深基坑工程事故案例分析.
某深基坑坑内土体纵向滑移事故分析及处理
某深基坑坑内土体纵向滑移事故分析及处理一、引言1.地下基础工程的背景和意义2.研究的目的和意义3.国内外研究现状概述4.本文的主要内容和架构二、某深基坑土体纵向滑移事故的案例分析1.事故背景和发生过程2.现场调查和监测结果3.事故原因的分析与判定4.事故的危害和影响三、土体纵向滑移的机理与特点1.土体纵向滑移的定义和分类2.土体纵向滑移的机理和影响因素3.土体纵向滑移的特点和表现四、土体纵向滑移事故的处理措施1.对土体纵向滑移事故的处理原则2.常见的事故处理方法和技术3.选型和应用效果的评价五、结论1.本文研究的主要结论和发现2.对事故处理的启示和建议3.未来研究的展望和发展方向参考文献第一章是论文的引言,其目的是为读者介绍研究的背景、意义、目的、研究现状以及论文的主要内容和结构。
本文所研究的是某深基坑坑内土体纵向滑移事故分析及处理,下面将对第一章的各个部分进行详细的阐述。
一、研究背景和意义地下基础工程作为现代建筑工程的重要组成部分,因其隐蔽性、复杂性和不可逆性而备受关注。
其中最主要的工程之一是地下基坑挖掘工程。
在地下基坑挖掘过程中,常常会遇到因土体滑动和变形问题而导致的事故,这些问题也成为制约基坑工程施工的主要因素之一。
土体纵向滑移事故是基坑工程中最为常见的事故之一,其可能导致土体崩塌、地面沉降、周边建筑物损坏等严重后果。
因此,对于基坑工程中土体纵向滑移事故的预防和处理,具有重要的现实意义和科学价值。
二、研究目的和意义本文旨在分析某深基坑坑内土体纵向滑移事故的原因和机理,并提出相应的处理措施,以期对类似问题的处理提供参考。
具体而言,本文的研究目的如下:(1)通过案例分析,了解某深基坑坑内土体纵向滑移事故的发生背景和原因;(2)通过探讨土体纵向滑移的机理与特点,深入分析事故原因;(3)总结常见的处理方法和技术,并对选型和应用效果进行评价;(4)对基坑工程中土体纵向滑移的预防和处理提出建议,以期为基础工程施工提供科学依据和实际指导。
深基坑案例题
题目:某深基坑工程案例分析一、工程概况某国际广场基坑工程位于某市劳动路与体育中心大道交汇的西北角,基坑西侧分布有5栋6层至8层建筑,基坑北侧分布2栋6层建筑,均采用天然地基浅基础。
拟建场地原始地貌单元为冲积阶地,地势呈北高南低势。
拟建建筑物地上30层,地下室2层,基坑支护高度为7.0m至14.0m,分别采用桩锚支护和土钉墙支护。
二、事故描述基坑AB、BC段附近的房屋和基坑坑顶围墙、地面均发现了裂缝,基坑东侧FF1段土钉墙支护区段发生塌方,施工单位用砂土对基坑底部进行了反压。
经调查发现,周边环境破坏和支护体系破坏是该基坑工程的主要事故表现形式。
三、事故原因分析1.周边环境破坏:围护结构变形过大或地下水位降低造成周围路面、建筑物及地下管线破坏事故。
这可能是由于支护结构设计不合理或施工不当导致的。
2.支护体系破坏:主要包括墙体折断、整体失稳、基坑坡脚隆起破坏和锚撑失稳。
这些破坏可能是由于支护结构材料质量差、施工质量不合格或设计参数选择不当造成的。
3.渗透破坏:土体渗透破坏(流土、管涌、突涌)也是导致基坑工程事故的重要原因之一。
这可能是由于地下水处理不当或支护结构防渗性能不足造成的。
四、改进措施与建议1.加强支护结构设计和施工质量控制,确保支护结构的稳定性和安全性。
在设计阶段,应充分考虑地质条件、周边环境和地下管线等因素,选择合适的支护结构类型和参数。
在施工阶段,应严格按照设计要求进行施工,确保支护结构的质量和稳定性。
2.加强地下水处理和控制,防止渗透破坏。
在基坑开挖前,应进行详细的水文地质勘察,了解地下水的分布、水位和补给情况。
在基坑开挖过程中,应采取有效的降水措施,控制地下水位在合理范围内。
同时,应加强支护结构的防渗性能,防止土体渗透破坏。
3.加强基坑工程监测和预警,及时发现和处理事故隐患。
在基坑开挖和支护结构施工过程中,应设置必要的监测设施,实时监测支护结构的变形、地下水位和周边环境的变化情况。
一旦发现异常情况或事故隐患,应立即采取措施进行处理,防止事故的发生或扩大。
(完整版)深基坑工程事故案例分析.
液 限
塑 限
塑 性 指 数
液 性 指 数
(m)
W (%)
ρ (g/cm
3)
Gs
e
ωl
ωp
(%) (%)
IP
IL
②2
粘质 粉土
4 30.5 1.90 2.70 0.85
④2
淤泥质 粘土
16 48.6 1.71 2.74 1.37 41.8 22.3 19.5 1.35
淤泥质粉
⑥1
质粘 17 45.2 1.72 2.73 1.30 37.5 21.5 16.0 1.48
地下工程安全管理
地下工程安全管理
地下工程安全管理
地下工程安全管理
地下工程安全管理
地下工程安全管理
地下工程安全管理
2、 杭州地铁深基坑事故的原因分析
2.1 破坏模式分析
根据勘查结果对基坑土体破坏滑动面及地下连续墙破 坏模式进行了分析,并绘制相应的基坑破坏时调查平面图 与施工工况图以及基坑土体滑动面与地下连续墙破坏形态 断面图。
地下工程安全管理
2.3 设计问题
由于基坑设计涉及到多种学科,如土力学、基础工程 、结构力学和原位测试技术等,需要对场地周围环境、施 工条件、工程地质条件、水文地质条件详细了解和掌握, 是一门系统科学,具有复杂性。所以目前基坑支护的设计 方案与措施大多数是偏于保守的,即便如此,如果设计的 人员经验不足,考虑不周,也易引起相应的事故。对522 例基坑事故统计也说明基坑设计的不足,是引发事故的重 要原因。杭州地铁工程在设计方面主要有以下一些问题:
其直接原因是施工单位违规施工、冒险作业、基坑严重超挖;支撑 体系存在严重缺陷且钢管支撑架设不及时;垫层未及时浇筑。监测单位 施工监测失效,施工单位没有采取有效补救措施。
基坑滑坡事故案例分析
事故经过
在广州海珠区江南大道南珠城海广场深基坑发生滑坡,导致三人死亡,4人受伤,地铁二号线停运近一天,7层的海员宾馆倒塌,多加商铺失火被焚,一栋7层居民楼受损,三栋居民被迫转移。
事故原因
1)本基坑原设计深度只有16.2m,而实际开挖深度为20.3m,超深4.1m,造成原支护桩成为吊脚桩,尽管后来设计有所变更,但对已施工的围护桩和锚索等构件已无法调整,成为隐患。
2)从地质勘察资料反应和实际开挖揭露,南边地层向坑内倾斜,并存在软弱透水夹层,随着开挖深度增大,导致深部滑动。
3)本基坑施工时间长达2年9个月,基坑暴露时间大大超过临时支护为一年的时间,导致开挖地层的软化渗透水和已施工构件的锈蚀和锚索预应力的损失,强度降低,甚至失效。
4)事故发生前在南边坑顶因施工而造成东段严重超载,成为了基坑滑坡的导火线。
5)从施工纪要和现场监测结果分析,在基坑滑坡前已有明显预兆,但没有引起应有的重视,更没有采取针对性的措施,也是导致事故的原因之一。
深基坑工程事故案例分析
建筑质量事故分析实例摘要:最近几年来,在对工程质量事故鉴定工作中,我收集了一些典型的工程质量事故案例。
这些案例涉及基本建设程序、工程地质勘察、工程设计、工程施工、材料供应以及质量检测等各方面。
现列举一部分,供大家参考。
关键词:质量事故实例案例一:某工厂新建一生活区,共14 幢七层砖混结构住宅(其中10幢为条形建筑,4幢为点式建筑)。
在工程建设前,厂方委托一家工程地质勘察单位按要求对建筑地基进行了详细的勘察。
工程于一九九三年至一九九四年相继开工,一九九五年至一九九六年相继建成完工。
一年后在未曾使用之前,相继发现10幢条形建筑中的6幢建筑的部分墙体开裂,裂缝多为斜向裂缝,从一楼到七楼均有出现,且部分有呈外倾之势;3幢点式住宅发生整体倾斜。
后来经仔细观察分析,出现问题的9幢建筑均产生严重的地基不均匀沉降,最大沉降差达160mm 以上。
事故发生后,有关部门对该工程质量事故进行了鉴定,审查了工程的有关勘察、设计、施工资料,对工程地质又进行了详细的补勘。
经查明,在该厂修建生活区的地下有一古河道通过,古河道沟谷内沉积了淤泥层,该淤泥层系新近沉积物,土质特别柔软,属于高压缩性、低承载力土层,且厚度较大,在建筑基底附加压力作用下,产生较大的沉降。
凡古河道通过的9栋建筑物均产生了严重的地基不均匀沉降,均需要对地基进行加固处理,生活区内其它建筑物(古河道未通过)均未出现类似情况。
该工程地质勘察单位在对工程地质进行详勘时,对所勘察的数据(如淤泥质土的标准贯入度仅为3,而其它地方为7~12)未能引起足够的重视,对地下土层出现了较低承载力的现象未引起重视,轻易的对地基土进行分类判定,将淤泥定为淤泥质粉土,提出其承载力为100kN,Es为4Mpa.设计单位根据地质勘察报告,设计基础为浅基础,宽度为2800mm,每延米设计荷载为270kN,其埋深为- 1.4m~2m左右。
该工程后经地基加固处理后投入正常使用,但造成了较大的经济损失,经法院审理判决,工程地质勘察单位向厂方赔偿经济损失329万元。
深基坑工程事故案例分析
事故发生前, 自10月9号至事发前的一个 多月间,临近北二基坑西侧的风情大道 曾经不段出现了一些不正常的迹象。例 如,位于污水管附近上方的车道路面结 构层开裂严重、路面下沉明显;曾多次 采取架钢筋、浇灌混凝土、对路面的裂 缝进行了勾缝等措施来补救。除基坑外 地面开裂现象外,基坑内侧地下连续墙 也曾出现过较大的裂缝。实际上,一个 特大事故正在悄悄地向人们扑来,但大 家似乎都没有觉察到。
从这些照片中看到了什么?
地下连续墙的破坏形态 根据事故后的钻探资料,连续墙折断、
上段后仰、下段前倾。
?
?
根据事故以后钻探所得到的地下连续墙 的位置,连续墙折断的断口大约在顶面 以下7.6m处,断口以上的部分墙体向坑 内位移,断口处的位移大于顶部,即呈 微微后仰的状态;断口以下部分呈前倾 状态。路面下沉极其迅速,过往汽车突 然下陷,说明由于地下连续墙折断,从 基坑侧面往坑内涌土为主,底部涌土情 况不明。
2.从上而下修筑的栏墙没有插入深度, 对于敞开开挖的施工条件,会发生从底 部涌入坑内的塑性流动;
2.止水措施不足以阻止地下水从坑外 向坑内流动。
案例4.引水渠道基坑边坡失稳
4孔箱涵,单孔尺寸为3.25m3.60m,总长75m 地面标高+4.2~4.7m,设计基坑底面标高-
5.33m,开挖深度近10m 按三级放坡,从上至下依次为1:1.5 、 1:2 和
下沉,前面的红绿灯也突然不见了,紧
接着看到水涌进车内,于是纷纷紧急逃 离,被淹的K327公交车上的乘客也都全 部逃离脱险。
刹那间,风情大道一下子沉陷了深7m、形 成了宽40m、长近百米的大坑,很快漫水; 此时百余名在基坑中工作的现场施工人员也 纷纷逃离。
位于风情大道东侧的杭州地铁1号线湘湖 站主体为地下两层三跨钢筋混凝土框架结构 。基坑长度为106m,宽度20.5m。车站主体 结构顶板覆土1.8m,底板埋深16m。主体开 挖深度约15.7m∼16.2m,采用800mm厚地下 连续墙,连续墙嵌固深度为17.28m。竖向设 置4道ф609钢管支撑,支撑中部设置立柱。
某深基坑坍塌事故分析与总结
项目信誉受损:事故可能对 项目方信誉造成负面影响,
影响后续合作。
施工进度延误:由于事故导 致的清理和修复工作,原计 划进度被推迟。
安全意识提升:事故后应加 强安全培训和监管,提高整
体安全意识。
事故教训总结
加强深基坑设计的安全性和可靠性
效性
制定完善的应急救援预案, 明确救援流程和责任人
加强对应急救援人员的培训 和考核,提高其专业素质和
技能水平
预防类似事故的措施建议
建立健全安全管理体系和规章制度
制定详细的安全 管理制度和操作 规程,明确各级 安全责任。
建立完善的安全 培训和教育机制, 提高员工的安全 意识和操作技能。
定期进行安全检 查和隐患排查, 及时整改和消除 安全隐患。
对类似工程的警示作用
重视工程安全风险评估和预防工作
深基坑工程安全风险评估的重要性 预防措施的制定和实施 定期进行安全检查和维护 提高工程人员的安全意识和技能
加强工程安全宣传和教育力度
定期开展工程安全宣传活动,提高员工安全意识 加强工程安全教育培训,提高员工安全操作技能 建立工程安全宣传教育考核机制,确保宣传教育效果 鼓励企业加大工程安全投入,提高安全生产水平
深基坑设计应充 分考虑地质条件、 水文气象等因素, 确保设计的安全 性和可靠性。
在施工过程中, 应加强监测和预 警,及时发现和 处理安全隐患。
建立健全的应急 预案和救援机制, 确保在事故发生 时能够迅速、有 效地进行救援。
加强对深基坑施 工人员的安全培 训和教育,提高 安全意识和操作 技能。
规范施工操作流程和管理制度
建立应急预案和 应急救援体系, 提高应对突发事 件的能力。
深基坑工程事故案例分析.
2、 杭州地铁深基坑事故的原因分析
2.1 破坏模式分析
根据勘查结果对基坑土体破坏滑动面及地下连续 墙破坏模式进行了分析,并绘制相应的基坑破坏时调 查平面图与施工工况图以及基坑土体滑动面与地下连 续墙破坏形态断面图。
据靠近西侧地下连续墙静力 触探试验表明,在绝对标高-8m~ -10m处(近基坑底部), qc值为 0.20MPa(qc仅为原状土的30%左 右),土体受到严重扰动,接近 于重塑土强度,证明土体产生侧 向流变,存在明显的滑动面。
深基坑工程事故案例分 析
一、深基坑的概念及特点 二、深基坑工程事故类型及处理措施 三、土方开挖阶段事故预防 四、深基坑工程事故预防及处理 五、深基坑工程事故案例分析
五、深基坑工程事故案例分 析
1、杭州地铁深基坑事故概况
1.1 事故调查结果公布
2008年11月15日下午3时15分,正在施工的杭州地铁湘湖站 北2基坑现场发生大面积坍塌事故,造成21人死亡,24人受伤(截 止2009年9月已先后出院),直接经济损失4961万元。
• 不符合规范要求 1)基坑采取原状土样及相应主要力学试验指标较少, 不能完全反映基坑土性的真实情况。 2)勘察单位未考虑薄壁取土器对基坑设计参数的影响 ,以及未根据当地软土特点综合判断选用推荐土体力学 参数。 3)勘察报告推荐的直剪固结快剪指标c、Φ值采用。平 均值,未按规范要求采用标准值,指标偏高。 4)勘察报告提供的④2层的比例系数m值( m=2500kN/m4)与类似工程经验值差异显著。 • 提供的土体力学参数互相矛盾,不符合土力学基本理 论。 1)推荐用于设计的主要地层土的三轴CU、UU试验指标 、无侧限抗压强度指标与验证值、类似工程经验值差异 显著。
粘土
粉质粘
⑧2
深基坑工程的常见质量问题及案例分析
深基坑工程的常见质量问题及案例分析深基坑工程是指在地下施工中所遇到的较深的基坑工程,常见于城市建设、地铁、地下停车场等项目中。
由于其特殊性和复杂性,深基坑工程常常面临着各种质量问题。
本文将对深基坑工程的常见质量问题及案例进行分析,以便更好地了解和解决这些问题。
一、地下水渗漏问题地下水渗漏是深基坑工程中常见的质量问题之一。
由于地下水位高,施工过程中可能会导致地下水渗漏进入基坑,给施工带来一系列问题。
例如,地下水渗漏会导致土壤软化,增加开挖困难;地下水渗漏还可能导致基坑内部的土壤液化,增加坍塌的风险。
案例分析:某城市地铁工程中,施工方在进行深基坑开挖时,由于没有采取有效的防水措施,导致地下水渗漏进入基坑,导致基坑内土壤液化,最终导致基坑坍塌事故发生。
这一事故不仅造成了人员伤亡,还给项目带来了巨大的经济损失。
解决方案:为了解决地下水渗漏问题,施工方应采取以下措施:1. 防水材料选择:选择适合的防水材料,如聚氨酯、水泥浆等,进行基坑地下水位以下部分的防水处理。
2. 防水施工工艺:采用合理的防水施工工艺,如预埋防水板、喷涂防水等,确保基坑的防水效果。
3. 监测与修补:在施工过程中进行地下水位和渗漏水量的监测,及时发现问题并进行修补。
二、地基沉降问题地基沉降是深基坑工程中另一个常见的质量问题。
由于深基坑工程对地基的承载能力要求较高,如果地基沉降过大,就会导致基坑结构的不稳定,甚至引发地面沉降。
案例分析:某城市高层建筑项目中,施工方在进行深基坑开挖时,没有进行充分的地基加固工作,导致地基沉降过大,最终导致整个建筑物倾斜,严重影响了建筑物的使用安全。
解决方案:为了解决地基沉降问题,施工方应采取以下措施:1. 地基加固:采用适当的地基加固措施,如灌注桩、钢筋混凝土地基板等,提高地基的承载能力。
2. 监测与调整:在施工过程中进行地基沉降的监测,及时发现沉降情况,并进行相应的调整和修补。
3. 施工工艺控制:控制基坑开挖的速度和深度,避免过快过深的开挖导致地基沉降过大。
一起基坑坍塌事故案例分析
一
、
基坑 坍塌 案 例
.
外水 泥 地 面产 生裂缝 达 8 m m, 花 园 内土 与砖 墙之 间 裂缝 达2 c m。基 坑 东 面有 高层 建 筑 , 边 坡 变 形最 为
1 . 工程 概 况 :
西 北 某 市 中心 地 带 一 项 目工 程 为地 下 3 层, 地 上2 4 层 。深基 坑深 约 1 4 m, 基 坑东 、 南、 西 三 面6 m外 有 高层 建 筑 物及 平 房 ,北 面3 m ̄ l " 为人 行 道 及交 通 主 干道 马路 , 车 辆过 往频 繁 。基 坑 安全 级别 为 一级 深基 坑 。 支 护作 业 由某 具有 相应 资质 的地 基基 础公 司实施 , 支 护 专项 方 案 采 取排 桩 加 腰 梁 锚 杆 , 桩 问
争做 到 简明扼 要 、 通 俗 易懂 , 以更好 的用 于指 导 工程 施 工 实际 。原 因分析 主要 从人 的不安 全行 为 , 物 的 不安全 状 态 、 环 境影 响及 管理 缺 陷四 个方 面入手 , 提 出工作 建议 和应 汲取 的教训 。
【 关 键词 】专项 方 案 事故 案例 经验 教训 【 中图分 类 号 】T U 4 7 3 . 2 【 文 献标 志码 】C
人 审核 及专 家论 证及 审批 。
2 . 事故 经过 :
意 的是 由于基 坑 边坡 的不稳 定 , 翻斗 车重 车不 可靠 近边 坡 , 只能将 砂 加 石倒 在 坡顶 2 m3 ' l " , 然 后 用装 载
机缓慢 铲推石料 溜入坑 内。最终 基坑东 面排桩 根部 土石 方堆放 高度 至8 m,超 过排桩 悬 臂高度 一半 , 经
东、 南、 西三 面 已开 挖支 护 完 , 基 坑 北侧 西部 约 三分 之 一段 尚未 开挖 支护 完 。 夏季 某 天夜 间凌晨 一 点, 在使 用一 台挖 掘机进 行 北侧 剩余 部 分 土方 开挖 时, 突然边坡掉土、 裂缝 , 工 作人 员 迅 速 撤 离 , 随 即 北侧 已开挖部 分 排 桩及 顶部 冠梁 倾 覆 断裂 , 基坑 北 部 发生 坍 塌 , 幸 未 造 成 人员 伤 亡 , 但 危及 周 边 建 筑 物 的安 全 , 造 成 临街 市政 设 施损 坏及 工 期影 响一 个
常见基坑工程案例、事故原因分析
常见基坑工程案例、事故原因分析依据建设部关于印发《危险性较大的分部分项工程安全管理办法》[2009 ]87号文规定:深基坑是指开挖深度超过5米(含5米)的基坑(槽)的土方开挖、支护、降水工程,或开挖深度虽未超过5米,但地质条件、周围环境和地下管线复杂,或影响毗邻建筑(构筑)物安全的基坑(槽)的土方开挖、支护、降水工程专项施工方案,应组织专家进行论证。
一、事故案例近年来,基坑工程安全事故发生频繁,发生安全事故的类型可分为:1、周边环境破坏:围护结构变形过大或地下水位降低造成周围路面、建筑物及地下管线破坏事故。
2、支护体系破坏:主要包括:①墙体折断;②整体失稳;③基坑坡脚隆起破坏;④锚撑失稳。
3、渗透破坏;土体渗透破坏(流土、管涌、突涌)。
案例一(经济适用住房基坑土方坍塌)2006年1月4日,黑龙江省哈东筑市某勘察设计院经济适用住房工程发生一起基坑土方坍塌事故,造成3人死亡、3人轻伤。
施工单位未按施工程序埋设帷幕桩,帷幕桩抗弯强度及刚度均未达到《建筑基坑支护技术规程》JGJ120的要求;在进行帷幕桩作业时,未采取安全防范措施;毗邻建筑物(锅炉房)一侧杂填上密度低于其他部位,在开挖土方和埋设帷幕桩时,对杂填士层产生了扰动,进一步降低了基坑土壁的强度,导致坍塌事故发生;施工单位在抢险救援过程中措施不力,致使事故灾害进一步扩大。
案例二(广州某广场基坑坍塌)2005年7月21日中午12点左右,广州市海珠区某广场B区施工工地发生基坑坍塌,基坑南边支护结构坍塌,东南角斜撑脱落。
基坑支护坍塌范围约104.55延米,面积约2007平方米,南侧海员宾馆的基础桩折断滑落,结构部分倒塌。
同时造成3人死亡、8人受伤。
主要原因分析:超挖:原设计地下4层基坑深度17米,后开挖成地下5层基坑(深度达20.3米),挖孔桩成吊脚桩。
超时:基坑支护结构服务年限一年,实际从开挖及出事已有近三年。
超载:坡顶土方车、吊车超载。
地质原因:岩面埋深较浅,但岩层倾斜。
基坑坍塌事故案例分析
新闻媒体报道(2)
《南方都市报》(2005.8.9)标题“海 珠城坍塌事故7问”:广州市建委在事 故后发布的消息说 , 海珠城广场施工 中一直没有监理单位 . 南宜房地产公 司内部有关人士证实 , 工程在施工中 确实没有聘请监理单位 . 对于居民们 反映的问题 , 他们当时“只是让公司 内部的安全人员去看了看”.
基坑事故案例分析
7月21日广州市海珠广场基坑 坍塌事故 案例分析
工程概况(1)
海珠城广场位于广州市海珠区江南大道与 江南西路交汇处的西南角,地处城市闹市区,该 项目为1幢商业、办公主体大楼,由A、B、C三 区组成,建设规模为地上39层、地下4层(变更 设计地下5层) ,建筑面积约为14万平方米. 事故 发生在B区基坑,基坑设计深度16.2米(变更设 计20.3米),属深基坑工程,基坑周长约350米,东 侧5.5米处为地铁二号线隧道(隧道深埋20米), 南边东段16米处为7层楼的海员宾馆,南边西段 为6层住宅楼,西边10米处为河涌.
不认真履行建设工程安全生产管理条例第二十六条的安全责任没有对主体结构施工涉及的基坑因长期施工已经存在支护失效的安全问题组织专家进行论证和审查并采取有效措施确保安全施工对重大安全事故的发生负有一定的管理责任责令改正责令停业整顿和罚款3万元承总设计院作为设计单位在基坑支护结构施工设计文件中没有提出保障施工作业人员安全和预防生产安全事故的措施建议并且承担的主体结构条形基础工程设计与基坑设计衔接不良致使主体结构条形基础开挖到203米后基坑出现安全隐患问题并且没有提出有效的防护措施进行加固排险对重大安全事故的发生负有重要的管理责任责令改正和罚款30万元市设计院当事发前基坑南侧出现较大水平位移时虽然口头上告知了南谊公司观测情况但没有书面向有关单位发出警告也没有及时按合同规定告知设计单位及有关部门对重大安全事故的发生负有重要的质量管理责任责令改正和罚款30万元羊城晚报2005724标题设计有问题警告当儿戏
某基坑工程事故案例分析
某基坑工程事故案例分析摘要:随着经济的发展,深基坑支护施工在各大城市已经频频出现,基坑支护工程每年都会发生一些事故,小者产生一些经济损失,大者会产生极恶劣的社会影响甚至人身伤害事故。
基坑施工虽然只属于一个分部工程,但由于开挖深度深、土层地质情况复杂,而施工单位又极不重视报着一种侥幸心理,未严格按照设计施工,最终产生事故造成重大的经济损失。
关键词:基坑支护设计施工一、工程概况本次基坑围护施工的内容是工厂内一小型的机械设备基础,基坑面积仅7.0×4.0m2,但基坑的开挖深度达到7.5m深,且整个设备基础基坑在厂房内施工。
厂房建筑为已建单层钢筋混凝土排架结构,层高为9m,基础为天然地基独立基础。
基坑边缘距离最近的两个排架柱边为6.m左右,排架基础为4m×5m的矩形独立基础,基础埋深为室内地坪以下2.5m,基坑边缘距离厂房排架柱基础边的距离仅3m左右。
因此该基坑虽小,但在开挖过程中的位移影响将涉及到整个厂房的使用和安全。
二、围护方式及事故产生原因由于本工程基坑面积小,业主未请专业设计单位对基坑的开挖做专项设计,施工单位也未认真地进行施工组织设计。
1.围护形式简介基坑的开挖深度为7.5m,围护施工的基本形式为钢板桩挡土、压密注浆隔水,支撑采用两道钢围檩十字型钢支撑。
鉴于在厂房内施工,厂房层高为9m,钢板桩的长度和机具设备均受到层高的限制。
因此施工中先放坡挖土2.5m后落坑打钢板桩,钢板桩为拉森Ⅳ,长度为9m。
插入深度为坑底以下仅3.1m。
隔水压密注浆仅一道,在施工过程中发现由于第3层灰色砂质粉土砂性相当重,渗透系数大,注浆深度达到10m左右时无法控制,因此实际注浆深度仅为坑底以下2.0m。
此外由于基坑面积较小,坑底进行了压密注浆满堂加固,但是同样由于土层的原因,加固深度也仅为坑底以下2m。
2.基坑事故情况围护施工结束后不到一周,施工单位就开始挖土施工。
由于基坑面积小,土方少,挖土施工进行得非常迅速。
基坑事故案例分析
基坑事故案例分析【篇一:基坑事故案例分析】解永成等:某基坑工程事故案例分析某基坑工程事故案例分析要:介绍某工程事故案例,分析了施工中产生支护结构变形过大,引起地下连续墙拼缝水土流失,周边地面下沉,房屋倾斜甚至坍塌的原因。
关键词:深基坑;施工;事故AnalysisofAnAccidentCaseofDeepFoundationPitXIEYongchengTANJingqian(GuangzhouNo.3ConstIuction&EngineeringCo.,Ltd.Guangzhou10050)Abst陷Ct:ThisarticleintroducesaIlaecidentcaseoffoundationpitduringconstlllction.AndanalysesthemainreasonfbroVer—distortedsupponingstlllctureleadinghousingstructureleasingduringconstmction.Keywords:deepfoundationpit;constmction;accident1工程简介某工程基坑开挖深度18.5m左右,采用800mm厚地下连续墙加四道内支撑(第一道为钢筋混凝土,其余三道均为嘶00钢管)支护结构,见图1。
场地处于剥蚀残丘地貌,座落在小山坡脚下,各土层及其参数见图1和表1。
该基坑轴(北端)地下连续墙处岩层埋藏最深,墙底部尚未到全风化花岗岩(其它部位墙体均进入了全风化或强、中风化花岗岩层)。
在施工中,当开挖至约8m深时(即第二道钢管角撑安装过程中)北端地下连续墙(中部)接缝出现水土流失,至第四天才封堵成功。
当开挖至约12m深时(亦即是在安装第三道角撑过程中),北端墙(中部)拼缝再次出现更严重的水土流失,从而导致轴墙北侧地面严重下沉,邻近的建(构)筑物倾斜,开裂而进入抢险状态,造成工程事故。
经过一天时间才将连续墙的接缝封堵住,北侧的危房随之陆续拆除或临时加固。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地下工程安全管理
一、深基坑的概念及特点 二、深基坑工程事故类型及处理措施 三、土方开挖阶段事故预防 四、深基坑工程事故预防及处理 五、深基坑工程事故案例分析
地下工程安全管理
五、深基坑工程事故案例分析
1、杭州地铁深基坑事故概况
1.1 事故调查结果公布
2008年11月15日下午3时15分,正在施工的杭州地铁湘湖站北2基 坑现场发生大面积坍塌事故,造成21人死亡,24人受伤(截止2009年9月 已先后出院),直接经济损失4961万元。
地下工程安全管理
地下工验表明,在绝对标高-8m~-10m 处(近基坑底部), qc值为0.20MPa (qc仅为原状土的30%左右),土 体受到严重扰动,接近于重塑土强 度,证明土体产生侧向流变,存在 明显的滑动面。
西侧地下连续墙墙底(相应标 高-27.0左右),C1孔静探qc值约为 0.6MPa(qc为原状土的70%左右) ,土体有较大的扰动,但没有产生 明显的侧向流变,主要是地下连续 墙底部产生过大位移而所致。
地下工程安全管理
• 不符合规范要求 1)基坑采取原状土样及相应主要力学试验指标较少,不能 完全反映基坑土性的真实情况。 2)勘察单位未考虑薄壁取土器对基坑设计参数的影响,以 及未根据当地软土特点综合判断选用推荐土体力学参数。 3)勘察报告推荐的直剪固结快剪指标c、Φ值采用。平均值 ,未按规范要求采用标准值,指标偏高。 4)勘察报告提供的④2层的比例系数m值( m=2500kN/m4)与类似工程经验值差异显著。 • 提供的土体力学参数互相矛盾,不符合土力学基本理论。 1)推荐用于设计的主要地层土的三轴CU、UU试验指标、 无侧限抗压强度指标与验证值、类似工程经验值差异显著。 • 试验原始记录已遗失,无法判断其数据的真实性。
地下工程安全管理
地下工程安全管理
地下工程安全管理
地下工程安全管理
杭州地铁破坏模式示意图
地下工程安全管理
2.2 勘察问题
由于勘察工作量不足,加上勘察人员对土性的认识的 不足,造成基坑工程勘察资料不详细或土的物理力学指标 取值偏高,使设计计算失误引起的事故。如杭州地铁工程 在勘察方面主要有以下一些问题:
地下工程安全管理
地下工程安全管理
地下工程安全管理
地下工程安全管理
地下工程安全管理
地下工程安全管理
地下工程安全管理
2、 杭州地铁深基坑事故的原因分析
2.1 破坏模式分析
根据勘查结果对基坑土体破坏滑动面及地下连续墙破 坏模式进行了分析,并绘制相应的基坑破坏时调查平面图 与施工工况图以及基坑土体滑动面与地下连续墙破坏形态 断面图。
西
风情大道
第6施工段
第5施工段
第4施工段
第3施工段
第2施工段
东
第1施工段
北
地下工程安全管理
首先西侧中部地下连续墙横向断裂并倒塌,倒塌长 度约75m,墙体横向断裂处最大位移约7.5m,东侧地下 连续墙也产生严重位移,最大位移约3.5m。由于大量淤 泥涌入坑内,风情大道随后出现塌陷,最大深度约6.5m 。地面塌陷导致地下污水等管道破裂、河水倒灌造成基 坑和地面塌陷处进水,基坑内最大水深约9m。下图所示 为一组事故现场照片。
地下工程安全管理
根据勘察,北2基坑西侧坍塌区为深厚的淤泥质土层,平均厚度32m, 最大厚度35m,天然含水率近50%,呈流塑-软塑状,土体力学性质差 。地下潜水位为0.5m,无承压水。
地下工程安全管理
各土层的物理指标
土 层 序 号
土 层 名 称
层 厚
含湿 水密 率度
土 粒 比 重
天 然 孔 隙 比
其直接原因是施工单位违规施工、冒险作业、基坑严重超挖;支撑 体系存在严重缺陷且钢管支撑架设不及时;垫层未及时浇筑。监测单位 施工监测失效,施工单位没有采取有效补救措施。
地下工程安全管理
1.2 工程概况
杭州地铁事故基坑,长107.8m,宽21m,开挖深度15.7~16.3m。设计 采用800mm厚地下连续墙结合四道(端头井范围局部五道)Φ609钢管支撑 的围护方案。地下连续墙深度分别为31.5m~ 34.5m。基坑西侧紧临大道 ,交通繁忙,重载车辆多,道路下有较多市政管线(包括上下水、污水、 雨水、煤气、电力、电信等)穿过,东侧有一河道,基坑平面图如下图所 示。
液 限
塑 限
塑 性 指 数
液 性 指 数
(m)
W (%)
ρ (g/cm
3)
Gs
e
ωl
ωp
(%) (%)
IP
IL
②2
粘质 粉土
4 30.5 1.90 2.70 0.85
④2
淤泥质 粘土
16 48.6 1.71 2.74 1.37 41.8 22.3 19.5 1.35
淤泥质粉
⑥1
质粘 17 45.2 1.72 2.73 1.30 37.5 21.5 16.0 1.48
Φcu
3.9
28.8
12.3
13.2
13
13.8
19.4
21.3
地下工程安全管理
1.3 事故概况
基坑土方开挖共分为 6 个施工段, 总体由北向南组织施工 至事故发生前 ,第1施工段完成底板混凝土施工,第2施工段完成底板垫层混凝土施工,第3施工 段完成土方开挖及全部钢支撑施工,第4施工段完成土方开挖及3道钢支撑施工、 开始安装第4道钢支撑,第5、6施工段已完成3道钢支撑施工、正开挖至基底的第5 层土方同时,第1施工段木工、钢筋工正在作业;第3施工段杂工进行基坑基底清理 ,技术人员安装接地铜条;第4施工段正在安装支撑、施加预应力,第 5、6 施工 段坑内2台挖机正在进行第5层土方开挖。
地下工程安全管理
2.3 设计问题
由于基坑设计涉及到多种学科,如土力学、基础工程 、结构力学和原位测试技术等,需要对场地周围环境、施 工条件、工程地质条件、水文地质条件详细了解和掌握, 是一门系统科学,具有复杂性。所以目前基坑支护的设计 方案与措施大多数是偏于保守的,即便如此,如果设计的 人员经验不足,考虑不周,也易引起相应的事故。对522 例基坑事故统计也说明基坑设计的不足,是引发事故的重 要原因。杭州地铁工程在设计方面主要有以下一些问题:
土
粉质粘土
⑧2
夹粉 >9 33.0 1.83 2.72 0.94 33.5 20.1 13.4 0.96
砂
地下工程安全管理
各土层的力学指标
土层
②2 粘质粉土
④2 淤泥质粘土
⑥1 淤泥质粉质粘土
⑧2 粉质粘土夹粉砂
固结快剪值
c
φ
3.9
28.8
13.5
10.6
13
14.5
12.2
16.8
三轴CU值
Ccu