序批式活性污泥法

合集下载

关于SBR工艺的详解

关于SBR工艺的详解

关于SBR工艺的详解!序批式活性污泥法(SBR—Sequencing Batch Reactor)是早在1914年就由英国学者Ardern和Locket发明了的水处理工艺。

70年代初,美国Natre Dame 大学的R.Irvine 教授采用实验室规模对SBR工艺进行了系统深入的研究,并于1980年在美国环保局(EPA)的资助下,在印第安那州的Culwer城改建并投产了世界上第一个SBR法污水处理厂。

1、SBR法的发展最早的SBR法产生于1914年,至今已有100多年的历史,大致分为三个时期,如图所示。

1) SBR法的产生期活性污泥法诞生于美国和英格兰,并在随后的一百多年里一直作为污水处理的主流技术。

最初对于活性污泥法的研究采用的就是序批式序批运行反应器。

1912年前后,在英格兰的曼彻斯特,Fowler采用曝气的方法利用池塘内的“烂泥”处理反应池内的污水,曝气后的污水进行沉淀,沉淀池内的生物体回流至曝气池,获得了非常清澈的出水。

1914年,Fowler的两个学生Ardern和Lockett,在一个序批式运行的城市污水处理系统中,为了获得较高的污泥浓度,对在曝气阶段积累的腐殖质或沉淀物,不进行排放。

经过一段时间的运行,获得了现在被人们称之为“活性污泥”的微生物絮体。

他们的试验过程描述如下:首先采用曼彻斯特城市的生活污水,在约2.4L的容器内进行曝气试验,每个运行周期直至硝化完成后才停止曝气。

第一次试验大约进行了5周左右的连续曝气,硝化反应才完成,然后沉淀,排掉清澈的上清液,沉淀物完全保留在容器内。

重新加人原污水,并与容器内上一周期留下来的沉淀物充分接触,随后进行曝气直至硝化反应充分完成。

此后,他们多次重复这种运行方式。

试验结果清楚表明:随着容器内沉淀物的增加,有机物完全氧化的时间逐渐减少。

最后,24h内便可完全氧化序批注人的原污水。

Ardern 和Lockett将反应过程中形成的沉淀物命名为“活性污泥”。

序批式活性污泥法(SBR)原理与应用

序批式活性污泥法(SBR)原理与应用

SBR 法的工作原理
• 沉淀期
• 相当于传统活性污泥法中的二次沉淀池,停止曝气搅拌 后,污泥絮体靠重力沉降和上清液分离。本身作为沉淀池, 避免了泥水混合液流经管道,也避免了使刚刚形成絮体的 活性污泥破碎。此外,SBR 活性污泥是在静止时沉降而不 是在一定流速下沉降的,所以受干扰小,沉降时间短,效 率高。
SBR 法的工作原理与操作
1
空间上是按序排列、间歇的
如下图(处理生活污水的三池SBR系统 )
2
时间上是按次序列的、间歇的 如右图(SBR一个周期操作过程)
SBR 法的工作原理与操作
SBR处理示意图
传统SBR的操作过程
进水
曝气
曝气/不曝气
曝气
进水期
反应期
静置/不曝气 排水/排泥 污泥活化
沉淀期
排水排泥期 闲置期
d(VS)
dt QSO KXV QSO K ( XVV(O )3-4)
刚开始进水时(t=0),由假设(3)得:
VS (VO VF )Se 0
(3-5)
式中VF——充水期结束时进水的体积;
Se——出水底物浓度。
当进水结束时(t=tF),
VS VO S F
(3-6)
式中SF——进水期结束或反应期开始时底物浓度。
它的主要特征是在运行上的有序和间歇操作,SBR 技术的核心是SBR反应池,该池集均化、初沉、生 物降解、二沉等功能于一池,无污泥回流系统。
在用地紧张、处理量大的城市具有很高的使用价值。
SBR工艺早在1914年即已开发 ,70年代末 期美国教授R.L.Irvine等人为解决连续污水处理法 存在的一些问题首次提出,并于1979年发表了第 一篇关于采用SBR 工艺进行污水处理得论著。继 后, 日本、美国、澳大利亚等国的技术人员陆续 进行了大量的研究。并发展出很多的衍生工艺如 ICEAS、CASS等。

SBR(序批式活性污泥法)调试程序及注意事项

SBR(序批式活性污泥法)调试程序及注意事项

SBR(序批式活性污泥法)调试程序及注意事项序批式活性污泥法(SBR—Sequencing Batch Reactor)是早在1914年就由英国学者Ardern和Locket发明了的水处理工艺。

70年代初,美国Natre Dame 大学的R.Irvine 教授采用实验室规模对SBR工艺进行了系统深入的研究,并于1980年在美国环保局(EPA)的资助下,在印第安那州的Culwer 城改建并投产了世界上第一个SBR法污水处理厂。

SBR工艺的过程是按时序来运行的,一个操作过程分五个阶段:进水、反应、沉淀、滗水、闲置。

由于SBR在运行过程中,各阶段的运行时间、反应器内混合液体积的变化以及运行状态等都可以根据具体污水的性质、出水水质、出水质量与运行功能要求等灵活变化。

对于SBR反应器来说,只是时序控制,无空间控制障碍,所以可以灵活控制。

因此,SBR工艺发展速度极快,并衍生出许多种新型SBR处理工艺。

一、活性污泥的培养驯化SBR反应池去除有机物的机理与普通活性污泥法基本相同,主要大量繁殖的微生物群体降解污水中的有机物。

活性污泥处理系统在正式投产之前的首要工作是培养和驯化活性污泥。

活性污泥的培养驯化可归纳为异步培驯法、同步培驯法和接种培驯法,异步法为先培养后驯化,同步法则培养和驯化同时进行或交替进行,接种法系利用其他污水处理厂的剩余污泥,再进行适当的培驯。

培养活性污泥需要有菌种和菌种所需要的营养物。

对于城市污水,其中的菌种和营养都具备,可以直接进行培养。

对于工业废水,由于其中缺乏专性菌种和足够的营养,因此在投产时除用一般的菌种和所需要营养培养足够的活性污泥外,还应对所培养的活性污泥进行驯化,使活性污泥微生物群体逐渐形成具有代谢特定工业废水的酶系统,具有某种专性。

二、试运行活性污泥培养驯化成熟后,就开始试运行。

试运行的目的使确定最佳的运行条件。

在活性污泥系统的运行中,影响因素很多,混合液污泥浓度、空气量、污水量、污水的营养情况等。

序列间歇式(序批式)活性污泥法(SBR法)研究进展

序列间歇式(序批式)活性污泥法(SBR法)研究进展

序列间歇式(序批式)活性污泥法(SBR法)研究进展1 前言间歇式活性污泥法从七十年代初开始研究,直到八十年代以后才引起其它国家的重视,并陆续地得到开发应用,我国则是近几年的事。

随着研究的深入,间歇式活性污泥法又被命名为序列间歇式反应器法(SequencingBatohReactor),我国常称序列间歇式(序批式)活性污泥法,简称SBR法。

SBR法的运行工况是以间歇操作为主要特征。

所谓序列间歇式有两种含义:一是运行操作在空间上是按序排列、间歇的,由于污水大都是连续排放且流量波动很大,这时间歇反应器(SBR)至少为两个池或多个池,污水连续按序列进入每个反应器,它们运行时的相对关系是有次序的、也是间歇的;二是每个SBR的运行操作,在时间上也是按次序排列的、间歇的,一般可按运行次序分为五个阶段,即进水、反应、沉淀、排水和闲置阶段,称为一个运行周期。

在一个运行周期中,各个阶段的运行时间、反应器内混合液体积的变化以及运行状态等都可以根据具体污水性质、出水质量与运行功能要求等灵活掌握。

比如在进水阶段,可按只进水不曝气(搅拌或不搅拌)的限制性曝气运行,也可按边进水边曝气的非限制性曝气方式运行;在反应阶段,可以始终曝气,为了生物脱氮也可曝气后搅拌,或者曝气搅拌交替进行;其剩余污泥量可以在闲置阶段排放,也可在排水阶段或反应阶段后期排放。

可见,对于某一单-3BR来说,不存在空间上控制的障碍,只在时间上进行有效地控制与变换,即能达到多种功能的要求,非常灵活。

2 SBR法的五大优点2.1 工艺简单,节省费用原则上SBR法的主体工艺设备,只有一个间歇反应器(SBR)。

它与普通活性污泥法工艺流程相比,不需要二次沉淀池、回流污泥及其设备,一般情况下不必设调节池,多数情况下可省去初次沉淀的。

1985年Arora等人对加拿大、美国和澳大利亚等国的8个SBR法污水处理厂调查,其中只有一个处理厂设置调节池,另两个处理厂设初次沉淀池。

纵观污水人工生物处理各种工艺方法,象SBR法这样简易的工艺绝无仅有。

SBR法处理工艺

SBR法处理工艺
SBR法处理工艺
SBR工艺又叫序批式活性污泥法,是环境工程专业名词,是指在同一反应池(器)中,按时间顺序由进水、曝气、沉淀、排水和待机五个基本工序组成的活性污泥污水处理方法。
进水阶段:
反应池内有高浓度活性污泥混合液,反应池具有调节池的功能。
反应阶段:
废水达到预定容积,进行曝气或搅拌反应,去除有机物,硝化、脱氮除磷。
(5)处理设备少,构造简单,便于操作和维护管理。
(6)反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。
(7)SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。
(8)脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。
沉淀阶段:
停止曝气和搅拌,相当于传统活性污泥的二沉池,污泥通过重力沉降实现固液分离。
滗水阶段:
经过沉淀后,形成泥水分离层,通过滗水器将上清液排出池子。
闲置阶段:
为维持活性污泥活性,会进行必要的搅拌曝气,若考虑节能或厌氧状态下除磷,也可以不进行搅拌或者曝气,这个阶段也是下一个循环的开始。
SBR工艺特点:
(1)理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。
(2)运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。
(3)耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。
(4)工艺过程中பைடு நூலகம்各工序可根据水质、水量进行调整,运行灵活。

序批式活性污泥法(SBR)工艺介绍

序批式活性污泥法(SBR)工艺介绍

序批式活性污泥法(SBR)工艺介绍1、SBR工艺介绍序批式活性污泥法,又称间歇式活性污泥法。

污水在反应池中按序列、间歇进入每个反应工序,即流入、反应、沉淀、排放和闲置五个工序。

2、SBR的工作过程SBR工作过程是:在较短的时间内把污水加入到反应器中,并在反应器充满水后开始曝气,污水里的有机物通过生物降解达到排故要求后停止曝气,沉淀一定时间将上清液排出。

上述过程可概括为:短时间进水-曝气反应-沉淀-短时间排水-进入下个工作周期,也可称为进水阶段-加入底物、反应阶段-底物降解、沉淀阶段-固液分离、排水阶段-排上清液和待机阶段-活性恢复五个阶段。

(1)进水阶段进水阶段指从向反应器开始进水至到达反应器最大容积时的一段时间。

进水阶段所用时间需根据实际排水情况和设备条件确定。

在进水阶段,曝气池在一定程度上起到均衡污水水质、水量的作用,因而,阳R对水质、水量的波动有一定的适应性。

在此期间可分为三种情况:曝气(好氧反应)、搅拌(厌氧反应)及静置。

在曝气的情况下有机物在进水过程中已经开始被大量氧化,在搅拌的情况下则抑制好氧反应。

对应这三种方式就是非限制曝气、半限制曝气和限制曝气。

运行时可根据不同微生物的生长特点、废水的特性和要达到的处理目标,采用非限制曝气、半限制曝气和限制曝气方式进水。

通过控制进水阶段的环境,就实现了在反应器不变的情况下完成多种处理功能。

而连续流中由于各构筑物和水泵的大小规格已定,改变反应时间和反应条件是困难的。

(2)反应阶段是SBR主要的阶段,污染物在此阶段通过微生物的降解作用得以去除。

根据污水处理的要求的不同,如仅去陈有机碳或同时脱氯陈磷等,可调整相应的技术参数,并可根据原水水质及排放标准具体情况确定反应阶段的时间及是否采用连续曝气的方式。

(3)沉淀阶段沉淀的目的是固液分离,相当于传统活性污泥法的二次沉淀他的功能。

停止曝气和搅拌,使混合液处于静止状态,完成泥水分离,静态沉淀的效果良好。

经过沉淀后分离出的上清液即可排放,沉淀的目的是固液分离,污泥絮体和上清液分离。

序批式活性污泥法-SBR

序批式活性污泥法-SBR

序批式活性污泥法(SBR)简介1、SBR法的发展背景SBR(sequncing batch reactor)法是一种序批式生物反应器间歇运行的活性污泥法污水处理工艺。

作为一种污水生物处理方法,它始终没有离开过同连续流式活性污泥法(CFS)的共同发展,但由于序批式的污水处理方法受到曝气头孔眼堵塞,设备利用率不高等问题的困扰,致使间歇式活性污泥法发展缓慢。

事实上,自20世纪20年代以来污水处理基本以CFS (Continuous Flow System Sludge Prorcess) 为主。

SBR处理工艺其实也并不是一种“全新”的污水处理技术。

早在1914 年由英国人Alden 和Lockett 等人就提出污水按批量运行(operated in batch mode)的概念,只是当时没有得到推广应用,直到20世纪70 年代初,由美国Natre Dame 大学的Irvine教授等人,采用实验室规模装置对SBR 工艺进行了系统研究,并于1980 年在美国国家环保局(USEPA) 的资助下,在印第安纳州的Culver 城改建并投产了世界上第一个SBR 污水处理厂。

此后,日本、德国、澳大利亚、法国等国都对SBR 处理工艺进行了应用与研究。

法国的Degrement 水公司将SBR反应器作为定型产品供小型污水处理站使用。

我国于20 世纪80 年代中期开始对SBR 进行研究和应用.上海市政设计院于1985 年在吴淞肉联厂设计投产我国第一座SBR 污水处理站,设计处理能力为2400t/d。

目前北京、广州、无锡、扬州、昆明、山西、福州、陕西等地已有多座SBR 处理设施投入使用。

2、SBR法工艺原理SBR 本质上仍属于活性污泥法的一种,它是由5 个阶段组成,即进水( Fill ) 、反应(React ) 、沉淀(Settle) 、排水(Decant) 、闲置( Idle),从污水流入开始到待机时间结束算一个周期。

在一个周期内,一切过程都在一个设有曝气或搅拌装置的反应池内进行,这种周期周而复始反复进行(如图1 所示) 。

sbr

sbr

1.1 SBR工艺简介SBR是序批式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的字母缩写。

其最初是由英国学者Ardern和Lockett 于1914年提出的,但是鉴于当时曝气器易堵塞,自动控制水平低,运行操作管理复杂等原因,很快就被连续式活性污泥法取代。

直至20世纪70年代,随着各种新型曝气器、浮动式出水堰(滗水器)和自动控制监测的硬件设备和软件技术的开发,特别是计算机和工业自控技术的不断完善,对污水处理过程进行自动操作已成为可能,SBR 工艺以它独特的优点受到广泛关注,并迅速得到发展和应用,现在世界上已有数百座SBR污水处理厂在成功运行。

美国国家环境保护署(EPA)认为SBR工艺是一种低投资、低操作成本及维修费用、高效益的环境治理技术。

SBR属于活性污泥法的一种,其反应机制及去除污染物的机理与传统的活性污泥法基本相同,只是运行操作方式有很大区别。

它是以时间顺序来分割流程各单元,整个过程对于单个操作单元而言是间歇进行的。

典型SBR集曝气、沉淀于一池,不需设置二沉池及污泥回流设备。

在该系统中,反应池在一定时间间隔内充满污水,以间歇处理方式运行,处理后混合液进行沉淀,借助专用的排水设备排除上清液,沉淀的生物污泥则留于池内,用于再次与污水混合处理污水,这样依次反复运行,构成了序批式处理工艺。

典型的SBR系统分为进水、反应、沉淀、排水与闲置五个阶段运行,见图1-1。

图1-1 SBR基本运行模式SBR工艺具有以下几个主要的优点:1. 处理构筑物很少,一个SBR反应器集曝气、沉淀于一体,省去了初沉池、二沉池和回流污泥泵房。

因此,大大节约了处理构筑物的占地面积、构筑物间的连接管道及流体输送设备,一般可降低工程总投资的10%~20%。

2. 由于其间歇进水,时间长短、水量多少均可调节,因此对水量水质的变化具有较强的适应性,不需另设调节池。

3. 占地少,比传统活性污泥法少占地30%-50%,是目前各种污水处理工艺中占地最省的工艺之一。

序批式活性污泥法

序批式活性污泥法

� �
� �
间歇式循环延时曝气活性污泥法( Intermittent Cycle Extended Aeration ) A 、曝气阶段 由曝气系统向反应池内间歇供氧, 此时有机物经微生物作用被生物氧化,同时污水中的氨氮 经微生物硝化反硝化作用,达到脱氮的效果。 B、沉淀阶段 此时停止向反应池内供氧,活性污泥 在静止状态下降,实现泥水分离。 C、滗水阶段 在污泥沉淀到一定深度后,滗水器系 统开始工作,排出反应池内上清液。在滗水过程中,由于 污泥沉降于池底,浓度较大,可根据需要启动污泥泵将剩 余污泥排至污泥池中,以保持反应器内一定的活性污泥浓 度。滗水结束后,又进入下一个新的周期,开始曝气,周 而复始,完成对污水的处理。
循环式活性污泥系统 CAST

� �
� �

生物选择区是一容积较小的污水污泥接触区。污水和从主 反应区内回流的活性污泥在此相互混合接触: 1. 创造合适的微生物生长条件并选择出絮凝性细菌。 2. 利用活性污泥的快速吸附作用,加速去除溶解性底物 的并对难降解有机物起到良好的水解作用。 3. 使污泥中的磷在厌氧条件下得到有效的释放。 4. 抑制丝状菌的大量繁殖,克服污泥膨胀,提高系统的 稳定性。 5. 将污泥回流液中存在的少量硝酸盐氮可得到反硝化

间歇排水延时曝气工艺( IDEA)基本保持 了CAST艺的优点,运行方式采用连续进水、 间歇曝气、周期排水的形式。与 CAST相 比,预反应区(生物选择器)改为与 SBR 主体构筑物分立的预混合池,部分剩余污 泥回流入预混合池,且采用反应器中部进 水。预混合池的设立可以使污水在高絮体 负荷下有较长的停留时间,保证高絮凝性 细菌的选择。
UNITANK
即一体化活性污泥法,又称交替生物池

环保专业一讲义:序批式活性污泥法

环保专业一讲义:序批式活性污泥法
ⅳ由于底物浓度高,浓度梯度也大,交替出现缺氧、好氧状态,能抑制专性好氧菌的过量繁殖,可同时具有BOD和有利于生 物脱氮除磷的功能。
ⅴ污泥的SVI值较低,一般不易产生污泥膨胀。 ⅵSBR工艺的活性污泥沉淀,是在静止或接近静止的状态下进行的,因此处理水质优于连续式活性污泥法。 ⅶ SBR的运行操作、参数控制应实施自动化管理。 ④运行时的影响因素 ⅰ 可生物降解的基质浓度 ⅱ 硝酸盐氮对脱氮除磷的影响 ⅲ 运行时间和DO的影响 ⅳBOD污泥负荷与排出比 ⑤SBR活性污泥法的分类 ⅰ 按进水方式可以分以分为间歇进水式和连续进水式类: 间歇进水方式:沉淀期和出水期内不进水,比较容易获得澄清的处理水。
连续进水方式:可利用一个反应池连续地处理污水,但因沉淀期和排水期时进入污水,会引起污泥上浮,与处理水相混,造成
出水水质欠佳。
ⅱ 按有机负荷分为以下几类: 高负荷运行方式:适用于处理中等规模以上的污水。
低负荷运行方式:适用于小型污水处理厂。
⑥其他几种序批式活性污泥法工艺 ⅰ 改良型SBR(MSBR)工艺 该工艺不需设置初沉池和二沉池,系统连续出水,两个序批池交替充当沉淀池使用,周期运行。污水首先进入厌氧池,与沉淀
MSBR主要具有以下特点:采用连续进、出水;采用恒水位运行;提供传统连续流、恒水位活性污泥工艺对生物脱氮除磷所具 有的专用缺氧、厌氧和好氧反应区,提高了工艺运行的可靠性和灵活性;改善了出水的水质;提高了系统对生物脱氮除磷及有
机物的去除效率。
ⅱ ICEAS工艺 是一种连续进水的SBR工艺,其反应池前端设置专门的缺氧选择器-预反应区,用以促进菌胶团的形成和抑制丝状菌的繁殖。 反应池的后部为主反应区。在预反应区内,污水连续流入,在反应区通过隔墙下部的孔洞相连,污水以较慢的速度由预反应区

序批式活性污泥法污水处理工艺-SBR

序批式活性污泥法污水处理工艺-SBR

目录第一章概述 (2)第二章SBR工艺原理 (3)第三章工艺流程描述 (4)第四章 SBR工艺的特点 (6)第五章 SBR工艺的适用范围 (8)第六章主要工艺参数及其经验值 (9)第七章 SBR工艺适用的规范、图集 (10)第八章主要工艺设备 (11)第九章主要管材 (11)第十章国内典型案例 (11)序批式活性污泥法污水处理工艺第一章概述1.1污水处理综述废水处理分为物化处理和生化处理,在生化处理中又可分为厌氧处理和好氧处理。

好氧生物处理方法主要用于城镇污水处理,而厌氧生物处理方法主要用于高浓度有机废水的处理。

好氧生物处理根据微生物的生长方式不同,可以分为悬浮生长和吸附生长两大类,悬浮生长的典型方法为活性污泥法,而吸附生长即称作生物膜法。

活性污泥法有很多种衍生的工艺,本次主要探讨序批式活性污泥法(SBR)来处理污水。

1.2活性污泥法污水处理简介活性污泥法是参照水体自净原理发展而来的,可以通过下面说明来加深对这一原理的理解。

假设有一污染物排放源,排放方废水首先直接进入某河流,此时,检测污染物排放口附近的河流水样,会发现测得的COD很高,但是,再到距排放口1km的地方去监测,测得的COD数值却降降低了很多,在到下游几乎检测不到污染物了,分析原因主要存在以下几个方面:(1)稀释作用(污染物进入水体后被稀释)。

(2)河流底泥的吸附作用(部分可沉降有机颗粒沉降到河流底部,进入河流底泥)。

(3)微生物降解(水体及河流底泥内的微生物分解了水体中的有机物)。

综上分析,污染物进入水体后除物理稀释和空气中的化学氧化作用外,更重要的是水体中微生物的生物化学反应起了关键作用。

将这一原理运用到污水、废水处理工艺中,为微生物提供足够的食物(有机污染物)、氧气(曝气),就能看到目前生化处理中最常见的处理方法——活性污泥法。

目前一般大型污水处理厂都会采用生化法来处理污水,这是出于成本的考虑。

物化法处理要消耗大量的化学药品,处理费用较高。

sbr工艺介绍

sbr工艺介绍
⑤ 耐冲击负荷强,由于高浓度污水是逐渐进入反应 器(进水1-4h)的,进反应器的原污水只占反应 器容积的2/3左右,有稀释作用。
⑥ 可以实现自动控制,应用电动阀、液位计、电动 计时器及可编程序控制器等自控仪表,可使本工 艺过程实现全部自动化,而由中心控制室控制。
一.与传统活性污泥处理法相比SBR优点
I. 间歇式循环延时曝气活性污泥工艺
I. 循环式活性污泥工艺
I. DAT-IAT工艺
参考文献
【1】陈国华. 《环境污染治理方法原理 与工艺》.P176~P178
【2】段宁. 《污染防治技术研究与开发 》.P270~P283
【3】李军. 《微生物与水处理工程》. P241~P244
进水期 (1~4h)
曝气反应期 (6~12h)
沉降期 (0.5~1h)
循环
出 排水期 水 (0.5~1h)
闲置排泥期 (0.5~1h)
二 .SBR工艺
3.SBR系统的工作原理
间歇式活性污泥处理系统的间歇式运行,是通过其主要反应器——曝气
池的运行操作而实现的。曝气池的运行操作是由流入;反应;沉淀; 排放;待机等5道工序组成。这5个工序都在曝气池这一个反应器内进 行、实施,如上页图。
① 流入工序 该工序特征
反映器内残存着高浓度的活性污泥混合液 反应器起到调节池的作用
该工序可以干的活: 曝气,可取得预曝气的效果,又可取得使污泥再生恢复其活性。 缓速搅拌,实现脱氮、除磷。(或) 单纯注污水。(或)
二 .SBR工艺
②反应工序 根据污水处理目的,采取相应的技术措施
去除BOD
③沉淀工序 本工序相当于活性污泥法连续系统的二次沉淀池 。停止曝气和搅拌,使混合液处于静止状态,活 性污泥与水分离,由于本工序是静止沉淀,沉淀 效果一般较好。沉淀工序采取的时间基本同二次 沉淀池,一般为1.5~2.0h。

序批式活性污泥法

序批式活性污泥法

序批式活性污泥法从目前的污水好氧生物处理的研究、应用及发展趋势来看,序批式活性污泥法能称得上是一种简易、快速且低耗的污水处理工艺,非常适用于水质水量变化大的中小城镇的生活污水处理,以及易生物降解的工业废水处理。

因此,SBR工艺是一种适合我国国情的处理工艺,具有很大的发展潜力和应用前景。

近年来,计算机辅助设计(CAD)已渗透到水处理专业,并被专业人员接受和使用。

但目前建筑给排水CAD软件应用广泛,污水处理工程设计CAD系统则研究较少。

SBR艺计算机辅助设计系统的开发,不仅能够提高设计效率及设计质量,也是计算机技术同污水处理技术有机结合的积极实践,对促进当前污水处理工程CAD的进一步发展具有积极的意义。

1SBR 工艺设计计算SBR工艺设计计算包括SBR反应池容积的确定以及需氧量、污泥量的计算。

SBR工艺设计方法主要分两大类:经验设计法。

动力学模式设计法[1]。

经验设计法指污泥负荷率法,污泥负荷率是影响曝气反应时间的主要参数,污泥负荷率的大小关系到SBR反应池容积的大小。

这种方法在目前的工程设计中应用较广泛。

动力学模式设计法则是根据进水、出水和SBR系统的各种参数条件,建立数学模型后进行设计。

由于动力学模式设计方法用于工程设计还有待进一步研究、优化,因此本系统在开发过程中针对生活污水的处理仍沿用经验设计法。

1.1参数选取污泥负荷率与SBR反应池内的混合液污泥浓度是SBR设计与运行的重要参数[2]。

①对生活污水,污泥负荷普遍采用BOD污泥负荷,其参数值为:高负荷运行时取0.2-0.4kg[BOD5]/(kg[MLSS]·d),低负荷运行时选用0.03-0.07kg[BOD5]/(kg[MLSS].d)。

②反应池内的污泥浓度(MLSS)可考虑取值3000-5000mg/L。

③SVI值取90-150mL/g。

④每周期运行时间一般tr=4.8-12h。

1.2设计计算步骤①确定一个运行周期内曝气时间所占的比例e,根据BOD污泥负荷N,计算所需污泥量M;N=QS0/e某V(1)M=某V=QS0/eN(2)式中:某——混合液中活性污泥浓度(MLSS),mg/L;Q——平均日污水量,m3/d;S0——进水基质浓度,mg/L;V——反应池总有效容积,m3。

序批式活性污泥法原理与应用

序批式活性污泥法原理与应用

序批式活性污泥法原理与应用序批式活性污泥法(Sequence Batch Reactor,SBR)是一种污水处理工艺,主要用于处理工业和城市废水。

该工艺具有灵活的运行方式和良好的处理效果,因此被广泛应用于各种规模的污水处理厂。

序批式活性污泥法的原理基于曝气活性污泥法,通过循环、停留和曝气等操作,使污水中的有机物质在一定的时间内得到分解和去除。

整个处理过程可以分为四个阶段:进水、反应、絮凝沉淀和排水。

在进水阶段,生活污水被引入反应器中。

然后,通过搅拌和曝气作用,使活性污泥充分与污水接触,以促进有机物的降解和微生物的繁殖。

在反应阶段,污水中的有机物质被微生物分解为二氧化碳、水和污泥。

此时,污泥中的微生物数量和有机物浓度都达到最高水平。

在絮凝沉淀阶段,曝气停止,活性污泥会逐渐沉降下来,形成结块和絮状物。

这些团块足够大,可以很容易地被沉降于污水表面。

在排水阶段,清水从池底排出,而结块和絮状物则继续留在反应器中,作为下一次处理的初级污泥。

序批式活性污泥法具有以下应用优势:1. 灵活性:这种处理方法可以根据需要进行自由调整和改变。

运行周期、进水浓度和有机负荷等参数都可以根据实际情况进行调整和优化。

2. 处理效果稳定:序批式活性污泥法通过控制进水和停留时间,可以保证出水的稳定性。

同时,曝气过程可以有效地降解有机物质,提高污水处理效果。

3. 安装和运行成本低:相比传统的连续流反应器,序批式活性污泥法的设备和运行成本更低。

其反应器结构简单,废水处理厂可以根据实际需要灵活调整操作。

4. 对废水波动有良好的适应性:序批式活性污泥法对废水中有机物浓度的波动具有较强的适应性。

这意味着即使废水中有机物浓度发生变化,处理效果也能保持较好。

综上所述,序批式活性污泥法是一种高效、灵活并且经济的废水处理工艺。

它广泛应用于各种污水处理厂,可以有效地去除废水中的有机物质,减少对环境的污染。

序批式活性污泥法(Sequence Batch Reactor,SBR)是一种先进的活性污泥处理工艺,由于其优异的处理效果和灵活的操作方式,被广泛应用于各种规模的污水处理厂。

SBR序批式活性污泥法设计计算

SBR序批式活性污泥法设计计算

间歇式活性污泥法一、设计概述间歇式活性污泥法也称序批式活性污泥法(简称SBR),是在一个反应器中周期性完成生物降解和泥水分离过程的污水处理工艺。

在典型的SBR反应器中,按照进水、曝气、沉淀、排水、闲置5个阶段顺序完成一个污水处理周期。

由于受自动化水平和设备制造工艺的限制,早期的SBR工艺操作烦琐,设备可靠性低,因此应用较少。

近年来随着自动化水平的提高和设备制造工艺的改进,SBR工艺克服了操作烦琐缺点,提高了设备可靠性,设计合理的SBR工艺具有良好的除磷脱氮效果,因而备受关注,成为污水处理工艺中应用最广泛的工艺之一。

SBR工艺的特点如下。

①运行灵活。

可根据水量水质的变化调整各时段的时间,或根据需要调整或增减处理工序,以保证出水水质符合要求。

②近似于静止沉淀的特点,使泥水分离不受干扰,出水SS较低且稳定。

③在处理周期开始和结束时,反应器内水质和污泥负荷由高到低变化,溶解氧则由低到高变化。

就此而言,SBR工艺在时间上具有推流反应器特征,因而不易发生污泥膨胀。

④在某一时刻,SBR反应器内各处水质均匀,具有完全混合的水力学特征,因而具有较好的抗冲击负荷能力。

⑤SBR一般不设初沉池,生物降解和泥水分离在一个反应器内完成,处理流程短,占地小。

@因为运行灵活,运行管理成为处理效果的决定因素。

这要求管理人员具有较高的素质,不仅要有扎实的理论基础,还应有丰富的实践经验。

SBR工艺是目前发展变化最快的污水处理工艺。

SBR工艺的新变种有间歇式循环延时曝气活性污泥工艺(ICEAS)、间歇进水周期循环式活性污泥工艺(CAST)、连续进水周期循环曝气活性污泥工艺<CASS)、连续进水分离式周期循环延时曝气工艺(IDEA)等。

在工程实践中,设计人员可根据进出水水质灵活组合处理工序和时段,灵活设置进水、曝气方式,灵活进行反应器内分区,并不局限上述定型工艺之中。

目前,SBR工艺的一些机理和设计方法还有待于进一步研究。

工程实践中,SBR工艺的设计借鉴活性污泥工艺的设计计算方法,考虑到周期运行的特点,设计中引人反应时间比(或排水比)的参数。

SBR工艺简介概述

SBR工艺简介概述

安全高度ε(cm)(活性污泥界 50以上 面以上的最小水深)
1、运行周期(T)的确定
• SBR的运行周期由充水时间、反应时间、沉淀时间、排水 排泥时间和闲置时间来确定。充水时间(tv)应有一个最 优值。如上所述,充水时间应根据具体的水质及运行过程 中所采用的曝气方式来确定。当采用限量曝气方式及进水 中污染物的浓度较高时,充水时间应适当取长一些;当采 用非限量曝气方式及进水中污染物的浓度较低时,充水时 间可适当取短一些。充水时间一般取1~4h。反应时间 (tR)是确定SBR 反应器容积的一个非常主要的工艺设计 参数,其数值的确定同样取决于运行过程中污水的性质、 反应器中污泥的浓度及曝气方式等因素。对于生活污水类 易处理废水,反应时间可以取短一些,反之对含有难降解 物质或有毒物质的废水,反应时间可适当取长一些。一般 在2~8h。沉淀排水时间(tS+D)一般按2~4h设计。闲 置时间(tE)一般按2h设计。一个周期所需时间 tC≥tRxtSxtD ,周期数 nx24/tC
池IAT池组成,DAT池连续进水连续曝气,其出水从中间墙进入IAT池, IAT池连续进水间歇排水。同时,IAT池污泥回流DAT池。它具有抗冲击 能力强的特点,并有除磷脱氮功能。
• 循环式活性污泥法(CASS)将ICEAS的预反应区用容积更小,设计更加合理
优化的生物选择器代替。通常CASS池分三个反应区:生物选择器、缺 氧区和好氧区,容积比一般为1:5:30。整个过程连续间歇运行,进 水、沉淀、滗水、曝气并污泥回流。该处理系统具有除氮脱磷功能。
③ 处理工艺流程:
• • • • • • • • • • • • • • •
7.2 工艺计算 7.2.1 格栅(计算略) 7.2.2 调节池 用于调节水质、水量。采用水下搅拌器搅拌,防止污泥沉淀。 水力停留时间:6 小时 外形尺寸:15×10×5m 有效水深:4.2m 7.2.3 SBR 反应池 设计条件: 反应池池数 N=2 反应池有效水深 H=6.0m 安全高度 ε=0.5m 排出比 1/m=1/3 MLSS 浓度 CA=4000mg/l BOD-SS 负荷 Ls=0.25kgBOD/kgSS· d

0329.序批式活性污泥法

0329.序批式活性污泥法

序批式活性污泥法(SBR)工艺处理制革废水SBR是近年来在国内外迅速发展起来的一种新工艺,其对有机物的去除机理为:在反应器内预先培养驯化一定量的活性污泥,当废水进入反应器与活性污泥混合接触并有氧存在时,微生物利用废水中的有机物进行新陈代谢,将有机物降解并同时使微生物细胞增殖。

将微生物细胞物质与水沉淀分离,废水即得到处理。

其处理过程主要由初期的去除与吸附作用、微生物的代谢作用、絮凝体的形成与絮凝沉淀性能几个净化过程完成。

SBR工艺运行灵活,可以间歇运行,停产长达3个月后,重新启动SBR池时,污泥活性可很快恢复,该工艺十分适用中、小型制革企业的废水处理。

目前,国内将SBR工艺列为废水处理中的重要工艺进行研究和应用。

但SBR工艺尚处于发展完善阶段,SBR 的兴起不过十几年的时间,许多研究还属于刚刚起步阶段,在基础理论研究方面存在着很多疑问,在工程应用方面缺乏科学、可靠的设计模式及成熟的运行管理经验,而SBR自身的特点一间歇运行、自动化要求高,又增加了解决问题的难度和应用的局限性。

制革废水生物处理具有一定的特殊性,即冲击负荷大、含盐量高,又含有一定数量的难生物降解的有机物以及铬和硫化物带来的毒性问题。

在诸多生物处理技术中,氧化沟因其停留时间长、稀释能力强、适宜于污染负荷低的废水处理、抗冲击负荷能力强的特点,被实践证明是目前较成熟的制革废水处理工艺。

随着国家对环保问题的日益重视,制革行业将面临更加严峻的环保问题,排放标准将更加严格,如氨氮指标已列为某些地区的制革废水排放标准。

氧化沟法是活性污泥法的一种变种。

氧化沟处理制革废水,处理效果稳定,操作管理简单,运行成本较低,日益受到人们的重视, 氧化沟有多种池型:CARROUSEL 型、Orbel型、双沟型、三沟型。

因而,氧化沟工艺在制革废水处理方面的优点更为突出,通过合理的设计及运行,氧化沟处理技术将会大规模地应用于制革废水处理中,江苏南京制革厂、浙江海宁制革厂、湖北十堰制革厂等均采用氧化沟技术,该法对有机物去除率BOD5在95%以上,CODcr在95%,硫化物在99%-100%,悬浮固体75%左右,石油类99%以上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

序批式活性污泥法(SBR)计算机辅助设计从目前的污水好氧生物处理的研究、应用及发展趋势来看,序批式活性污泥法能称得上是一种简易、快速且低耗的污水处理工艺,非常适用于水质水量变化大的中小城镇的生活污水处理,以及易生物降解的工业废水处理。

因此,SBR工艺是一种适合我国国情的处理工艺,具有很大的发展潜力和应用前景。

近年来,计算机辅助设计(CAD)已渗透到水处理专业,并被专业人员接受和使用。

但目前建筑给排水CAD软件应用广泛,污水处理工程设计CAD系统则研究较少。

SBR艺计算机辅助设计系统的开发,不仅能够提高设计效率及设计质量,也是计算机技术同污水处理技术有机结合的积极实践,对促进当前污水处理工程CAD的进一步发展具有积极的意义。

1 SBR工艺设计计算SBR工艺设计计算包括SBR反应池容积的确定以及需氧量、污泥量的计算。

SBR工艺设计方法主要分两大类:经验设计法。

动力学模式设计法[1]。

经验设计法指污泥负荷率法,污泥负荷率是影响曝气反应时间的主要参数,污泥负荷率的大小关系到SBR反应池容积的大小。

这种方法在目前的工程设计中应用较广泛。

动力学模式设计法则是根据进水、出水和SBR系统的各种参数条件,建立数学模型后进行设计。

由于动力学模式设计方法用于工程设计还有待进一步研究、优化,因此本系统在开发过程中针对生活污水的处理仍沿用经验设计法。

1.1 参数选取污泥负荷率与SBR反应池内的混合液污泥浓度是SBR设计与运行的重要参数[2]。

①对生活污水,污泥负荷普遍采用BOD污泥负荷,其参数值为:高负荷运行时取0.2-0.4kg[BOD5]/(kg[MLSS]·d),低负荷运行时选用0.03-0.07kg[BOD5]/(kg[MLSS].d)。

②反应池内的污泥浓度(MLSS)可考虑取值3000-5000mg/L。

③SVI值取90-150mL/g。

④每周期运行时间一般tr=4.8-12h。

1.2 设计计算步骤①确定一个运行周期内曝气时间所占的比例e,根据BOD污泥负荷Ns,计算所需污泥量M;Ns=QS0/eXV (1)M=XV=QS0/eNs (2)式中:X——混合液中活性污泥浓度(MLSS),mg/L;Q——平均日污水量,m3/d;S0——进水基质浓度,mg/L;V——反应池总有效容积,m3。

②根据SVI值和污泥量,计算沉淀时所需的污泥体积Vm;Vm=SVI·M (3)③确定SBR反应池的个数n,引入每周期运行时间tR,计算每周期所需处理污水的体积Vw;V=Q/[n×(24/tr)(4)④计算SBR反应池单个池有效容积VO。

VO=VW+Vm/n(m3)(5)1.3 其他参数的确定计算出反应池有效容积后,可以确定工艺设计所需的其它数据,如反应池长、宽、池深等,同时根据水质水量可以确定需氧量、污泥量等。

此外,根据污水性质与工艺设计计算结果,还应对处理工艺中配套的构筑物如格栅、沉砂池等作相应的设计计算。

计算方法与传统活性污泥法类似。

2 SBR工艺计算机辅助设计系统分析与设计对于水处理专业的设计者来讲,其适应计算机的能力是有限的。

要提高 SBR艺计算机辅助性及系统的适应性,必须在系统的开发设计中充分考虑到设计者的特点,以解决CAD系统适应用户需要的问题。

因此系统必须体现和突出专业内容,用户界面友好,使用方便,符合水处理工程设计者的设计习惯。

2.1 系统分析和设计本系统是集工程计算、数据管理、图形生成、打印输出的功能为一体的工程应用系统。

系统的研究与开发完全基于软件工程的思想。

图1是SBR计算机辅助设计系统的结构形式。

2.2 系统的实现方法系统中控制平台的主要模块及数据的输入、输出、贮存、修改等功能应用了开发工具 Visual Basic5.0;AutoCAD中图形程序用AUTOLISP语言编写。

采用数据文件共享型接口方式,实现了不同语言程序模块之间的参数化传递和数据共享,并充分利用各种语言输人输出格式的灵活性,从而使系统形成协调、统一的整体。

AutoCAD作为开发平台,有效地利用AutoCAD原有的功能,同时,系统留有与AutoCAD或其他水处理 CAD软件的接口,可以用AutoCAD R14或其他相关软件的功能来补充和完善工程设计。

2.3 各功能子模块简介在系统的设计过程中,将系统按功能划分为各个独立的模块,当要修改某一模块时,只涉及该模块本身,而不引起其它模块的变更,可以避免相互间的于扰。

各模块相互独立又有机的结合,给程序的编制、维护和升级提供了方便。

本系统分3个模块。

工艺流程模块和设计计算模块用 Visual Basic语言实现,绘图模块以R14为开发平台,充分利用了AutoCAD 的二次开发功能。

①工艺流程模块在进行污水处理工艺设计前,需要了解与工程相关的设计资料。

污水处理工艺流程的选定是一项比较复杂的系统工程,在系统中输人工程设计中常用的水质指标及污水排放标准,根据这些指标,设计者可以作初步的水质分析、工艺流程选择及技术经济分析。

②设计计算模块本系统中工艺计算采用经验设计法,工艺流程中除核心部分SBR反应池的计算外,还包括其它配套构筑物的计算。

设计人员根据工艺计算界面选择所需要的构筑物进行计算。

设计计算模块提供必备的资料、数表以及专家经验。

在进行设计计算时,设计人员采用人一机交互方式逐一输人计算所需的数据,数据输人完成后,按(显示计算结果)按钮进行计算并保存计算结果。

在计算过程中如果显示一对话框提示参数不满足要求,需重新设置参数,否则,按(取消)按钮退回工艺计算界面。

③绘图模块通过计算机辅助绘制专业图,是系统的一个重要环节。

针对SBR 工艺专业绘图的特点,本系统主要采用DWG形式图形库和hP形式图形库。

在进行工程CAD设计之前,要先进行绘图环境的初始化。

进行图形绘制时,绘图模块从计算模块中获得所需的数据,在启动进人AutoCAD的同时启动AUTOLISP程序,调用下拉菜单中相应的命令,并按紧接着的提示输人绘图所需的一些参数及基点坐标,即可绘制出所需的构筑物施工图。

考虑到工程设计的多样性、构筑物具体应用中不可缺少的文字说明等,图形绘制完成后,设计人员可以对图形进行必要的修改,实现自动化计算、参数化绘图的全过程。

系统流程如图2所示。

序批式活性污泥法处理城市污水试验研究引言在城市污水处理中,由于地理环境和气候因素的影响,广州城市污水水质有明显区别于北方城市污水水质的特点,一般北方地区城市污水BOD5在100~200mg/L之间,NH3-N在20~30mg/L之间,TP在2~7mg/L之间,而广州地区城市污水BOD5在40~80mg/L之间,NH3-N在20~30mg/L之间,TP在1~7mg/L之间,即有机物浓度低,碳、氮、磷比例不合理。

所以开发研究适合广州地区城市污水特点的简单、高效的污水处理工艺流程,是当务之急。

本实验研究采用SBR艺,处理广州地区的城市污水,达到了在一个反应装置内既去除有机物又能脱氮除磷,而且磷的出水指标达到了0.1~0.45mg/L,这样的结果目前国内外还未见类似的报道。

1 实验装置与方法1.1 实验装置及水质SBR反应器由有机玻璃制成。

总容积47.4L,有效容积42.8L。

采用空压机曝气,穿孔管布气。

其流程见图1。

试验所用的污水前期是在实验室配水,后期则取自广州市某河涌城市污水。

反应器中污泥是从广州市大坦沙污水厂所取,然后进行培养驯化。

试验污水水质见表1,试验运行方式见表2。

1.2 试验运行工况及运行参数本试验共进行了5种工况的运行试验,试验运行参数见表3。

2 实验结果及分析各种工况下的处理效果见表4。

SBR工艺对于广州地区城市污水的处理效果和可行性是本次试验的重点,不同工况条件下的试验结果见表4。

由表4可知,在试验运行的5种工况中,除工况4以外,COD Cr的去除率都在83%以上。

BOD5去除率都在88%~92%之间。

氨氮的去除率一般在53%~76%之间,总氮的去除效率一般在27%~39%之问。

总磷的去除率都在91%以上。

工况4COD Cr、BOD5去除效率低,是因为进水有机物浓度低,氨氮、总氮的去除效率低,主要原因是曝气时间短,硝化过程完成得不好。

(工况4如能保持较高的溶解氧浓度,磷的处理效果仍然很好)。

3 最优工况的确定确定SBR艺处理城市污水的最佳工艺参数是本课题研究的主要内容,其最基本的原则是在满足出水水质COD Cr60mg/L、BOD520mg/L、NH+4~N10mg/L、TP0.5mg/L、SS20mg/L的情况下,尽量缩短水力停留时间(包括厌氧反应时间、曝气时间与沉淀时间)及确定最优曝气量,以达到降低处理系统的基建费用、运行费用的目的。

3.1 最优曝气时间及曝气量的确定从5种工况的实验结果看COD Cr在曝气30min即可以达到排放标准。

在曝气60min后,COD Cr的降解幅度已很小,曲线趋于平稳。

NH4-N的降解不同于有机物,氨氮需要在曝气120min以后出水才能达到10mg/L以下。

TP的出水要达到0.5mg/L以下,90min的曝气时间基本就可以了(但要保持适宜的DO浓度)。

从以上三方面考虑,为使硝化反应进行得更彻底,以NH3-N出水指标低于10mg几为基准,最优曝气时间不低于120min。

最优曝气量的确定要根据去除有机物、氨氮、磷三个指标来控制。

曝气量的控制是以DO浓度来体现的。

去除有机物的DO浓度,在2h 曝气时间里,DO浓度达到并保持在1mg/L左右,有机物去除就可以达到要求。

去除氨氮的DO浓度,曝气30min时达到1.0mg/L以上,60min时达到2.0mg/L左右,并一直保持到曝气结束,氨氮的去除效果较好,出水浓度低于9.0 mg/L。

除磷的DO浓度,在曝气60min时,DO浓度在1mg/L左右,60min 后保持DO浓度在1.5-2.0mg/L之间,即可以保证磷的出水指标低于0.5mg/L。

为了保证氨氮的去除效果,反应装置中DO浓度应在曝气60min 时达到2mg/L左右,并一直保持到曝气结束。

3.2 厌氧反应时间的确定厌氧反应时间的确定是以脱氮和磷的释放作为确定原则。

硝酸盐经过50min的厌氧后,基本被还原成N2从水中逸出。

磷的厌氧释放在40min左右,即可以达到释放的最高浓度。

所以,厌氧的反应时间定为60min(实验结果见图2)。

3.3 最优沉淀时间的确定对于SBR处理系统,由于反应是在一个装置中进行,沉淀时间的确定显得更为重要。

沉淀时间过短,水中悬浮物过高,影响出水水质;若沉淀时间过长,则会发生反硝化,有时还会发生污泥上浮现象。

图3表示在停止曝气后,反应器中污泥成层沉淀的泥水界面高度和上清液(取样在反应器有效高度的1/2处)中悬浮固体(SS)浓度随沉淀时间的变化规律。

相关文档
最新文档