非线性控制系统 ppt课件
合集下载
自动控制原理课件 第7章 非线性控制系统
描述函数法是基于频率域的等效线性化方法。该法不受系统 阶次的限制,但系统必须满足一定的假设条件,且只能提供系 统稳定性和自激振荡的信息。 3. 波波夫法
波波夫法是一个关于系统渐近稳定充分条件的频率域判据。 它可以应用于高阶系统,并且是一个准确判定稳定性的方法。
2020年11月17日
EXIT
第7章第16页
4.可以用频率特性的概念来研究和分析线性系统的固 有特性。不能用频率特性、传递函数等线性系统常用的 方法来研究非线性系统。
2020年11月17日
EXIT
第7章第15页
7.1.4 非线性系统的分析和设计方法
1. 相平面法 相平面法是求解一阶或二阶非线性系统的图解法。这种方法
既能提供的稳定性信息,又能提供时间响应信息。其缺点是只 限于一阶和二阶系统。 2. 描述函数法
齿轮传动的齿隙特性,液压传动的的油隙特性等均属于 这类特性。
当系统中有间隙特性存在时,将使系统输出信号在相位 上产生滞后,从而使系统的稳定裕度减少,动态特性变坏。
间隙的存在常常是系统产生自持振荡的主要原因。
2020年11月17日
EXIT
第7章第9页
4.继电器特性
0 y(t) b0sgn e(t)
在控制系统中若存在饱和特性,将使系统在大信号
作用下的等效放大倍数降低,从而引起瞬态过程时间 的延长和稳态误差的增加。对于条件稳定系统,甚至 可能出现小信号时稳定,而大信号时不稳定的情况。
2020年11月17日
EXIT
第7章第7页
2.死区(不灵敏区)特性
y (t )
0
k
e(t)
a sgn
e(t)
e(t) a e(t) a
2. 线性系统的稳定性与输入响应的性质只由系统本身的 结构及参量决定,而与系统的初始状态无关。而非线性 系统的稳定性及零输入响应的性质不仅取决于系统本身 的结构和参量,而且还与系统的初始状态有关。
波波夫法是一个关于系统渐近稳定充分条件的频率域判据。 它可以应用于高阶系统,并且是一个准确判定稳定性的方法。
2020年11月17日
EXIT
第7章第16页
4.可以用频率特性的概念来研究和分析线性系统的固 有特性。不能用频率特性、传递函数等线性系统常用的 方法来研究非线性系统。
2020年11月17日
EXIT
第7章第15页
7.1.4 非线性系统的分析和设计方法
1. 相平面法 相平面法是求解一阶或二阶非线性系统的图解法。这种方法
既能提供的稳定性信息,又能提供时间响应信息。其缺点是只 限于一阶和二阶系统。 2. 描述函数法
齿轮传动的齿隙特性,液压传动的的油隙特性等均属于 这类特性。
当系统中有间隙特性存在时,将使系统输出信号在相位 上产生滞后,从而使系统的稳定裕度减少,动态特性变坏。
间隙的存在常常是系统产生自持振荡的主要原因。
2020年11月17日
EXIT
第7章第9页
4.继电器特性
0 y(t) b0sgn e(t)
在控制系统中若存在饱和特性,将使系统在大信号
作用下的等效放大倍数降低,从而引起瞬态过程时间 的延长和稳态误差的增加。对于条件稳定系统,甚至 可能出现小信号时稳定,而大信号时不稳定的情况。
2020年11月17日
EXIT
第7章第7页
2.死区(不灵敏区)特性
y (t )
0
k
e(t)
a sgn
e(t)
e(t) a e(t) a
2. 线性系统的稳定性与输入响应的性质只由系统本身的 结构及参量决定,而与系统的初始状态无关。而非线性 系统的稳定性及零输入响应的性质不仅取决于系统本身 的结构和参量,而且还与系统的初始状态有关。
非线性控制系统
第 8 章 非线性控制系统分析
8-1 非线性控制系统概述
1. 研究非线性控制理论的意义
线性控制系统: 由线性元件组成,输入输出间具有叠加性,由线性
微分方程描述。
非线性控制系统: 系统中有非线性元件,输入输出间不具有叠加性,由
非线性微分方程描述。
非本质非线性: 能够用小偏差线性化方法进行线性化处理的非线性。
加以分析和设计。
第 8 章 非线性控制系统分析
2. 非线性系统的特征
非线性系统不能应用叠加原理,其运动有以下特点:
(1)稳定性分析复杂
线性系统的稳定性只取决于系统本身的结构和参 数,与初始状态无关,与输入信号无关。而非线性系 统的稳定性不仅取决于结构参数,而且与输入信号以 及初始状态都有关。
第 8 章 非线性控制系统分析
学习本章,掌握非线性系统的性质特点, 在此基础上重点掌握用描述函数分析非线性 系统的稳定性、基于描述函数法计算系统自 振参数,了解非线性系统的简化和非线性控 制系统设计方法。
第 8 章 非线性控制系统分析
第八章 非线性控制系统分析
8-1 非线性控制系统概述 8-2 常用非线性特性及其对系统运动的影响 8-3 相平面法 8-4 描述函数法 8-5非线性控制系统设计
例:对于一由非线性. 微分方程
x = - x( 1 – x )
描述的非线性系统,显然有两个平衡点,即x1=0 和x2=1。将上式改写为
dx dt x(1 x)
设t=0时,系统的初态为x0。积分上式可得
x(t)
x0et
1 x0 x0et
第 8 章 非线性控制系统分析
非 线 性 一 阶 系 统 的 时 间 响 应 曲 线
自动控制原理 教学课件
自动控制原理第八章非线性控制系统
稳定性定义
如果一个非线性系统在初始扰动下偏离平衡状态,但在时间推移过程中能够恢复到平衡状态,则称该系统是稳定 的。
线性系统稳定的必要条件
系统矩阵A的所有特征值均具有负实 部。
系统矩阵A的所有特征值均具有非正实 部,且至少有一个特征值为0。
劳斯-赫尔维茨稳定判据
劳斯判据
通过计算系统矩阵A的三次或更高次特征多项式的根的实部来判断系统的稳定性。如果所有根的实部 均为负,则系统稳定;否则,系统不稳定。
输出反馈方法
通过输出反馈来改善非线性系统的性能,实 现系统的稳定性和跟踪性能。
自适应控制方法
通过在线调整控制器参数来适应非线性的变 化,提高系统的跟踪性能和稳定性。
非线性系统的设计方法
根轨迹法
通过绘制根轨迹图来分析系统的稳定性,并 设计适当的控制器。
相平面法
通过绘制相平面图来分析非线性系统的动态 行为,进行系统的分析和设计。
感谢您的观看
THANKS
自动控制原理第八章非线性 控制系统
目录
• 非线性系统的基本概念 • 非线性系统的分析方法 • 非线性系统的稳定性分析 • 非线性系统的校正与设计 • 非线性系统的应用实例
01
非线性系统的基本概念
非线性系统的定义
非线性系统的定义
非线性系统是指系统的输出与输入之 间不满足线性关系的系统。在自动控 制原理中,非线性系统是指系统的动 态特性不能用线性微分方程来描述的 系统。
02
它通过将非线性系统表示为一 个黑箱模型,通过测量系统的 输入输出信号来研究其动态特 性。
03
输入输出法适用于分析具有复 杂结构的非线性系统,通过实 验测量和数据分析,可以了解 系统的动态响应和稳定性。
03
如果一个非线性系统在初始扰动下偏离平衡状态,但在时间推移过程中能够恢复到平衡状态,则称该系统是稳定 的。
线性系统稳定的必要条件
系统矩阵A的所有特征值均具有负实 部。
系统矩阵A的所有特征值均具有非正实 部,且至少有一个特征值为0。
劳斯-赫尔维茨稳定判据
劳斯判据
通过计算系统矩阵A的三次或更高次特征多项式的根的实部来判断系统的稳定性。如果所有根的实部 均为负,则系统稳定;否则,系统不稳定。
输出反馈方法
通过输出反馈来改善非线性系统的性能,实 现系统的稳定性和跟踪性能。
自适应控制方法
通过在线调整控制器参数来适应非线性的变 化,提高系统的跟踪性能和稳定性。
非线性系统的设计方法
根轨迹法
通过绘制根轨迹图来分析系统的稳定性,并 设计适当的控制器。
相平面法
通过绘制相平面图来分析非线性系统的动态 行为,进行系统的分析和设计。
感谢您的观看
THANKS
自动控制原理第八章非线性 控制系统
目录
• 非线性系统的基本概念 • 非线性系统的分析方法 • 非线性系统的稳定性分析 • 非线性系统的校正与设计 • 非线性系统的应用实例
01
非线性系统的基本概念
非线性系统的定义
非线性系统的定义
非线性系统是指系统的输出与输入之 间不满足线性关系的系统。在自动控 制原理中,非线性系统是指系统的动 态特性不能用线性微分方程来描述的 系统。
02
它通过将非线性系统表示为一 个黑箱模型,通过测量系统的 输入输出信号来研究其动态特 性。
03
输入输出法适用于分析具有复 杂结构的非线性系统,通过实 验测量和数据分析,可以了解 系统的动态响应和稳定性。
03
23第八章 非线性控制系统分析(第十九讲)
在奈氏曲线和-1/N(A)曲线的交点处, 若-1/N(A)曲线沿着振幅A增加的方向由 不稳定区域进入稳定区域时,该交点对 应的周期运动是稳定的。
反之,若-1/N(A)曲线沿着振幅A增 加的方向由稳定区域进入不稳定区域时, 该交点对应的周期运动是不稳定的。
欲利用非线性系统产生不受扰动 影响的自激振荡,应选图8-21(a) 所示的系统。
jw)N ( A)]
0
由上两式可解得交点处得频率ω 和幅值A。
交点处,系统响应为等幅振荡,即系 统处于周期运动。此时,非线性环节 的输入近似为等幅振荡。
每个交点对应一个周期运动。 如果该周期运动能够维持,即在外界
小扰动作用下使系统偏离该周期运动, 而当该扰动消失后,系统的运动仍能 恢复原周期运动,则称为稳定的周期 运动。
置。
非线性系统稳定性分析的描述函数法
条件(1)具有典型结构形式(2)满足描 述函数法应用条件。
描述函数可作为一个具有复变增益的比例 环节,非线性系统变成一个等效的线性系 统。可以应用线性系统理论中的频率域稳 定判据分析非线性系统的稳定性。
变增益线性系统的稳定性分析
图8-17(a)线性系统,其中K为比例环节 增益。
非线性系统的稳定性判据
若奈氏曲线不包围-1/N(A)曲线, 则非线性系统稳定;若奈氏曲线包 围-1/N(A)曲线,则非线性不系统 稳定。
例8-3 系统不稳定
若奈氏曲线与-1/N(A)曲线有交点,表明特 征方程有ω 的正实数解,则系统存在着无 外作用下的周期运动,其稳定性和周期运 动的稳定性需另行分析。
生等幅振荡。
若设K在一定范围内可变,即有
K1 K K2
则(-1/K,j0)为复平面实轴上的一段 直线。 若奈氏曲线不包围该直线,则系统 闭环稳定,反之,系统闭环不稳定。
反之,若-1/N(A)曲线沿着振幅A增 加的方向由稳定区域进入不稳定区域时, 该交点对应的周期运动是不稳定的。
欲利用非线性系统产生不受扰动 影响的自激振荡,应选图8-21(a) 所示的系统。
jw)N ( A)]
0
由上两式可解得交点处得频率ω 和幅值A。
交点处,系统响应为等幅振荡,即系 统处于周期运动。此时,非线性环节 的输入近似为等幅振荡。
每个交点对应一个周期运动。 如果该周期运动能够维持,即在外界
小扰动作用下使系统偏离该周期运动, 而当该扰动消失后,系统的运动仍能 恢复原周期运动,则称为稳定的周期 运动。
置。
非线性系统稳定性分析的描述函数法
条件(1)具有典型结构形式(2)满足描 述函数法应用条件。
描述函数可作为一个具有复变增益的比例 环节,非线性系统变成一个等效的线性系 统。可以应用线性系统理论中的频率域稳 定判据分析非线性系统的稳定性。
变增益线性系统的稳定性分析
图8-17(a)线性系统,其中K为比例环节 增益。
非线性系统的稳定性判据
若奈氏曲线不包围-1/N(A)曲线, 则非线性系统稳定;若奈氏曲线包 围-1/N(A)曲线,则非线性不系统 稳定。
例8-3 系统不稳定
若奈氏曲线与-1/N(A)曲线有交点,表明特 征方程有ω 的正实数解,则系统存在着无 外作用下的周期运动,其稳定性和周期运 动的稳定性需另行分析。
生等幅振荡。
若设K在一定范围内可变,即有
K1 K K2
则(-1/K,j0)为复平面实轴上的一段 直线。 若奈氏曲线不包围该直线,则系统 闭环稳定,反之,系统闭环不稳定。
自动控制原理第九章非线性控制系统PPT课件
02
非线性系统的数学描述
01
02
04
非线性微分方程
非线性微分方程是描述非线性系统动态行为的数学模型之一。
它通常表示为自变量和因变量的函数,其中包含未知函数的导数。
非线性微分方程的解可以描述系统的输出响应与输入信号之间的关系。
解决非线性微分方程的方法通常包括数值解法和解析解法。
03
非线性传递函数是描述非线性系统的另一种数学模型。
非线性系统的特点
研究非线性系统的方法包括解析法、数值法和实验法等。
总结词
解析法是通过数学推导和求解方程来研究非线性系统的行为和特性。数值法则是通过数值计算和模拟来研究非线性系统的行为和特性。实验法则是通过实际实验来研究非线性系统的行为和特性,通常需要设计和构建实验装置和测试系统。
详细描述
非线性系统的研究方法
它类似于线性系统的传递函数,但包含非线性项和饱和项。
非线性传递函数可以表示系统的输入输出关系,并用于分析系统的性能和稳定性。
分析非线性传递函数的方法包括根轨迹法和相平面法等。
01
02
03
04
非线性传递函数
非线性状态方程是描述非线性系统动态行为的另一种数学模型。
非线性状态方程可以用于分析系统的稳定性和动态行为,并用于控制系统设计。
非线性系统仿真软件
非线性系统仿真实例是通过计算机仿真技术对实际非线性系统进行模拟和分析的实例,它可以帮助用户更好地理解非线性系统的特性和行为,并验证仿真模型的正确性和有效性。
常见的非线性系统仿真实例包括电机控制系统、飞行器控制系统、机器人控制系统等,这些实例可以帮助用户更好地了解非线性系统的控制方法和优化策略。
飞行器控制系统
化工过程控制系统
非线性系统的数学描述
01
02
04
非线性微分方程
非线性微分方程是描述非线性系统动态行为的数学模型之一。
它通常表示为自变量和因变量的函数,其中包含未知函数的导数。
非线性微分方程的解可以描述系统的输出响应与输入信号之间的关系。
解决非线性微分方程的方法通常包括数值解法和解析解法。
03
非线性传递函数是描述非线性系统的另一种数学模型。
非线性系统的特点
研究非线性系统的方法包括解析法、数值法和实验法等。
总结词
解析法是通过数学推导和求解方程来研究非线性系统的行为和特性。数值法则是通过数值计算和模拟来研究非线性系统的行为和特性。实验法则是通过实际实验来研究非线性系统的行为和特性,通常需要设计和构建实验装置和测试系统。
详细描述
非线性系统的研究方法
它类似于线性系统的传递函数,但包含非线性项和饱和项。
非线性传递函数可以表示系统的输入输出关系,并用于分析系统的性能和稳定性。
分析非线性传递函数的方法包括根轨迹法和相平面法等。
01
02
03
04
非线性传递函数
非线性状态方程是描述非线性系统动态行为的另一种数学模型。
非线性状态方程可以用于分析系统的稳定性和动态行为,并用于控制系统设计。
非线性系统仿真软件
非线性系统仿真实例是通过计算机仿真技术对实际非线性系统进行模拟和分析的实例,它可以帮助用户更好地理解非线性系统的特性和行为,并验证仿真模型的正确性和有效性。
常见的非线性系统仿真实例包括电机控制系统、飞行器控制系统、机器人控制系统等,这些实例可以帮助用户更好地了解非线性系统的控制方法和优化策略。
飞行器控制系统
化工过程控制系统
非线性控制系统的分析课件.ppt
法求解有困难时,可用图解法绘制。
▪ 对于式(9.2-1)xf(x,x),令 x1x、 x2x ,
▪
有 x 2f(x1、 x2),所以 可得 dx2 f (x1、x2)
d d x t2d dx x1 2d d x t1x2d dx x1 2f(x1、 x2)
(9.2-5)
▪
dx1
x2
式(9.2-5)是关于
y
-b 0
k
x
b
a.
b.
图9.1-4 齿轮传动及其间隙特性
y(x)k[xs g x)n b](|y/kx|b y (x)0、 y(x)C |y/kx|b
▪ 系统中若有间隙特性元件,不仅会使系统的输出产生相位滞后,导致 系统稳定裕量的减小,使动态性能恶化,容易产生自振;而且间隙区 会降低定位精度、增大非系线统性控静制差系统。的分析课件
▪ 由于相平面只能表示 x(t ) 和 x(t ) 两个独立变量,所以相 平面法只能用来研究一、二阶线性或非线性系统。
▪ 2)相轨迹的绘制方法
▪ (1)二阶线性系统的相轨迹 ▪ (2)相轨迹的绘制
非线性控制系统的分析课件
j
[s]
2 1
0
a.
j 1 [s]
0
2
d.
x2
j
x2
1
[s]
x1
0
0
0
稳定 节点
x
(
t
)
和 x (t ) 的一阶微分方程,即二阶非线性
系统的相轨迹方程。
▪
由式(9.2-5),令
dx2 f (x1,x2)
dx1
x2
,即有
▪
f (x1, x2 )
(9.2-6)
第八章 非线性系统PPT课件
10
二、非线性系统的运动特点
(二)系统的零输入响应形式
某些非线性
e态有关。 0
t
11
二、非线性系统的运动特点
(三)极限环(自激振荡)
非线性系统,在初始状态 的激励下,可以产生固定振幅 和固定频率的周期振荡,这种 周期振荡称为非线性系统的自 激振荡或极限环。
❖ 计算机仿真(Computer simulation)
16
§8.2 相平面图
相平面法(Phase-plane technique) 是庞卡莱(H. Poincare)提出来的一种 用图解法求解一阶、二阶微分方程 的方法,它实质上属于状态空间分 析法在二维空间中的应用,该方法 适合于研究二阶系统。
非线性特性千差万别,对于非线性系统,目前还没有统一的且普遍适用的处 理方法。线性系统是非线性系统的特例,线性系统分析和设计方法在非线性9 控制 系统的研究中仍将发挥非常重要的作用
二、非线性系统的运动特点
(一)稳定性
与系统的结构和参数及系统的输入信 号和初始条件有关。
研究时应注意: 1、系统的初始条件; 2、系统的平衡状态。
第八章 非线性控制系统
Nonlinear Control System
1
整体 概述
一 请在这里输入您的主要叙述内容
二
请在这里输入您的主要 叙述内容
三 请在这里输入您的主要叙述内容
2
内容提要
§8.1 概述 §8.2 相平面图 §8.3 奇点和极限环 §8.4 非线性系统的相平面图分析 §8.5 非线性特性的描述函数 §8.6 用描述函数分析非线性系统
-M
(d) 8
当系统中含有一个或多个具有非线性特性的元件时, 该系统称为非 线性系统。一般地,非线性系统的数学模型可以表示为
二、非线性系统的运动特点
(二)系统的零输入响应形式
某些非线性
e态有关。 0
t
11
二、非线性系统的运动特点
(三)极限环(自激振荡)
非线性系统,在初始状态 的激励下,可以产生固定振幅 和固定频率的周期振荡,这种 周期振荡称为非线性系统的自 激振荡或极限环。
❖ 计算机仿真(Computer simulation)
16
§8.2 相平面图
相平面法(Phase-plane technique) 是庞卡莱(H. Poincare)提出来的一种 用图解法求解一阶、二阶微分方程 的方法,它实质上属于状态空间分 析法在二维空间中的应用,该方法 适合于研究二阶系统。
非线性特性千差万别,对于非线性系统,目前还没有统一的且普遍适用的处 理方法。线性系统是非线性系统的特例,线性系统分析和设计方法在非线性9 控制 系统的研究中仍将发挥非常重要的作用
二、非线性系统的运动特点
(一)稳定性
与系统的结构和参数及系统的输入信 号和初始条件有关。
研究时应注意: 1、系统的初始条件; 2、系统的平衡状态。
第八章 非线性控制系统
Nonlinear Control System
1
整体 概述
一 请在这里输入您的主要叙述内容
二
请在这里输入您的主要 叙述内容
三 请在这里输入您的主要叙述内容
2
内容提要
§8.1 概述 §8.2 相平面图 §8.3 奇点和极限环 §8.4 非线性系统的相平面图分析 §8.5 非线性特性的描述函数 §8.6 用描述函数分析非线性系统
-M
(d) 8
当系统中含有一个或多个具有非线性特性的元件时, 该系统称为非 线性系统。一般地,非线性系统的数学模型可以表示为
非线性控制系统分析教学课件
航天器控制系统
航天器控制系统是一个高度复杂的非线性控制系统,它涉及到轨道控制、姿态控制和推进系 统控制等多个方面。
航天器控制系统需要处理各种动态特性和非线性特性,如气动力、引力扰动和热效应等,以 确保航天器能够精确地完成预定任务。
航天器控制系统的设计需要运用非线性控制理论和方法,如自适应控制、鲁棒控制等,以提 高航天器的稳定性和精度。
非线性控制系统分析 教学课件
contents
目录
• 非线性控制系统概述 • 非线性控制系统的基本理论 • 非线性控制系统的分析与设计 • 非线性控制系统的应用实例 • 非线性控制系统的发展趋势与挑战
CHAPTER 01
非线性控制系统概述ห้องสมุดไป่ตู้
非线性控制系统的定义与特点
总结词
非线性、动态、输入与输出关系复杂
详细描述
反馈线性化方法是一种通过引入适当的反馈控制律,将非线性系统转化为线性系统的设 计方法。它通过调整系统的输入和输出,使得系统的动态行为变得线性化,从而可以利
用线性控制理论进行设计和分析。
滑模控制方法
总结词
一种用于处理非线性控制系统不确定性 的方法
VS
详细描述
滑模控制方法是一种通过设计滑模面和滑 模控制器,使得系统状态在滑模面上滑动 并达到期望目标的方法。它利用滑模面的 设计,使得系统对不确定性具有鲁棒性, 能够有效地处理非线性系统中的不确定性 和干扰。
非线性控制系统的基本理论
状态空间模型
状态空间模型是描述非线性控制系统动态特性的数学模型,由状态方程和输出方程 组成。
状态变量是描述系统内部状态的变量,输出变量是描述系统外部输出的变量。
建立状态空间模型需要考虑系统的非线性特性,包括死区、饱和、非线性函数等。
《非线性系统分析》PPT课件
0
M
x h2 h2 x h1
x h1
(7 4a)
.
当x 0:
M
y
0
M
x h1 h1 x h2
x h2
(7 4b)
19
图(b)所示继电特性的数学描述由 读者自行导出。
20
4、间隙特性
传动机构的间隙也是控制系统中常见的非线性 特性,齿轮传动是典型的间隙特性,图7-4(a) 表示齿轮传动原理,图7-4(b)表示主动轮位移 与从动轮位移的关系。设主动轮与从动轮间的最 大间隙为2b,那么当主动轮改变方向时,主动轮 最大要运动2b从动轮才能跟随运动。间隙特性类 似于线性系统的滞后环节,但不完全等价,它对 控制系统的动态、稳态特性都不利。设齿轮传动 速比为,则图7-4间隙特性的数学描述为:
22相平面法是庞加莱poincare1885年首先提出的本来它是一种求解二元一阶非线性微分方程组的图解法两个变量构成的直角坐标系称为相平面方程组的解在相平面上的图象称为相轨这里是将相平面法用于分析一阶尤其是二阶非线性控制系统并形成了一种特定的相平面法它对弄清非线性系统的稳定性稳定域等基本属性解释极限环等特殊现象起到了直观形象的作23因为绘制两维以上的相轨迹是十分困难的所以相平面法对于二阶以上的系统几乎无能为力
一点在 x x平面上绘出的曲线,表征了系统的
运动过程,这个曲线就是相轨迹。我们用一个二 阶线性时不变系统来体验一下相平面和相轨迹。
26
例7-1 考虑二阶系统:
..
x ax 0 , a 0, x(t0 ) x0 ,
将它写成微分方程组:
dx
.
x
dt.
d x ax
dt
两式相除得到:
.
dx dx
自动控制原理第九章非线性控制系统优秀课件
(
x0
,u0
)
u1
f1
u2
u
f2
u2
( x0
,u0
)
线性系统稳定 非线性系统稳定
研究非线性控制理论的意义
对于非线性程度比较严重,且系统工作范围较大的 非线性系统,建立在线性化基础上的分析和设计方 法已经难以得到较为正确的结论,只有采用非线性 系统的分析和设计方法才能解决高质量的控制问题。 为此,必须针对非线性系统的数学模型,采用非线 性控制理论进行研究。
展开的一次近似,高阶
项省略,代入原系统得
:
C
d (H
0 dt
H
)
Q i0
Qi
K
用上述方程减去稳态方 程 :
H0 2
1 (H H0
H
) 0
C
dH 0 dt
Q i0
Байду номын сангаас
K
H0
就求出小偏差的近似线
性方程:
C
dH dt
Qi 2
K H0
H
通常在工作点附近直接 写作
dH
K
C
dt
Qi 2
H H0
H
,
Q
i
但一般V函数构造为线性二次型附加修正项的形式, 真正的非线性方法也是在线性为基础的情况下才得 以实现的
其他非线性研究方法——微分几何控制理论:
• 前面介绍的三种方法对非线性系统的分析与控制 主要是定性的,与线性系统的研究进展比较起来 远远不如,其主要原因就在于没有合适的数学工 具。在线性定常系统中,系统的性质仅取决于由 系统矩阵表示的各种变换形式,但是对于非线性 系统来讲却非常复杂,数学上仅有的可利用结果 只是微分几何中局部变换等并不十分完善的工具。 微分几何控制理论就是在这种情势下,用微分几 何来研究系统的能控性、能观测性等基本特性作 为开始发展起来的。
控制工程基础第三版课件 第九章 非线性系统
dx/dt x
稳 焦点 定
相轨迹振荡趋于原点,该奇点为 相轨迹振荡趋于原点, 稳定焦点。 稳定焦点。
••
x+ 2ζωn x+ωn x = 0
2
•
−1 < ζ < 0
dx/dt x
不稳 定焦 点
相轨迹振荡远离原点, 相轨迹振荡远离原点,为 不稳定焦点。 不稳定焦点。
••
x+ 2ζωn x+ωn x = 0
则相轨迹对称于原点 则相轨迹对称于原点
相平 面
x/ ω0
x 0
•
•
(0,10)
x
x
0
相 面 平
(0,-10)
4. 相轨迹的奇点
定义: 定义:二阶系统 x+ f (x, x) = 0 在相平面上满足
& x =0 & f (x, x) = 0
••
•
的点
在奇点上相轨迹的斜率不定, 在奇点上相轨迹的斜率不定,为
2
•
ζ =0
dx/dt x
中 心点
相轨迹为同心圆, 相轨迹为同心圆,该奇点为 中心点。 中心点。
••
x+ 2ζωn x−ωn x = 0
2
•
jω
dx/dt
σ
s 平面
x
鞍 点
系统特征根一正一负, 系统特征根一正一负,相轨 迹先趋向于——然后远离原 迹先趋向于 然后远离原 称为鞍点 点,称为鞍点
•
•
例:二阶系统如下,试绘制其相平面图 二阶系统如下,
••
x+ω x = 0
2 0
解:
•
f (x) = ω x