有机化合物的紫外-可见吸收光谱

合集下载

第三章 紫外-可见吸收光谱分析

第三章   紫外-可见吸收光谱分析

2.不饱和脂肪烃 .
在不饱和烃类分子中,除含有σ键外,还含有π 键,它们可以产生 σ→σ*和π→π* 两种跃迁。 如果存在共轭体系,则随共轭系统的延长, 吸收带将明显向长波方 向移动,吸收强度也随之增强 在共轭体系中, π→π*跃迁产生的吸收带又称为K(Konjugation) 带。其特点是:强度大,εmax›104;位置一般在217~280nm λmax和εmax的大小与共轭链的长短及取代基的位置有关 根据K带是否出现,可判断分子中共轭体系的存在的情况。在紫外光 根据 带是否出现,可判断分子中共轭体系的存在的情况 带是否出现 谱分析中有重要应用。
紫外- §3-3 紫外-可见分光光度法的应用 一、 定性分析 二、纯度检查 三、结构推测 四、定量分析 单组分样品的定量分析 多组分样品的定量分析
一、 定性分析
1、依据:吸收光谱的特征——形状、波长、峰数目、强度、 吸光系数。 、依据:吸收光谱的特征 形状、 形状 波长、峰数目、强度、 吸光系数。 2、方法:对比法 、方法: (1) 对比吸收光谱特征数据 (2) 对比吸光度或吸光系数的比值
3.芳香烃 .
苯有三个吸收带 E1带180∼184nm ε=47000 E 2带200∼204 nm ε=7000 苯环上三个共扼双键的 π → π*跃迁特征吸收带 B带 230-270 nm
ε=200
π → π*与苯环振动引起; 含取代基时, B带简化,红移 当苯环上有取代基时,苯的三个特征谱带都会发生显著的变化, 其中影响较大的是E2带和B谱带。
化合物 H2O CH3OH CH3CL CH3I CH3NH2
λmax(nm) 167 184 173 258 215
εmax 1480 150 200 365 600

有机化合物的紫外吸收光谱

有机化合物的紫外吸收光谱

直链共轭二烯基本值
217
非骈环共轭双烯
217
烷基或环残余取代
5
环外双键
5
卤素取代
17
CH3 CH2=C-C=CH2
CH3
基本值 烷基取代 计算值
测量值
217nm 2× 5nm
227nm 226nm
H3C
1
3
4
C
CH3
2
CH3
基本值 烷基取代 环外双键
计算值 测量值
217 4× 5nm
5nm 242nm 243nm
溶剂 修正值 溶剂 修正值
溶 剂
水 -8nm 乙醚 +7nm
修 正
甲醇
0 正己烷 +11nm

氯仿 +1nm 环己烷 +11nm
二氧六环 +5nm
(CH3)2C=CHCOCH3
计算值 甲醇中的测定值 己烷中的测定值
239nm 237nm 230nm (230+11=241nm)
B、α、β不饱和羧酸及酯吸收波长的计算方法
R2 -C6H4 -COR
R1为烷基时的基本值 R1为H时的基本值 R1为OH时的基本值 R2为下列基团时
烷基
-OH -OR
-O-
-Cl
-Br
-NH2 -NHAc
-NR2
K吸收带波长λ/nm
246 250
230 邻位 间位 对位
3
3 10
7
7
25
11
20 78
0
0
10
2
2
15
13 13 58
20 20 45 20 20 85
2、α、β不饱和羰基化合物π→π*跃迁的吸收波长计算办法

(完整版)图吸收光谱曲线

(完整版)图吸收光谱曲线

(8) B带
➢ 由芳香族化合物的π →π*跃迁而产生的精 细结构吸收带。
例如: 苯的B带: 摩尔吸光系数:200 L ·mol-1 ·cm-1 吸收峰的位置:230~270nm之间
(9) E带
➢ 芳香族化合物的π →π*跃迁所产生的吸收带, 也是芳香族的特征吸收峰。
苯的紫外吸收光谱
4、影响紫外-可见吸收光谱的因素
(2) 助色团
➢ 助色团是指本身不产生吸收峰,但与生色团 相连时,能使生色团的吸收峰向长波方向移动, 并使其吸收强度增强的基团。
例如:
—NH2 、—OH 、—OR 、—SH 、—SR 、—Cl 、—Br等
(3) 红移和蓝移
➢ 在有机化合物中,常常因取代基的变更或溶 剂的改变,使其吸收带的最大吸收波长max发生 移动。
例如:含有杂原子的不饱和基团:
(4) 电荷转移跃迁:
➢ 某些分子同时具有电子给予体和电子接受体, 它们在外来辐射照射下会强烈吸收紫外光或可 见光,使电子从给予体轨道向接受体轨道跃迁, 这种跃迁称为电荷转移跃迁,其相应的吸收光 谱称为电荷转移吸收光谱。
➢ 电荷转移跃迁实质上是一个内氧化还原过程。
例如:某些取代芳烃可产生这种分子内电荷转移 跃迁的吸收带。
➢ n → σ* 跃迁的摩尔吸光系数ε较小
(2) π→ π*跃迁:
➢ 吸收峰处于近紫外光区,在200nm左右,摩
ε 尔吸收系数 max > 104 L ·mol-1 ·cm-1 ,为强吸收带。
例如:含有π电子的基团:
(3) n → π*跃迁:
➢ 近紫外-可见光区,ε<100 L ·mol-1 ·cm-1
3、常用术语 (1) 生色团
➢ 生色团是指分子中能吸收紫外或可见光的 基团,它实际上是一些具有不饱和键和含有 孤对电子的基团。

紫外可见吸收光谱基本原理

紫外可见吸收光谱基本原理

n→π* < π→π* < n→σ* < σ→σ*
11:51:47
2
σ→σ*跃迁
所需能量最大;σ电子只有吸收远紫外光的能量
才能发生跃迁;
饱和烷烃的分子吸收光谱出现在远紫外区; 吸收波长λ <200 nm; 例:甲烷的λ max为125nm , 乙烷λ max为135nm 。 只能被真空紫外分光光度计检测到; 作为溶剂使用;
max(甲醇) max(水) max(氯仿)
n → p*跃迁:蓝移; ;
max(正己烷)
p → p* n → p*
230 329
11:51:47
238 315
237 309
243 305
溶剂的影响
苯 酰 丙 酮 1 1:乙醚 2:水
2
250
300
极性溶剂使精细结构 消失;
11:51:47
11:51:47
11:51:47
精品课件!
11:51:47
精品课件!
11:51:47
(三) 金属离子影响下的配位体内π→π*跃迁 金属离子的微扰,将引起配位体吸收波长和 强度的变化。变化与成键性质有关,若共价 键和配位键结合,则变化非常明显。 茜素磺酸钠: 弱酸性介质:黄色(λ max=420nm) 弱碱性介质:紫红色(λ max=560nm )
一、有机物吸收光谱与电子跃迁
(一)电子跃迁类型
有机化合物的紫外—可见吸收光谱是三种电子跃迁的结果: σ电子、π电子、n电子。 s*
E p 分子轨道理论:成键轨道—反键轨道。
s
H
C H
OnKR Nhomakorabeap*
E,B
n
p
s
当外层电子吸收紫外或可见辐射后,就从基态向激发态(反 键轨道)跃迁。主要有四种跃迁所需能量ΔΕ大小顺序为:

有机化合物的紫外吸收光谱

有机化合物的紫外吸收光谱
摩尔吸光系数一般都较大(10 左右), 摩尔吸光系数一般都较大 4左右 ,适宜于微量金 属的检出和测定
08:51:49
配位场的跃迁
以金属配合物的电子吸收光谱为例, 以金属配合物的电子吸收光谱为例,产生机理有 三种类型: 三种类型: 配位体微扰的金属离子d-d电子跃迁和f-f电子 跃迁摩尔吸收系数ε很小,对定量分析意义不大。 很小,对定量分析意义不大。 金属离子微扰的配位体内电子跃迁 金属离子的微扰, 金属离子的微扰,将引起配位体吸收波长和 强度的变化。变化与成键性质有关, 强度的变化。变化与成键性质有关,若静电引力 结合,变化一般很小。若共价键和配位键结合, 结合,变化一般很小。若共价键和配位键结合, 则变化非常明显。 则变化非常明显。 电荷转移吸收光谱 辐射下,分子中原定域在金属M轨道上的电 辐射下,分子中原定域在金属 轨道上的电 荷转移到配位体L的轨道 或按相反方向转移, 的轨道, 荷转移到配位体 的轨道,或按相反方向转移, 所产生的吸收光谱
08:51:49
溶剂对紫外吸收光谱的影响
(一) 溶剂极性对紫外吸收光谱的影响 1、n→π *跃迁所产生的吸收峰随溶剂极性的 增加而向短波方向移动。 增加而向短波方向移动。
例如,异丙叉丙酮CH 例如,异丙叉丙酮CH3COCH=C(CH3)2发生 n→π *跃迁吸收 的光波波长在正己烷中为329nm 在氯仿中为315nm 329nm, 315nm, 的光波波长在正己烷中为329nm,在氯仿中为315nm,在 甲醇中为309nm 在极性最大水中则为305nm 309nm, 305nm。 甲醇中为309nm,在极性最大水中则为305nm。
08:51:49
第二章 紫外吸收光谱 分析法
一、 有机化合物的紫外吸收光谱
有机化合物结构中价电子类型: 有机化合物结构中价电子类型: 按分子轨道理论,分子中外层价电子有三种:σ 按分子轨道理论,分子中外层价电子有三种: 电子、 电子。 电子、π电子和n电子。 一般对应于4种类型的跃迁: 一般对应于4种类型的跃迁: (1) N-V跃迁:基态轨道→反键轨道,σ→σ* 跃迁:基态轨道→反键轨道, π→π* 跃迁:未成键n电子→反键轨道, (2) N-Q跃迁:未成键n电子→反键轨道, n→σ* n →π* 跃迁: 电子→高能级→ (3) N-R跃迁: σ电子→高能级→分子离子 电荷迁移跃迁:电荷从化合物的一部分→ (4) 电荷迁移跃迁:电荷从化合物的一部分→另一 部分

紫外可见吸收光谱吸收带类型与溶剂效应

紫外可见吸收光谱吸收带类型与溶剂效应
13:01:32
4、π→π*跃迁(最重要的、研究最多的吸收带)
所需能量较小,吸收波长处于远紫外区的近紫外端或近 紫外区,εmax一般在104L·mol-1·cm-1以上,大多属于强吸收。 包含有:
K吸收带:共轭非封闭体系中的π→π*跃迁吸收带,一般 为强吸收(ε在104以上)。应用最多。极性溶剂使K带发生红 移。
摩尔吸光系数ε增大或减小
的现象分别称为增色效应或 减色效应,如图所示。
13:01:32
三、溶剂对紫外-可见吸收光谱的影响
1、常用溶剂 溶剂选用的原则: A、溶剂不影响溶质的测量; B、溶剂对溶质具有良好的溶解性; C、溶剂与溶质不相互作用。 一般情况下,极性物质选用极性溶剂;非极
性物质选用非极性溶剂。
这类光谱一般位于可见光区,摩尔吸收系数εmax很小,
对定量分析意义不大,一般用于研究配合物结构及无机配合 物键合理论等方面。
13:01:32
苯的紫外吸收光谱(溶剂:异辛烷)
13:01:32
二、常用术语
发色团:最有用的紫外—可见光谱是由π→π*和n→π*跃迁产 生的。这两种跃迁均要求有机物分子中含有不饱和基团。这 类含有π键的不饱和基团称为发色团,也叫生色团。简单的发 色团(生色团)由双键或叁键体系组成,如乙烯基、羰基、 亚硝基、偶氮基—N=N—、乙炔基、腈基—C≡N等。单一 双键在远紫外区,共轭双键在近紫外区。 助色团:有一些含有n电子的基团(如—OH、—OR、—NH2 、—NHR、—X等),它们本身没有生色功能(不能吸收 λ>200nm的光),但当它们与生色团相连时,就会发生n→π共 轭作用,增强生色团的生色能力(吸收波长向长波方向移动, 且吸收强度增加),这样的基团称为助色团。
第五章 紫外-可见吸

第五章 紫外-可见吸收光谱法

第五章  紫外-可见吸收光谱法

甲醇 n→σ*跃迁: λmax 183nm

π→π*跃迁:
所需能量较小,λ一般>200nm,εmax > 104。 不饱和基团(乙烯基、乙炔基) 不饱和烃、共轭烯烃和芳香烃类可发生此类跃迁。 乙烯 π→π*跃迁: λmax 165nm
丁二烯 π→π*跃迁: λmax 217nm

n→π*跃迁:
所需能量最小, λ >200nm, -C=N-
色——蓝色。

我们通常见到的有色物质,都是由于他们吸收了可见光的 部分光,呈现出吸收光颜色的互补色。
二、分子吸收光谱的产生

分子吸收光谱的形成是由于电子在能级之间的跃迁所引
起的。

分子内部具有电子能级、振动能级和转动能级。所以分
子的能量 E分子=E电+E振+E转 。

这些能量是量子化的,只有光辐射的能量恰好等于两能 级之间的能量差时,才能被吸收。
苯环本身分子振动、转动能级跃迁而产生的吸 收带,转动能级消失,谱带较宽。 • 芳香物的主要特征吸收带 • Λ= 230~270 nm, 具有精细结构 • ε~200
• 极性溶剂中,或苯环连有取代基
时,其精细结构消失
三、紫外-可见光谱中的常见吸收带
4、E带: (乙烯型ethylenic band) 由苯环环形封闭共轭体系的π→ π*跃迁产生 • 芳香族化合物的特征吸收带
三、紫外-可见光谱中的常见吸收带
2、K带:(共轭作用konjugation))) 由共轭双键的π→ π*跃迁产生 (—CH=CH—)n, —CH=C—CO— 特点:λmax>200nm,强ε>104 共轭体系增长, ε↑, λ↑(红移)
三、紫外-可见光谱中的常见吸收带
3、B带:(苯benzenoid)

紫外-可见吸收光谱

紫外-可见吸收光谱

二、影响紫外-可见吸收光谱的因素
物质的吸收光谱与测定条件有密切的关系。测定条 件(温度、溶剂极性、pH等)不同,吸收光谱的形 状、吸收峰的位置、吸收强度等都可能发生变化。
1.溶剂极性增大,导致: *跃迁,能量减少, 所以,吸收带红移, n*跃迁,能量增大, 所以,吸收带蓝移 。 精细结构逐渐消失,合并 为一条宽而低的吸收带。
(a)Lamber-Beer定律的适用条件(前提)
入射光为单色光,均匀非散射的稀溶液 该定律适用于均匀非散射固体、液体和气体样品 在同一波长下,各组分吸光度具有加和性
A=A1+A2++An
4.2定量分析的方法
(1)标准曲线法:预先配 制一系列不同浓度的标 准溶液,以不含待测组 分的空白溶液作参比。 测定标准溶液的吸光度, 描绘出吸光度-浓度的标 准曲线。根据在同等条 件下测定的样品的吸光 度,即可从标准曲线上 求得未知样品的浓度。
浅色位移:由于基团取代或溶剂效应,最大吸收波 长变短。浅色位移亦称为蓝移。
增色效应:使吸收强度增加的效应。 减色效应:使吸收强度减小的效应。 摩尔吸收系数():物质在浓度为1mol/L、液层
厚度为1cm时溶液的吸光度。
5. 无机化合物的紫外-可见吸收光谱
1. f电子跃迁吸收光谱
镧系和锕系元素的离子对紫外和可见光的吸收是基 于内层f电子的跃迁而产生的。其紫外可见光谱为 一些狭长的特征吸收峰,这些峰几乎不受金属离子 的配位环境的影响。
3. 有机化合物的结构推测
化合物的紫外吸收光谱基本上是分子中发色基团和助色基 团的特性,而不是整个分子的特性,所以单独从紫外吸收光 谱不能完全确定化合物的分子结构,必须与IR、NMR、MS及 其它方法配合,才能得出可靠的结论。紫外光谱在研究化合 物的结构中的主要作用是推测官能团、结构中的共轭体系以 及共轭体系中的取代基的位置、种类和数目等。

有机化合物紫外-可见光吸收光谱的测定及其影响因素

有机化合物紫外-可见光吸收光谱的测定及其影响因素

有机化合物的紫外吸收光谱及溶剂的影响一.实验目的和要求1.了解双光束紫外-可见分光光度计的仪器构造和使用。

2.学习紫外吸收光谱的绘制方法。

3. 了解取代基对物质吸收光谱的影响。

4.了解溶剂的酸碱性对物质的吸收光谱的影响。

二.实验原理苯具有环状共轭体系,在紫外区有三个吸收谱带:E1带、E2带和B带,这些吸收带都是π→π*电子跃迁产生的。

当苯环上的氢被助色团取代后,苯环共轭程度发生改变,因此苯的吸收光谱会发生变化:吸收带向长波方向移动,复杂的B 吸收带变得简单化。

溶剂对紫外吸收光谱的吸收峰的波长、强度及形状都可能产生影响,这种现象被称为溶剂效应。

造成这种影响的原因可能是溶剂和溶质间形成氢键,可能是由于溶剂的偶极作用使溶质的极性增强,也可能是酸碱性的影响。

但其实质也是改变了化合物的共轭程度,改变电子跃迁的能级差。

三.仪器与试剂仪器:TU-1901双光束紫外-可见分光光度计,1 cm石英吸收池。

试剂:苯酚,对硝基苯酚,H2O, NaOH。

四.实验内容与步骤1.溶剂性质对吸收光谱的影响配制浓度为0.09 mmol L-1的苯酚溶液,其溶剂分别为:(a)去离子水;(b)0.1 mol L-1 NaOH,摇匀。

2.取代基对吸收光谱的影响配制浓度为0.09 mmol L-1的对硝基苯酚溶液,溶剂为0.1 mol L-1 NaOH。

用1 cm石英吸收池,以相应的溶剂作参比,绘制各溶液在200-500 nm范围内的吸收光谱。

五.数据处理1.记录各苯酚溶液的吸收光谱,找出其最大吸收波长,并进行对比。

2. 记录对硝基苯酚氢氧化钠溶液的吸收光谱,找出其最大吸收波长,并与苯酚溶液进行对比。

苯酚水溶液稀释时要用30mL0.09mol/L溶液稀释到1000mL;苯酚氢氧化钠溶液正好10mL0.09mol/L溶液稀释到1000mL;对硝基苯酚氢氧化钠溶液则用5mL0.09mol/L溶液稀释到1000mL.六.思考题1.产生紫外光谱的电子跃迁有那些类型?2.影响紫外吸收光谱的因素有哪些?。

紫外可见吸收光谱2015

紫外可见吸收光谱2015

溶剂
正庚烷 正庚烷 异辛烷 异辛烷 乙醇 水 乙醇 异辛烷 乙醚 二氧六环
max/n m 177 178 279 290 204 214 339 280 300 270
max
13000 10000 13 17 41 60 5 22 100 12
跃迁类型
→ * → * n → * n → * n → * n → * n → * n → * n → * n → *26
25
常用术语
1、生色团 从广义来说,所谓生色团,是指分子中可以吸收光 子而产生电子跃迁的原子基团 。
生色团
烯 炔 羰基
羧基 酰胺 偶氮基 硝基 亚硝基 硝酸酯
表3.2 一些常见生色团的吸收特性
实例C6H13CH=CH源自 C5H11C≡CCH3 CH3COCH3 CH3COH CH3COOH CH3CONH2 CH3N=NCH3 CH3NO2 C4H9NO C2H5ONO2
n吸收峰波长与组成双键的有关原子种类基本无关吸收强度强吸收104105弱吸收102极性溶剂向长波方向移动向短波方向移动25常用术语生色团实例溶剂??maxnm??max跃迁类型烯烯c6h13chch2正庚烷17713000????炔炔c5h11ccch3正庚烷17810000????羰基ch3coch3异辛烷27913n??ch3coh异辛烷29017n??羧基ch3cooh乙醇20441n??酰胺ch3conh2水水21460n??偶氮基ch3nnch3乙醇3395n??硝基ch3no2异辛烷28022n??亚硝基c4h9no乙醚300100n??硝酸酯c2h5ono2二氧六环27012n??1生色团从广义来说所谓生色团是指分子中可以吸收光子而产生电子跃迁的原子基团
溶剂

紫外可见吸收光谱 uv-vis

紫外可见吸收光谱 uv-vis

紫外可见吸收光谱(UV-Vis)
紫外可见吸收光谱(UV-Vis)是一种常用的光谱技术,用于研究物质在紫外和可见光区域的吸收行为。

它通过测量物质对不同波长或频率的光的吸收程度,提供了关于物质的电子能级结构和电子转移过程的信息。

在UV-Vis吸收光谱中,常用的光源是可见光和紫外光,通常使用光栅或光柱将入射光分散成不同波长的组成部分。

样品与入射光发生相互作用后,光谱仪会测量出透过样品的光强度。

通过比较入射光和透射光的强度差异,可以确定样品对特定波长的光的吸收程度。

UV-Vis吸收光谱常用于分析和研究各种物质,包括有机化合物、无机物、生物分子和溶液等。

它在化学、生物化学、药学、环境科学和材料科学等领域中具有广泛的应用。

UV-Vis吸收光谱可以提供以下信息:
1、吸收峰位置:根据吸收峰的波长或频率,可以推断出物质的能级结构和电子转移过程。

2、吸收强度:吸收峰的强度与物质对光的吸收能力相关,可以用来定量分析物质的浓度。

3、色谱图:通过绘制吸收峰的强度与波长或频率的关系,可以得到物质的吸收光谱图,用于标识和比较不同物质的特征。

4、反应动力学:UV-Vis吸收光谱可以用于监测化学反应过程中物质的消耗或生成,从而研究反应动力学和反应机制。

总之,UV-Vis吸收光谱是一种重要的分析工具,能够提供关于物质结构、浓度和反应过程等方面的信息,广泛应用于科学研究和实验室分析。

紫外-可见吸收光谱与分子结构的关系

紫外-可见吸收光谱与分子结构的关系

➢ 常用溶剂的截止波长见课本 表3-2
(二)含有孤立>C=C<双键的不饱合化合物
➢产生*和*两种跃迁。 ➢吸收峰在170nm附近,ε约104 ➢有取代基,形成-或n-共轭时,吸收带红移
例如 RHC=CH2 R2C=CH2 R2C=CR2 λmax(nm) 175~185 185~205 215~232
Woodward 计算规则
化合物母体及取代基
环外双键是指共 轭体系上的C=C 有一个在五元上 或六元环上
环内双键是同环 二烯
(无环多烯或异环二烯)
环内双键 增加一个共轭双键 环外双键 烷基取代基 —O— —O—R —S—R —Cl, —Br —NR2
波长/nm
基 数 : 217 nm 36 30 5 5 0 6 30 5 60
第五节 紫外-可见吸收光谱与分子 结构的关系
一、有机化合物的紫外吸收光谱
(一)饱和烃及其取代衍生物
① 饱和烃(只含键):*
λmax<150nm ② 含有杂原子的取代烃(含n电子): n*
例: CH3Cl CH3Br
CH3I
λmax(nm ) 173
204
258
显示了助色团的助色作用。
➢ 它们是测定紫外和(或)可见吸收光谱的良好溶剂
(三)具有共轭体系的不饱和化合物
➢>C=C-C=C<共轭,产生*和 *两种跃 迁 K带 共轭体系,形成大键,△E↓,吸收峰红移, 强度增加。
➢当>C=O与>C=C<共轭时(例如α,β-不饱和醛 酮), K带红移,原因同上
化合物
1,3-丁二烯 1,3,5-己二烯 1,3,5,7-辛四烯
1,3,5,7,9-癸四烯 1,3,5,7,9,11-十二烷基六烯

紫外-可见吸收光谱

紫外-可见吸收光谱

第二节 紫外—可见吸收光谱
一、有机化合物的紫外-可见吸收光谱 二、无机化合物的紫外-可见吸收光谱
一、有机化合物的紫外-可见吸收光谱
(一)电子跃迁类型 分子轨道理论:一个成键轨道必定有一 个相应的反键轨道。通常外层电子均处 于分子轨道的基态,即成键轨道或非键 轨道上。
当外层电子吸收紫外或可见辐射后,就 从基态向激发态(反键轨道)跃迁。主要有四 种跃迁所需能量ΔΕ大小顺序为:n→π* < π→π* < n→σ* < σ→σ*
羧酸及羧酸的衍生物虽然也有n*吸 收带,但是, 羧酸及羧酸的衍生物的羰基 上的碳原子直接连结含有未共用电子对的 助色团,如-OH、-Cl、-OR等,由于这些助 色团上的n电子与羰基双键的电子产生 n共轭,导致*轨道的能级有所提高, 但这种共轭作用并不能改变n轨道的能级, 因此实现n* 跃迁所需的能量变大,使 n*吸收带蓝移至210nm左右。
2. 配位场跃迁 配位场跃迁包括d - d 跃迁和f - f 跃迁。元素周期表中第四、五周期的过度金 属元素分别含有3d和4d轨道,镧系和锕系元 素分别含有4f和5f轨道。在配体的存在下, 过度元素五 个能量相等的d轨道和镧系元素 七个能量相等的f轨道分别分裂成几组能量 不等的d轨道和f轨道。
当它们的离子吸收光能后,低能态的 d电子或f电子可以分别跃迁至高能态的d 或f轨道,这两类跃迁分别称为d - d 跃 迁和f - f 跃迁。由于这两类跃迁必须 在配体的配位场作用下才可能发生,因 此又称为配位场跃迁。
⑶ π→π*跃迁
所需能量较小,吸收波长处于远紫外 区的近紫外端或近紫外区,摩尔吸光系数 εmax一般在104L·mol-1·cm-1以上,属于 强吸收。不饱和烃、共轭烯烃和芳香烃类均 可发生该类跃迁。如乙烯π→π*跃迁的 λmax为162nm,εmax为1×104L·mol-1·cm -1。

紫外-可见分子吸收光谱法

紫外-可见分子吸收光谱法

NN
溶剂与溶质之相互作用增强 C H
溶质分子的振动受到限制
水中 环己烷中
振动引起的精细结构消失
蒸汽中
500
555
对称四嗪的吸收光谱
/nm
b. 溶剂极性对π →π*跃迁谱带的影响
➢ 溶剂极性增大时,由π →π*跃迁产生的吸收 带发生红移。
c. 溶剂极性对n →π*跃迁谱带的影响
➢ 溶剂极性增大,由n →π*跃迁产生的吸收谱 带发生蓝移。
(4)多通道分光光度计
以光二极管阵列作检测器
光源
透镜
光二极管阵列
试样池
光栅
三、光吸收定律
1、朗伯-比尔定律
A lg T lg I0 bc 或 A lg T lg I0 abc
I
I
2、吸光度的加和性
当溶液中含有多种对光产生吸收的物质,且各组分之
间不存在相互作用时,则该溶液对波长λ光的总吸光度A总
➢ 根据分子轨道理论,这三种电子的能级高 低为: σ<π<n <π*<σ*
三种价电子可能产生六种形式电子跃迁:
σ→ σ*, σ→ π*, π→ σ*对应的吸收光谱处于 远紫外区,研究少。
(1) n → σ* 跃迁:
➢ 吸收光谱出现在远紫外光区和近紫外光区 ➢ 某些含有氧、氮、硫、卤素等杂原子的基 团(如—NH2、—OH、—SH、—X等)的 有机物可产生n → σ* 跃迁。 例如:CH3OH:λmax=183 nm 、CH3NH2:λmax=213 nm
② 吸收峰通常位于200~400nm之间。
(7) K带
➢ 由共轭体系的π →π*跃迁产生的吸收带。
特点:
ε ① 强度大,一般 > 104 L ·mol-1 ·cm-1 ;

有机化合物的紫外-可见吸收光谱

有机化合物的紫外-可见吸收光谱
C=S,-N
O O
(共轭双键)
¾一些含有n电子的基团,本身没有生色功能,但当 它们与生色团相连时,就会发生n—π共轭作用,增 强生色团的生色能力,这样的基团称为助色团。
: : :
助色团:-NH2,-OH,-X (孤对电子)等
2

红移和蓝移
3
有机化合物的紫外光谱解析
了解共轭程度、空间效应、氢键等;可对饱和与不饱 和化合物、异构体及构象进行判别。 ⑴ 在200~750nm波长范围内若无吸收峰,则可能是 直链烷烃、环烷烃、饱和脂肪族化合物或仅含一个双 键的烯烃等。若有低强度吸收峰(ε=10~100 L·mol1·cm-1),(n→π跃迁),则可能含有一个简单非共轭且 含有n电子的生色团,如羰基。 ⑵ 若在250~300 nm波长范围内有中等强度的吸收峰 则可能含苯环。
AH
+
β3
H+
OH-
FeR3
β3=1021.3
c(R)≈[R´]=10-4mol·L-1
[FeR ] β 3 3 β 3′ = = [Fe ′][R ′]3 α Fe(A) ⋅ α 3 R(H)
[FeR 3 ] lg = lg β 3 − lg α Fe(A) − 3lg α R(H) + 3lg[R′] [Fe′]
4
(3)若在210~250 nm波长范围内有强吸收峰, 则可能含有2个共轭双键;若在260~300 nm波长 范围内有强吸收峰,则说明该有机物含有3个或3个 以上共轭双键。 (4)若该有机物的吸收峰延伸至可见光区,则该 有机物可能是长链共轭或稠环化合物。
5
2.金属配合物的紫外-可见吸收光谱
金属配合物的生色机理主要有三种类型: ⑴ 配体微扰的金属离子d-d电子跃迁和f-f电子跃 迁: ε很小,对定量分析意义不大 ⑵ 金属离子微扰的配体内电子跃迁 与成键性质有关,若静电引力结合,变化一般很 小。若共价键和配位键结合,则变化非常明显。 ⑶电荷转移吸收光谱 在分光光度法中具有重要意义

常见有机化合物的紫外-可见吸收光谱

常见有机化合物的紫外-可见吸收光谱
(2)不随浓度c和液层厚度b的改变而改变。
在温度和波长等条件一定时,ε仅与吸收物质本 身的性质有关,与待测物浓度无关;
(3)同一吸光物质在不同波长下的ε值是不同的。 在最大吸收波长λmax处的摩尔吸光系数,常以 εmax表示
εmax表明了该吸收物质最大限度的吸光能力。
3.朗伯-比尔定律的应用条件 朗伯-比尔定律不仅适用于紫外光、可见光,
分光光度计只能获得近乎单色的狭窄光带,而复合光可导 致对朗伯—比耳定律的正或负偏离。
在实际工作中,为了避免非单色光带来的影响,一般选用 峰值波长进行测定。
选用峰值波长,也可以得到较高的灵敏度。
(3)溶液本身发生化学变化
溶液中存在着离解、聚合、互变异构、配合物的形成等化学 平衡时,使吸光质点的浓度发生变化,影响吸光度。 当溶液浓度c >10-2 mol/L 时,吸光质点间可能发生缔合等相 互作用,直接影响了对光的吸收。
第一节 基本原理
一、光的基本特性 1.光的波动性 光是一种电磁波,电磁波可以用周期T(s)、
频率‫( ע‬Hz)、波长λ(nm)和波数σ(cm-1) 等参数描述。它们之间的关系为:
1= ‫ע‬/T=c/λ σ=1/λ= ‫ע‬/c
波谱区名称
射线
X射线
远紫外 光
近紫外 光

可见光


谱 区
近红外 光
例: 铬酸盐或重铬酸盐溶液中存在下列平衡: 2 CrO42- +2H+ = Cr2O72- +H2O
溶液中CrO42-、 Cr2O72-的颜色不同,吸光性质也不相同。 故此时溶液pH 对测定有重要影响。
故:朗伯—比耳定律只适用于稀溶液
例:显色剂KSCN与Fe3+形成红色配合物Fe(SCN)3,存在下列平 衡:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C=S,-N
O O
(共轭双键)
一些含有n电子的基团,本身没有生色功能,但当 它们与生色团相连时,就会发生n—π共轭作用,增 强生色团的生色能力,这样的基团称为助色团。
: : :
助色团:-NH2,-OH,-X (孤对电子)等
2

红移和蓝移
3
有机化合物的紫外光谱解析
了解共轭程度、空间效应、氢键等;可对饱和与不饱 和化合物、异构体及构象进行判别。 ⑴ 在200~750nm波长范围内若无吸收峰,则可能是 直链烷烃、环烷烃、饱和脂肪族化合物或仅含一个双 键的烯烃等。若有低强度吸收峰(ε=10~100 L·mol1·cm-1),(n→π跃迁),则可能含有一个简单非共轭且 含有n电子的生色团,如羰基。 ⑵ 若在250~300 nm波长范围内有中等强度的吸收峰 则可能含苯环。
滴定剂与待 测物均吸收
产物吸收
Vsp
Vsp
24
8.5.4 络合物组成的测定
1. 摩尔比法: 固定cM ,改变cR
A
1:1 1.0 2.0
3:1 3,0 c(R)/c(M)
25
2. 等摩尔连续变化法:
M:R=1:1
cM + cR = c(常数)
M:R=1:2
0.5 cM/c cM/c
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4
6
电荷转移吸收光谱
分子中金属离子轨道上的电荷吸收光能后转移到 配体的轨道上,或按反方向转移,这种跃迁称为电 荷转移跃迁,所产生的吸收光谱称为荷移光谱。 本质上属于分子内氧化还原反应 ε一般都较大(104左右),适于微量金属的检测 例:Fe3+与SCN-形成血红色配合物,在490 nm处 有强吸收峰。其实质是发生了如下反应: [Fe3+-SCN-]2+ +hν= [Fe2+-SCN]2+
13
[FeR3 ] lg [Fe′]
pH3~8为适宜 的酸度范围
14
3. 显色温度及显色时间 (c(M)、 c(R) 、 pH一定)
A 50℃
25℃
另外,还有介 质条件、有机 溶剂、表面活 性剂等.
t /min
15
8.4.3 测定中的干扰以及消除方法
1.化学法
测Co2+ :(掩蔽法) Co2+, Fe3+ (2)Sn2+ ⑴NaF Co2+ SCN- Co(SCN)2 (蓝) 3FeF6 SCN- Co(SCN)2
磷钼黄(ε小) Sn2+ 磷钼(V)蓝(ε大)
20
3. 蛋白质测定—溴甲酚绿、考马司亮蓝等 4. 氨基酸测定—茚三酮(紫色化合物) 5. 水质检测: NH4+、NO2-、Mn2+、Fe2+、 SO42-、Hg2+---6. 药物含量测定—比吸光系数定量;荷移 光谱法测定. 7. 紫外吸收(UV): NO2-、NO3-、SO42-、 SO32-、CO32-、SCN-、酪氨酸、色氨 酸、苯丙氨酸、蛋白质等。
8.4.1 显色剂与显色反应
无机显色剂: SCN- ,(NH4)2MoO4 有机显色剂: (p386 附录II.5)
邻二 氮菲
N N OH N OH
PAR
N
N
NH NH N
S N
双硫腙
9
显色反应的选择
灵敏度高,一般ε>10 4; 选择性好; 显色剂在测定波长处无明显吸收, 对照性好, ∆λmax> 60 nm; 反应生成的有色化合物组成恒定,稳定; 显色条件易于控制,重现性好.
5 4 3 2 1
由每份溶液的一 对pH、A,可求 得一个Ka, 取平 均值即可.
Ab (L) 550 600
28
350
Aa 400 450 500
λ/nm
习 题
8.5 (不要求计算桑德尔灵敏度) 8.8 8.11
29
4
(3)若在210~250 nm波长范围内有强吸收峰, 则可能含有2个共轭双键;若在260~300 nm波长 范围内有强吸收峰,则说明该有机物含有3个或3个 以上共轭双键。 (4)若该有机物的吸收峰延伸至可见光区,则该 有机物可能是长链共轭或稠环化合物。
5
2.金属配合物的紫外-可见吸收光谱
金属配合物的生色机理主要有三种类型: ⑴ 配体微扰的金属离子d-d电子跃迁和f-f电子跃 迁: ε很小,对定量分析意义不大 ⑵ 金属离子微扰的配体内电子跃迁 与成键性质有关,若静电引力结合,变化一般很 小。若共价键和配位键结合,则变化非常明显。 ⑶电荷转移吸收光谱 在分光光度法中具有重要意义
10
8.4.2 显色条件的确定
1. 显色剂用量(c(M)、pH一定)
c(R)
Mo(SCN)32+ 浅红 Mo(SCN)5 橙红 Mo(SCN)6- 浅红
c(R)
c(R)
Fe(SCN)n3-n
11
2. 显色反应酸度(c(M)、 c(R)一定)
pH pH1<pH<pH2
12
邻二氮菲-亚铁反应完全度与pH的关系 Fe2++3R
0.33
0.6 0.8 1
M + nR
MR n
26
8.5.5 一元弱酸离解常数的测定;][L]/[HL]
高酸度下,几乎全部以HL存在,可测得AHL=εHL·c(HL); 低酸度下,几乎全部以L存在,可测得AL =εL·c(HL). 代入整理:
配制一系列c相同,pH不同的溶液,测A. ε HL ⋅[H+]⋅ c(HL) ε L ⋅ K a ⋅ c(HL) A=ε HL [HL]+ε L [L] = + + K a +[H ] K a +[H+]
Co2+ Fe2+,Sn4+
16
测Co2+ :(生成络合物性质不同) Co2+, Zn2+, Ni2+, Fe2+ 测Fe3+:(控制pH) Fe3+, Cu2+
pH= 2.5 钴试剂R
CoR,ZnR NiR,FeR
H+
CoR, Zn2+ , Ni2+ , Fe2+
SSal
FeSSal(紫红) Cu2+
如不能通过控制酸度和掩蔽的办法消除干 扰,则需采取分离法。
17
2. 物理法—选择适当的测定波长
钍-偶氮砷III A 试剂 络合物 络合物 试剂 A 钴-亚硝基红盐
515
655
415
500
λ/nm
λ/nm
18
选择适当的参比溶液
1. 仅络合物有吸收,溶剂作参比。 如 phen—Fe2+ 标准曲线 2.显色剂或其他试剂有吸收,试剂空白作参比。 例:邻二氮菲光度法测Li2CO3中的 Fe, 参比溶液为不含Li2CO3样品的所有试剂。 3.待测液有吸收,试样空白作参比。 如测汽水中的 Fe 4.干扰组分与显色剂有反应,又无法掩蔽消除时:
AH
+
β3
H+
OH-
FeR3
β3=1021.3
c(R)≈[R´]=10-4mol·L-1
[FeR 3 ] β3 β 3′ = = 3 [Fe ′][R ′] α Fe(A) ⋅ α 3 R(H)
[FeR 3 ] lg = lg β 3 − lg α Fe(A) − 3lg α R(H) + 3lg[R′] [Fe′]
[L]
K
a
=
AH L - A
A- A
或 pK a = pH + lg A - A HL [H + ]
27
A- A L
L
[HL]
MO吸收曲线
曲线 1 2 3 4 5 6 pH 1.10, 1.38 2.65 3.06 3.48 3.98 5.53,6.80
A
1 2 3 4 5 6
Aa(HL)
Ab 6
1)掩蔽被测组分,再加入显色剂,作参比. 2)加入等量干扰组分到空白溶液中,作参比.
19
8.5 吸光光度法的应用
8.5.1 单一组分的测定
1. 金属离子: Fe-phen, Ni-丁二酮肟, Co-钴试剂 2. 磷的测定: DNA中含P~9.2%, RNA中含P~9.5%, 可得核酸量.
H3PO4+12(NH4)2MoO4+21HNO3 =(NH4)3PO4·12MoO3+12NH4NO3+12H2O
1.有机化合物的紫外-可见吸收光谱 σ电子、π电子、n电子。
当外层电子吸收紫外或可见辐射后,就从基态向激 发态(反键轨道)跃迁。主要有四种跃迁,所需能量 ΔΕ大小顺序为: n→π* < π→π* < n→σ* < σ→σ*
1
有机物分子具有紫外-可见光吸收性质的必 要条件:分子中含有不饱和基团。 含有π键的不饱和基团称为生色团, 生色团:-N=N-,-N=O,
7
朗伯-比尔定律
ε =A/bc (L·mol-1·cm-1)
A= ε b c
吸收物质在一定波长和溶剂条件下的特征 常数; 不随浓度c和光程长度b的改变而改变。在 温度和波长等条件一定时,ε仅与吸收物质 本身的性质有关。 反映了光度法测定该物质可能达到的最大 灵敏度。
8
8.4 显色反应与分析条件的选择
22
8.5.3 光度滴定
NaOH滴定 对硝基酚 pKa=7.15 间硝基酚 pKa=8.39 ∆ pKa=1.24
间硝基酚
酸形均 无色. 碱形均 黄色
对硝基酚
V1 V2 V(NaOH)/mL
23
典型的光度滴定曲线
依据滴定过程中溶液吸光度变化来确定终点的滴定分析方法。
滴定剂吸收
相关文档
最新文档