟的有效刷卡时间(即8:15-8:30),一名职工在7:50到8:30之间到单位且到达单位的时刻是随机的,则他能正常刷卡上班的概率是(D)A .23B .58C .13D .38(2)(2021·福建龙岩质检)在区间-π2,π2上随机取一个实数x ,使cos x ≥12的概率为(B )A .34B .23C .12D .13(3)(2020·山东省青岛市模拟)已知圆C :x 2+y 2=1和直线l :y =k (x +2),在(-3,3)上随机选取一个数k ,则事件“直线l 与圆C 相交”发生的概率为(C)A .15B .14C .13D .12[解析](1)一名职工在7:50到8:30之间到单位,刷卡时间长度为40分钟,但有效刷卡时间是8:15-8:30共15分钟,由测度比为长度比可得,该职工能正常刷卡上班的概率P =1540=38.故选D .(2)由y =cos x 在区间-π2,0上单调递增,在,π2上单调递减,则不等式cos x ≥12在区间-π2,π2上的解为-π3≤x ≤π3,故cos x ≥12的概率为2π3π=23.(3)直线l 与C 相交⇒|2k |1+k 2<1⇒-33<k <33.∴所求概率P =33-(-33)3-(-3)=13.故选C .[引申]本例(3)中“圆上到直线l 的距离为12的点有4个”发生的概率为__515__.[解析]圆上到直线l 的距离为12的点有4个⇔圆心到直线l 的距离小于12⇔|2k |1+k 2<12⇔-1515<k <1515,∴所求概率P =1515-3-(-3)=515.名师点拨与长度有关的几何概型如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为P (A )=构成事件A 的区域长度试验的全部结果所构成的区域长度.〔变式训练1〕(1)(2017·江苏卷)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是__59__.(2)(2021·河南豫北名校联盟精英对抗赛)已知函数f (x )=sin x +3cos x ,当x ∈[0,π]时,f (x )≥1的概率为(D)A .13B .14C .15D .12[解析](1)D ={x |6+x -x 2≥0}=[-2,3],∴所求概率P =3-(-2)5-(-4)=59.(2)由f (x )=1,x ∈[0,π]得x ∈0,π2,∴所求概率P =π2π=12,故选D .考点二与面积有关的几何概型——师生共研角度1与平面图形有关的问题例2(1)(2021·河南商丘、周口、驻马店联考)如图,AC ,BD 上分别是大圆O的两条相互垂直的直径,4个小圆的直径分别为OA ,OB ,OC ,OD ,若向大圆内部随机投掷一点,则该点落在阴影部分的概率为(D)A .π4B .π8C .1πD .2π(2)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为(C )A .34+12πB .12+1πC .14-12πD .12-1π[解析](1)不妨设大圆的半径为2,则大圆的面积为4π,小圆的半径为1,如图,设图中阴影部分面积为S ,由图形的对称性知,S 阴影=8S .又S =12π×12×12-12×2=1,则所求概率为84π=2π,故选D .(2)∵|z |=(x -1)2+y 2≤1,∴(x -1)2+y 2≤1,其几何意义表示为以(1,0)为圆心,1为半径的圆面,如图所示,而y ≥x 所表示的区域如图中阴影部分,故P =π4-12π=14-12π.[引申]本例(1)中图形改成下图,则此点取自图中阴影部分的概率为__π-22π__.[解析]不妨设大圆的半径为2,则小圆的半径为1,∴所求概率P 14×4π=π-22π.角度2与线性规划交汇的问题例3-y +1≥0,+y -3≤0,≥0的平面点集中随机取一点M (x 0,y 0),设事件A 为“y 0<2x 0”,那么事件A 发生的概率是(B )A .14B .34C .13D .23[解析]-y +1≥0+y -3≤0,≥0表示的平面区域为△ABC 且A (1,2),B (-1,0),C (3,0),显然直线l :y =2x 过A 且与x 轴交于O ,∴所求概率P =S △AOC S △ABC =|OC ||BC |=34.选B .名师点拨解决与面积有关的几何概型的方法求解与面积有关的几何概型时,关键是弄清某事件对应的几何元素,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.〔变式训练2〕(1)(2021·唐山模拟)右图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为(B)A .8B .9C .10D .12(2)(2021·四川模拟)以正三角形的顶点为圆心,其边长为半径作圆弧,由这三段圆弧组成的曲边三角形被称为勒洛三角形,它是具有类似于圆的“等宽性”曲线,由德国机械工程专家、数学家勒洛首先发现.如图,D ,E ,F 为正三角形ABC 各边中点,作出正三角形DEF 的勒洛三角形DEF (阴影部分),若在△ABC 中随机取一点,则该点取自于该勒洛三角形部分的概率为(C)A .π-32B .23π-39C .3π-36D .3π-26[解析](1)根据面积之比与点数之比相等的关系,得黑色部分的面积S =4×4×225400=9,故选B .(2)设△ABC 的边长为2,则正△DEF 边长为1,以D 为圆心的扇形面积是π×126=π6,△DEF 的面积是12×1×1×32=34,∴勒洛三角形的面积为3个扇形面积减去2个正三角形面积,即图中勒洛三角形面积为3×π6-34+34=π-32,△ABC 面积为3,所求概率P =π-323=3π-36.故选C .考点三,与体积有关的几何概型——师生共研例4(1)(2021·山西省模拟)以正方体各面中心为顶点构成一个几何体,从正方体内任取一点P ,则P 落在该几何体内的概率为(C )A .18B .56C .16D .78(2)(2020·江西抚州临川一中期末)已知三棱锥S -ABC ,在该三棱锥内任取一点P ,则使V P -ABC ≤13V S -ABC 的概率为(D)A .13B .49C .827D .1927[解析](1)如图以正方体各面中心为顶点的几何体是由两同底正四棱锥拼成,不妨设正方体棱长为2,则GH =2,∴所求概率P =V E -GHIJ -FV 正方体=2×(13×2×2×1)2×2×2=16,故选C .(2)作出S 在底面△ABC 的射影为O ,若V P -ABC =13V S -ABC ,则三棱锥P -ABC 的高等于13SO ,P 点落在平面EFD 上,且SE SA =SD SB =SF SC =23,所以S △EFD S △ABC =49,故V S -EFD =827V S -ABC ,∴V P -ABC ≤13V S -ABC 的概率P =1-827=1927.故选D .名师点拨求解与体积有关问题的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的问题常转化为其对立事件的概率问题求解.〔变式训练3〕一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为(C)A .4π81B .81-4π81C .127D .827[解析]由已知条件可知,蜜蜂只能在以正方体的中心为中心棱长为1的小正方体内飞行,结合几何概型可得蜜蜂“安全飞行”的概率为P =1333=127.[引申]若蜜蜂在飞行过程中始终保持与正方体8个顶点的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为__1-4π81__.[解析]所求概率P =33-43π33=1-4π81.考点四,与角度有关的几何概型——师生共研例5(1)(2021·南岗区校级模拟)已知正方形ABCD 的边长为3,以A 为顶点在∠BAD 内部作射线AP ,射线AP 与正方形ABCD 的边交于点M ,则AM <2的概率为(D)A .32B .12C .33D .23(2)在等腰Rt △ABC 中,过直角顶点C 在∠ACB 内作一条射线CD 与线段AB 交于点D ,则AD <AC 的概率为__34__.[解析](1)正方形ABCD 的边长为3,以A 为顶点在∠BAD 内部作射线AP ,射线AP与正方形ABCD 的边交于点M ,如图所示:己知AD =AB =BC =CD =3,DM =1,所以AM =(3)2+12=2.所以∠DAM =π6.根据阴影的对称性,故P (AM <2)=π6+π6π2=23,故选D .(2)在AB 上取AC ′=AC ,则∠ACC ′=180°-45°2=67.5°.设事件A ={在∠ACB 内部作一条射线CD ,与线段AB 交于点D ,AD <AC }.则所有可能结果的区域角度为90°,事件A 的区域角度为67.5°,∴P (A )=67.590=34.名师点拨与角度有关的几何概型的求解方法(1)若试验的结果所构成的区域的几何度量可用角度来表示,则其概率公式为P (A )=构成事件A 的区域角度试验的全部结果所构成区域的角度.(2)解决此类问题时注意事件的全部结果构成的区域及所求事件的所有结果构成的区域,然后再利用公式计算.〔变式训练4〕(1)(2021·山西太原一模)如图,四边形ABCD 为矩形,AB =3,BC =1,在∠DAB内任作射线AP ,则射线AP 与线段BC 有公共点的概率为__13__.(2)如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM交BC 于点M ,则BM <1的概率为__25__.[解析](1)当点P 在BC 上时,AP 与BC 有公共点,此时AP 扫过△ABC ,所以所求事件的概率P =3090=13.(2)因为∠B =60°,∠C =45°,所以∠BAC =75°,在Rt △ABD 中,AD =3,∠B =60°,所以BD =AD tan 60°=1,∠BAD =30°.记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式,得P (N )=3075=25.名师讲坛·素养提升转化与化归思想在几何概型中的应用例6(1)(2021·贵州遵义模拟)在区间[0,2]上任取两个数,则这两个数之和大于3的概率是(A)A .18B .14C .78D .34(2)(2021·济宁模拟)甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到则等乙半小时,而乙还有其他安排,若乙早到则不需等待,则甲、乙两人能见面的概率为(A )A .38B .34C .35D .45[解析](1)设函数为x ,y ,≤x≤2,≤y≤2由图可知x+y>3的概率P=124=18.故选A.(2)以6点作为计算时间的起点,设甲到的时间为x,乙到的时间为y,则基本事件空间是Ω={(x,y)|0≤x≤1,0≤y≤1},事件对应的平面区域的面积S=1,设满足条件的事件对应的平面区域是A,则A={(x,y)|0≤x≤1,0≤y≤1,y-x≤12,且y≥x},其对应的区域如图中阴影部分所示,则C(0,1),则事件A对应的平面区域的面积是1-12×12×12-12×1×1=38,根据几何概型的概率计算公式得P=381=38.名师点拨]生活中的几何概型度量区域的构造方法:(1)审题:通过阅读题目,提炼相关信息.(2)建模:利用相关信息的特征,建立概率模型.(3)解模:求解建立的数学模型.(4)结论:将解出的数学模型的解转化为题目要求的结论.〔变式训练5〕(2020·海口调研)张先生订了一份《南昌晚报》,送报人在早上6:30-7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00-8:00之间,则张先生在离开家之前能拿到报纸的概率是__78__.[解析]以横坐标x表示报纸送到时间,以纵坐标y表示张先生离家时间,建立平面直角坐标系,如图.因为随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意只要点落在阴影部分,就表示张先生在离开家之前能拿到报纸,即所求事件A发生,所以P(A)=1×1-12×12×121×1=78.。

高中数学几何概型经典考点及例题讲解

高中数学几何概型经典考点及例题讲解

几何概型考纲解读 1.根据随机数的意义,用模拟方法估计生活中的概率问题;2.根据几何概型的意义,运用几何度量求概率;3.根据几何概型,估计几何度量.[基础梳理]1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的特点(1)无限性:试验中所有可能出现的结果(基本事件)有无限多个. (2)等可能性:试验结果在每一个区域内均匀分布. 3.几何概型的概率公式 P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).[三基自测]1.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )答案:A2.已知A ={(x ,y )|-1≤x ≤1,0≤y ≤2},B ={}(x ,y )|1-x 2≤y .若在区域A 中随机地扔一粒豆子,则该豆子落在区域B 中的概率为( )A .1-π8B.π4C.π4-1 D.π8答案:A3.在区间[-2,3]上随机选取一个数X ,则 X ≤1的概率为( ) A.45 B.35 C.25 D.15 答案:B4.(必修3·3.3例1改编)在[0,60]上任取一个数,则x ≥50的概率为________. 答案:165.(2017·高考全国卷Ⅰ改编)求在半径为r 的圆内随机撒一粒黄豆,它落在圆内接等腰直角三角形内的概率.答案:1π考点一 与长度型有关的几何概型|方法突破命题点1 与线段长度有关的几何概型[例1] (2018·长春模拟)已知线段AC =16 cm ,先截取AB =4 cm 作为长方体的高,再将线段BC 任意分成两段作为长方体的长和宽,则长方体的体积超过128 cm 3的概率为________.[解析] 设长方体的长为x ,宽为(12-x ), 由4x (12-x )>128,得x 2-12x +32<0, ∴4<x <8,即在线段BC 内,截取点D , 满足BD ∈(4,8),其概率为8-412=13.[答案] 13命题点2 与角度有关的几何概型[例2] 如图所示,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA ,则射线OA 落在∠yOT 内的概率为________.[解析] 如题图,因为射线OA 在坐标系内是等可能分布的,所以OA 落在∠yOT 内的概率为60360=16.[答案] 16命题点3 与时间有关的几何概型[例3] (2016·高考全国卷Ⅰ改编)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是________.[解析] 由题意得图:由图得等车时间不超过10分钟的概率为12.[答案] 12命题点4 与不等式有关的几何概型[例4] 在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.[解析] 方程x 2+2px +3p -2=0有两个负根x 1,x 2,则⎩⎪⎨⎪⎧Δ=4p 2-4(3p -2)>0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p <1或p >2.又因为p ∈[0,5],根据几何概型的概率计算公式可知 方程x 2+2px +3p -2=0有两个负根的概率为 P =1-23+5-25=23.[答案]23[方法提升][母题变式]1.将例1改为在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20 cm 2的概率为( )A.16B.13C.23D.45[解析] 设AC =x ,则BC =12-x (0<x <12),又矩形面积S =x (12-x )>20,∴x 2-12x +20<0,解得2<x <10,∴所求概率为10-212=23.[答案] C2.将例2改为:如图,M 是半径为R 的圆周上一个定点,在圆周上等可能的任取一点N ,连接MN ,则弦MN 的长度超过2R 的概率是( )A.15 B.14 C.13D.12解析:由题意知,当MN =2R 时,∠MON =π2,所以所求概率为2×π22×π=12.答案:D3.将例3改为:一个路口的红绿灯,红灯的时间为30 s ,黄灯的时间为5 s ,绿灯的时间为40 s ,当某人到达路口时看见的是红灯的概率是( )A.15 B.25 C.35D.45解析:设事件A 表示“某人到达路口时看见的是红灯”,则事件A 对应30 s 的时间长度,而路口红绿灯亮的一个周期为30+5+40=75(s)的时间长度.根据几何概型的概率公式可得,事件A 发生的概率P (A )=3075=25.答案:B4.若例4的条件“两个负根”变为“无实根”,则结果如何? 解析:由条件知Δ=4p 2-4(3p -2)<0,解得:1<p <2, 所以没有实根的概率为P =2-15=15.答案:15考点二 与面积有关的几何概型及模拟试验|模型突破[例5] (1)已知函数f (x )=x 2+bx +c ,其中0≤b ≤4,0≤c ≤4.记函数f (x )满足条件⎩⎪⎨⎪⎧f (2)≤12,f (-2)≤4为事件A ,则事件A 发生的概率为( )A.14 B.58C.12 D.38(2)(2018·石家庄模拟)在区间[0,1]上任取两个数,则这两个数之和小于65的概率是() A.1225 B.1625C.1725 D.1825(3)在边长为2的正方形ABCD内部任取一点M,则满足∠AMB>90°的概率为________.[解析](1)由题意,得⎩⎪⎨⎪⎧4+2b+c≤12,4-2b+c≤4,0≤b≤4,0≤c≤4,即⎩⎪⎨⎪⎧2b+c-8≤0,2b-c≥0,0≤b≤4,0≤c≤4表示的区域如图阴影部分所示,可知阴影部分的面积为8,所以所求概率为12.(2)设这两个数分别是x,y,则总的基本事件构成的区域是⎩⎪⎨⎪⎧0≤x≤1,0≤y≤1确定的平面区域,所求事件包含的基本事件构成的区域是⎩⎪⎨⎪⎧0≤x≤1,0≤y≤1,x+y<65,如图所示,阴影部分的面积是1-12×⎝⎛⎭⎫45 2=1725,所以这两个数之和小于65的概率是1725.(3)如图,如果M 点位于以AB 为直径的半圆内部,则∠AMB >90°,否则,M 点位于半圆上及空白部分,则∠AMB ≤90°,所以∠AMB >90°的概率P =12×π×1222=π8.[答案] (1)C (2)C (3)π8[模型解法]对于面积型的几何概型,关键是求其面积.(1)定型,根据题意判断是否为面积型,一般涉及区域或二元变量问题都是面积型的. (2)定量,根据条件画出图形,确定区域、求其面积. (3)求概率,利用几何概型公式求概率. [高考类题](2017·高考全国卷Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图. 正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14 B.π8 C.12D.π4解析:不妨设正方形的边长为2,则正方形的面积为4,正方形的内切圆的半径为1,面积为π.由于正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,所以黑色部分的面积为π2,故此点取自黑色部分的概率为π24=π8,故选B.答案:B考点三 与体积有关的几何概型|易错突破[例6] (1)(2018·唐山模拟)已知正三棱锥S ­ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P ­ABC <12V S ­ABC 的概率是( )A.78B.34C.12D.14(2)(2018·长沙模拟)在棱长为2的正方体ABCD ­A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD ­A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为________.[解析] (1)当点P 到底面ABC 的距离小于32时,V P ­ABC <12V S ­ABC .由几何概型知,所求概率为P =1-⎝⎛⎭⎫123=78. (2)V 正=23=8,V 半球=12×43π×13=23π.V 半球V 正=2π8×3=π12,∴P =1-π12.[答案] (1)A (2)1-π12[易错提醒][纠错训练](2018·福州模拟)如图为某个四面体的三视图,若在该四面体的外接球内任取一点,则点落在四面体内的概率为( )A.913πB.113πC.913169πD.13169π解析:由三视图可知该立体图形为三棱锥,其底面是一个直角边长为32的等腰直角三角形,高为4,所以该三棱锥的体积为12,又外接球的直径2r 为以三棱锥的三个两两垂直的棱为长方体的对角线,即2r =42+(32)2+(32)2=213,所以球的体积为5213π3,所以点落在四面体内的概率为125213π3=913169π.答案:C1.[考点二](2016·高考全国卷Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4nm B.2n m C.4m nD.2m n解析:设由⎩⎪⎨⎪⎧0≤x n ≤10≤y n ≤1构成的正方形的面积为S ,x 2n +y 2n <1构成的图形的面积为S ′,所以S ′S =14π1=m n ,所以π=4mn,故选C.答案:C2.[考点一](2016·高考全国卷Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.710B.58C.38D.310解析:记“至少需要等待15秒才出现绿灯”为事件A ,则P (A )=2540=58.答案:B3.[考点二](2013·高考四川卷)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A.14 B.12 C.34D.78解析:设通电x 秒后第一串彩灯闪亮,y 秒后第二串彩灯闪亮.依题意得0≤x ≤4,0≤y ≤4,其对应区域的面积为S =4×4=16.又两串彩灯闪亮的时刻相差不超过2秒,即|x -y |≤2,如图,易知阴影区域的面积为S ′=16-12×2×2-12×2×2=12,∴P =S ′S =1216=34.答案:C4.[考点一](2017·高考江苏卷)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.解析:由6+x -x 2≥0,得-2≤x ≤3,即D =[-2,3], ∴P (x ∈D )=3-(-2)5-(-4)=59.答案:595.[考点二](2014·高考福建卷)如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.解析:∵y =e x 与y =ln x 互为反函数,故直线y =x 两侧的阴影部分面积相等,只需计算其中一部分即可.如图,S 1=⎠⎛01e x d x =e x| 1=e 1-e 0=e -1.∴S 总阴影=2S 阴影=2(e ×1-S 1)=2[e -(e -1)]=2,故所求概率为P =2e2.答案:2e 2。

几何概型、古典概型常考经典好题(史上最全面含答案)

几何概型、古典概型常考经典好题(史上最全面含答案)

几何概型、古典概型常考经典题(史上最全面)1.在长为2的线段AB 上任意取一点C ,则以线段AC 为半径的圆的面积小于π的概率为( ) A .14 B.12 C .34 D.π42.已知正棱锥S-ABC 的底面边长为4,高为3,在正棱锥内任取一点P ,使得V P-ABC <12V S-ABC 的概率是( ) A .34 B.78 C .12 D.143.如图所示,A 是圆上一定点,在圆上其他位置任取一点A ′,连接AA ′,得到一条弦,则此弦的长度小于或等于半径长度的概率为( )A .12 B.32 C .13 D.144.在区间⎣⎢⎡⎦⎥⎤-π6,π2上随机取一个数x ,则sin x +cos x ∈[1, 2 ]的概率是( ) A .12 B.34 C .38 D.585.若m ∈(0,3),则直线(m +2)x +(3-m)y -3=0与x 轴、y 轴围成的三角形的面积小于98的概率为________.6.如图,正四棱锥S-ABCD 的顶点都在球面上,球心O 在平面ABCD 上,在球O 内任取一点,则这点取自正四棱锥内的概率为________.7.平面区域A 1={}(x ,y )|x 2+y 2<4,x ,y ∈R ,A 2={(x ,y )||x |+|y |≤3,x ,y ∈R}.在A 2内随机取一点,则该点不在A 1内的概率为________.8.在边长为4的等边三角形OAB 及其内部任取一点P ,使得OA ―→·OP ―→≤4的概率为( )A.12B.14C.13D.189.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为35,则AD AB =________. 10.某人对某台的电视节目进行了长期的统计后得出结论,他任意时间打开电视机看该台节目时,看不到广告的概率为910,那么该台每小时约有________分钟的广告.11.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.12.在面积为S 的ABC ∆ 的边AB 上任取一点P ,则PBC ∆的面积大于4S 的概率为 .13.在ABC ∆中,060,2,6ABC AB BC ∠===,在BC 上任取一点D ,则使ABD ∆为钝角三角形的概率为( )A .16B .13C .12D .23 14.从区间[0,1]上随机抽取2n 个数1212,,,,,,,n n x x x y y y ,构成n 个数对11(,)x y ,22(,)x y ,[来源:学+,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为__________. A .4n m B .2n m C .4m n D .m n15. 在等腰Rt △ABC 中, (1)在斜边A B 上任取一点M ,求AM 的长小于AC 的长的概率.(2)过直角顶点C 在ACB ∠内作一条射线CM ,与线段AB 交于点M ,求AM<AC 的概率.(3)已知P 是△ABC 所在平面内一点,PB +PC +2PA =0,现将一粒黄豆随机撒在△PBC 内,则黄豆落在△PBC 内的概率是( )A .14B .13C .23D .1216.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯在4秒内为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率。

高三数学几何概型试题答案及解析

高三数学几何概型试题答案及解析

高三数学几何概型试题答案及解析1.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A.B.C.D.【答案】B【解析】由题知,以AB为直径的圆的半径为1,故质点落在以AB为直径的半圆内的概率为=,故选B.考点:几何概型2.在区间上随机取两个数其中满足的概率是()A.B.C.D.【答案】B【解析】在区间[0,2]上随机取两个数x,y,对应区域的面积为4,满足y≥2x,对应区域的面积为×1×2=1,∴所求的概率为,故选B.考点:几何概型3.张先生订了一份《南昌晚报》,送报人在早上6:30-7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00-8:00之间,则张先生在离开家之前能拿到报纸的概率是________.【答案】【解析】以横坐标x表示报纸送到时间,以纵坐标y表示张先生离家时间,建立平面直角坐标系,如图.因为随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意只要点落在阴影部分,就表示张先生在离开家之前能拿到报纸,即所求事件A发生,所以P(A)==.4.已知复数z=x+yi(x,y∈R)在复平面上对应的点为M.(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个数作为y,求复数z为纯虚数的概率;(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:所表示的平面区域内的概率.【答案】(1)(2)【解析】(1)记“复数z为纯虚数”为事件A.∵组成复数z的所有情况共有12个:-4,-4+i,-4+2i,-3,-3+i,-3+2i,-2,-2+i,-2+2i,0,i,2i,且每种情况出现的可能性相等,属于古典概型,其中事件A包含的基本事件共2个:i,2i,∴所求事件的概率为P(A)==.(2)依条件可知,点M均匀地分布在平面区域{(x,y)| }内,属于几何概型,该平面区域的图形为右图中矩形OABC围成的区域,面积为S=3×4=12.而所求事件构成的平面区域为{(x,y)| },其图形如图中的三角形OAD(阴影部分).又直线x+2y-3=0与x轴、y轴的交点分别为A(3,0)、D(0,),∴三角形OAD的面积为S1=×3×=.∴所求事件的概率为P===.5.在区间[-6,6]内任取一个元素x0,抛物线x2=4y在x=x处的切线的倾斜角为α,则α∈[,]的概率为________.【答案】【解析】当切线的倾斜角α∈[,]时,切线斜率的取值范围是(-∞,-1]∪[1,+∞),抛物线x2=4y在x=x0处的切线斜率是x,故只要x∈(-∞,-2]∪[2,+∞)即可,若在区间[-6,6]内取值,则只能取区间[-6,-2]∪[2,6)内的值,这个区间的长度是8,区间[-6,6]的长度是12,故所求的概率是=.6.在可行域内任取一点,规则如流程图所示,求输出数对(x,y)的概率.【答案】【解析】可行域为中心在原点,顶点在坐标轴上的正方形(边长为),x2+y2≤表示半径为的圆及其内部,所以所求概率为=.7.在长为的线段上任取一点,并且以线段为边作正三角形,则这个正三角形的面积介于与之间的概率为()A.B.C.D.【答案】D【解析】解:边长为的正三角形的面积为,由得:在长为的线段上任取一点,有无限个可能的结果,所有可能结果对应一个长度为20的线段,设“以线段为边的正三角形面积介于与之间”为事件M,则包含M的全部基本事对应的是长度为6的线段,所以故选D.【考点】几何概型.8.在平面区域内随机取一点,则所取的点恰好满足的概率是()A.B.C.D.【答案】C【解析】如图,此题为几何概型,,故选C.【考点】几何概型9.一只昆虫在边长分别为、、的三角形区域内随机爬行,则其到三角形顶点的距离小于的地方的概率为 .【答案】.【解析】如下图所示,易知三角形为直角三角形,昆虫爬行的区域是在三角形区域内到以各顶点为圆心,半径为的圆在三角形区域内的部分,实际上就是三个扇形,将这三个扇形拼接起来就是一个半圆,其半径长为,面积为,三角形的面积为,因此昆虫爬行时到三角形顶点的距离小于的地方的概率为.【考点】几何概型10.如图,一半径为的圆形靶内有一个半径为的同心圆,将大圆分成两部分,小圆内部区域记为环,圆环区域记为环,某同学向该靶投掷枚飞镖,每次枚. 假设他每次必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中获得环的概率;(2)设表示该同学在次投掷中获得的环数,求的分布列及数学期望.【答案】(1);(2)详见解析.【解析】(1)先根据题中条件确定相应的事件为几何概型,然后利用几何概型的概率计算公式(对应区域面积之比)求出相应事情的概率即可;(2)(1)由题意可得是几何概型,设,该同学一次投掷投中环的概率为;(2)由题意可知可能的值为、、、,,,,,的分布列为环,答:的数学期望为环.【考点】1.几何概型;2.离散型随机变量分布列与数学期望11.已知正方体的棱长为2,在四边形内随机取一点,则的概率为_______ ,的概率为_______.【答案】;【解析】四边形为矩形且。

高考数学考点46几何概型试题解读与变式(2021年整理)

高考数学考点46几何概型试题解读与变式(2021年整理)

考点46 几何概型一、知识储备汇总与命题规律展望1.知识储备汇总:(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.(2)特点:①无限性:试验中所有可能出现的结果(基本事件)有无限多个. ②等可能性:试验结果在每一个区域内均匀分布. (3)几何概型的概率公式:P (A )=错误!2.命题规律展望:几何概型是高考考查的重点与热点,以函数、不等式、数列、定积分等知识为载体,主要考查利用集合概型知识求几何概型的概率,题型为选择题、填空题,分值为5分,难度为基础题或中档题. 二、题型与相关高考题解读 1.与长度角度有关的几何概型1。

1考题展示与解读例1 【2016高考新课标2文数】某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒。

若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )(A) (B ) (C) (D )【命题意图探究】本题主要考查与长度有关的几何概型问题,是基础题。

【答案】B【解析】因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为,故选B 。

【解题能力要求】应用意识,运算求解能力【方法技巧归纳】求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度).然后求解,要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度、角度).710583831040155408-=1.2【典型考题变式】【变式1:改编条件】若正方形边长为为四边上任意一点,则的长度大于的概率等于( )A. B 。

C 。

D.【答案】D【解析】设分别为或靠近点的四等分点,则当在线段 上时, 的长度大于, 所能取到点的长度为,正方形的周长为,的长度大于,的概率等于,故选D 。

【变式2:改编结论】在区间内随机取一个数,则方程表示焦点在轴上的椭圆的概率是( )A. B. C 。

高考复习几何概型复习题(含答案)

高考复习几何概型复习题(含答案)

几何概型试题汇编一、单选题(共27题;共54分)1.在区间上随机取一个数x,则事件“ ”不发生的概率为()A. B. C. D.2.在区间内的所有实数中随机取一个实数,则这个实数满足的概率是()A. B. C. D.3.在由不等式组所确定的三角形区域内随机取一点,则该点到此三角形的三个顶点的距离均不小于1的概率是( )A. B. C. D.4.设不等式组,表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是()A. B. C. D.5.如图,矩形中,点的坐标为.点的坐标为.直线的方程为:且四边形为正方形,若在五边形内随机取一点,则该点取自三角形 (阴影部分)的概率等于()A. B. C. D.6.如图,六边形是一个正六边形,若在正六边形内任取一点,则恰好取在图中阴影部分的概率是()A. B. C. D.7.如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影)。

设直角三角形有一内角为,若向弦图内随机抛掷1000颗米粒(大小忽略不计),则落在小正方形(阴影)内的米粒数大约为()A. 134B. 866C. 300D. 5008.我们可以用计算机产生随机数的方法估计的近似值,如图所示的程序框图表示其基本步骤(中用函数来产生的均匀随机数),若输出的结果为524,则由此可估计的近似值为()A. 3.144B. 3.154C. 3.141D. 3.1429.如图,在矩形区域的两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域和扇形区域(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是()A. B. C. D.10.在区间[0,1]上随机选取两个数x和y,则y>2x的概率为()A. B. C. D.11.用电脑每次可以从区间(0,1)内自动生成一个实数,且每次生成每个实数都是等可能性的,若用该电脑连续生成3个实数,则这3个实数都大于的概率为()A. B. C. D.12.在区间[﹣1,2]上随机取一个数x,则|x|≤1的概率为()A. B. C. D.13.设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A. +B. +C. ﹣D. ﹣14.如图一铜钱的直径为32毫米,穿径(即铜钱内的正方形小孔边长)为8毫米,现向该铜钱内随机地投入一粒米(米的大小忽略不计),则该粒米未落在铜钱的正方形小孔内的概率为()A. B. C. D.15.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时候相差不超过2秒的概率是()A. B. C. D.16.圆O内有一内接正三角形,向圆O内随机投一点,则该点落在正三角形内的概率为()A. B. C. D.17.如图所示,墙上挂有边长为a的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是()A. 1﹣B.C. 1﹣D. 与a的取值有关18.不等式6﹣5x﹣x2≥0的解集为D,在区间[﹣7,2]上随机取一个数x,则x∈D的概率为()A. B. C. D.19.如图,在边长为2的正方形ABCD的内部随机取一点E,则△ABE的面积大于的概率为()A. B. C. D.20.如图,点A为周长为3的圆周上的一定点,若在该圆周上随机取一点B,则劣弧AB的长度小于1的概率为()A. B. C. D.21.如图,在圆心角为90°的扇形中以圆心O为起点作射线OC,则使得∠AOC与∠BOC都不小于30°的概率是()A. B. C. D.22.在区间(0,3]上随机取一个数x,则事件“0≤log2x≤1”发生的概率为()A. B. C. D.23.某人从甲地去乙地共走了500m,途经一条宽为xm的河流,该人不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里,则能找到,已知该物品能被找到的概率为,则河宽为()A. 80mB. 100mC. 40mD. 50m24.在平面直角坐标系中,记抛物线y=x﹣x2与x轴所围成的平面区域为M,该抛物线与直线y=kx(k>0)所围成的平面区域为N,向区域M内随机抛掷一点P,若点P落在区域N内的概率为,则k的值为()A. B. C. D.25.在半径为1的圆O内任取一点M,过M且垂直OM与直线l与圆O交于圆A,B两点,则AB长度大于的概率为()A. B. C. D.26.在长为16cm的线段MN上任取一点P,以MP,NP为邻边作一矩形,则该矩形的面积大于60cm2的概率为()A. B. C. D.27.如图,圆O内有一个内接三角形ABC,且直径AB=2,∠ABC=45°,在圆O内随机撒一粒黄豆,则它落在三角形ABC内(阴影部分)的概率是()A. B. C. D.二、填空题(共7题;共7分)28.已知Ω1是集合{(x,y)|x2+y2≤1}所表示的区域,Ω2是集合{(x,y)|y≤|x|}所表示的区域,向区域Ω1内随机的投一个点,则该点落在区域Ω2内的概率为________.29.在[0,a](a>0)上随机抽取一个实数x,若x满足<0的概率为,则实数a的值为________.30.某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段任何的时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________31.上随机地取一个数k,则事件“直线y=kx与圆相交”发生的概率为________32.在棱长为2的正方体内随机取一点,取到的点到正方体中心的距离大于1的概率________.33.如图所示,为了求出一个边长为10的正方形内的不规则图形的面积,小明设计模拟实验:向这个正方形内均匀的抛洒20粒芝麻,结果有8粒落在了不规则图形内,则不规则图形的面积为________.34.矩形区域ABCD 中,AB 长为2 千米,BC 长为1 千米,在A 点和C 点处各有一个通信基站,其覆盖范围均为方圆1 千米,若在该矩形区域内随意选取一地点,则该地点无信号的概率为________.三、解答题(共8题;共65分)35.遂宁市观音湖港口船舶停靠的方案是先到先停.(1)若甲乙两艘船同时到达港口,双方约定各派一名代表从1,2,3,4,5中各随机选一个数(甲、乙选取的数互不影响),若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.(2)根据以往经验,甲船将于早上7:00~8:00到达,乙船将于早上7:30~8:30到达,请求出甲船先停靠的概率36.如图,为圆柱的母线,是底面圆的直径,是的中点.(Ⅰ)问:上是否存在点使得平面?请说明理由;(Ⅱ)在(Ⅰ)的条件下,若平面,假设这个圆柱是一个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果小鱼游到四棱锥外会有被捕的危险,求小鱼被捕的概率.37.某同学在上学路上要经过A、B、C三个带有红绿灯的路口.已知他在A、B、C三个路口遇到红灯的概率依次是、、,遇到红灯时停留的时间依次是40秒、20秒、80秒,且在各路口是否遇到红灯是相互独立的.(1)求这名同学在上学路上在第三个路口首次遇到红灯的概率;,(2)求这名同学在上学路上因遇到红灯停留的总时间.38.设关于x的一元二次方程x2+ax﹣+1=0.(1)若a是从1,2,3这三个数中任取的一个数,b是从0,1,2这三个数中任取的一个数,求上述方程中有实根的概率;(2)若a是从区间[0,3]中任取的一个数,b是从区间[0,2]中任取的一个数,求上述方程有实根的概率.39.设事件A表示“关于x的一元二次方程x2+ax+b2=0有实根”,其中a,b为实常数.(Ⅰ)若a为区间[0,5]上的整数值随机数,b为区间[0,2]上的整数值随机数,求事件A发生的概率;(Ⅱ)若a为区间[0,5]上的均匀随机数,b为区间[0,2]上的均匀随机数,求事件A发生的概率.40.已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2,3,4,5}和B={﹣2,﹣1,1,2,3,4},分别从集合A,B中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.41.已知正方形ABCD的边长为1,弧BD是以点A为圆心的圆弧.(1)在正方形内任取一点M,求事件“|AM|≤1”的概率;(2)用大豆将正方形均匀铺满,经清点,发现大豆一共28粒,其中有22粒落在圆中阴影部分内,请据此估计圆周率π的近似值(精确到0.01).42.某旅游公司为甲,乙两个旅游团提供四条不同的旅游线路,每个旅游团可任选其中一条旅游线路.(1)求甲、乙两个旅游团所选旅游线路不同的概率;(2)某天上午9时至10时,甲,乙两个旅游团都到同一个著名景点游览,20分钟后游览结束即离去.求两个旅游团在该著名景点相遇的概率.答案解析部分一、单选题1.【答案】D【考点】几何概型【解析】【解答】解:区间上随机取一个数x,对应区间长度为,满足事件“ ”的x范围为x+1≤3,即≤x≤2,对应区间长度为2+ ,所以事件不发生的概率为1﹣= ;故选D.【分析】由题意,本题是几何概型,首先求出事件对应的区间长度,利用长度比求概率.2.【答案】C【考点】几何概型【解析】【解答】由题意可得,该问题为长度型几何概型,则所求问题的概率值为:.故答案为:C.【分析】根据题目中所给的条件的特点,分别计算出区间(15,25]的长度,区间(17,20)的长度,代入几何概型概率计算公式,即可得到答案.考查几何概型的概率计算.其中根据已知条件计算出基本事件总数对应的几何量的大小,和满足条件的几何量的大小是解答本题的关键.3.【答案】D【考点】几何概型【解析】【解答】画出关于的不等式组所构成的三角形区域,如图所示.的面积为离三个顶点距离都不大于1的地方的面积为∴其恰在离三个顶点距离都不小于1的地方的概率为故答案为:D.【分析】画出关于x,y的不等式组所构成的三角形区域,求出三角形的面积;再求出距三角形的三顶点距离小于等于1的区域为三个扇形,三个扇形的和是半圆,求出半圆的面积;利用对立事件的概率公式及几何概型概率公式求出恰在离三个顶点距离都不小于1的地方的概率.几何概率:设几何概型的基本事件空间可表示成可度量的区域Ω,事件A所对应的区域用A表示(A⊆Ω),则P(A)=称为事件A的几何概率.4.【答案】D【考点】二元一次不等式(组)与平面区域,几何概型【解析】【解答】解:其构成的区域D如图所示的边长为2的正方形,面积为S1=4,满足到原点的距离大于2所表示的平面区域是以原点为圆心,以2为半径的圆外部,面积为=4﹣π,∴在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率P=故选:D.【分析】本题属于几何概型,利用“测度”求概率,本例的测度即为区域的面积,故只要求出题中两个区域:由不等式组表示的区域和到原点的距离大于2的点构成的区域的面积后再求它们的比值即可.5.【答案】D【考点】几何概型【解析】【解答】在中,令,得,即,则,所以,,由几何概型的概率公式,得在五边形内随机取一点,该点取自三角形 (阴影部分)的概率.故答案为:D.【分析】根据题意求出点D的坐标,再由两点间的距离公式代入数值求出结果,结合四边形的面积代入数值求出结果把数值代入到几何概型的概率公式求出结果即可。

几何概型 高考数学总复习 高考数学试题详解

几何概型 高考数学总复习 高考数学试题详解
的概率是
1 A. 5 2 B. 5 3 C. 5 4 D. 5
(
).
解析
30 2 以时间的长短进行度量,故 P= = . 75 5
答案
B
抓住3个考点
突破3个考向
揭秘3年高考
0≤x≤2, 3. (2012· 北京 )设不等式组 0≤y≤2
表示的平面区域为
D,在区域 D 内随机取一个点,则此点到坐标原点的距 离大于 2 的概率是 π A. 4 π C. 6 π- 2 B. 2 4-π D. 4 ( ).
抓住3个考点
突破3个考向
揭秘3年高考
解析
如图所示, 正方形 OABC 及其内
部为不等式组表示的区域 D, 且区域 D 的面积为 4,而阴影部分表示的是区域 D 内到原点距离大于 2 的区域, 易知该 阴影部分的面积为 4-π,因此满足条 4-π 件的概率是 .故选 D. 4
答案
D
抓住3个考点
突破3个考向
第5讲 几何概型
【2014年高考会这样考】 考查与长度或面积有关的几何概型,也可与二元一次不 等式组所表示的平面区域相结合一起考查.
抓住3个考点
突破3个考向
揭秘3年高考
考点梳理
1. 几何概型
(1)定义:事件A理解为区域Ω的某一子区域A,A的概
率只与子区域A的几何度量(长度、面积或体积)成正 比,而与A的位置和形状无关.满足以上条件的试验称为几 何概型.
抓住3个考点
突破3个考向
揭秘3年高考
(2) 因为在∠ DAB 内任作射线 AP,则等可能基本事件为 “∠DAB 内作射线 AP”,所以它的所有等可能事件所在 的区域 H 是∠DAB,当射线 AP 与线段 BC 有公共点时, 射线 AP 落在∠CAB 内,区域 h 为∠CAB,所以射线 AP ∠CAB 30° 1 与线段 BC 有公共点的概率为 = = . ∠DAB 90° 3

近几年高考数学卷中几何概型题扫描

近几年高考数学卷中几何概型题扫描

龙源期刊网
近几年高考数学卷中几何概型题扫描
作者:刘瑞美钱伟风
来源:《中学数学杂志(高中版)》2012年第05期
几何概型的特征是试验结果的无限性和每一个试验结果出现的等可能性,它是高中概率部分的一个难点,高考中常以选择、填空题形式出现.要理解并灵活应用几何概型解决相关问
题,需要把握其特征.
如果一类随机试验具有如下两个特征:
(1)进行一次随机试验相当于向一个几何体G中取一点;
(2)对G内任意子集事件“点取自g”的概率与g的测度(长度、面积、体积)成正比,
而与g在G中的位置、形状无关.我们把这类随机试验的数学模型称为几何概型.如果事件A可用G中的一个区域g表示(组成事件A的所有可能结果与g中所有点一一对应),那么P (A)=g的测度G的测度.
为了更好地揭示该知识点的命题规律,本文主要选取近几年高考数学卷中的几何概型问题加以分析,意在揭示其规律,引导教学活动.在近几年的高考试卷中主要涉及的是与面积和长
度有关的概率问题,下面针对此类问题进行分类解析,以期抛砖引玉.。

高考数学(人教a版,理科)题库:几何概型(含答案)

高考数学(人教a版,理科)题库:几何概型(含答案)

高考数学〔人教a版,理科〕题库:几何概型〔含答案〕第5讲几何概型一、选择题1、如图,在边长为25cm的正方形中挖去边长为23cm的两个等腰直角三角形,现有均匀的粒子散落在正方形中,问粒子落在中间带形区域的概率是多少?96A. 625 529C. 62598 B.625 68 D. 625解析因为均匀的粒子落在正方形内任何一点是等可能的所以符合几何概型的条件。

设A=“粒子落在中间带形区域〞那么依题意得正方形面积为:25×25=625 1两个等腰直角三角形的面积为:2×2×23×23=529带形区域的面积为:625-529=9696P〔A〕= 625∴答案 A2.一只蚂蚁在如下图的地板砖(除颜色不同外,其余全部相同)上爬来爬去,它最后随意停留在黑色地板砖上的概率是( )1111A. B. C. D. 4325解析每个小方块的面积相等,而黑色地板砖占总体的 41?,故蚂蚁停留在1231黑色地板砖上的概率是3答案 B3. 如图的矩形长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影局部的黄豆数为138颗,由此我们可以估计出阴影局部的面积约为( ). 23C.519D.516A.5 21B.5S13823解析由几何概型的概率公式,得10=300,所以阴影局部面积约为5,应选C. 答案 C4.在长为12 cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,那么该矩形面积小于32 cm2的概率为 1A.61B.32C.34D.5( ).解析设出AC的长度,先利用矩形面积小于32 cm2求出AC长度的范围,再利用几何概型的概率公式求解.设AC=x cm,CB=(12-x)cm,0<x<12,所以矩形面积小于32 cm2即为x(12-x)<32?0<x<4或8<x<12,故所求82概率为12=3. 答案 C5. 分别以正方形ABCD的四条边为直径画半圆,重叠局部如图中阴影区域所示,假设向该正方形内随机投一点,那么该点落在阴影区域的概率为 ( ). 4-πA.2 4-πC.4π-2B.2 π-2D.4解析设正方形边长为2,阴影区域的面积的一半等于半径为1的圆减去圆内接正方形的面积,即为π-2,那么阴影区域的面积为2π-4,所以所求概率为P2π-4π-2=4=2. 答案 B6.假设利用计算机在区间(0,1)上产生两个不等的随机数a和b,那么方程x =22a-2bx有不等实数根的概率为 1A.41B.22D.5 ( ).3C.42b解析方程x=22a-x,即x2-22ax+2b=0,原方程有不等实数根,那么需满足Δ=(22a)2-4×2b>0,即a>b.在如下图的平面直角坐标系内,(a,b)的所有可能结果是边长为1的正方形(不包括2b边界),而事件A“方程x=22a-x有不等实数根〞的可能结果为图中阴影1 2×1×11局部(不包括边界).由几何概型公式可得P(A)==2.应选B.1×1答案 B 二、填空题1?ππ?7.在区间?-2,2?上随机取一个数x,cos x的值介于0至2之间的概率为 ??________.解析根据题目条件,结合几何概型的概率公式可得所求的概率为P=?ππ? 2?2-3???1=. π?-π?3??2-?2?1答案 3 8.小波通过做游戏的方式来确定周末活动,他随机地往1单位圆内投掷一点,假设此点到圆心的距离大于2,那么周1末去看电影;假设此点到圆心的距离小于4,那么去打篮球;否那么,在家看书.那么小波周末不在家看书的概率为________.解析设A={小波周末去看电影},B={小波周末去打篮球},C={小波周末11?2?2π-?4?2π在家看书},D={小波周末不在家看书},如下图,那么P(D)=1-π13=16. 13答案 16 9.有一个底面圆的半径为1,高为3的圆柱,点O1,O2分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,那么点P 到点O1,O2的距离都大于1的概率为________.解析确定点P到点O1,O2的距离小于等于1的点的集合为,以点O1,O21443为球心,1为半径的两个半球,求得体积为V=2×2×3π×1=3π,圆柱的体4π3积为V=Sh=3π,所以点P到点O1,O2的距离都大于1的概率为V=1-3π=5. 95答案 9 10.正三棱锥S-ABC的底边长为4,高为3,在三棱锥内任取一点P,使1得VP-ABC。

全国高2020届高2017级高三2019年12月高三数学二轮复习资料第44课几何概型

全国高2020届高2017级高三2019年12月高三数学二轮复习资料第44课几何概型
P254
第44课 小积累
P254
随堂普查练 B
第44课 第1题
P254
随堂普查练
5 9
第44课 第2题 P254
随堂普查练
3 4
第44课 第3题 P254
随堂普查练
第44课 第4题
P254
随堂普查练
第44课 第4题
P254
随堂普查练
第44课 第5题
P255
随堂普查练
第44课 第5题
P255
课后提分练
第43-44课 第10题
P90
课后提分练
第43-44课 第10题
P90
课后提分练
第43-44课 第10题
P90
课后提分练
第43-44课 第10题
P90
课后提分练
1 3
第43-44课 第11题
P90
课后提分练
第43-44课 第12题
P90
课后提分练
第43-44课 第12题
P90
随堂普查练 B
第44课 第5题
P255
随堂普查练
第44课 第6题
P255
随堂普查练
第44课 第6题
P255
随堂普查练
第44课 第6题
P255
随堂普查练 D
第44课 第6题
P255
随堂普查练
第44课 第7题
P255
随堂普查练
第44课 第7题
P255
随堂普查练
2 3
第44课 第7题
P255
课后提分练 1 8
第43-44课 第12题
P90
第44课 几何概型
普查讲44 一张图学透
三组题讲透 随堂普查练44

历年高考数学真题精选44 几何概型

历年高考数学真题精选44 几何概型

历年高考数学真题精选(按考点分类)专题44 几何概型(学生版)一.选择题(共13小题)1.(2019•全国)在Rt ABC ∆中,AB BC =,在BC 边上随机取点P ,则30BAP ∠<︒的概率为( ) A .12B .3 C .23D .3 2.(2018•新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC ∆的三边所围成的区域记为I ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+3.(2017•新课标Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .8π C .12D .4π 4.(2016•新课标Ⅱ)从区间[0,1]随机抽取2n 个数1x ,2x ,⋯,n x ,1y ,2y ,⋯,n y 构成n 个数对1(x ,1)y ,2(x ,2)(n y x ⋯,)n y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为()A.4nmB.2nmC.4mnD.2mn 5.(2016•新课标Ⅰ)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.13B.12C.23D.34 6.(2016•新课标Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为() A.710B.58C.38D.310 7.(2015•福建)如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且点C与点D 在函数1,0()11,02x xf xx x+⎧⎪=⎨-+<⎪⎩…的图象上,若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于()A.16B.14C.38D.12 8.(2015•陕西)设复数(1)(z x yi x=-+,)y R∈,若||1z„,则y x…的概率为() A.3142π+B.112π+C.112π-D.1142π-9.(2015•山东)在区间[0,2]上随机地取一个数x,则事件“1211log()12x-+剟”发生的概率为()A.34B.23C.13D.14 10.(2014•陕西)从正方形四个顶点及其中心这5个点中任取2个点,则这2个点的距离小于该正方形边长的概率为()A.15B.25C.35D.4511.(2014•湖北)由不等式组0020x y y x ⎧⎪⎨⎪--⎩„…„确定的平面区域记为1Ω,不等式组12x y x y +⎧⎨+-⎩„…确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( ) A .18B .14C .34D .7812.(2012•湖北)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .112π- B .1πC .21π-D .2π13.(2009•辽宁)ABCD 为长方形,2AB =,1BC =,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( ) A .4πB .14π-C .8π D .18π-二.填空题(共3小题)14.(2017•江苏)记函数2()6f x x x =+-D .在区间[4-,5]上随机取一个数x ,则x D ∈的概率是 .15.(2016•山东)在[1-,1]上随机地取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相交”发生的概率为 .16.(2015•重庆)在区间[0,5]上随机地选择一个数p ,则方程22320x px p ++-=有两个负根的概率为 .历年高考数学真题精选(按考点分类)专题44 几何概型(教师版)一.选择题(共13小题)1.(2019•全国)在Rt ABC ∆中,AB BC =,在BC 边上随机取点P ,则30BAP ∠<︒的概率为( ) A .12B .3 C .23D .3 【答案】B【解析】在Rt ABC ∆中,AB BC =,Rt ABC ∆为等腰直角三角形,令1AB BC ==,则:2AC =; 在BC 边上随机取点P ,当30BAP ∠=︒时,3tan30BP =︒=, 在BC 边上随机取点P ,则30BAP ∠<︒的概率为:3BP p BC ==2.(2018•新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC ∆的三边所围成的区域记为I ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+【答案】A【解析】如图:设12BC r =,22AB r =,32AC r =,222123r r r ∴=+, 23231422S r r r r ∴=⨯=Ⅰ,2123122S r r r π=⨯-Ⅲ,22222323212323111112222222S r r S r r r r r r r πππππ=⨯+⨯-=⨯+⨯-⨯+=ⅡⅢ,S S ∴=ⅠⅡ,12P P ∴=3.(2017•新课标Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .8π C .12D .4π 【答案】B【解析】根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积2S π=,则对应概率248P ππ==4.(2016•新课标Ⅱ)从区间[0,1]随机抽取2n 个数1x ,2x ,⋯,n x ,1y ,2y ,⋯,n y 构成n 个数对1(x ,1)y ,2(x ,2)(n y x ⋯,)n y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A .4nmB .2n mC .4mnD .2mn【答案】C【解析】由题意,两数的平方和小于1,对应的区域的面积为2114πg ,从区间[0,1]随机抽取2n 个数1x ,2x ,⋯,n x ,1y ,2y ,⋯,n y ,构成n 个数对1(x ,1)y ,2(x ,2)y ,⋯,(n x ,)n y ,对应的区域的面积为21.∴221141m n π=g 4mnπ∴=.5.(2016•新课标Ⅰ)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A .13B .12C .23D .34【答案】B【解析】设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故201402 P==6.(2016•新课标Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为() A.710B.58C.38D.310【答案】B【解析】Q红灯持续时间为40秒,至少需要等待15秒才出现绿灯,∴一名行人前25秒来到该路口遇到红灯,∴至少需要等待15秒才出现绿灯的概率为255408=.7.(2015•福建)如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且点C与点D 在函数1,0()11,02x xf xx x+⎧⎪=⎨-+<⎪⎩…的图象上,若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于()A.16B.14C.38D.12【答案】B【解析】由题意可得(1,0)B,把1x=代入1y x=+可得2y=,即(1,2)C,把0x=代入1y x=+可得1y=,即图中阴影三角形的第3个定点为(0,1),令1122x-+=可解得2x=-,即(2,2)D-,∴矩形的面积326S=⨯=,阴影三角形的面积133122S'=⨯⨯=,∴所求概率14SPS'== 8.(2015•陕西)设复数(1)(z x yi x=-+,)y R∈,若||1z„,则y x…的概率为() A.3142π+B.112π+C.112π-D.1142π-【答案】D【解析】Q复数(1)(z x yi x=-+,)y R∈且||1z„,||1z ∴=,即22(1)1x y -+„,∴点(,)x y 在(1,0)为圆心1为半径的圆及其内部, 而y x …表示直线y x =左上方的部分,∴所求概率为弓形的面积与圆的面积之比, ∴所求概率22111111142142P πππ-⨯⨯==-g g g 9.(2015•山东)在区间[0,2]上随机地取一个数x ,则事件“1211log ()12x -+剟”发生的概率为( ) A .34B .23 C .13D .14【答案】A【解析】1211log ()12x -+Q 剟∴11222x +剟解得302x剟,02x Q 剟302x ∴剟 ∴所求的概率为:33224P ==10.(2014•陕西)从正方形四个顶点及其中心这5个点中任取2个点,则这2个点的距离小于该正方形边长的概率为( ) A .15B .25 C .35D .45【答案】B【解析】设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4,∴所求概率为42105=. 11.(2014•湖北)由不等式组0020x y y x ⎧⎪⎨⎪--⎩„…„确定的平面区域记为1Ω,不等式组12x y x y +⎧⎨+-⎩„…确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( ) A .18B .14C .34D .78【答案】D【解析】平面区域1Ω,为三角形AOB ,面积为12222⨯⨯=,平面区域2Ω,为AOB ∆内的四边形BDCO ,其中(0,1)C ,由201y xx y--=⎧⎨+=⎩,解得1232xy⎧=-⎪⎪⎨⎪=⎪⎩,即1(2D-,3)2,则三角形ACD的面积1111224S=⨯⨯=,则四边形BDCO的面积17244OAB ACDS S S∆∆=-=-=,则在1Ω中随机取一点,则该点恰好在2Ω内的概率为77428=12.(2012•湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.112π-B.1πC.21π-D.2π【答案】C【解析】设扇形的半径为r,则扇形OAB的面积为214rπ,连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为:221142r rπ-,∴此点取自阴影部分的概率是22211242114r rrπππ-=-.13.(2009•辽宁)ABCD为长方形,2AB=,1BC=,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为()A .4π B .14π-C .8π D .18π-【答案】B【解析】已知如图所示:长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为2π因此取到的点到O 的距离大于1的概率22124P ππ-==-二.填空题(共3小题)14.(2017•江苏)记函数2()6f x x x =+-D .在区间[4-,5]上随机取一个数x ,则x D ∈的概率是 . 【答案】59【解析】由260x x +-…得260x x --„,得23x -剟,则[2D =-,3], 则在区间[4-,5]上随机取一个数x ,则x D ∈的概率3(2)55(4)9P --==--15.(2016•山东)在[1-,1]上随机地取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相交”发生的概率为 . 【答案】34【解析】圆22(5)9x y -+=的圆心为(5,0),半径为3. 圆心到直线y kx =的距离为21k +,要使直线y kx =与圆22(5)9x y -+=相交,则231k <+,解得3344k -<<.∴在区间[1-,1]上随机取一个数k ,使直线y kx =与圆22(5)9x y -+=相交相交的概率为33344114+=+. 16.(2015•重庆)在区间[0,5]上随机地选择一个数p ,则方程22320x px p ++-=有两个负根的概率为 .【答案】23【解析】方程22320x px p ++-=有两个负根等价于2121244(32)020320p p x x p x x p ⎧=--⎪+=-<⎨⎪=->⎩V …,解关于p 的不等式组可得213p <„或2p …,∴所求概率215223503P -+-==-。

2013高考数学复习试题:古典概型与几何概型历届高考试题汇编

2013高考数学复习试题:古典概型与几何概型历届高考试题汇编

2013高考数学复习试题:古典概型与几何概型历届高考试题汇编各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢2013高考数学复习试题:古典概型与几何概型历届高考试题汇编1.(2011•浙江文,8)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是()[答案] D[解析]3个红球记为a,b,c,2个白球记为1,2.则从袋中取3个球的所有方法是abc,ab1,ab2,ac1,ac2,a12,bc1,bc2,b12,c12.共10个基本事件,则至少有一个白球的基本事件是ab1,ab2,ac1,ac2,a12,bc1,bc2,b12,c12共9个.[来源:Z|xx|]∴至少有一个白球的概率为910.故选D.[点评](1)A=“至少有一个白球”的对立事件是B=“全是红球”,故所求概率为P(A)=1-P(B)=1-110=910.(2)解决这类问题的基本方法就是给小球编号,用列举法写出基本事件空间(或用计数原理计算基本事件空间中基本事件的个数),然后数(或求)出所求事件中含的基本事件的个数,再求概率,请再练习下题:(2011•德州模拟)一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是()[答案] C[解析]从5个球中任取两个,有C25=10种不同取法,其中两球同色的取法有C23+1=4种,∴P=410=25.2.(文)(2011•福建文,7)如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于()[答案] C[解析] 本题属于几何概型求概率问题,设矩形长为a,宽为b,则点Q 取自△ABE内部的概率为P=S△ABES矩形ABCD=12abab =12.(理)(2010•胶州三中)已知函数f(x)=x2+bx+c,其中0≤b≤4,0≤c≤4,记函数f(x)满足条件-的事件为A,则事件A发生的概率为()[答案] C[解析]由-得,2b+c≤8-2b+c≤0,画出0≤b≤4,0≤c≤4表示的平面区域和事件A 所表示的平面区域,由几何概型易知,所求概率P=12.3.(文)有5条长度分别为1、3、5、7、9的线段,从中任意取出3条,则所取3条线段可构成三角形的概率是()[答案] B[解析]构不成三角形的为(1,3,5),(1,3,7),(1,3,9),(3,5,9),(1,5,7),(1,5,9),(1,7,9),能构成三角形的有(3,5,7),(3,7,9),(5,7,9),∴所求概率为310.(理)在圆周上有10个等分点,以这些点为顶点,每3个点可以构成一个三角形,如果随机选择3个点,刚好构成直角三角形的概率是()[答案] C[解析]从10个点中任取三个有C310种方法,能构成直角三角形时,必须有两点连线为直径,这样的直径有5条,∴能构成直角三角形5×8=40个,∴概率P=40C310=13.4.(文)(2011•北京学普教育中心联考版)在棱长为2的正方体ABCD-A1B1C1D1中,点O为底面ABCD的中心,在正方体ABCD-A1B1C1D1内随机取一点P,则点P到点O的距离大于1的概率为()A.π12B.1-π12C.π6D.1-π6[答案] B[解析]以点O为圆心,半径为1的半球的体积为V=12×43πR3=2π3,正方体的体积为23=8,由几何概型知:点P到点O的距离大于1的概率为P(A)=1-23π8=1-π12,故选B.(理)已知正三棱锥S-ABC的底面边长为4,高为3,在正三棱锥内任取一点P,使得VP-ABCn的概率与mn的概率为12×1-16=512,∴满足m≥n的概率为P=16+512=712.7.(2011•浙江宁波八校联考)已知k ∈Z,AB→=(k,1),AC→=(2,4),若|AB→|≤4,则△ABC是直角三角形的概率是________.[答案]37[解析]∵|AB→|=k2+1≤4,∴-15≤k≤15,∵k∈Z,∴k=-3,-2,-1,0,1,2,3,当△ABC为直角三角形时,应有AB ⊥AC,或AB⊥BC,或AC⊥BC,由AB→•AC→=0得2k+4=0,∴k=-2,∵BC→=AC→-AB→=(2-k,3),由AB→•BC→=0得k(2-k)+3=0,∴k=-1或3,由AC→•BC→=0得2(2-k)+12=0,∴k=8(舍去),故使△ABC为直角三角形的k值为-2,-1或3,∴所求概率p=37.8.(文)(2011•如皋模拟)连续2次抛掷一枚骰子(六个面上分别标有数字1,2,3,4,5,6),记“两次向上的数字之和等于m”为事件A,则P(A)最大时,m=________.[答案]7[解析]连续抛掷一枚骰子2次,共有36个基本事件,两次向上的点数之和及次数如表:和2 3 4 5 6 7 8 9 10 11 12次数 1 2 3 4 5 6 5 4 3 2 1显然当两次向上的点数之和为7时概率P(A)最大.(理)(2010•江苏金陵中学)先后两次抛掷同一枚骰子,将得到的点数分别记为a,b.将a,b,5分别作为三条线段的长,则这三条线段能构成等腰三角形的概率是________.[答案]718[分析]本题有两点要点:一是构成三角形,须满足较小的两个数的和大于第三个数;二是构成等腰三角形,须有两个数相等.[解析]基本事件的总数为6×6=36.∵三角形的一边长为5,∴当a=1时,b=5符合题意,有1种情况;当a=2时,b=5符合题意,有1种情况;当a=3时,b=3或5符合题意,即有2种情况;当a=4时,b=4或5符合题意,有2种情况;当a=5时,b∈{1,2,3,4,5,6}符合题意,即有6种情况;当a=6时,b=5或6符合题意,即有2种情况.故满足条件的不同情况共有14种,所求概率为P=1436=718.9.(文)从集合{(x,y)|x2+y2≤4,x ∈R,y∈R}内任选一个元素(x,y),则x、y满足x+y≥2的概率为________.[答案]π-24π[解析]即图中弓形面积占圆面积的比例,属面积型几何概型,概率为π-24π.(理)(2011•黑龙江五校联考)在体积为V的三棱锥S-ABC的棱AB上任取一点P,则三棱锥S-APC的体积大于V3的概率是_____ ___.[答案]23[解析]由题意可知VS-APCVS-ABC>13,三棱锥S-ABC的高与三棱锥S-APC的高相同.作PM⊥AC于M,BN⊥AC于N,则PM、BN分别为△APC 与△ABC的高,所以VS-APCSS-ABC =S△APCS△ABC=PMBN>13,又PMBN=APAB,所以APAB>13,故所求的概率为23(即为长度之比).10.已知函数f(x)=-x2+ax-b.(1)若a,b都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;(2)若a,b都是从区间[0,4]上任取的一个数,求f(1)>0成立的概率.[解析](1)a,b都是从0,1,2,3,4五个数中任取的一个数,则基本事件总数为N=5×5=25个.函数有零点的条件为Δ=a2-4b≥0,即a2≥4b.因为事件“a2≥4b”包含(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2),(4,3),(4,4),所以事件“a2≥4b”的概率为P=1225,即函数f(x)有零点的概率为1225.(2)a,b都是从区间[0,4]上任取的一个数,f(1)=-1+a-b>0,即a-b>1,此为几何概型.如图可知,事件“f(1)>0”的概率为P=12×3×34×4=932.11.(文)(2011•金华十校联考)在一个袋子中装有分别标注1,2,3,4,5的5个小球,这些小球除标注的数字外完全相同,现从中随机取出2个小球,则取出小球标注的数字之差的绝对值为2或4的概率是()[答案] C[解析]从5个小球中随机取出两个小球,基本事件共10个:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5 ),(3,4),(3,5),(4,5).其中数字之差的绝对值为2的有:(1,3),(2,4),(3,5),数字之差的绝对值为4的有:(1,5),故所求概率P=3+110=25.(理)(2011•威海模拟)某同学同时掷两颗骰子,得到点数分别为a、b,则椭圆x2a2+y2b2=1的离心率e>32的概率是()[答案] D[解析]当a>b时,e=1-b2a2>32⇒ba2b,符合a>2b的情况有:当b=1时,有a=3,4,5,6四种情况;当b=2时,有a=5,6两种情况,总共有6种情况,则概率是636=16.同理当a32的概率也为16,综上可知e>32的概率为13.12.(文)m∈{-2,-1,0,1,2,3},n ∈{-3,-2,-1,0,1,2},且方程x2m +y2n=1有意义,则方程x2m+y2n=1可表示不同的双曲线的概率为() B.1[答案] D[解析]由题设知m>0n0,1°m>0n0时有不同取法2×2=4种,∴所求概率P=9+45×5=1325.(理)从-1、0、1、2这四个数中选出三个不同的数作为二次函数f(x)=ax2+bx+c的系数组成不同的二次函数,其中使二次函数有变号零点的概率为()[答案] A[解析]首先取a,∵a≠0,∴a的取法有3种,再取b,b的取法有3种,最后取c,c的取法有2种,∴共组成不同的二次函数3×3×2=18个.f(x)若有变号零点,不论a>0还是a0,即b2-4ac>0,∴b2>4ac.①首先b取0时,a、c须异号,a =-1,则c有2种,a取1或2,则c 只能取-1,∴共有4种.②b=1时,若c=0,则a有2种,若c=-1,a只能取2.若c=2,则a=-1,共有4种.③若b=-1,则c 只能取0,有2种.④若b=2,取a有2种,取c有2种,共有2×2=4种.综上所述,满足b2>4ac的取法有4+4+2+4=14种,∴所求概率P=1418=79.13.(文)在区间[1,5]和[2,4]分别各取一个数,记为m和n,则方程x2m2+y2n2=1表示焦点在x轴上的椭圆的概率是________.[答案]12[解析]∵方程x2m2+y2n2=1表示焦点在x轴上的椭圆,∴m>n.由题意知,在矩形ABCD内任取一点P(m,n),求P点落在阴影部分的概率,易知直线m=n恰好将矩形平分,∴p=12.(理)设集合A={x|x2-3x-100,b0,y>0上的概率.[解析]满足条件的M点共有36个.(1)正好在第二象限的点有(-4,1),(-4,3),(-4,5),(-2,1),(-2,3),(-2,5),故点M正好在第二象限的概率P1=636=16.(2)在x轴上的点有(-4,0),(-2,0),(0,0),(1,0),(3,0),(5,0),故点M不在x轴上的概率P2=1-636=56.(3)在所给区域内的点有(1,1),(1,3),(1,5),(3,1),(3,3),(5,1),故点M在所给区域上的概率P3=636=16.4.(2011•龙岩质检)小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x;小李后掷一枚骰子,向上的点数记为y.(1)在直角坐标系xOy中,以(x,y)为坐标的点共有几个?试求点(x,y)落在直线x+y=7上的概率;(2)规定:若x+y≥10,则小王赢,若x+y≤4,则小李赢,其他情况不分输赢.试问这个规定公平吗?请说明理由.[解析](1)因为x、y可取1、2、3、4、5、6,故以(x,y)为坐标的点共有36个.记“点(x,y)落在直线x+y=7上”为事件A,则事件A包含的点有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),共6个,所以事件A的概率P(A)=636=16.(2)记“x+y≥10”为事件A1,“x+y≤4”为事件A2.用数对(x,y)表示x、y的取值,则事件A1包含(4,6)、(5,5)、(5,6)、(6,4)、(6,5)、(6,6),共6个数对;事件A2包含(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(3,1),共6个数对.由(1)知基本事件总数为36,所以事件A1的概率P(A1)=636=16,事件A2的概率P(A2)=636=16.即小王和小李两位同学赢的可能性是均等的.所以这个规定是公平的.各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年高考数学真题精选(按考点分类)专题44 几何概型(学生版)一.选择题(共13小题)1.(2019•全国)在Rt ABC ∆中,AB BC =,在BC 边上随机取点P ,则30BAP ∠<︒的概率为( ) A .12B .3 C .23D .3 2.(2018•新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC ∆的三边所围成的区域记为I ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+3.(2017•新课标Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .8π C .12D .4π 4.(2016•新课标Ⅱ)从区间[0,1]随机抽取2n 个数1x ,2x ,⋯,n x ,1y ,2y ,⋯,n y 构成n 个数对1(x ,1)y ,2(x ,2)(n y x ⋯,)n y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为()A.4nmB.2nmC.4mnD.2mn 5.(2016•新课标Ⅰ)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.13B.12C.23D.34 6.(2016•新课标Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为() A.710B.58C.38D.310 7.(2015•福建)如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且点C与点D 在函数1,0()11,02x xf xx x+⎧⎪=⎨-+<⎪⎩…的图象上,若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于()A.16B.14C.38D.12 8.(2015•陕西)设复数(1)(z x yi x=-+,)y R∈,若||1z„,则y x…的概率为() A.3142π+B.112π+C.112π-D.1142π-9.(2015•山东)在区间[0,2]上随机地取一个数x,则事件“1211log()12x-+剟”发生的概率为()A.34B.23C.13D.14 10.(2014•陕西)从正方形四个顶点及其中心这5个点中任取2个点,则这2个点的距离小于该正方形边长的概率为()A.15B.25C.35D.4511.(2014•湖北)由不等式组0020x y y x ⎧⎪⎨⎪--⎩„…„确定的平面区域记为1Ω,不等式组12x y x y +⎧⎨+-⎩„…确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( ) A .18B .14C .34D .7812.(2012•湖北)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .112π- B .1πC .21π-D .2π13.(2009•辽宁)ABCD 为长方形,2AB =,1BC =,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( ) A .4πB .14π-C .8π D .18π-二.填空题(共3小题)14.(2017•江苏)记函数2()6f x x x =+-D .在区间[4-,5]上随机取一个数x ,则x D ∈的概率是 .15.(2016•山东)在[1-,1]上随机地取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相交”发生的概率为 .16.(2015•重庆)在区间[0,5]上随机地选择一个数p ,则方程22320x px p ++-=有两个负根的概率为 .历年高考数学真题精选(按考点分类)专题44 几何概型(教师版)一.选择题(共13小题)1.(2019•全国)在Rt ABC ∆中,AB BC =,在BC 边上随机取点P ,则30BAP ∠<︒的概率为( ) A .12B .3 C .23D .3 【答案】B【解析】在Rt ABC ∆中,AB BC =,Rt ABC ∆为等腰直角三角形,令1AB BC ==,则:2AC =; 在BC 边上随机取点P ,当30BAP ∠=︒时,3tan30BP =︒=, 在BC 边上随机取点P ,则30BAP ∠<︒的概率为:3BP p BC ==2.(2018•新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC ∆的三边所围成的区域记为I ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+【答案】A【解析】如图:设12BC r =,22AB r =,32AC r =,222123r r r ∴=+, 23231422S r r r r ∴=⨯=Ⅰ,2123122S r r r π=⨯-Ⅲ,22222323212323111112222222S r r S r r r r r r r πππππ=⨯+⨯-=⨯+⨯-⨯+=ⅡⅢ,S S ∴=ⅠⅡ,12P P ∴=3.(2017•新课标Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .8π C .12D .4π 【答案】B【解析】根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积2S π=,则对应概率248P ππ==4.(2016•新课标Ⅱ)从区间[0,1]随机抽取2n 个数1x ,2x ,⋯,n x ,1y ,2y ,⋯,n y 构成n 个数对1(x ,1)y ,2(x ,2)(n y x ⋯,)n y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A .4nmB .2n mC .4mnD .2mn【答案】C【解析】由题意,两数的平方和小于1,对应的区域的面积为2114πg ,从区间[0,1]随机抽取2n 个数1x ,2x ,⋯,n x ,1y ,2y ,⋯,n y ,构成n 个数对1(x ,1)y ,2(x ,2)y ,⋯,(n x ,)n y ,对应的区域的面积为21.∴221141m n π=g 4mnπ∴=.5.(2016•新课标Ⅰ)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A .13B .12C .23D .34【答案】B【解析】设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故201402 P==6.(2016•新课标Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为() A.710B.58C.38D.310【答案】B【解析】Q红灯持续时间为40秒,至少需要等待15秒才出现绿灯,∴一名行人前25秒来到该路口遇到红灯,∴至少需要等待15秒才出现绿灯的概率为255408=.7.(2015•福建)如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且点C与点D 在函数1,0()11,02x xf xx x+⎧⎪=⎨-+<⎪⎩…的图象上,若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于()A.16B.14C.38D.12【答案】B【解析】由题意可得(1,0)B,把1x=代入1y x=+可得2y=,即(1,2)C,把0x=代入1y x=+可得1y=,即图中阴影三角形的第3个定点为(0,1),令1122x-+=可解得2x=-,即(2,2)D-,∴矩形的面积326S=⨯=,阴影三角形的面积133122S'=⨯⨯=,∴所求概率14SPS'== 8.(2015•陕西)设复数(1)(z x yi x=-+,)y R∈,若||1z„,则y x…的概率为() A.3142π+B.112π+C.112π-D.1142π-【答案】D【解析】Q复数(1)(z x yi x=-+,)y R∈且||1z„,||1z ∴=,即22(1)1x y -+„,∴点(,)x y 在(1,0)为圆心1为半径的圆及其内部, 而y x …表示直线y x =左上方的部分,∴所求概率为弓形的面积与圆的面积之比, ∴所求概率22111111142142P πππ-⨯⨯==-g g g 9.(2015•山东)在区间[0,2]上随机地取一个数x ,则事件“1211log ()12x -+剟”发生的概率为( ) A .34B .23 C .13D .14【答案】A【解析】1211log ()12x -+Q 剟∴11222x +剟解得302x剟,02x Q 剟302x ∴剟 ∴所求的概率为:33224P ==10.(2014•陕西)从正方形四个顶点及其中心这5个点中任取2个点,则这2个点的距离小于该正方形边长的概率为( ) A .15B .25 C .35D .45【答案】B【解析】设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4,∴所求概率为42105=. 11.(2014•湖北)由不等式组0020x y y x ⎧⎪⎨⎪--⎩„…„确定的平面区域记为1Ω,不等式组12x y x y +⎧⎨+-⎩„…确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( ) A .18B .14C .34D .78【答案】D【解析】平面区域1Ω,为三角形AOB ,面积为12222⨯⨯=,平面区域2Ω,为AOB ∆内的四边形BDCO ,其中(0,1)C ,由201y xx y--=⎧⎨+=⎩,解得1232xy⎧=-⎪⎪⎨⎪=⎪⎩,即1(2D-,3)2,则三角形ACD的面积1111224S=⨯⨯=,则四边形BDCO的面积17244OAB ACDS S S∆∆=-=-=,则在1Ω中随机取一点,则该点恰好在2Ω内的概率为77428=12.(2012•湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.112π-B.1πC.21π-D.2π【答案】C【解析】设扇形的半径为r,则扇形OAB的面积为214rπ,连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为:221142r rπ-,∴此点取自阴影部分的概率是22211242114r rrπππ-=-.13.(2009•辽宁)ABCD为长方形,2AB=,1BC=,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为()A .4π B .14π-C .8π D .18π-【答案】B【解析】已知如图所示:长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为2π因此取到的点到O 的距离大于1的概率22124P ππ-==-二.填空题(共3小题)14.(2017•江苏)记函数2()6f x x x =+-D .在区间[4-,5]上随机取一个数x ,则x D ∈的概率是 . 【答案】59【解析】由260x x +-…得260x x --„,得23x -剟,则[2D =-,3], 则在区间[4-,5]上随机取一个数x ,则x D ∈的概率3(2)55(4)9P --==--15.(2016•山东)在[1-,1]上随机地取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相交”发生的概率为 . 【答案】34【解析】圆22(5)9x y -+=的圆心为(5,0),半径为3. 圆心到直线y kx =的距离为21k +,要使直线y kx =与圆22(5)9x y -+=相交,则231k <+,解得3344k -<<.∴在区间[1-,1]上随机取一个数k ,使直线y kx =与圆22(5)9x y -+=相交相交的概率为33344114+=+. 16.(2015•重庆)在区间[0,5]上随机地选择一个数p ,则方程22320x px p ++-=有两个负根的概率为 .【答案】23【解析】方程22320x px p ++-=有两个负根等价于2121244(32)020320p p x x p x x p ⎧=--⎪+=-<⎨⎪=->⎩V …,解关于p 的不等式组可得213p <„或2p …,∴所求概率215223503P -+-==-。

相关文档
最新文档