热能与动力工程专业英语译文-第二章译文

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章锅炉

2.1 简介SSC

锅炉利用热量使水转变成蒸汽以进行各种利用。其中主要是发电和工业供热。由于蒸汽具有有利的参数和无毒特性,因此蒸汽作为一种关键的工质(资源)被广泛地应用。蒸汽流量和运行参数的变化很大:从某一过程里1000磅/小时(0.126kg/s)到大型电厂超过10×106磅/小时(1260kg/s),压力从一些加热应用的14.7磅/ in2(1.0135bar)212F(100℃)到先进循环电厂的4500磅/ in2(310bar)1100F(593℃)。

现代锅炉可根据不同的标准分类。这些包括最终用途、燃烧方式、运行压力、燃料和循环方式。

大型中心电站的电站锅炉主要用来发电。它们经过优化设计,可达到最高的热效率。新机组的关键特性是利用再热器提高整个循环效率。

各种附加的系统也产生蒸汽用于发电及其他过程应用。这些系统常常利用廉价或免费燃料,联合动力循环和过程,以及余热回收,以减少总费用。这些例子包括:燃气轮机联合循环(CC):先进的燃气轮机,将余热锅炉作为基本循环的一部分,以利用余热并提高热效率。

整体煤气化联合循环(IGCC):在CC基础上增加煤气化炉,以降低燃料费用并将污染排放降到最低。

增压循环流化床燃烧(PFBC):在更高压力下燃烧,包括燃气净化,以及燃烧产物膨胀并通过燃气轮机做功。高炉排烟热量回收:利用高炉余热产生蒸汽。

太阳能蒸汽发生器:利用集热器收集太阳辐射热产生蒸汽。

2. 2 Development of Utility Boiler

现代660MW燃煤锅炉有大约6000吨的压力部件,包括500千米的受热面管材,3.5千米连接管与联箱和30000个管接头焊口。

这是经过大约50年发展的结果,并形成了煤粉在具有蒸发管束的炉膛燃烧,烟气然后流经对流过热器和热回收表面的基本概念并保留至今。蒸汽参数的提高,机组容量的增大及燃料燃烧特性的改进都要求在材料、制造技术和运行程序上相应发展。

二战后的一些年里,在电厂安装锅炉的数量多于汽轮机是很常见的,锅炉提供蒸汽到母管然后到汽机。这种布置反应了锅炉的可用性低于汽轮机。四十年代后期,随着锅炉可用性的提高,锅炉和汽机开始可以相互配套使用。

锅炉和汽机成套的变化使得再热成为可行,而且伴随着高温钢材的应用,经过蒸汽参数的不断提高,达到了当前的标准循环2400lbf/in2(165.5bar),568℃和再热568℃。为充分利用更高的蒸汽参数和获得经济容量,在接下来的15年,机组容量又增加了20倍。

2.3 燃料与燃烧

大部分锅炉以煤、天然气和石油作为燃料。然而,在过去的几十年里,至少在发电领域核能开始扮演一个主要角色。

同样,不断增加的各种生物质和过程副产品也成为蒸汽生产的热源。这些包括泥煤、木材及木材废弃物、稻草、咖啡渣、稻谷壳、煤矿废弃物(煤屑)、炼钢炉废热甚至太阳能。

现代美国中心电站用燃料主要是煤,或是烟煤、次烟煤或是褐煤。

虽然天然气和燃油也许是未来化石燃料电厂的燃料选择,但煤仍然是今后新的,基本负荷电站锅炉的主要燃料。

2.3.1 煤的分类

? 由于煤是一种不均匀的物质,且其组成和特性变动很大,所以建立煤的分类系统是很必要的。中国煤的性质如表2-1所示。以煤阶进行煤的分类是典型的做法。这表现为煤化程度的大小:从褐煤到贫煤、烟煤以及无烟煤。煤阶表明了煤的地质历史和主要特性。

现在美国应用的煤分类标准是由美国材料试验学会(ASTM)建立的。其分类是通过煤的工业分析所确定的挥发分和固定碳的含量以及煤的发热量作为分类标准。这套系统目的在于确定煤的商业使用价值,并提供关于煤燃烧特性的基本信息。

2.3.2 燃烧系统

锅炉内化石燃料燃烧以产生蒸汽的技术已成熟多年。然而,在过去的二十多年中,为了将大气排放和污染降到可行的最低程度,燃烧技术得到了很大程度的提高。

油燃烧系统

所有的电站锅炉都燃用油,在燃煤锅炉中点燃煤粉,在煤进入炉膛之前加热炉膛并升压,而在燃油锅炉中则作为主要负荷燃料。一般地,燃油都是粘度在3500 sec到6500sec的残渣燃料油。为了有效的燃烧,这些油必须被加热到120~130℃并被良好地分散或雾化成很小的微滴

? 燃用渣油,要比一般的馏分油(柴油,汽油等)便宜,但又带来一些问题:酸性污染物和粉尘的排放。酸性污染问题是由石油中的硫产生的,硫分的含量有时可高达3%。在20世纪60年代早期,人们对油燃烧器设计进行了深入研究和开发,目的在于解决燃油的排放问题。由此诞生了一种油燃烧器——“标准燃烧器”,它可以在非常低的过量空气系数下减少碳排放。为保证锅炉中每个燃烧器获得同样多的空气也做了大量的工作。目前油燃烧过量空气系数运行水平为2%。

煤燃烧系统

煤燃烧器的发展模式同油燃烧器类似,而且重点放在准确控制每只燃烧器煤和油的供给量。实际中所有的燃煤锅炉都是燃烧煤粉(由磨煤机生产),这些煤粉经过很好的粉碎,然后由空气流(一次风)送入燃烧器。同以前相比,在流动平衡上的设计成果现在已能使锅炉在较低的过量空气水平下运行,并在不增加飞灰含碳量水平的情况下提高了总的效率

煤燃烧系统部件的布置必须根据经济因素和煤的性质来确定。作为整个燃烧系统设计的性能参数,煤粉细度、磨煤机出口温度、空煤比等都必须达到要求。

低NOx燃烧系统

影响NOx生成的因素包括燃料含氮量、火焰峰值温度、火焰中的可用氧量以及气流在锅炉系统中的停留时间。当煤进入炉膛其化学结构被破坏时,一些煤中的化合氮就作为挥发分被释放出来。

由大气中的氮生成的一氧化氮即“热力型NOx”可以通过减少烟气在高温区域的停留时间而得到控制,这样就会控制燃烧阶段中可用氧量,最后生成的是无害氮而不是NOx。

因为煤在燃烧区的燃烧需要一定的过量氧气以便使所有的碳燃尽,且不含氮的煤是难以获得的,因此NOx的减少必须依靠锅炉和燃烧器的设计来完成。

天然气燃烧系统

天然气曾经作为电厂主要燃料。然而一些年来,没有太多的天然气可供电厂使用,并且人们没有正视这样的事实,即天然气作为一种优质燃料将会重新得到大量应用。

丙烷常常作为一种点火剂,广泛地应用于燃油锅炉和燃煤锅炉中的油燃烧器。

2.3.3 流化床燃烧

? 流化床燃烧是煤粉燃烧方式的一种,采用这种燃烧方式时煤在空气中的燃烧发生在流化床中,典型的是循环流化床。循环流化床最适合于燃烧低成本废弃燃料、低品质或低热量煤。将煤粒和石灰石投入到床中,石灰石在床内煅烧成石灰。流化床中主要是石灰和少量的煤,煤焦在其中循环。运行中的床温很低,只有427℃(800℉),在这个温度下的热力学环境

相关文档
最新文档