二次函数专题之全参数范围问题
中考热点-- 二次函数与方程、不等式,求参数范围(原卷版)
中考热点01二次函数与方程、不等式,求参数范围一、解答题1(2023·浙江嘉兴·统考中考真题)在二次函数y=x2-2tx+3(t>0)中,(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为-2,求出t的值:(3)如果A(m-2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3,求m的取值范围.2(2023·浙江·统考中考真题)已知点-m,0和3m,0在二次函数y=ax2+bx+3(a,b是常数,a≠0)的图像上.(1)当m=-1时,求a和b的值;(2)若二次函数的图像经过点A n,3且点A不在坐标轴上,当-2<m<-1时,求n的取值范围;(3)求证:b2+4a=0.3(2023·浙江杭州·统考二模)在平面直角坐标系中,已知二次函数y=-x2+bx+c(b,c是常数).(1)当b=2,c=3时,求该函数图象的顶点坐标.(2)设该二次函数图象的顶点坐标是(m,n),当该函数图象经过点(1,-3)时,求n关于m的函数解析式.(3)已知b=2c+1,当0≤x≤2时,该函数有最大值8,求c的值.4(2023·浙江宁波·校考三模)如图,已知二次函数y=-x2+bx+c的图像经过点A4,1,点B0,5.(1)求该二次函数的表达式及顶点坐标;(2)点C m,n在该二次函数图像上,当m≤x≤4时,n的最大值为294,最小值为1,请根据图像直接写出m的取值范围.5(2023·浙江舟山·统考三模)在平面直角坐标系中,抛物线y=x2+bx+c(b,c是常数)经过点A1,0.点P在此抛物线上,其横坐标为m.,点B0,3(1)求此抛物线的解析式.(2)若-1≤x≤d时,-1≤y≤8,则d的取值范围是.(3)点P和点A之间(包括端点)的函数图象称为图象G,当图象G的最大值和最小值差是5时,求m的值.6(2023·浙江杭州·统考二模)在平面直角坐标系中,设二次函数y=x2-2ax+1(a是常数).(1)当a=2时,求函数图象的顶点坐标和对称轴.(2)若函数图象经过点(1,p),(-1,q),求证:pq≤4.(3)已知函数图象经过点A(-3,y1),B(a+1,y2),点C(m,y3),若对于任意的4≤m≤6都满足y1>y3> y2,求a的取值范围.7(2023·浙江杭州·统考二模)已知函数y1=x2-m+2x+2m+3,y2=nx+k-2n(m,n,k为常数且n≠0).(1)若y1的图象经过点A-1,3,求该函数的表达式.(2)若函数y1,y2的图象始终经过同一定点M.①求点M的坐标和k的值.②若m≤2,当-1≤x≤2时,总有y1≤y2,求m+n的取值范围.8(2023·浙江杭州·统考二模)已知二次函数y1=ax x-ma≠0.和一次函数y2=ax+b a≠0(1)二次函数y1的图象过1,0点,求二次函数的表达式;,2,2(2)若一次函数y2与二次函数y1的图象交于x轴上同一点,且这个点不是原点.①求证:b=-am;②若两个函数图象的另一个交点为二次函数的顶点,求m的值.9(2023·浙江杭州·杭州市公益中学校考二模)在平面直角坐标系中,当x=-2和x=4时,二次函数y=ax2+bx-2(a,b是常数,a≠0)的函数值相等.(1)若该函数的最大值为1,求函数的表达式,并写出函数图象的顶点坐标;(2)若该函数的图象与x轴有且只有一个交点,求a,b的值.(3)记(2)中的抛物线为y1,将抛物线y1向上平移2个单位得到抛物线y2,当-2≤x≤m时,抛物线y2的最大值与最小值之差为8,求m的值.10(2023·浙江丽水·统考二模)二次函数y=x2+bx+c的图象与x轴交于点A x1,0且x1≠,B x2,0x2.(1)当x1=2,且b+c=-6时,①求b,c的值②当t≤x≤t+2时,二次函数y=x2+bx+c的最小值为2t,求t的值;(2)若x1=3x2,求证:3b-c≤3.211(2023·浙江杭州·统考二模)二次函数y=ax2+bx-1(a,b为常数,a≠0)的图像经过点A1,2.(1)求该二次函数图像的对称轴(结果用含a的代数式示)(2)若该函数图像经过点B3,2;①求函数的表达式,并求该函数的最值.②设M x1,y1,N x2,y2是该二次函数图像上两点,其中x1,x2是实数.若x1-x2=1,求证:y1+y2≤11 212(2023·浙江杭州·统考一模)二次函数y=ax2+bx+c(a≠0)与x轴交于A(1,0),B(m,0)两点.(1)当a=1,b=2时,求m的值.(2)当0<a<2,c=2时,①求证:m>1.②点C x1,y1,D x2,y2在该抛物线上,且x1>x2,x1+x2<2,试比较y1与y2的大小.13(2023·浙江绍兴·统考一模)在平面直角坐标系xOy中,已知抛物线y=x2-2tx+1.(1)求该抛物线的对称轴(用含t的式子表示);(2)若点M t-2,m在抛物线y=x2-2tx+1上,试比较m,n的大小;,N t+3,n(3)P x1,y1是抛物线y=x2-2tx+1上的任意两点,若对于-1≤x1<3且x2=3,都有y1≤y2, ,Q x2,y2求t的取值范围;(4)P t+1,y1是抛物线y=x2-2tx+1上的两点,且均满足y1≥y2,求t的最大值. ,Q2t-4,y214(2023·浙江杭州·模拟预测)在平面直角坐标系中,抛物线y=x2-2mx+m2+1存在两点A m-1,y1,B m+2,y2.(1)求抛物线的对称轴;(用含m的式子表示)(2)记抛物线在A,B之间的部分为图象F(包括A,B两点),y轴上一动点C0,a,过点C作垂直于y轴的直线l与F有且仅有一个交点,求a的取值范围;(3)若点M2,y3也是抛物线上的点,记抛物线在A,M之间的部分为图象G(包括M,A两点),记图形G 上任意一点的纵坐标的最大值与最小值的差为t,若t≥y2-y1,求m的取值范围.15(2022春·九年级课时练习)抛物线y =(k -1)x 2-x +1与x 轴有交点,则k 的取值范围是.16(2020秋·九年级课时练习)抛物线y =x 2+8x -4与直线x =-4的交点坐标是.17(2023·安徽淮北·校考一模)若对称轴为直线x =-2的抛物线y =ax 2+bx +c (a ≠0)经过点(1,0),则一元二次方程ax 2+bx +c =0的根是.18(2021春·九年级课时练习)抛物线y =2x 2+2k -1 x -k (k 为常数)与坐标轴交点的个数是.19(2023·湖北武汉·统考模拟预测)已知二次函数y =ax 2+bx +c a ≠0 的部分图象如图所示,图象过点-1,0 ,对称轴为直线x =1,下列结论:①2a +b =0;②当m ≠-1时,am 2-b m +1 <a ;③若点A -2,y 1 ,点B 12,y 2 ,点C 52,y 3 均在该图象上,则y 1<y 3<y 2;④若关于x 的方程a x +1 x -3 =p p >0 的两根都是整数,则这样的p 值有3个.其中正确的结论有(填序号).20(2023·浙江·校联考三模)已知点x1,y1,x2,y2为二次函数y=-x2图象上的两点(不为顶点),则以下判断正确的是()A.若x1>x2,则y1>y2B.若x1<x2,则y1<y2C.若:x1x2<x22,则y1>y2 D.若x1x2>x22,则y1<y221(2023·浙江杭州·统考二模)已知二次函数y1=(ax+1)(bx+1),y2=(x+a)(x+b),(a,b为常数,且ab≠0),则下列判断正确的是()A.若ab<1,当x>1时,则y1>y2B.若ab>1,当x<-1时,则y1>y2C.若ab<-1,当x<-1时,则y1>y2D.若ab>-1,当x>1时,则y1>y222(2023·浙江杭州·统考二模)点P m,n在二次函数y=ax2-2ax a≠0的图象上,针对n的不同取值,存在点P的个数不同,甲乙两位同学分别得到如下结论:甲:若P的个数为1,则n=-a;乙:若P的个数为2,则n≥-a则下列判断中正确的是()A.甲正确,乙正确B.甲正确,乙错误C.甲错误,乙正确D.甲错误,乙错误23(2023·浙江宁波·校考二模)已知点A x1,y1,B x2,y2在抛物线y=-(x-4)2+m(m是常数)上.若x1<4<x2,x1+x2>8,则下列大小比较正确的是()A.y1>y2>mB.y2>y1>mC.m>y1>y2D.m>y2>y124(2023·统考二模)已知二次函数y=x2+bx+c过点A x1,y1,B x1+t,y2,C x1+2t,y3三点.记m=y2-y1,n=y3-y2,下列命题正确的是()A.若n-m>2,则t<-1B.若n-m<2,则t>-1C.若t>1,则n-m>2D.若t<1,则n-m<225(2023·浙江杭州·统考二模)已知y关于x的二次函数y=2mx2+1-mx-1-m,下列结论中正确的序号是()①当m=-1时,函数图象的顶点坐标为12,12 ;②当m≠0时,函数图象总过定点:③当m>0时,函数图象在x轴上截得的线段的长度大于3 2;④若函数图象上任取不同的两点P1x1,y1、P2x2,y2,则当m<0时,函数在x>14时一定能使y2-y1x2-x1<0成立.A.①②③B.①③④C.②③④D.①②④26(2023·浙江·模拟预测)点A x 1,y 1 ,B x 2,y 2 在抛物线y =ax 2-2ax -3a ≠0 上,存在正数m ,使得-2<x 1<0且m <x 2<m +1时,都有y 1≠y 2,则m 的取值范围是()A.1<m ≤4B.2<m ≤4C.0<m ≤1或m ≥4D.1<m ≤2或m ≥427(2023·浙江·模拟预测)点A x 1,y 1 ,B x 2,y 2 在抛物线y =ax 2-2ax -3(a ≠0)上,存在正数m ,使得-2<x 1<0且m <x 2<m +1时,都有y 1≠y 2,则m 的取值范围是()A.1<m ≤4B.1<m ≤4C.0<m ≤1或m ≥4D.1<m ≤2或m ≥428(2023·浙江宁波·校考一模)已知二次函数y =ax 2+bx +c 的图象经过点A x 1,y 1 ,B 1-m ,n ,C x 2,y 2 ,D m +3,n ,若x 1-2 >x 2-2 ,则下列表达式正确的是()A.y 1>y 2B.y 1<y 2C.a y 1-y 2 >0D.a y 1-y 2 <029(2022·浙江宁波·校考三模)如图,二次函数y =ax 2+bx +c a <0 与x 轴交于A ,B 两点,与y 轴正半轴交于点C ,它的对称轴为直线x =2,则下列说法中正确的有()①abc <0;②4ac -b 24a>0;③16a +4b +c >0;④5a +c >0;⑤方程ax 2+bx +c =0(a ≠0)其中一个解的取值范围为-2<x <-1.A.1个B.3个C.4个D.5个。
二次函数专题——含参二次函数完整版题型汇总
二次函数专题——含参二次函数完整版题型汇总含参的二次函数在高中阶段考试中经常出现,因为参数的存在使得函数形成一种动态,随着参数的变化,函数也会不同。
这就使得本来简单的二次函数变得复杂起来。
例如,考虑求解$f(x)=x-2ax$在$[2,4]$上的最大值和最小值。
由于参数的存在,这个函数是动态的。
为了解决这个问题,我们需要考虑动轴定区间问题,即对称轴随着参数的变化而变化,但是在给定区间上问最大值和最小值。
对于这个问题,需要分类讨论。
在$[2,4]$这个区间上,可能出现对称轴不在这个区间里面的情况,对称轴就在区间里面的情况,或者对称轴在区间右侧的情况。
因此,我们需要分别考虑这些情况。
具体来说,我们需要找到在整个函数的区间上,哪个数离对称轴最远。
这个分界线就应该在$2$和$4$中间的位置上,即$3$。
当对称轴在$x=3$这条线左边的时候,对称轴离$2$就比较近,离$4$就比较远;对称轴在右边的时候,离$2$就比较近,离$4$就比较远。
因此,这个函数的最大值可以表示为:f_{\max}(x)=\begin{cases}f(4)=16-8a& (a\leq 3)\\f(2)=4-4a&(a>3)\end{cases}$$当$a=3$时,放在哪边都可以。
代入上面的式子,得到$f_{\max}(x)=-8$。
因此,最大值为$-8$。
接下来,我们来讨论含参的二次函数的最大值和最小值问题。
这类问题的重点在于能否清晰地做分类讨论,得到一个分段函数的解析式。
我们可以按照对称轴的位置进行分类讨论。
首先,对于对称轴在区间左侧,且$a\leq 2$的情况,函数在$x=2$处取得最小值,即$f_{min}(x)=f(2)=4-4a$。
其次,对于对称轴在区间中间,即$24$的情况,函数在$x=4$处取得最小值,即$f_{min}(x)=f(4)=16-8a$。
另外,还有一类问题叫做定轴动区间的问题。
对于这类问题,我们同样需要进行分类讨论,只不过区间在变化。
2023中考数学重难点练习 专题03 二次函数含参解析式问题(学生版+解析版)
专题03二次函数含参解析式问题一、E知识回顾】(1)二次函数的一般形式:丘且主且正怡,b,c是常数,a手。
)注:未知数的最高次数是2,a,;c:0,b, c是任意实数。
(2)二次函数的国i象与性质二次函数y=ax2+b x+c(a,b, c为常数,a学0)图象开口方向对称输顶点坐标增减。
|全故值y\ :/x(a>O)开口向七b直线x=-一2a(」4a c一2a’4a当x<-2a时,y随x的增大而减尘:当x>一丢.:a时,y|施x的瞅而增大2ba’_:4ac-b2当x=一' y有最尘直4a(3)二次函数阁像与系数的关系Y,队。
\x(a<O)开口向下b直线x=-一2a(-!. 4a c-b引2a’4ab当x<-2a时,y随x的增大而盟主:b当x>-2a时,d罐x的增大而温尘当x=一一时,y有最本值4a…c-b22a 4a某1比特别t形式代数式的决定抛物线的当a>O时,抛物线开口向上;a开口方向及开口大小当a<O时,抛物线开口向下.符号.a±b+c即为x=+l时一,y 当a,b问号,二<O,对称轴在泱定对称轴的值:②4a±2b+c1111为x=±2时,y的值a、y轴左边:(x=一一〉的位2a2a吨的符号,需判置当时时,斗o,对称轴为y b对称轴τ..;;与1tt飞!大小.轴:b当a,b异号,τ.;aγ>O,对称输布,y轴�边.当c>O时,抛物线与y轴的交点决定抛物线与在夜半轴上.c y轴的交点的当c=O时,抛物线经过原点:位置当c<O时,抛物线与y轴的交点在1这半轴上.b2-4ac>O时,抛物线与且铀有2个交点;决定抛物线与b2-4ac=O时,抛物线与x轴有l b2-4ac x轴的交点个个交点;数b2-4a c<O时,抛物线与x轴i立主交点(4)利用二次函数的对称轴判断函数值大小关系〈福建常考i在择题10)方法技巧g 若对称粉1在直线x=l的b左边,贝tl2a>l,再根据a的符号即可得出络果.④2a-b的符号,需步I]断对称轴与-1的大小.①已知点A Ca. b)为二次函数图像上一点,对称轴已失U x=c,则A点对称点B(2c-a b)②己知点A(a, c)、B( b, c)为二次函数图像上一点,则根据网点纵坐标相等,可知A、B为对称点,那么对称轴x干③不等式解读:la-cl斗b-c卜a到对称轴c的距离>b到对称输的距离l a-cJ=lb-cj a到对称轴c的距离=b到对称轴的距离la-cl斗b-c卜a到对称轴c的距离<b到对称铀的距离二、E考点类型】考点1:二次函数函数图像与系数的关系典例1:( 2022福建商|到校考一模〉二次函数y=a).-2+你+c(α,b, c是常数,但0)的图象如阁所示,对称轴为直线x=-1.有以下结论:①abc>O;①a(/!+2) 2+b (仇2)<a (k2+1) 2+b (的1)(k为实数〉:①m (am+b) �,。
最全二次函数区间的最值问题(中考数学必考题型)
二次函数的最值问题二次函数的最值问题,是每年中考的必考题,也是考试难点,经常出现在压轴题的位置,解决二次函数的最值问题,特别是含参数的二次函数,一定要考虑二次函数的三个要素:开口方向,对称轴,自变量的取值范围,对于二次函数能够分析出三要素,二次函数的问题就迎刃而解了。
例1.对于二次函数342+-=x x y(1)求它的最小值和最大值.(2)当1≤x ≤4时,求它的最小值和最大值.(3)当-2≤x ≤1时,求它的最小值和最大值.(4)二次函数的最值与哪些因素有关?对于给定的范围,最值可能出现在哪些位置?练习1.二次函数y =x 2+2x ﹣5有( )A .最大值﹣5B .最小值﹣5C .最大值﹣6D .最小值﹣6练习2.在二次函数y =x 2﹣2x ﹣3中,当0≤x ≤3时,y 的最大值和最小值分别是( )A .0,﹣4B .0,﹣3C .﹣3,﹣4D .0,0练习3若抛物线y =﹣x 2+4x +k 的最大值为3,则k = .练习4(多元消参,利用平方的性质确定自变量的取值范围)若实数a 、b 满足a +b 2=2,则a 2+5b 2的最小值为 .练习5如图,P 是抛物线y =x 2﹣2x ﹣3在第四象限的一点,过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,求四边形OAPB 周长的最大值及点P 的横坐标练习6.(回归教材)如图,一张正方形纸板的边长为8cm ,将它割去一个正方形,留下四个全等的直角三角形(图中阴影部分).设AE =BF =CG =DH =x (cm ),阴影部分的面积为y (cm 2).(1)求y 关于x 的函数解析式并写出x 的取值范围;(2)当x 取何值时,阴影部分的面积最大,最大面积是多少.一、对开口方向(二次项前面系数)进行讨论例2.当 41≤≤x 时,二次函数a ax ax y 342+-= 的最大值等于6.求二次项系数a 的值练习1已知二次函数y =mx 2+2mx ﹣1(m >0)的最小值为﹣5,则m 的值为( )A .﹣4B .﹣2C .2D .4练习2已知二次函数y =mx 2+(m 2﹣3)x +1,当x =﹣1时,y 取得最大值,则m = . 练习3已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,求m 的值二、对二次函数的对称轴的位置进行讨论例3.当 12≤≤x -时,二次函数a ax x y 342+-= 的最小值等于-1.求a 的值.变式1当﹣2≤x ≤1时,二次函数y =﹣(x ﹣m )2+m 2+1有最大值4,求实数m 的值.变式2当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.三、对二次函数的x 取值范围进行讨论例4.当 2+≤≤a x a 时,二次函数a x x y 342+-= 的最大值等于-6.求a 的值.练习1.当a ﹣1≤x ≤a 时,函数y =x 2﹣2x +1的最小值为1,求a 的值.练习2.若t ≤x ≤t +2时,二次函数y =2x 2+4x +1的最大值为31,求t 的值练习3.已知二次函数y =﹣x 2+6x ﹣5.当t ≤x ≤t +3时,函数的最大值为m ,最小值为n ,若m ﹣n =3,求t 的值.练习4.设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于任何一个二次函数,它在给定的闭区间上都有最小值.求函数y =x 2﹣4x ﹣4在区间[t ﹣2,t ﹣1](t 为任意实数)上的最小值y min 的解析式.练习5.若关于x 的函数y ,当t ﹣≤x ≤t +时,函数y 的最大值为M ,最小值为N ,令函数h =,我们不妨把函数h 称之为函数y 的“共同体函数”.若函数y =﹣x 2+4x +k ,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数“h 的最小值.若存在,求出k 的值;若不存在,请说明理由.拓展:C 2的解析式为:y =a (x +2)2﹣3(a >0),当a ﹣4≤x ≤a ﹣2时,C 2的最大值与最小值的差为2a ,求a 的值.作业:1.矩形的周长等于40,则此矩形面积的最大值是2.若实数x ,y 满足x +y 2=3,设s =x 2+8y 2,则s 的取值范围是 .3.已知二次函数y =ax 2+4x +a ﹣1的最小值为2,则a 的值为 .4.已知实数满足x 2+3x ﹣y ﹣3=0,则x +y 的最小值是 .5.若二次函数y =﹣x 2+mx 在﹣2≤x ≤1时的最大值为5,则m 的值为6.当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为7.已知二次函数y =122+-ax ax ,当30≤≤x 时,y 的最大值为2,则a 的值为8.如图,在Rt △ABC 中,∠B =90°,AB =6cm ,BC =8cm ,点P 从A 点开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm /s 的速度移动,则P 、Q 分别从A 、B 同时出发,经过多少秒钟,使△PBQ 的面积最大.9.设a、b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.若二次函数y=x2﹣x﹣是闭区间[a,b]上的“闭函数”,求实数a,b的值.10.抛物线y=x2+bx+3的对称轴为直线x=1.(1)b=;(2)若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是.11.已知关于x的二次函数y1=x2+bx+c(实数b,c为常数).(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的表达式;(2)若b2﹣c=0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值;(3)记关于x的二次函数y2=2x2+x+m,若在(1)的条件下,当0≤x≤1时,总有y2≥y1,求实数m的最小值.12.已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).(1)若抛物线的顶点坐标为(1,1),求b,c的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围.(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好,求m,n的值.。
二次函数的单调性及求参数的范围 高一上学期数学人教A版(2019)必修第一册
问题 1 已知函数 f(x)的单调区间是 M 与函数 f(x) 在区间 N 上单调, 则区间 M, N 有怎样的关系?
问题2 二次函数的单调性与它的什么要素有关系?
二次函数的单调性问题
例1已知函数f (x) kx2 2x 1的减区间是[2, ), 则实数 k 的取值范围是 _______;
对抽象函数单调性的判断和证明, 仍要紧扣定义,
结合题目所给的条件, 经常采用"赋值","拆","凑"项
等方法,寻求比较 f (x2 ) f (x1) 与0的大小,比如 :
x1
( x1
x2 )
x2
或 x1
x1 x2
x2
等.
抽象函数单调性的证明与应用问题
例2已知函数 f (x)对任意 x, y R,总有f (x) f ( y) f (x y), 且当 x 0时, f (x) 0, f (1) 2 .
y (1) 判断并证明函数 f (x)的单调性; (2) 若f (2) 1, 解不等式f (x 3) f ( 1) 2.
x
课后思考
练习2 : 若函数 f (x) x2 a x 2 在(0, )上单调递增,
则实数 a的取值范围是 _[__4_,_0_] .
实数 a的取值范围是.
a 1
练习:函数 f (x) ax 1 在区间(2, )上单调递增, 则 x2
实数 a的取值范围是( B ).
A.(0, 1) B.(1 , ) C.(2, ) D.(, 1) (1, )
2
2
已知函数的单调性求参数的范围问题
例3已知函数 f (x) x3 在区间(, )上是增函数,若 f (2a 5) f (1 a),求实数 a的取值范围.
初中数学精品课件: 专题二 含有参数的函数问题
增大,∴k<0,
∵二次函数 y=k(x2+x-1)=kx+122-54k, 的对称轴为直线 x=-12,
【答案】 (1)当k=1时,y=x2+3x+1,当k=0时,y= x+1,图略.
(2) 对任意实数 k,函数的图象都经过点(-2,-1) 和点(0,1). 证明:把 x=-2 代入函数 y=kx2+(2k+1)x+1, 得 y=-1,即函数 y=kx2+(2k+1)x+1 的图象经 过点(-2,-1);把 x=0 代入函数 y=kx2+(2k+ 1)x+1,得 y=1,即函数 y=kx2+(2k+1)x+1 的 图象经过点(0,1). (3) 当 k 为任意负实数,该函数的图象总是开口向 下的抛物线,其对称轴为 x=-2k2+k 1=-1-21k,
分析:此题的前 3 个小问题不困难,不多加解释.
④ 证明:抛物线的对称轴为直线 x=21m,因为 m>1,所 以 2m>2,所以21m<12,即对称轴在12的左侧,所以 x<12在
对称轴的左侧,所以 y 随 x 的增大而增大. ⑤ 证明:抛物线的对称轴为直线 x=21m,因为 m>1, 所以 2m>2,所以21m<12,即对称轴在12的左侧,所以 x>1 在对称轴的右侧,所以函数图象在递减后有一段递 增,所以⑤错误.
要使二次函数 y=k(x2+x-1)满足上述条件,
在 k<0 的情况下,x 必须在对称轴的左边, 即 x<-12时,才能使得 y 随着 x 的增大而增大, ∴综上所述,k<0 且 x<-12. (3)由(2)可得 Q-12,-54k,
专题09 二次函数中取值范围专题(一)(解析版)九下数学专题培优训练
专题09 二次函数中的取值范围专题(一)班级:___________姓名:___________得分:___________ 一、选择题1. 如果二次函数y =x 2−6x +8在x 的一定取值范围内有最大值(或最小值)为3,满足条件的x 的取值范围可以是( )A. −1≤x ≤5B. 1≤x ≤6C. −2≤x ≤4D. −1≤x ≤1【答案】D 【分析】本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键.把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答. 【解答】解:∵y =x 2−6x +8=(x −3) 2−1, 当y =3时,得出x =1或5,∴在自变量−1≤x ≤1的取值范围内,当x =1时,有最小值3,2. 已知函数y =x 2+x −1在m ≤x ≤1上的最大值是1,最小值是,则m 的取值范围是( )A. m ≥−2B. 0≤m ⩽12C. −2≤m ⩽−12D. m ⩽−12【答案】C【分析】先求出二次函数的对称轴,再求得函数在顶点处的函数值,根据已知条件最小值是−54,得出m ≤−12;再求得当x =1时的函数值,发现该值等于已知条件中的最大值,根据二次函数的对称性可得m 的下限.本题考查了二次函数在给定范围内的最值问题,熟练掌握二次函数的性质是解题的关键. 【解答】解:∵函数y =x 2+x −1的对称轴为直线x =−12, ∴当x =−12时,y 有最小值,此时y =14−12−1=−54, ∵函数y =x 2+x −1在m ≤x ≤1上的最小值是−54, ∴m ≤−12;∵当x =1时,y =1+1−1=1,对称轴为直线x =−12,∴当x=−12−[1−(−12)]=−2时,y=1,∵函数y=x2+x−1在m≤x≤1上的最大值是1,且m≤−12;∴−2≤m≤−12.3.已知二次函数y=−x2+2x+3,截取该函数图象在0≤x≤4间的部分记为图象G,设经过点(0,t)且平行于x轴的直线为l,将图象G在直线l下方的部分沿直线l翻折,图象G在直线上方的部分不变,得到一个新函数的图象M,若函数M的最大值与最小值的差不大于5,则t的取值范围是()A. −1≤t≤0B. −1≤tC. D. t≤−1或t≥0【答案】A【分析】本题主要考查的是二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的最值等有关知识,找到最大值和最小值差刚好等于5的时刻,则t的范围可知.【解答】解:如图1所示,当t等于0时,∵y=−(x−1)2+4,∴顶点坐标为(1,4),当x=0时,y=3,∴A(0,3),当x=4时,y=−5,∴C(4,−5),∴当t=0时,D(4,5),∴此时最大值为5,最小值为0;如图2所示,当t=−1时,此时最小值为−1,最大值为4.综上所述:−1≤t≤0,m−1的图象与x轴有交点,则m的取值范围是() 4.已知二次函数y=x2−x+14A. m≤5B. m≥2C. m<5D. m>2【答案】A【分析】根据已知抛物线与x轴有交点得出不等式,求出不等式的解集即可.本题考查了抛物线与x轴的交点,能根据题意得出关于m的不等式是解此题的关键.m−1的图象与x轴有交点,【解答】解:∵二次函数y=x2−x+14∴△=(−1)2−4×1×(1m−1)≥0,4解得:m≤5,5.下表列出了函数y=ax2+bx+c(a、b、c是常数,且a≠0)的x与y的部分对应值,那么方程ax2+bx+c=0的一个根x的取值范围是()A. 6<x<6.17B. 6.17<x<6.18C. 6.18<x<6.19D. 6.19<x<6.20【答案】C【分析】本题考查了图象法求一元二次方程的近似解,解答此题的关键是利用函数的增减性.根据二次函数的增减性,可得答案.【解答】解:由表格中的数据,得在6.17<x<6.20范围内,y随x的增大而增大,当x=6.18时,y=−0.01,当x=6.19时,y=0.02,方程ax2+bx+c=0的一个根x的取值范围是6.18<x<6.19,6.已知二次函数y=ax2+bx+c的部分对应值如下表:x−3−2−1012345y1250−3−4−30512当函数值y<0时,x的取值范围是()A. x<0或x>2B. 0<x<2C. x<−1或x>3D. −1<x<3【答案】D【分析】此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值的取值范围,同学们应熟练掌握.由表格给出的信息可看出,二次函数y=ax2+bx+c的对称轴为直线x=1,函数有最小值,抛物线开口向上a>0,与x轴交于(−1,0)、(3,0)两点,根据二次函数的性质可得出y<0时,x的取值范围.【解答】解:根据表格中给出的二次函数图象的信息,对称轴为直线x=1,a>0,开口向上,与x轴交于(−1,0)、(3,0)两点,则当函数值y<0时,x的取值范围是−1<x<3.7.如图,二次函数y=ax2+bx+c的最大值为3,一元二次方程ax2+bx+c−m=0有实数根,则m的取值范围是()A. m≥3B. m≤3C. m≥−3D. m≤−3【答案】B【分析】本题主要考查二次函数图象与一元二次方程的关系,掌握二次函数图象与x轴交点的个数与一元二次方程根的个数的关系是解题的关键.方程ax2+bx+c−m=0有实数相当于y=ax2+bx+c(a≠0)平移m个单位与x轴有交点,结合图象可得出m的范围.【解答】解:方程ax2+bx+c−m=0有实数根,相当于y=ax2+bx+c(a≠0)平移m个单位与x轴有交点,又∵图象最高点y=3,∴二次函数最多可以向下平移三个单位,∴m≤3,二、填空题8.我们把函数在m≤x≤n上的最大图值和最小值的差称为区间极差,比如一次函数y=−x+1在−2≤x≤0上的最大值为3,最小值为1,所以一次函数y=−x+1在−2≤x≤0上的区间极差为3−1=2.若二次函数y=−x2+2x+3在−1≤x≤a 上的区间极差为4,则a的取值范围是____________.【答案】1⩽a⩽3【分析】本题考查二次函数的综合问题和其最值问题以及一元二次方程的求解,通过二次函数在−1≤x≤a的区间,求解a的范围。
含参数的二次函数在指定范围内的最值
含参数的二次函数在指定范围内的最值
在指定范围内,如何求含参数的二次函数的最值?
对于形如$y=ax^2+bx+c$的二次函数,如果想要求出其在
$xin[a,b]$范围内的最大值或最小值,可以采用以下方法:
1. 求导并令导数为零,得到极值点的横坐标$x_0$,并判断
$x_0$是否在$[a,b]$范围内。
2. 求出函数在$a,b$以及$x_0$处的函数值$y_a,y_b,y_0$。
3. 比较$y_a,y_b,y_0$三个数的大小,即可得出最大值或最小值。
需要注意的是,如果函数的参数$a$在指定范围内变化,那么最
大值或最小值也会随之变化。
因此,在求解过程中需要对参数进行分类讨论,分别计算不同参数取值下的最值。
- 1 -。
初中二次函数参数取值范围的解题思路和方法
初中二次函数参数取值范围的解题思路和方法二次函数参数取值范围的解题思路和方法主要包括以下几个步骤:1. 理解二次函数的基本形式:二次函数的一般形式为 $f(x) = ax^2 + bx + c$,其中 $a, b, c$ 是常数,且 $a \neq 0$。
2. 确定参数与函数性质的关系:开口方向:由 $a$ 决定。
当 $a > 0$ 时,抛物线开口向上;当 $a < 0$ 时,抛物线开口向下。
对称轴:由 $b$ 决定。
对称轴为 $x = -\frac{b}{2a}$。
顶点:坐标为 $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$。
与坐标轴的交点:令 $f(x) = 0$ 解得与 $x$ 轴的交点;令 $x =0$ 解得与 $y$ 轴的交点。
3. 根据题目要求求解参数范围:求最值:如果题目要求二次函数的最大值或最小值,可以通过顶点坐标或对称轴来求解。
求交点:如果题目要求二次函数与坐标轴的交点,可以令 $f(x) = 0$ 或 $x = 0$ 来求解。
求参数范围:根据题目给出的条件,如函数在某个区间上的单调性、与坐标轴的交点位置等,列出不等式或方程来求解参数的范围。
4. 验证解的有效性:解出参数后,需要代入原函数进行验证,确保解满足题目的所有条件。
下面是一个具体的例子:例:已知二次函数 $f(x) = x^2 - 2mx + m^2 + m - 2$,求 $m$ 的取值范围,使得函数在区间 $[1, 3]$ 上单调递减。
解:1. 确定对称轴:二次函数 $f(x) = x^2 - 2mx + m^2 + m - 2$ 的对称轴为$x = m$。
2. 判断单调性:由于二次项系数 $a = 1 > 0$,抛物线开口向上。
因此,函数在对称轴左侧单调递减,在对称轴右侧单调递增。
3. 求解参数范围:要使函数在区间 $[1, 3]$ 上单调递减,需要对称轴 $x = m$ 在区间 $[1, 3]$ 的右侧,即 $m \geq 3$。
二次函数专题——含参二次函数
含参的二次函数二次函数在初中的时候就比较重要,那么在高中阶段二次函数的考点更加重要,难度也会加大。
高中阶段比较喜欢考含有参数的二次函数,参数就会让函数形成一种动态,随着参数不同,函数是不一样的,这就使得本来简单的二次函数变得复杂起来。
例1. 求2()2f x x ax =-在[2,4]上的最大值和最小值。
解析:这道题因为参数的存在使得函数的本身是动的,在动的情况下考虑这个函数最大值和最小值的问题,这就涉及到高中比较爱考的一类问题,动轴定区间问题。
这道题中对称轴正好是x a =,随着a 不同,这个对称轴在变化,但是在给定区间上问最大值和最小值,那么就会有下面几种情况,在[2,4]这个区间上,有可能(1)这个对称轴不在这个区间里面这个时候的最大值最小值;也有可能(2)这个对称轴就在区间里面,这个时候的最值,还可能(3)对称轴在区间右侧这几个图针对这个函数并不严谨,上面的是一般函数的示意图,这道题中的函数一定是过原点的。
可以感受,随着a 的不同,最大值和最小值是不一样的,所以这种含参的动态的问题往往需要我们做的一个工作就是分类讨论。
那么函数在什么时候取到最大值呢,比如说(1),就会在4的地方取得最大值,(2)在4的地方取得最大值,(3)就会在2的地方取得最大值。
那么在整个函数的区间上,什么时候能取得最大值呢,我们就要看在这个区间上,哪个数离对称轴最远。
那么就有两种情况了,有的时候是2离得比较远,有的时候是4离得比较远,是怎么分界的呢?这个分界线就应该在2和4中间的位置上是3,当对称轴在3x =这条线左边的时候,对称轴离2就比较近,离4就比较远,对称轴在右边的时候,离2就比较近,离4就比较远。
因此这个函数的最大值,经过分类讨论之后,就会得到一个分段函数:max (4)=168(3)()(2)44(3)f a a f x f a a -≤⎧=⎨=->⎩也就是如果这个对称轴在3的左侧,也就是3a ≤的时候,离4远,在4处取得最大值,如果在右侧的话,也就是3a >的时候,离2远,在2处取得最大值。
参数范围问题常见解法
参数范围问题—常见解题6法求解参数的取值范围是一类常见题型.近年来在各地的模拟试题以及高考试题中更是屡屡出现.学生遇到这类问题,较难找到解题的切入点和突破口,下面介绍几种解决这类问题的策略和方法.一、确定“主元”思想常量与变量是相对的,一般地,可把已知范围的那个看作自变量,另一个看作常量.例1.对于满足0的一切实数,不等式x2+px>4x+p-3恒成立,求x的取值范围.分析:习惯上把x当作自变量,记函数y= x2+(p-4)x+3-p,于是问题转化为当p时y>0恒成立,求x的范围.解决这个问题需要应用二次函数以及二次方程实根分布原理,这是相当复杂的.若把x与p 两个量互换一下角色,即p视为变量,x为常量,则上述问题可转化为在[0,4]内关于p的一次函数大于0恒成立的问题.解:设f(p)=(x-1)p+x2-4x+3,当x=1时显然不满足题意.由题设知当0时f(p)>0恒成立,∴f(0)>0,f(4)>0即x2-4x+3>0且x2-1>0,解得x>3或x<-1.∴x的取值范围为x>3或x<-1.二、分离变量对于一些含参数的不等式问题,如果能够将不等式进行同解变形,将不等式中的变量和参数进行分离,即使变量和参数分别位于不等式的左、右两边,然后通过求函数的值域的方法将问题化归为解关于参数的不等式的问题。
例2.若对于任意角总有成立,求的范围.分析与解:此式是可分离变量型,由原不等式得,又,则原不等式等价变形为恒成立.根据边界原理知,必须小于的最小值,这样问题化归为怎样求的最小值.因为即时,有最小值为0,故.评析:一般地,分离变量后有下列几种情形:①f(x)≥g(k) [f(x)]min≥g(k)②f(x)> g(k) g(k) < [f(x)] min③f(x)≤g(k) [f(x)] max≤g(k)④f(x)<g(k) [f(x)] max < g(k)三、数形结合对于含参数的不等式问题,当不等式两边的函数图象形状明显,我们可以作出它们的图象,来达到解决问题的目的.例3.设,若不等式恒成立,求a的取值范围.分析与解:若设函数,则,其图象为上半圆.设函数,其图象为直线.在同一坐标系内作出函数图象如图,依题意要使半圆恒在直线下方,只有圆心到直线的距离且时成立,即a的取值范围为.四、分类讨论当不等式中左、右两边的函数具有某些不确定因素时,应用分类讨论的方法来处理,分类讨论可使原问题中的不确定因素变成确定因素,为问题的解决提供新的条件。
二次函数中的取值范围(最值)问题 - 学生版
二次函数中的取值范围(最值)问题班级:________ 姓名:_______复习:已知二次函数223y x x =--.(1)y 的取值范围是_______________________________________________________. (2)当24x <<时,y 的取值范围是_________________________________________. (3)当04x <<时,y 的取值范围是_________________________________________. (4)当0y >,x 的取值范围是______________________________________________. (5)当3y >-,x 的取值范围是_____________________________________________. (6)当1x a -≤≤时,y 有最小值4-,最大值0,则实数a 的取值范围是____________.方法归纳: x y ⎧⎪⎨⎪⎩求范围:_________________.求范围:_________________.参数范围:_________________. 大方向.⎧⎪⎨⎪⎩求值:_________________求范围:________________.一、最值计算 _________________________例1. (2014成都改编) 在美化校园的活动中,某综合实践小组的同学借如图所示的直角墙角(两边足够长),用8m 长的篱笆围成一个矩形的花圃ABCD (篱笆只围AB 、BC 两边)设AB =x m .若在点P 处有一棵小树与墙CD 、AD 的距离分别为5m 和2m ,要将这棵树围在花圃内(含边界,不考虑树干的粗细),求花圃面积y 的最大值.二、求参范围 _________________________ 题型一、增减性 _________________________例2. (1)抛物线22y x ax =-,当3x >时,y 随着x 的增大而增大,则实数a 的取值范围是______________.(2)抛物线221y ax x =++,当3x <时,y 随着x 的增大而增大,则实数a 的取值范围是___________.C题型二、图象求参 _________________________例3. (1)已知抛物线2y ax bx c =++的一段图象如图所示, 则a b c ++的取值范围是___________________.(2)已知抛物线2y ax bx c =++的图象如图所示, 则实数a 的取值范围是_________________________.题型三、交点判断 _________________________例4.(1)若抛物线2y x m =-与直线2y x =-最多有一个交点,则实数m 的取值范围是_____________.(2)(2017成都)若抛物线21142y x =-+与抛物线221(2)42y x m =--在y 轴右侧有两个不同的交点,则m 的取值范围是__________.思考题: _________________________(1)(轴动区间定)已知二次函数22y x ax =-,当14x -≤≤, y 有最小值-3,则a 的值为_______.(2)(轴定区间动)已知二次函数22y x x =-,当1a x a -≤≤时,y 有最小值3,则a 的值为_______.yx-1-1O习 题1. 若反比例函数ay x=的图象与直线2y x =+有两个交点,则a 的取值范围是_____________. 2. 若关于x 的方程22||x x a -=有4个实数根,则a 的取值范围是_______________________.3. 如图,直线y 1=kx +n (k ≠0)与抛物线y 2=ax 2+bx +c (a ≠0)分别交于 A (﹣1,0),B (2,﹣3)两点,则关于x 的不等式kx +n > ax 2+bx +c 的解为_____.4. 已知抛物线2(2)3y x m =-+,当1m x m <<+时,y 随着x 的增大而减小,则m 的取值范围是___________.5. (宿迁中考) 如图,在Rt △ABC 中,∠C =90°,AC =6cm ,BC =2cm ,点P 在边AC 上从点A 向点C 移动,点Q 在边CB 上从点C 向点B 移动.若点P ,Q 均以1cm /s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是__________.6. 已知抛物线221y ax x =-+,若对满足34x <<的任意x 都有0y >,则a 的取值范围是___________.7. 已知:二次函数2y ax bx c =++的图象如图所示,下列结论中:①0abc <; ②20a b +<;③()a b m am b +<+(1)m ≠;④22()a c b +<;⑤1a >。
专题01 二次函数范围问题(学生版)
专题01 二次函数范围问题1. (2022舟山中考)已知抛物线:()经过点.(1)求抛物的函数表达式.(2)将抛物线向上平移m ()个单位得到抛物线.若抛物线的顶点关于坐标原点O 的对称点在抛物线上,求m 的值.(3)把抛物线向右平移n ()个单位得到抛物线.已知点,都在抛物线上,若当时,都有,求n 的取值范围.1L 2(1)4y a x =+-0a ≠(1,0)A 1L 1L 0m >2L 2L 1L 1L 0n >3L (8,)P t s -(4,)Q t r -3L 6t >s r >2. (2022丽水中考)如图,已知点在二次函数的图象上,且.(1)若二次函数的图象经过点.①求这个二次函数的表达式;②若,求顶点到的距离;(2)当时,二次函数的最大值与最小值的差为1,点M ,N 在对称轴的异侧,求a的取值范围.()()1122,,,M x y N x y 2(2)1(0)y a x a =-->213x x -=(3,1)12y y =MN 12x x x ≤≤3.(2022嘉兴中考)已知抛物线L1:y=a(x+1)2-4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L1上,求m的值.(3)把抛物线L1向右平移n(n>0)个单位得到抛物线L3,若点B(1,y1),C(3,y2)在抛物线L3上,且y1>y2,求n的取值范围.4. (2022自贡中考)已知二次函数.(1)若,且函数图象经过,两点,求此二次函数的解析式,直接写出抛物线与轴交点及顶点的坐标;(2)在图①中画出(1)中函数的大致图象,并根据图象写出函数值时自变量的取值范围;(3)若且,一元二次方程 两根之差等于,函数图象经过,两点,试比较的大小.()20y ax bx c a =++≠1a =-()0,3()2,5-x 3y ≥x 0a b c ++=a b c >>20ax bx c ++=a c -121P c,y ⎛⎫- ⎪⎝⎭()132Q c,y +12,y y5. (2022长春中考) 在平面直角坐标系中,抛物线(b 是常数)经过点.点A 在抛物线上,且点A 的横坐标为m ().以点A 为中心,构造正方形,,且轴.(1)求该抛物线对应的函数表达式:(2)若点B 是抛物线上一点,且在抛物线对称轴左侧.过点B 作x 轴的平行线交抛物线于另一点C ,连接.当时,求点B 的坐标;(3)若,当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大时,或者y 随x 的增大而减小时,求m 的取值范围;(4)当抛物线与正方形的边只有2个交点,且交点的纵坐标之差为时,直接写出m 的值.2y x bx =-()2,00m ≠PQMN 2PQ m =PQ x ⊥BC 4BC =0m >PQMN 34两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D .其对称轴与线段BC 交于点E ,与x 轴交于点F .连接AC ,BD .(1)求A ,B ,C 三点的坐标(用数字或含m 的式子表示),并求的度数;(2)若,求m 的值;(3)若在第四象限内二次函数(m 是常数,且)的图像上,始终存在一点P ,使得,请结合函数的图像,直接写出m的取值范围.OBC ∠ACO CBD ∠=∠2221y x mx m =-+++0m >75ACP ∠=︒6. (2022苏州中考) 如图,在二次函数(m 是常数,且)的图像与x 轴交于A ,B 2221y x mx m =-+++0m >.点在此抛物线上,其横坐标为.(1)求此抛物线的解析式;(2)当点在轴上方时,结合图象,直接写出的取值范围;(3)若此抛物线在点左侧部分(包括点)的最低点的纵坐标为.①求值;②以为边作等腰直角三角形,当点在此抛物线的对称轴上时,直接写出点的坐标.的(0,3)B P m P x m P P 2m -m PA PAQ Q Q 7. (2022吉林中考)如图,在平面直角坐标系中,抛物线(,是常数)经过点,点2y x bx c =++b c (1,0)A(1)若,函数的图象经过点和点,求该函数的表达式和最小值;(2)若,,时,函数的图象与轴有交点,求的取值范围.(3)阅读下面材料:设,函数图象与轴有两个不同的交点,,若,两点均在原点左侧,探究系数,,应满足的条件,根据函数图像,思考以下三个方面:①因为函数的图象与轴有两个不同的交点,所以;②因为,两点在原点左侧,所以对应图象上的点在轴上方,即;③上述两个条件还不能确保,两点均在原点左侧,我们可以通过抛物线的对称轴位置来进一步限制抛物线的位置:即需.综上所述,系数,,应满足的条件可归纳为:请根据上面阅读材料,类比解决下面问题:若函数的图象在直线的右侧与轴有且只有一个交点,求的取值范围.1a =()1,4-()2,11a =2b =-1c m =+x m 0a >x A B A B a b c x 2Δ40b ac =->A B 0x =x 0c >A B 02b a-<a b c 20Δ40002a b ac c b a >⎧⎪=->⎪⎪>⎨⎪⎪-<⎪⎩223y ax x =-+1x =x a 8. (2022永州中考) 已知关于的函数.x 2y ax bx c =++(1)如图①,若抛物线图象与轴交于点,与轴交点.连接.①求该抛物线所表示的二次函数表达式;②若点是抛物线上一动点(与点不重合),过点作轴于点,与线段交于点.是否存在点使得点是线段的三等分点?若存在,请求出点的坐标;若不存在,请说明理由.(2)如图②,直线与轴交于点,同时与抛物线交于点,以线段为边作菱形,使点落在轴的正半轴上,若该抛物线与线段没有交点,求的取值范围.x ()3,0A y ()0,3B -AB P A P PH x ⊥H AB M P M PH P 43y x n =+y C 2y x bx c =++()3,0D -CD CDFE F x CE b 9. (2022湘潭中考)已知抛物线.2y x bx c =++点C ,线段CB ∥x 轴,交该抛物线于另一点B .(1)求点B 的坐标及直线AC 的解析式;(2)当二次函数y =x 2﹣2x ﹣3的自变量x 满足m ≤x ≤m+2时,此函数的最大值为p ,最小值为q ,且p ﹣q =2,求m 的值;(3)平移抛物线y =x 2﹣2x ﹣3,使其顶点始终在直线AC 上移动,当平移后的抛物线与射线BA 只有一个公共点时,设此时抛物线的顶点的横坐标为n ,请直接写出n的取值范围.10.(2022天门中考)(12分)如图,在平面直角坐标系中,已知抛物线y =x 2﹣2x ﹣3的顶点为A ,与y 轴交于线由直线平移得到,与轴交于点.四边形的四个顶点的坐标分别为,,,.(1)填空:______,______;(2)若点在第二象限,直线与经过点的双曲线有且只有一个交点,求的最大值;(3)当直线与四边形、抛物线都有交点时,存在直线,对于同一条直线上的交点,直线与四边形的交点的纵坐标都不大于它与抛物线的交点的纵坐标.①当时,直接写出的取值范围;②求的取值范围.l BC y ()0,E n MNPQ ()1,3M m m ++()1,N m m +()5,P m m +()5,3Q m m ++=a b =M l M k y x=2n l MNPQ 22y ax bx =+-l l l MNPQ 22y ax bx =+-3m =-n m 11. (2022宜昌中考) 已知抛物线与轴交于,两点,与轴交于点.直22y ax bx =+-x ()1,0A -()4,0B y C象中y 轴左侧部分沿x 轴翻折,保留其他部分得到新的图象C .(1)求b 的值;(2)①当时,图象C 与x 轴交于点M ,N (M 在N 的左侧),与y 轴交于点P .当为直角三角形时,求m 的值;②在①的条件下,当图象C 中时,结合图象求x 的取值范围;(3)已知两点,当线段与图象C 恰有两个公共点时,直接写出m的取值范围.0m <MNP △40y -≤<(1,1),(5,1)A B ---AB 12.(2022大庆中考) 已知二次函数图象的对称轴为直线.将二次函数图2y x bx m =++2x =2y x bx m =++13. 已知抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧).(1)求点A ,点B 的坐标;(2)如图,过点A 的直线与抛物线的另一个交点为C ,点P 为抛物线对称轴上的一点,连接,设点P 的纵坐标为m ,当时,求m 的值;(3)将线段AB 先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN ,若抛物线与线段MN 只有一个交点,请直接写出a的取值范围.2y x 2x 3=-++:1l y x =--PA PC 、PA PC =2(23)(0)y a x x a ++≠=-14. (2022北京中考) 在平面直角坐标系中,点在抛物线上,设抛物线的对称轴为(1)当时,求抛物线与y 轴交点的坐标及的值;(2)点在抛物线上,若求的取值范围及的取值范围.xOy (1,),(3,)m n 2(0)y ax bx c a =++>.x t =2,c m n ==t 00(,)(1)x m x ≠,m n c <<t 0x15.(2022江西中考)(9分)跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点为飞行距离计分的参照点,落地点超过点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度为,基准点到起跳台的水平距离为,高度为为定值).设运动员从起跳点起跳后的高度与水平距离之间的函数关系为.(1)的值为 ;(2)①若运动员落地点恰好到达点,且此时,,求基准点的高度;②若时,运动员落地点要超过点,则的取值范围为 ;(3)若运动员飞行的水平距离为时,恰好达到最大高度,试判断他的落地点能否超过点,并说明理由.K K OA 66m K 75m h (m h A ()y m ()x m 2(0)y ax bx c a =++≠c K 150a =-910b =K h 150a =-Kb 25m 76m K16. (2022安徽中考)如图1,隧道截面由抛物线的一部分AED 和矩形ABCD 构成,矩形的一边BC 为12米,另一边AB 为2米.以BC 所在的直线为x 轴,线段BC 的垂直平分线为y 轴,建立平面直角坐标系xOy ,规定一个单位长度代表1米.E (0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式;(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点,在x轴上,MN 与矩形的一边平行且相等.栅栏总长l 为图中粗线段,,,MN 长度之和.请解决以下问题:(ⅰ)修建一个“”型栅栏,如图2,点,在抛物线AED 上.设点横坐标为,求栅栏总长l 与m 之间的函数表达式和l 的最大值;(ⅱ)现修建一个总长为18的栅栏,有如图3所示的修建“”型或“”型栅型两种设计方案,请你从中选择一种,求出该方案下矩形面积的最大值,及取最大值时点的横坐标的取值范围(在右侧).的1P 4P 1234PP P P 12PP 23P P 34P P 2P 3P 1P ()06m m <≤1234PP P P 1P 1P 4P。
中考热点,二次函数区间范围的最值问题
中考热点,二次函数区间范围的最值问题二次函数最值问题的重要性毋庸置疑,其贯穿了整个中学数学,是中学数学的重要内容之一,也是学好中学数学必须攻克的极为重要的问题之一。
二次函数在闭区间上的最值问题是二次函数最值问题的典型代表,其问题类型通常包括不含参数和含参数二次函数在闭区间上的最值问题、二次函数在闭区间上的最值逆向性问题以及可转化为二次函数在闭区间上最值的问题,在此类问题的解决过程中,涉及数形结合、分类讨论等重要数学思想与方法。
中考中多涉及到含参数二次函数在闭区间上的最值问题,很多学生不习惯数形结合及分类讨论思想的运用,导致解题失误或错误。
类型1 求解自变量在不同区间里二次函数最值1.(2019•大兴区一模)已知二次函数y=x2﹣2x+3,当自变量x满足﹣1≤x≤2时,函数y的最大值是.【解析】先根据二次函数的已知条件,得出二次函数的图象开口向上,再根据变量x在﹣2≤x≤1的范围内变化,再分别进行讨论,即可得出函数y的最大值.∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴该抛物线的对称轴为x=1,且a=1>0,∴当x=1时,函数有最小值2,当x=﹣1时,二次函数有最大值为:(﹣1﹣1)2+2=6,故答案为6.2.(2019•新华区校级自主招生)已知函数y=x2﹣2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是()A.m≥1 B.0≤m≤2 C.1≤m≤2 D.m≤2【解析】:∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴抛物线开口向上,对称轴为x=1,顶点坐标为(1,2),与y轴的交点为(0,3).其大致图象如图所示:由对称性可知,当y=3时,x=0或x=2,∵二次函数y=x2﹣2x+3在闭区间[0,m]上有最大值3,最小值2,∴1≤m≤2.故选:C.3.(2019•郑州模拟)二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=.【解析】:y=x2﹣4x+a=(x﹣2)2+a﹣4,当x=2时,函数有最小值a﹣4,∵二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,﹣2≤x≤3,y随x的增大而增大,∴a﹣4=﹣3,∴a=1,故答案为1.4.(2019•邯郸模拟)对于题目“二次函数y=3/4(x﹣m)2+m,当2m﹣3≤x≤2m时,y的最小值是1,求m的值.”甲的结果是m=1,乙的结果是m =﹣2,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【解析】根据对称轴的位置,分三种情况讨论求解即可求得答案,然后判断即可.二次函数的对称轴为直线x=m,①m<2m﹣3时,即m>3,y的最小值是当x=2m﹣3时的函数值,此时3/4(2m﹣3﹣m)2+m=1,因为方程无解,故m值不存在;②当2m﹣3≤m≤2m时,即0≤m≤3时,二次函数有最小值1,此时,m=1,③当m>2m时,即m<0,y的最小值是当x=2m时的函数值,此时,3/4(2m﹣m)2+m=1,解得m=﹣2或m=2/3,∵m<0,∴m=﹣2,所以甲、乙的结果合在一起正确,故选:C.类型2 二次函数区间最值解决实际问题利用二次函数解决实际问题,最常见的为利润问题和费用最低等问题,首先根据题中常见的等量关系建立二次函数模型,然后利用二次函数确定最值,注意要考虑自变量在实际问题中的取值范围。
构造二次函数求参数取值范围
构造二次函数求参数取值范围要构造一个二次函数,并求出参数的取值范围,我们需要考虑以下几点:1. 二次函数的一般形式是:f(x) = ax^2 + bx + c,其中a,b,c是实数且a不等于0。
2.二次函数的图像是一个抛物线,可以开口向上或向下。
3.二次函数的图像和参数a的正负有关系:-当a>0时,抛物线开口向上;-当a<0时,抛物线开口向下。
我们以数学分析为例来说明二次函数的参数取值范围。
一、二次函数的参数a的取值范围:我们知道,二次函数的图像是一个抛物线,开口向上或向下取决于参数a的正负。
因此,为了确定参数a的取值范围,我们需要考虑以下几种情况:1.当抛物线开口向上时,即a>0的情况下,我们可以得到以下结论:-当a>0,抛物线开口向上,抛物线的最低点(顶点)在x轴上方。
此时,取x为实数,y的取值范围为(-∞,正无穷)。
-直线y=x的图像与抛物线的交点的y值,即为参数a的取值范围的下限。
2.当抛物线开口向下时,即a<0的情况下,我们可以得到以下结论:-当a<0,抛物线开口向下,抛物线的最高点(顶点)在x轴下方。
此时,取x为实数,y的取值范围为(负无穷,+∞)。
-直线y=x的图像与抛物线的交点的y值,即为参数a的取值范围的上限。
二、二次函数的参数b的取值范围:参数b是二次函数中一次项的系数。
对于二次函数f(x) = ax^2 + bx + c,参数b的取值范围是整个实数范围,即(-∞,+∞)。
三、二次函数的参数c的取值范围:参数c是二次函数中常数项的系数。
对于二次函数f(x) = ax^2 + bx + c,参数c的取值范围是整个实数范围,即(-∞,+∞)。
综上所述,二次函数的参数取值范围为:-参数a的取值范围是(-∞,直线y=x的与抛物线的交点的y值](抛物线开口向上)或[直线y=x的与抛物线的交点的y值,+∞)(抛物线开口向下)。
-参数b的取值范围是(-∞,+∞)。
二次函数含参数分类讨论综合问题(函数)-全国各地2019中考数学压轴题函数大题题型分类汇编(解析版)
2019全国各地中考数学压轴大题函数综合八、二次函数含参数分类讨论综合问题1.(2019•宁波)如图,已知二次函数y=x2+ax+3的图象经过点P(﹣2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.解:(1)把点P(﹣2,3)代入y=x2+ax+3中,∴a=2,∴y=x2+2x+3,∴顶点坐标为(﹣1,2);(2)①当m=2时,n=11,②点Q到y轴的距离小于2,∴|m|<2,∴﹣2<m<2,∴2≤n<11;2.(2019•杭州)设二次函数y=(x﹣x1)(x﹣x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=时,y=﹣.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<.解:(1)当x=0时,y=0;当x=1时,y=0;∴二次函数经过点(0,0),(1,0),∴x1=0,x2=1,∴y═x(x﹣1)=x2﹣x,当x=时,y=﹣,∴乙说点的不对;(2)对称轴为x=,当x=时,y=﹣是函数的最小值;(3)二次函数的图象经过(0,m)和(1,n)两点,∴m=x1x2,n=1﹣x1﹣x2+x1x2,∴mn=[﹣][﹣]∵0<x1<x2<1,∴0≤﹣≤,0≤﹣≤,∴0<mn<.3.(2019•温州)如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n 的值.解:(1)令y=0,则﹣,解得,x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),由函数图象得,当y≥0时,﹣2≤x≤6;(2)由题意得,B1(6,m),B2(6﹣n,m),B3(﹣n,m),函数图象的对称轴为直线,∵点B2,B3在二次函数图象上且纵坐标相同,∴,∴n=1,∴,∴m,n的值分别为,1.4.(2019•台州)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.解:(1)将点(﹣2,4)代入y=x2+bx+c,得﹣2b+c=0,∴c=2b;(2)m=﹣,n=,∴n=,∴n=2b﹣m2,(3)y=x2+bx+2b=(x+)2﹣+2b,对称轴x=﹣,当b≤0时,c≤0,函数不经过第三象限,则c=0;此时y=x2,当﹣5≤x≤1时,函数最小值是0,最大值是25,∴最大值与最小值之差为25;(舍去)当b>0时,c>0,函数不经过第三象限,则△≤0,∴0≤b≤8,∴﹣4≤x=﹣≤0,当﹣5≤x≤1时,函数有最小值﹣+2b,当﹣5≤﹣<﹣2时,函数有最大值1+3b,当﹣2<﹣≤1时,函数有最大值25﹣3b;函数的最大值与最小值之差为16,当最大值1+3b时,1+3b+﹣2b=16,∴b=6或b=﹣10,∵4≤b≤8,∴b=6;当最大值25﹣3b时,25﹣3b+﹣2b=16,∴b=2或b=18,∵2≤b≤4,∴b=2;综上所述b=2或b=6;5.(2019•天门)在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A(﹣3,﹣3),B(1,﹣1)均在直线l上.(1)若抛物线C与直线l有交点,求a的取值范围;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.解:(1)点A(﹣3,﹣3),B(1,﹣1)代入y=kx+b,∴,∴,∴y=x﹣;联立y=ax2+2x﹣1与y=x﹣,则有2ax2+3x+1=0,∵抛物线C与直线l有交点,∴△=9﹣8a≥0,∴a≤且a≠0;(2)根据题意可得,y=﹣x2+2x﹣1,∵a<0,∴抛物线开口向下,对称轴x=1,∵m≤x≤m+2时,y有最大值﹣4,∴当y=﹣4时,有﹣x2+2x﹣1=﹣4,∴x=﹣1或x=3,①在x=1左侧,y随x的增大而增大,∴x=m+2=﹣1时,y有最大值﹣4,∴m=﹣3;②在对称轴x=1右侧,y随x最大而减小,∴x=m=3时,y有最大值﹣4;综上所述:m=﹣3或m=3;(3)①a<0时,x=1时,y≤﹣1,即a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,即a≥,直线AB的解析式为y=x﹣,抛物线与直线联立:ax2+2x﹣1=x﹣,∴ax2+x+=0,△=﹣2a>0,∴a<,∴a的取值范围为≤a<或a≤﹣2;6.(2019•大连)把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).(1)填空:t的值为2m﹣1(用含m的代数式表示)(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.解:(1)C1:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,顶点(1,﹣4a)围绕点P(m,0)旋转180°的对称点为(2m﹣1,4a),C2:y=﹣a(x﹣2m+1)2+4a,函数的对称轴为:x=2m﹣1,t=2m﹣1,故答案为:2m﹣1;(2)a=﹣1时,C1:y=﹣(x﹣1)2+4,①当t<1时,x=时,有最小值y2=,x=t时,有最大值y1=﹣(t﹣1)2+4,则y1﹣y2=﹣(t﹣1)2+4﹣=1,无解;②1≤t时,x=1时,有最大值y1=4,x=时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=≠1(舍去);③当t时,x=1时,有最大值y1=4,x=t时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=(t﹣1)2=1,解得:t=0或2(舍去0),故C2:y=(x﹣2)2﹣4=x2﹣4x;(3)m=0,C2:y=﹣a(x+1)2+4a,点A、B、D、A′、D′的坐标分别为(1,0)、(﹣3,0)、(0,3a)、(0,1)、(﹣3a,0),当a>0时,a越大,则OD越大,则点D′越靠左,当C2过点A′时,y=﹣a(0+1)2+4a=1,解得:a=,当C2过点D′时,同理可得:a=1,故:0<a或a≥1;当a<0时,当C2过点D′时,﹣3a=1,解得:a=﹣,故:a≤﹣;综上,故:0<a或a≥1或a≤﹣.7.(2019•贵阳)如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且关于直线x=1对称,点A的坐标为(﹣1,0).(1)求二次函数的表达式;(2)连接BC,若点P在y轴上时,BP和BC的夹角为15°,求线段CP的长度;(3)当a≤x≤a+1时,二次函数y=x2+bx+c的最小值为2a,求a的值.解:(1)∵点A(﹣1,0)与点B关于直线x=1对称,∴点B的坐标为(3,0),代入y=x2+bx+c,得:,解得,所以二次函数的表达式为y=x2﹣2x﹣3;(2)如图所示:由抛物线解析式知C(0,﹣3),则OB=OC=3,∴∠OBC=45°,若点P在点C上方,则∠OBP=∠OBC﹣∠PBC=30°,∴OP=OB tan∠OBP=3,∴CP=3;若点P在点C下方,则∠OBP′=∠OBC+∠P′BC=60°,∴OP′=OB tan∠OBP′=33,∴CP=33;综上,CP的长为3或33;(3)若a+1<1,即a<0,则函数的最小值为(a+1)2﹣2(a+1)﹣3=2a,解得a=1(正值舍去);若a<1<a+1,即0<a<1,则函数的最小值为1﹣2﹣3=2a,解得:a=﹣2(舍去);若a>1,则函数的最小值为a2﹣2a﹣3=2a,解得a=2(负值舍去);综上,a的值为1或2.8.(2019•天津)已知抛物线y=x2﹣bx+c(b,c为常数,b>0)经过点A(﹣1,0),点M(m,0)是x轴正半轴上的动点.(Ⅰ)当b=2时,求抛物线的顶点坐标;(Ⅱ)点D(b,y D)在抛物线上,当AM=AD,m=5时,求b的值;(Ⅲ)点Q(b+,y Q)在抛物线上,当AM+2QM的最小值为时,求b的值.解:(Ⅰ)∵抛物线y=x2﹣bx+c经过点A(﹣1,0),∴1+b+c=0,即c=﹣b﹣1,当b=2时,y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4);(Ⅱ)由(Ⅰ)知,抛物线的解析式为y=x2﹣bx﹣b﹣1,∵点D(b,y D)在抛物线y=x2﹣bx﹣b﹣1上,∴y D=b2﹣b•b﹣b﹣1=﹣b﹣1,由b>0,得b>>0,﹣b﹣1<0,∴点D(b,﹣b﹣1)在第四象限,且在抛物线对称轴x=的右侧,如图1,过点D作DE⊥x轴,垂足为E,则点E(b,0),∴AE=b+1,DE=b+1,得AE=DE,∴在Rt△ADE中,∠ADE=∠DAE=45°,∴AD=AE,由已知AM=AD,m=5,∴5﹣(﹣1)=(b+1),∴b=3﹣1;(Ⅲ)∵点Q(b+,y Q)在抛物线y=x2﹣bx﹣b﹣1上,∴y Q=(b+)2﹣b(b+)﹣b﹣1=﹣﹣,可知点Q(b+,﹣﹣)在第四象限,且在直线x=b的右侧,∵AM+2QM=2(AM+QM),∴可取点N(0,1),如图2,过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,由∠GAM=45°,得AM=GM,则此时点M满足题意,过点Q作QH⊥x轴于点H,则点H(b+,0),在Rt△MQH中,可知∠QMH=∠MQH=45°,∴QH=MH,QM=MH,∵点M(m,0),∴0﹣(﹣﹣)=(b+)﹣m,解得,m=﹣,∵AM+2QM =,∴[(﹣)﹣(﹣1)]+2[(b +)﹣(﹣)]=,∴b=4.。
专题二次函数含参数最值问题(解析版)
培优专题01 二次函数含参数最值问题【题型目录】题型一:定轴动区间问题题型二:定区间动轴问题题型三:含绝对值二次函数问题题型四:定义域为[]n m ,,值域为[]kn km ,求参数问题题型五:二次函数值域包含性问题【典型例题】题型一:定轴动区间问题【例1】已知二次函数满足2()(0)f x ax bx c a =++≠,满足(1)()21f x f x x +-=-,且(0)0f =.(1)求()f x 的解析式;(2)当[]()2R x t t t ∈+∈,时,求函数()f x 的最小值()g t (用t 表示). 【答案】(1)()22f x x x =-(2)()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩【分析】(1)由题意可得0c ,再代入(1)()21f x f x x +-=-到2()(0)f x ax bx a =+≠,化简可求出,a b ,从而可求出()f x 的解析式.(2)求出抛物线的对称轴,然后分1,21t t ≥+≤和11t t <<+三种情况求解函数的最小值.【详解】(1)因为二次函数2()(0)f x ax bx c a =++≠,且满足(0)0f =,(1)()21f x f x x +-=-,所以0c ,()()221121221a x b x ax bx x ax a b x +++--=-⇒++=-,所以221a a b =⎧⎨+=-⎩ ,得12a b =⎧⎨=-⎩. 所以()22f x x x =-.(2)()22f x x x =-是图象的对称轴为直线1x =,且开口向上的二次函数.当1t ≥时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递增,则()()2min 2f x f t t t ==-;当21t +≤即1t ≤-时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递减,则()()()()22min 22222f x f t t t t t =+=+-+=+;当11t t <<+,即11t -<<时,()()()2min 11211f x f ==-=-;综上所述()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩. 【例2】已知定义在R 上的函数()f x ,满足()226f x x x -=--.(1)求()f x 的解析式.(2)若()f x 在区间[]0,m 上的值域为25,44⎡⎤--⎢⎥⎣⎦,写出实数m 的取值范围(不必写过程). (3)若()f x 在区间[],2t t +上的最小值为6,求实数t 的值. 【答案】(1)()234f x x x =--;(2)332m ≤≤;(3)4t =-或5t =. 【分析】(1)利用换元法即得;(2)由题可得()232524f x x ⎛⎫=-- ⎪⎝⎭,可得函数的最小值()254f x =-,结合条件进而即得; (3)分类讨论结合二次函数的性质即得.(1)∵()226f x x x -=--,令2u x =-,则2x u =-,∵()()()222226442634f u u u u u u u u =----=-+-+-=--,所以()234f x x x =--; (2)∵()2299325344424f x x x x ⎛⎫=-+--=-- ⎪⎝⎭, ∵当32x =时,32524f ⎛⎫=- ⎪⎝⎭, 当()4f x =-时,2434x x -=--,解得:0x =或3x =,∵()f x 在区间[]0,m 上的值域为25,44⎡⎤--⎢⎥⎣⎦, ∵332m ≤≤;(3)∵()234f x x x =--,对称轴为32x =, 当322t +<时,则21t <-,函数在[],2t t +上单调递减, 当2x t =+时,函数的最小值()()()2223246f t t t +=+-+-=,解得4t =-或3t =(舍);当322t t ≤≤+时,则1322t -≤≤, 则此时,当32x =时,函数的最小值()2564f x =-≠,不符合题意; 当32t >时,函数在[],2t t +上单调递增, 当x t =时,()2346f t t t =--=,解得:2t =-或5t =,∵32t >, ∵2t =-(舍),故5t =;综上:4t =-或5t =.【例3】对于函数()f x ,若存在0R x ∈,使得00f x x =成立,则称0x 为()f x 的不动点,已知函数2()(2)4f x ax b x =+++的两个不动点分别是-2和1.(1)求,a b 的值及()f x 的表达式;(2)当函数()f x 的定义域是[,1]t t +时,求函数()f x 的最大值()g t .【答案】(1)23a b =-⎧⎨=-⎩,()224f x x x =--+ (2)()225251,43351,844124,4t t t g t t t t t ⎧--+≤-⎪⎪⎪=-<≤-⎨⎪⎪--+>-⎪⎩【分析】(1)根据不动点可列方程求解,a b ,(2)分类讨论定义域与对称轴的位置关系,结合二次函数的单调性即可求解.(1)依题意得()()2211f f -=-⎧⎪⎨=⎪⎩,即()42242241a b a b ⎧-++=-⎨+++=⎩ , 解得23a b =-⎧⎨=-⎩. ()224f x x x ∴=--+.(2)∵当区间[],1t t +在对称轴14x =-左侧时,即114t +≤-,也即54t ≤-时,()f x 在[],1t t +单调递增,则最大值为()21251f t t t +=--+;∵当对称轴14x =-在[],1t t +内时,即114t t <-<+也即5144t -<<-时,()f x 的最大值为13348f ⎛⎫-= ⎪⎝⎭. ∵当[],1t t +在14x =-右侧时,即14t ≥-时,()f x 在[],1t t +单调递减,则最大值为()224f t t t =--+. 所以()225251,43351,844124,4t t t g t t t t t ⎧--+≤-⎪⎪⎪=-<≤-⎨⎪⎪--+>-⎪⎩. 【例4】已知函数()f x 为二次函数,不等式()0f x >的解集是1,5,且()f x 在区间[1,4]-上的最小值为12-.(1)求()f x 的解析式;(2)设函数()f x 在[,1]t t +上的最大值为()g t ,求()g t 的表达式.【答案】(1)()265f x x x =-+-(2)()224,24,2365,3t t t g t t t t t ⎧-+≤⎪=<<⎨⎪-+-≥⎩【分析】(1)根据题意,设()()1(5)f x a x x =--,可得函数的对称轴3x =,再根据函数在[]1,4-上的最小值,求出a ,可得函数()f x 数的表达式;(2)分13t +时、3t 时和23t <<时三种情况,分别讨论函数的单调性,可得相应情况下函数的最大值,最后综合可得()g t 的表达式.(1)解:因为不等式()0f x >的解集是()1,5,所以()0f x =的两根为1和5,且函数开口向下,故可设()()()15f x a x x =--()0a <,所以函数的对称轴为1532x +==,所以当[]1,4x ∈-时,()()min 11212f x f a =-==-,解得1a =-,故()()()15f x x x =---,即()265f x x x =-+-(2)解:因为()()226534f x x x x =-+-=--+,当13t +≤时,即2t ≤时,()f x 在[],1t t +上单调递增,所以 ()()214g t f t t t =+=-+,当31t t <<+时,即23t <<时,()f x 在[],3t 上单调递增,在(]3,1t +上单调递减,所以()()34g t f ==;当3t ≥时,()f x 在[],1t t +上单调递减,所以()()265g t f t t t ==-+-;综合以上得()224,24,2365,3t t t g t t t t t ⎧-+≤⎪=<<⎨⎪-+-≥⎩【例1】已知函数2()f x x mx m =-+-.(1)若函数()f x 在[]1,0-上单调递减,求实数m 的取值范围;(2)若当1x >时,()4f x <恒成立,求实数m 的取值范围;(3)是否存在实数m ,使得()f x 在[]2,3上的值域恰好是[]2,3?若存在,求出实数m 的值;若不存在,说明理由.【答案】(1)2m ≤-;(2)()225-∞+,;(3)存在,6m =. 【分析】(1)根据对称轴和区间端点的相对位置即可求得m 的取值范围.(2)分类讨论当1x >时函数的最大值小于4恒成立即可求得m 的取值范围.(3)分类讨论得函数的值域结合已知条件求得m 的值.【详解】(1)函数()f x 图象开口向下且对称轴是2m x =,要使()f x 在[1,0]-上单调递减,应满足12-≤m ,解得2-≤m .(2)函数()f x 图象的对称轴是2m x =. 当12m ≤时,()4f x <恒成立,故()114f =-<,所以2m ≤; 当12m >时,()4f x <恒成立,故22244160242m m m f m m m ⎛⎫=-+-<⇒--< ⎪⎝⎭; 所以2225m <<+综上所述:m 的取值范围()225-∞+, (3)当22≤m ,即4≤m 时,()f x 在[2,3]上递减, 若存在实数m ,使()f x 在[2,3]上的值域是[2,3],则(2)3,(3)2,f f =⎧⎨=⎩即423,932,m m m m -+-=⎧⎨-+-=⎩,此时m 无解. 当32≥m ,即6≥m 时,()f x 在[2,3]上递增,则(2)2,(3)3,f f =⎧⎨=⎩即422,933,m m m m -+-=⎧⎨-+-=⎩解得6m =. 当232m <<,即46m <<时,()f x 在[2,3]上先递增,再递减,所以()f x 在2m x =处取得最大值,则23222m m m f m m ⎛⎫⎛⎫=-+⋅-= ⎪ ⎪⎝⎭⎝⎭,解得2m =-或6,舍去. 综上可得,存在实数6m =,使得()f x 在[2,3]上的值域恰好是[2,3].【例2】已知二次函数()2f x ax bx c =++的图象过点()0,3,且不等式20ax bx c ++≤的解集为{}13x x ≤≤.(1)求()f x 的解析式:(2)若()()()24g x f x t x =--在区间[]1,2-上有最小值2,求实数t 的值.【答案】(1)()243f x x x =-+;(2)1±【分析】(1)根据题意得()30f c ==,又由一元二次不等式的解可知,1和3是方程230ax bx ++=的两根,利用根与系数的关系即可求参数,写出解析式;(2)由二次函数的开口及对称轴,结合其在闭区间上的最小值,讨论t ≤−1、−1<t <2、t ≥2三种情况下求符合条件的t 值即可.(1)由题意可得:()30f c ==∵不等式230ax bx ++≤的解集为{}13x x ≤≤,则230ax bx ++=的两根为1,3,且0a >∵=43=3b a a -⎧⎪⎪⎨⎪⎪⎩,解得=1=4a b -⎧⎨⎩故()243f x x x =-+(2)由(1)可得()()()22423g x f x t x x tx =--=-+的对称轴为=x t当1t ≤-时,则()g x 在[]1,2-上单调递增∵()()1242g x g t ≥-=+=,则1t =-当12t -<<时,则()g x 在[]1,t -上单调递减,在(],2t 上单调递增∵()()232g x g t t ≥=-=,则=1t 或1t =-(舍去)当2t ≥时,则()g x 在[]1,2-上单调递减∵()()2742g x g t ≥=-=,则54t =(舍去)综上所述:实数t 的值为1±.【例3】已知函数2()f x x ax b =++.(1)若函数()f x 在(1,)+∞上是增函数,求实数a 的取值范围;(2)若不等式()0f x ≤的解集为{|02}x x ≤≤,求,a b 的值;(3)若1b =时,求[0,3]x ∈时()f x 的最小值()g a . 【答案】(1)[2,)-+∞;(2)2a =-,0b =;(3)21,0()1,604103,6a a g a a a a ≥⎧⎪⎪=--<<⎨⎪+≤-⎪⎩ 【分析】(1)根据函数()f x 的对称轴为2a x =-,且在(1,)+∞上是增函数,可得12a -≤,由此求得a 的范围; (2)由题意得0,2是方程的两个实数根,利用一元二次方程根与系数的关系,求出,ab 的值; (3)根据()f x 的对称轴和区间的关系分类讨论,根据函数的单调性求得()g a .(1)∵函数2()f x x ax b =++的对称轴为2a x =-,且()f x 在(1,)+∞上是增函数, ∵12a -≤,解得2a ≥-, ∵实数a 的取值范围是[2,)-+∞.(2)若不等式()0f x ≤的解集为{|02}x x ≤≤,则0,2是方程20x ax b ++=的两个实数根,∵0202a b +=-⎧⎨⨯=⎩,∵20a b =-⎧⎨=⎩. (3)若1b =,则2()1=++f x x ax ,对称轴为2a x =-, 当02a -≤,即0a ≥时,函数()f x 在到[0,3]单调递增, 则()()min 01f x f ==,当032a <-<,即60a -<<时, 函数()f x 在0,2a ⎛⎫- ⎪⎝⎭单调递减,在,32a ⎛⎫- ⎪⎝⎭单调递增, 则()222min112424a a a a f x f ⎛⎫=-=-+=- ⎪⎝⎭, 当32a -≥,即6a ≤-时,函数()f x 在[0,3]单调递减, 则()()min 3103f x f a ==+,综上,21,0()1,604103,6a a g a a a a ≥⎧⎪⎪=--<<⎨⎪+≤-⎪⎩. 【例4】已知函数()223f x x bx =-+,Rb ∈.(1)若函数()f x 的图象经过点()4,3,求实数b 的值;(2)在(1)条件下,求不等式()0f x <的解集;(3)当[]1,2x ∈-时,函数()y f x =的最小值为1,求当[]1,2x ∈-时,函数()y f x =的最大值.【答案】(1)2b =;(2){}13x x <<;(3)当1b ≤-时,()f x 的最大值为13,当12b -<<时,()f x 最大值为422+.【分析】(1)由题可得()43f =,进而即得;(2)利用二次不等式的解法即得;(3)对()f x 的对称轴与区间[]1,2-的关系进行分情况讨论,判断()f x 的单调性,利用单调性解出b ,再求出最大值.(1)由题可得()244833f b =-+=,∵2b =;(2)由()2430f x x x =-+<,解得13x <<,所以不等式()0f x <的解集为{}13x x <<;(3)因为2()23f x x bx =-+是开口向上,对称轴为x b =的二次函数,∵若1b ≤-,则()f x 在[]1,2-上是增函数,∵min ()(1)421f x f b =-=+=,解得32b =-, ∵max ()(2)7413f x f b ==-=;∵若2b ≥,则()f x 在[]1,2-上是减函数,∵min ()(2)741f x f b ==-=,解得32b =(舍); ∵若12b -<<,则()f x 在[]1,b -上是减函数,在(],2b 上是增函数;∵2min ()()31f x f b b ==-=,解得2b =或2b =-(舍).∵max ()(1)42422f x f b =-=+=+;综上,当1b ≤-时,()f x 的最大值为13,当12b -<<时,()f x 最大值为422+.【例5】在∵[]2,2x ∀∈-,∵[]1,3x ∃∈这两个条件中任选一个,补充到下面问题的横线中,并求解该问题.已知函数()24f x x ax =++.(1)当2a =-时,求函数()f x 在区间[]22-,上的值域; (2)若______,()0f x ≥,求实数a 的取值范围.【答案】(1)[]3,12(2)答案见解析【分析】(1)利用二次函数的性质直接求解其值域,(2)若选条件∵,求出抛物线的对称轴,分22a -≤-,222a -<-<和22a -≥三种情况求出函数的最小值,使最小值大于等于零,即可求出a 的取值范围,若选条件∵,则()max 0f x ≥,由抛物线的性质可得()10f ≥或()30f ≥,从而可求出a 的取值范围.(1)当2a =-时,()()222413f x x x x =-+=-+,∵()f x 在[]2,1-上单调递减,在[]1,2上单调递增,∵()()min 13f x f ==,()()max 212f x f =-=,∵函数()f x 在区间[]22-,上的值域为[]3,12. (2)方案一:选条件∵.由题意,得()22424a a f x x ⎛⎫=++- ⎪⎝⎭. 若22a -≤-,即4a ≥,则函数()f x 在区间[]22-,上单调递增, ∵()()min 2820f x f a =-=-≥,解得4a ≤,又4a ≥,∵a =4.若222a -<-<,即44a -<<,则函数()f x 在区间2,2a ⎡⎤--⎢⎥⎣⎦上单调递减,在区间,22a ⎡⎤-⎢⎥⎣⎦上单调递增, ∵()2min 4024a a f x f ⎛⎫=-=-≥ ⎪⎝⎭, 解得44a -≤≤,∵44a -<<.若22a -≥,即4a ≤-,则函数()f x 在区间[]22-,上单调递减, ∵()()min 2820f x f a ==+≥,解得4a ≥-,又4a ≤-,∵a =-4.综上所述,实数a 的取值范围为[]4,4-. 方案二:选条件∵. ∵[]1,3x ∃∈,()0f x ≥, ∵()max 0f x ≥,∵函数()f x 的图象是开口向上的抛物线,最大值只可能在区间端点处取得. ∵()10f ≥或()30f ≥,解得5a ≥-或133a ≥-, ∵5a ≥-.故实数a 的取值范围为[)5,-+∞. 【例1】已知二次函数()()20,,,f x ax bx c a a b c =++>∈R ,()11f -=,对任意x ∈R ,()()2f x f x +=-,且()0f x x +≥恒成立. (1)求二次函数()f x 的解析式;(2)若函数()()42g x f x x x λ=++-的最小值为5,求实数λ的值. 【答案】(1)()2111424f x x x =-+,(2)174λ=± 【分析】(1)根据()()2f x f x +=-得到420a b +=,根据()0f x x +≥恒成立得到a c =,结合()11f a b c -=-+=,求出11,42a b ==-,14c =,求出二次函数解析式;(2)结合第一问,将()()42g x f x x x λ=++-写出分段函数,分12λ<-,1122λ-≤≤与12λ>三种情况,结合函数单调性,最小值为5,列出方程,求出实数λ的值. 【详解】(1)由题意得:()11f a b c -=-+=,且0a ≠,()()210f x x ax b x c +=+++≥恒成立,故()2Δ140a b ac >⎧⎪⎨=+-≤⎪⎩, 将1b a c +=+代入()2140b ac +-≤中,()20a c -≤, 故a c =,从而21a b c a b -+=-=,由()()2f x f x +=-得:()()()22222f x a x b x c ax bx c +=++++=-+,整理得()42420a b x a b +++=,故420a b +=, 联立21a b -=与420a b +=,解得:11,42a b ==-,故14c a ==, 二次函数解析式为()2111424f x x x =-+; (2)函数()()2421g x f x x x x x λλ=++-=++-的最小值为5,()2222131,24131,24x x x x g x x x x x λλλλλλ⎧⎛⎫+-+=+-+≥⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪-++=-++< ⎪⎪⎝⎭⎩, 且()21g λλ=+,即在端点处分段函数的函数值相等,当12λ<-时,()g x 在12x <-上单调递减,在21x ≥-上单调递增,故()g x 在12x =-处取得最小值,即354λ-+=,解得:17142λ=-<-,符合要求;当1122λ-≤≤时,()g x 在x λ<上单调递减,在x λ≥上单调递增, 故()g x 在x λ=处取得最小值,即215λ+=,解得:2λ=±,不合题意,舍去; 当12λ>时,()g x 在12x <上单调递减,在12x ≥上单调递增,故()g x 在12x =处取得最小值,即354λ+=,解得:17142λ=>,符合要求;综上:174λ=±. 【例2】已知函数()R a a x x x f ∈-+=,22. (1)若()x f 为偶函数,求a 的值;(2)若函数()()2+=x af x g 的最小值为8,求a 的值. 【答案】(1)0,(2)2【分析】(1)利用偶函数的定义,列出关系式,即可求出a 的值; (2)化简函数为分段函数,通过讨论a 的范围,列出关系式求解即可.【详解】(1)因为f (x )是偶函数,所以f (-x )=f (x ), 故x 2+2|-x -a |=x 2+2|x -a |,所以|x +a |=|x -a |,即x 2+2ax +a 2=x 2-2ax +a 2,化简得4ax =0, 因为x ∵R ,所以a =0.(2)22222(1)22,()()222(1)22,a x a a x ag x af x ax a x a a x a a x a ⎧+--+=+=+-+=⎨-+-+<⎩∵若a =0,则g (x )=2,不合题意; ∵若a <0,则g (x )无最小值,不合题意; ∵若0<a ≤1,当x ≥a 时,g (x )在[a ,+∞)上单调递增,g (x )≥g (a ); 当x <a 时,g (x )在(-∞,a )上单调递减,g (x )>g (a ).所以,g (x )的最小值为g (a )=a 3+2=8,所以a =36>1,舍去; ∵若a >1,当x ≥a 时,g (x )在[a ,+∞)上单调递增,g (x )≥g (a );当x <a 时,g (x )在(-∞,1]上单调递减,在(1,a )内单调递增,所以g (x )≥g (1), 因为g (1)<g (a ),所以g (x )的最小值为g (1)=2a 2-a +2=8,所以a =32-(舍去)或a =2,综上所述,a =2.【例3】已知函数()||1()f x x x a x =--+∈R .(1)当2a =时,试写出函数()()g x f x x =-的单调递增区间; (2)若函数()f x 在[1,4]上的最小值是3-,求a 的值 【答案】(1)单调递增区间为3,22⎛⎫⎪⎝⎭;(2)3或4【分析】(1)当2a =时,求出()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩,利用二次函数的性质确定函数的单调区间;(2)分1a <,12a ≤<,24a ≤<,48a ≤<和8a ≥五种情况进行讨论,结合函数的图象得到对应的最小值,即可得到答案 (1)当2a =时,()()2221(2)21212x x x f x x x x x x ⎧-+<⎪=--+=⎨-++≥⎪⎩, 所以()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩, 当2x <时,231y x x =-+,其图象开口向上,对称轴方程为32x =, 所以()g x 在3,2⎛⎤-∞ ⎥⎝⎦上单调递减,在3,22⎛⎫⎪⎝⎭上单调递增;当2x ≥时,21y x x =-++,其图象开口向下,对称轴方程为12x =, 所以()g x 在[2,)+∞上单调递减,综上可知,()g x 的单调递增区间为3,22⎛⎫⎪⎝⎭;(2)当1a <时,()224()124a a f x x x a x +⎛⎫=--+=--+ ⎪⎝⎭,因为122a <,所以()min ()44153f x f a ==-=-,解得3a =,故舍去; 当12a ≤<时,()22224,4244,124a a x a x f x a a x x a ⎧+⎛⎫--+≤≤⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪-+≤< ⎪⎪⎝⎭⎩, 因为1122a≤<,所以()f x 在[]1a ,递增,在[],4a 递减, 所以()f x 的最小值在()1f 或()4f 中取,且()22411224a a f a -⎛⎫=-+=- ⎪⎝⎭,()2244441524a a f a +⎛⎫=--+=- ⎪⎝⎭,若()f x 的最小值为()123f a =-=-,解得5a =,故舍去; 若()f x 的最小值为()44153f a =-=-,解得3a =,故舍去;当24a ≤<时,()22224,4244,124a a x a x f x a a x x a ⎧+⎛⎫--+≤≤⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪-+≤< ⎪⎪⎝⎭⎩,因为122a ≤<,所以()f x 在12a ⎡⎤⎢⎥⎣⎦,递减,在,2a a ⎡⎤⎢⎥⎣⎦递增,在[],4a 递减, 所以()f x 的最小值在2a f ⎛⎫⎪⎝⎭或()4f 中取,若()f x 的最小值为24324a af -⎛⎫==- ⎪⎝⎭,解得4a =±,故舍去; 若()f x 的最小值为()44153f a =-=-,解得3a =, 检验:353224a f f ⎛⎫⎛⎫==->- ⎪ ⎪⎝⎭⎝⎭,故满足;当48a ≤<时,()224()124a a f x x a x x -⎛⎫=--+=-+ ⎪⎝⎭,因为242a ≤<,所以2min 4()324a af x f -⎛⎫===- ⎪⎝⎭,因为48a ≤<,解得4a =; 当8a ≥时,()224()124a a f x x a x x -⎛⎫=--+=-+ ⎪⎝⎭,因为42a≥,所以()min ()41743f x f a ==-=-,解得5a =,故舍去; 综上所述,a 的值为3或4【点睛】关键点睛:这道题的关键在于比较对称轴2a和a 与区间[]1,4的关系,分成了5种情况,数形结合,利用二次函数的图象与性质得到对应的最小值 【例4】已知函数() 2.f x x x a =-+ (1)当2a =时,求()f x 的单调增区间;(2)若12,[0,2]x x ∃∈,使()()122f x f x ->,求实数a 的取值范围. 【答案】(1)单调递增区间为(),1-∞和()2,+∞ (2)(,1)(22,)-∞⋃+∞【分析】(1)根据已知及分段函数,函数的单调性与单调区间的计算,求出()f x 的单调增区间;(2)根据已知及二次函数的性质求最值,结合不等式和绝对值不等式的计算求出实数a 的取值范围. (1)当2a =时,()2222,22222,2x x x f x x x x x x ⎧-+=-+=⎨-++<⎩,2≥x 时,()f x 单调递增,2x <时,()f x 在(),1-∞上单调递增,在()1,2上单调递减,所以()f x 的单调递增区间为(),1-∞和()2,+∞, (2)12,[0,2]x x ∃∈,使()()122f x f x ->所以()()12max 2f x f x ->, 即()()max min 2f x f x ->,∵当2≤a 时,()22f x x ax =-++,对称轴2a x =, (i)当221≤≤a 即42≤≤a 时,()2max224a a f x f ⎛⎫==+ ⎪⎝⎭, ()()min 02f x f ==,所以()20224a a f f ⎛⎫-=> ⎪⎝⎭, 所以22a >或22a <-, 因为42≤≤a ,所以224a < , (ii)当22a>即4a >时,()()max 222f x f a ==-, ()()min 02f x f ==,所以()()20242f f a -=->,3a >,因为4a >,所以4a >,∵当0a 时,()22f x x ax =-+,对称轴02ax =<, 所以()()max 262f x f a ==-,()()min 02f x f ==,所以()()20422f f a -=->,1a <,所以0a ,∵当02a <<时,()222,02,2x ax x af x x ax a x ⎧-++<<=⎨-+<<⎩,因为()()()min 022f x f f ===,因为()220124a a f f ⎛⎫-=< ⎪⎝⎭, 所以2a f ⎛⎫⎪⎝⎭不可能是函数的最大值,所以()()max 262f x f a ==-, 所以()()20422f f a -=->, 所以01a <<,综上所述:a 的取值范围是(,1)(22,)-∞⋃+∞ .【点睛】关键点点睛:本题主要考查了分段函数,函数的单调性与单调区间,函数的最值,不等式和绝对值不等式的应用,属于较难题,解题的关键是将12,[0,2]x x ∃∈,使()()122f x f x ->,转化为()()max min 2f x f x ->,然后分类利用二次函数的性质求出其最值即可,考查了分类思想和计算能力【例5】已知函数()f x x m =-.(1)若函数()f x 在[]1,2上单调递增,求实数m 的取值范围;(2)若函数()()2g x xf x m =+在[]1,2的最小值为7,求实数m 的值.【答案】(1)(],1-∞ (2)2m =-或231m =-【分析】(1)化为分段函数,结合单调性得到实数m 的取值范围;(2)化为分段函数,对m 分类讨论,结合最小值为7,求出实数m 的值,注意舍去不合要求的值. (1)(),,x m x m f x x m m x x m -≥⎧=-=⎨-<⎩,即()f x 在()m -∞,上单调递减,在[),m +∞上单调递增,若函数()f x 在[]1,2上单调递增,则1m ,所以实数m 的取值范围是(],1-∞;(2)()()222222,,x mx m x mg x xf x m x x m m x mx m x m ⎧-+≥=+=-+=⎨-++<⎩, ∵当1m 时,()g x 在[]1,2上单调递增,故()()2min 117g x g m m ==-+=,解得:2m =-或3(舍去);∵当12m <≤时,()()2min 7g x g m m ===,解得:7m =±(舍去);∵当23m <≤时,()g x 在1,2m ⎛⎫⎪⎝⎭上单调递增,在,22m ⎛⎫ ⎪⎝⎭上单调递减,且2m x =更靠近1,所以()()2min 2247g x g m m ==+-=,解得:231m =-或231--(舍去);∵当34m <≤时,()g x 在1,2m ⎛⎫⎪⎝⎭上单调递增,在,22m ⎛⎫ ⎪⎝⎭上单调递减,且2m x =更靠近2,所以()()2min 117g x g m m ==-+=,解得:2m =-(舍去)或3(舍去);∵当4m >时,()g x 在[]1,2上单调递增,故()()2min 117g x g m m ==-+=,解得:2m =-(舍去)或3(舍去);综上:2m =-或231m =-.【例1】已知a ,b 是常数,0a ≠,()2f x ax bx =+,()20f =,且方程()f x x =有两个相等的实数根.(1)求a ,b 的值;(2)是否存在实数m ,n ()m n <,使得()f x 的定义域和值域分别为[],m n 和[]2,2m n ?若存在,求出实数m ,n 的值;若不存在,请说明理由. 【答案】(1)12a =-,1b =(2)存在,2,0m n =-=【分析】(1)由()20f =、()210ax b x +-=有两个相等的实数根可得答案;(2)假设存在符合条件的m ,n .21122f x x x ,得14n ≤,由一元二次函数图象的特征结合定义域和值域可得答案. (1)由()2f x ax bx =+,()20f =,得420a b +=,又方程()f x x =,即()210ax b x +-=有两个相等的实数根,所以()2140--=b a ,解得1b =,12a =-;(2)假设存在符合条件的,m n , 由(1)知22111112222f xx x x ,则有122n ≤,即14n ≤,由一元二次函数图象的特征,得14()2()2m n f m m f n n ⎧<≤⎪⎪=⎨⎪=⎪⎩,即2214122122m n m m m n n n⎧<≤⎪⎪⎪-+=⎨⎪⎪-+=⎪⎩,解得20m n =-⎧⎨=⎩,所以存在2m =-,0n =,使得函数()f x 在[]2,0-上的值域为[]4,0-. 【例2】已知函数()11,111,01x xf x x x⎧-≥⎪⎪=⎨⎪-<<⎪⎩. (1)当0a b <<,且()()f a f b =时,求11a b+的值; (2)若存在实数,(1)a b a b <<,使得函数()y f x =的定义域为[],a b 时,其值域为[],ma mb ,求实数m 的取值范围.【答案】(1)2; (2)104m <<.【分析】(1)根据函数()f x 的单调性可知,()()f a f b =可等价于1111a b -=-,即可解得11a b+的值; (2)根据函数()y f x =在[,]a b 上的单调性,即可确定()y f x =在[,]a b 上的值域,从而根据根的分布建立方程组,即可解出m 的取值范围. (1)由题意得()y f x =在()0,1上为减函数,在()1,+∞上为增函数, 由0a b <<,且0a b <<,可得01a b <<<且1111a b-=-因此112a b+=.(2)当[),1,a b ∞∈+时,则()y f x =在[)1,+∞上为增函数 故1111ma amb b⎧-=⎪⎪⎨⎪-=⎪⎩ 即a b 、是方程210mx x -+=的两个根即关于x 的方程210mx x -+=在[)1,+∞上有两个不等的实数根. 设()21g x mx x =-+,则()Δ0101120g m m >⎧⎪>⎪⎪⎨>⎪⎪>⎪⎩ 解得104m <<. 【例3】已知函数()2112f x a a x=+-,实数a R ∈且0a ≠. (1)设0m n <<,判断函数()f x 在[],m n 上的单调性,并说明理由;(2)设0m n <<且0a >时,()f x 的定义域和值域都是[],m n ,求n m -的最大值. 【答案】(1)()f x 在[],m n 上单调递增,理由见解析 (2)433【分析】(1)由定义法直接证明可得; (2)由题知,m n 是方程2112x a a x+-=的不相等的两个正数根,然后整理成一元二次方程,由判别式和韦达定理列不等式组求解可得a 的范围,再用韦达定理表示出所求,然后可解. (1)设120<m x x n ≤<≤,则()()1212222121211x x f x f x a x a x a x x --=-+=, 120<m x x n ≤<≤,12120,0x x x x ∴>-<,()()12f x f x ∴<,故()f x 在[],m n 上单调递增;(2)由(1)可得0m n <<时,()f x 在[],m n 上单调递增,()f x 的定义域和值域都是[],m n ,(),()f m m f n n ∴==,则,m n 是方程2112x a a x+-=的不相等的两个正数根, 即()222210a x a a x -++=有两个不相等的正数根,则222222Δ2402010a a a a a m n a mn a ⎧=+->⎪⎪+⎪+=>⎨⎪⎪=>⎪⎩(),解得12a >,222222241216()4333a a n m n m mn a aa ⎛⎫+⎛⎫∴-=+-=-=--+ ⎪ ⎪⎝⎭⎝⎭, 1,2a ∞⎛⎫∈+ ⎪⎝⎭,32a ∴=时,n m -最大值为433;【例4】已知二次函数2()(,,)f x ax bx c a b c =++∈R 的图像经过原点O ,满足对任意实数x 都有(3)(1)f x f x -=-,且关于x 的方程()2f x x =有两个相等的实数根.(1)求函数()f x 的解析式:(2)是否存在实数m 、()n m n <,使得()f x 的定义域为[,]m n ,值域为22,m n ⎡⎤⎣⎦?若存在,求出m ,n 的值;若不存在,请说明理由. 【答案】(1)2()2f x x x =-+ (2)存在,0,1m n ==【分析】(1)由题意列方程求解,,a b c(2)根据定义域与对称轴关系,讨论()f x 值域后求解 (1)()f x 经过原点,故0c,()2f x x =,即2(2)0ax b x +-=有两个相等的实数根,由Δ0=知2b =,(3)(1)f x f x -=-,故()f x 的对称轴为1x =,即12ba-=,1a =-, 函数()f x 的解析式为2()2f x x x =-+.(2)2()(1)11f x x =--+≤,故11n -≤≤,故()f x 在[,]m n 上单调递增,由题意得222222m m m n n n ⎧-+=⎨-+=⎩又m n <,解得01m n =⎧⎨=⎩ 存在0,1m n ==满足题意【例5】已知函数()f x =x 2-2x +b 的自变量的取值区间为A ,若其值域区间也为A ,则称A 为()f x 的保值区间.(1)若b =0,求函数f (x )形如[,)()t t R ∞+∈的保值区间;(2)若函数f (x )的保值区间为[m ,n ]()m n <,且f (x )在[m ,n ]上单调,求实数b 的取值范围. 【答案】(1)[1,)-+∞和[3,)+∞ (2)591,2,44⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【分析】(1)根据对称轴为标准分类讨论,使其满足定义即可求解;(2)以对称轴为界分类讨论,依据单调性建立等式,再将问题转化为二次函数或一元二次方程问题求解. (1)当0b =时,2()2f x x x =-,其对称轴为1x =.当1t ≤时,()[1,)f x ∈-+∞,此时,要满足函数f (x )是形如[,)()t t R ∞+∈的保值区间,则1t =-,区间为[1,)-+∞; 当1t >时,2()[2,)f x t t ∈-+∞,定义域为[,)t +∞,此时,要满足函数f (x )是形如[,)()t t R ∞+∈的保值区间,则22t t t -=,解得3t =或0=t (舍),因此,此时区间为[3,)+∞.综上可知,函数f (x )形如[,)()t t R ∞+∈的保值区间为[1,)-+∞和[3,)+∞; (2)因为函数f (x )的定义域、值域都为[m ,n ],且f (x )在[m ,n ]上单调, 当m ≥1时,函数f (x )在[m ,n ]上单调递增,此时()()f m m f n n =⎧⎨=⎩即222,2,m m b m n n b n ⎧-+=⎨-+=⎩等价于方程x 2-3x +b =0在[1,+∞)上有两个不等实根,令g (x )=x 2-3x +b ,则有Δ940,(1)20,31,2b g b ⎧⎪=->⎪=-+≥⎨⎪⎪>⎩解得924b ≤<;当n ≤1时,函数f (x )在[m ,n ]上单调递减,此时()()f m n f n m =⎧⎨=⎩即2222m m b n n n b m ⎧-+=⎨-+=⎩两式相减得:(m -n )(m +n -1)=0,即m =n (舍)或m +n -1=0,也即m =1-n ,由m <n 可得112n <≤, 将m =1-n 代入n 2-2n +b =m 可得方程n 2-n +b -1=0在1(,1]2上有解,即为函数b =-n 2+n +1在1(,1]2上的值域问题,因为22151()24b n n n =-++=--+在1(,1]2上单调递减,所以b 5[1,)4∈.综上所述,b 的取值范围是59[1,)[2,)44⋃.【例6】已知函数()221x f x x-=.(1)求函数()y f x =的值域;(2)若不等式()231x f x x kx +≥+在[]1,2x ∈时恒成立,求实数k 的最大值;(3)设()()1g x t f x =⋅+(11,x m n ⎡⎤∈⎢⎥⎣⎦,0m n >>,0t >),若函数()y g x =的值域为[]23,23m n --,求实数t 的取值范围. 【答案】(1)(,1)-∞ (2)2- (3)(0,1)【分析】(1)化简函数得21()1(0)f x x x=-≠,由20x >,可求出2111x -<,从而可求得函数的值域, (2)等式()231x f x x kx +≥+在[]1,2x ∈时恒成立,转化为2k x x ≤-+在[]1,2x ∈时恒成立,令2211()24h x x x x ⎛⎫=-+=--+ ⎪⎝⎭,可得()h x 在[]1,2上单调递减,从而可求出其最小值,进而可求得实数k 的最大值,(3)由题意得min max 11()23,()23g x g m g x g n m n ⎛⎫⎛⎫==-==- ⎪ ⎪⎝⎭⎝⎭,从而可得,m n 是方程2310(0)tx x t t -+-=>的两个不相等的正根,令2()310(0)x tx x t t ϕ=-+-=>,则有Δ94(1)0302(0)10t t t t ϕ=-->⎧⎪⎪>⎨⎪=->⎪⎩,从而可求出实数t 的取值范围 (1)由题意得21()1(0)f x x x =-≠, 因为20x >,所以210x >,则2111x -<, 所以函数()f x 的值域为(,1)-∞ (2)因为[]1,2x ∈,所以不等式可化为2311kx x x ≤-+-, 所以2k x x ≤-+,令2211()24h x x x x ⎛⎫=-+=--+ ⎪⎝⎭,则()h x 在[]1,2上单调递减,所以min ()(2)422h x h ==-+=-,所以2k ≤-, 所以实数k 的取值范围为(,2]-∞-, 所以实数k 的最大值为2- (3)由题意得2()1tg x t x =-++, 因为0t >,所以()g x 在11,(0,0)m n m n ⎡⎤>>⎢⎥⎣⎦上单调递增,所以min max 11()23,()23g x g m g x g n m n ⎛⎫⎛⎫==-==- ⎪ ⎪⎝⎭⎝⎭,即()()221123,1123t m m t n n -+=--+=-,所以,m n 是方程()21123t x x -+=-,即2310(0)tx x t t -+-=>的两个不相等的正根,令2()310(0)x tx x t t ϕ=-+-=>,其图象开口向上,对称轴为直线32x t=,且有两个不相等的正零点, 所以Δ94(1)0302(0)10t t t t ϕ=-->⎧⎪⎪>⎨⎪=->⎪⎩,即01t R t t ∈⎧⎪>⎨⎪<⎩,解得01t <<所以实数t 的取值范围为(0,1)【例7】已知()f x 是定义在R 上的函数,且()()0f x f x +-=,当0x >时,()22f x x x =-,(1)求函数()f x 的解析式;(2)当[)1,x ∞∈+时,()()g x f x =,当(),1x ∞∈-时()223g x x mx m =-+-,()g x 在R 上单调递减,求m 的取值范围;(3)是否存在正实数a b ,,当[],x a b ∈时,()()h x f x =且()h x 的值域为11,b a ⎡⎤⎢⎥⎣⎦,若存在,求出a b ,,若不存在,说明理由.【答案】(1)()222020x x x f x x x x ⎧-≥=⎨+<⎩,,; (2)[)3,∞+; (3)存在,151,2a b +==.【分析】(1)根据函数是奇函数以及大于零时()f x 的解析式,即可容易求得结果; (2)根据(1)中所求,结合()f x 的单调性,列出不等关系,即可求得参数范围; (3)根据()h x 的单调性,结合,a b 是方程32210x x -+=的两个正根,求解即可. (1)由题意,任取0x <,则0x ->,故有()22f x x x -=--,因为()f x 是定义在R 上的函数,且()()0f x f x +-=,即函数()y f x =是定义在R 上的奇函数,0x ∴<时,()()22f x f x x x =--=+,又0x =时,()()000f f +=,即()00f =,所以()222020x x x f x x x x ⎧-≥=⎨+<⎩,,. (2)当[)1,x ∞∈+时,()()2(1)1g x f x x ==--+,在[)1,+∞单调递减,又当(),1x ∞∈-时,()223g x x mx m =-+-,且()g x 在R 上单调递减,所以121231m m m ⎧≥⎪⎨⎪-+-≥⎩,解得3m ≥, 即m 的取值范围为[)3,∞+. (3)当0x >时,()2(1)11f x x =--+≤,若存在这样的正数a ,b ,则当[]()max 1,[]1x a b f x a∈=≤时,,故1a ≥, ()f x ∴在[],a b 内单调递减,()()221212f b b b bf a a a a⎧==-+⎪⎪∴⎨⎪==-+⎪⎩,所以,a b 是方程32210x x -+=的两个正根, ()()32221110x x x x x -+=---=, 12151,2x x +∴==, 故存在正数1512a b +==,满足题意. 【例1】已知函数()1f x x x=+,()21g x x ax a =-+-. (1)若()g x 的值域为[)0,∞+,求a 的值.(2)证明:对任意[]11,2x ∈,总存在[]21,3x ∈-,使得()()12f x g x =成立. 【答案】(1)2 (2)证明见解析【分析】(1)由题意,可得Δ0=,从而即可求解;(2)利用对勾函数单调性求出()f x 在[1,2]上的值域,再分三种情况讨论二次函数()g x 在闭区间[]1,3-上的值域,然后证明()f x 的值域是()g x 值域的子集恒成立即可得证. (1)解:因为()g x 的值域为[)0,∞+,所以()()222414420a a a a a ∆=--=-+=-=,解得2a =.(2)证明:由题意,根据对勾函数的单调性可得()1111f x x x =+在[]1,2上单调递增,所以()152,2f x ⎡⎤∈⎢⎥⎣⎦. 设()21g x x ax a =-+-在[]1,3-上的值域为M ,当12a≤-,即2a -时,()g x 在[1,3]-上单调递增,因为max ()(3)8212g x g a =-=,min ()(1)24g x g a -==-,所以2,52M ⎡⎤⊆⎢⎥⎣⎦;当32a,即6a 时,()g x 在[1,3]-上单调递减,因为max ()(1)212g x g a -==,min ()(3) 824g x g a =--=,所以2,52M ⎡⎤⊆⎢⎥⎣⎦;当132a -<<,即26a -<<时,22min 11()1(2)(4,0]244a g x g a a a ⎛⎫==-+-=--∈- ⎪⎝⎭,max ()max{2, 82}[4,12)g x a a =-∈,所以52,2M ⎡⎤⊆⎢⎥⎣⎦;综上,52,2M ⎡⎤⊆⎢⎥⎣⎦恒成立,即()f x 在[1,2]上的值域是()g x 在[1,3]-上值域的子集恒成立,所以对任意1[1,2]x ∈总存在2[1,3]x ∈-,使得()()12f x g x =成立.【例2】函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数,给定函数()261+-=+x x f x x . (1)求()f x 的对称中心;(2)已知函数()g x 同时满足:∵()11+-g x 是奇函数;∵当[]0,1x ∈时,()2g x x mx m =-+.若对任意的[]10,2x ∈,总存在[]21,5x ∈,使得()()12g x f x =,求实数m 的取值范围. 【答案】(1)()1,1-- (2)[]2,4-【分析】(1)设()f x 的对称中心为(),a b ,根据对称性得到关于,a b 的方程,解得即可得解;(2)易求得()f x 的值域为[]2,4-,设函数()g x 的值域为集合A ,则问题可转化为[]2,4A ⊆-,分0m ≤,2m ≥和02m <<三种情况讨论,从而可得出答案.【详解】(1)解:()()()2211666111x x x x f x x x x x +-+-+-===-+++, 设()f x 的对称中心为(),a b ,由题意,得函数()y f x a b =+-为奇函数, 则()()f x a b f x a b -+-=-++, 即()()20f x a f x a b ++-+-=, 即()()662011x a x a b x a x a +-+-+--=++-++,整理得()()()()221610a b x a b a a ⎡⎤---+-+=⎣⎦, 所以()()()21610a b a b a a -=-+-+=,解得1,1a b =-=-, 所以函数()f x 的对称中心为()1,1--;(2)解:因为对任意的[]10,2x ∈,总存在[]21,5x ∈,使得()()12g x f x =, 所以函数()g x 的值域是函数()f x 的值域的子集, 因为函数6,1y x y x ==-+在[]1,5上都是增函数, 所以函数()61f x x x =-+在[]1,5上是增函数, 所以()f x 的值域为[]2,4-, 设函数()g x 的值域为集合A , 则原问题转化为[]2,4A ⊆-,因为函数()11+-g x 是奇函数,所以函数()g x 关于()1,1对称, 又因为()11g =,所以函数()g x 恒过点()1,1, 当02m≤,即0m ≤时,()g x 在[]0,1上递增,则函数()g x 在(]1,2上也是增函数, 所以函数()g x 在[]0,2上递增, 又()()()0,2202g m g g m ==-=-,所以()g x 的值域为[],2m m -,即[],2A m m =-, 又[][],22,4A m m =-⊆-, 所以2240m m m ≥-⎧⎪-≤⎨⎪≤⎩,解得20m -≤≤,当12m≥即2m ≥时,()g x 在[]0,1上递减,则函数()g x 在(]1,2上也是减函数, 所以函数()g x 在[]0,2上递减, 则[]2,A m m =-, 又[][]2,2,4A m m =-⊆-, 所以2224m m m ≥⎧⎪-≥-⎨⎪≤⎩,解得24m ≤≤,当012m<<即02m <<时, ()g x 在0,2m ⎛⎫ ⎪⎝⎭上递减,在,12m ⎛⎫⎪⎝⎭上递增, 又因函数()g x 过对称中心()1,1,所以函数()g x 在1,22m ⎛⎫- ⎪⎝⎭上递增,在2,22m ⎛⎫- ⎪⎝⎭上递减,故此时()()min min 2,2m g x g g ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭,()()max max 0,22m g x g g ⎧⎫⎛⎫=-⎨⎬ ⎪⎝⎭⎩⎭,要使[]2,4A ⊆-,只需要()()()222202222404222422402g g m m m g m g m m m m g g m m ⎧=-=-≥-⎪⎛⎫⎪=-+≥- ⎪⎪⎝⎭⎪=≤⎨⎪⎛⎫⎛⎫⎪-=-=-+≤ ⎪ ⎪⎪⎝⎭⎝⎭⎪<<⎩,解得02m <<,综上所述实数m 的取值范围为[]2,4-.【点睛】本题考查了函数的对称性单调性及函数的值域问题,考查了转化思想及分类讨论思想,解决本题第二问的关键在于把问题转化为函数()g x 的值域是函数()f x 的值域的子集,有一定的难度. 【例3】已知函数2()3,()221()f x x g x x ax a a =-+=-+-∈R . (1)若函数()g x 的值域为[0,)+∞,求a 的取值集合;(2)若对于任意的1[2,2]x ∈-,总存在2[2,2]x ∈-,使得()()12f x g x =成立,求实数a 的取值范围. 【答案】(1)1a = (2)1(,1],3⎡⎫-∞-⋃+∞⎪⎢⎣⎭【分析】(1)利用二次函数的图像与性质,得到Δ0=,求解即可.(2)将问题转化为()()()()min minmax max f x g x f x g x ⎧≥⎪⎨≤⎪⎩,然后利用二次函数的性质以及一次函数的性质,求解两个函数的最值,求解不等式组,即可得出答案. (1)∵函数2()221g x x ax a =-+-的值域为[0,)+∞,∵2(2)4(21)0a a ∆=--=, 解得1a =; (2)由题意可知()()()()min minmax max f x g x f x g x ⎧≥⎪⎨≤⎪⎩对于函数()3f x x =-+在[2,2]-上是减函数,∵min max ()(2)1,()(2)5f x f f x f ===-=, 函数2()221g x xax a =-+-图象开口向上,对称轴为直线x a =.∵当2a ≤-时,函数()g x 在[2,2]-上为增函数,min max?()(2)63,()(2)23g x g a g x g a =-=+==-+,∵163,523,a a ≥+⎧⎨≤-+⎩此时2a ≤-; ∵当20a -<≤时,函数()g x 在区间[2,]a -上为减函数,在[],2a 上为增函数,2min max ()()21,()(2)23g x g a a a g x g a ==-+-==-+,∵2121,523,a a a ⎧≥-+-⎨≤-+⎩此时21a -<≤-;∵当02a <<时,函数()g x 在区间[2,]a -上为减函数,在[],2a 上为增函数,2min max ()()21,()(2)63g x g a a a g x g a ==-+-=-=+, ∵2121,563,a a a ⎧≥-+-⎨≤+⎩此时123a ≤<; ∵当2a ≥时,函数()g x 在[2,2]-上是减函数,∵max min ()(2)63,()(2)23g x g a g x g a =-=+==-+, ∵123,563,a a ≥-+⎧⎨≤+⎩此时2a ≥; 综上所述,实数a 的取值范围是1(,1],3⎡⎫-∞-⋃+∞⎪⎢⎣⎭.。
九年级数学二次函数取值范围20专题训练
九年级数学二次函数取值范围20专题训练九年级数学二次函数取值范围20专题训练一、单选题二、填空题1.已知抛物线y=2(x-1)+1,当1<x<3时,y的取值范围是______________2.函数y=(2/3)(x+2)的开口向上,那么m的取值范围是.3.如果抛物线y=x^2+mx有最大值,则m的取值范围是________.4.已知二次函数y=(m+1)x^2,则m的取值范围是________.5.如果抛物线y=(2+k)x-k的开口向下,那么k的取值范围是__________.6.已知二次函数y=x^2-4x+2,在-1≤x≤3的取值范围内,y的取值范围为_______.7.函数y=x^2-4x+3,当y<0时,x的取值范围________.8.已知y=-(2/4)x^2-3x+4(-10≤x≤2),则函数y的取值范围是______.9.已知抛物线y=(a+3)x^2开口向下,那么a的取值范围是____________.10.若抛物线y=(a-3)x^2开口向上,则a的取值范围是__________.11.设二次函数y=x^2+ax+b图像与x轴有2个交点,A(x1,0),B(x2,0);且x1<x2<2,那么5a+2b的取值范围是_____________;a^2-2b的取值范围是______________.12.已知y=-(1/2)x^2-3x+4(-10≤x≤0),则函数y的取值范围是_____.13.若抛物线y=ax^2经过点(2,y1),(3,y2),且y1>y2>-8,则a的取值范围为________.14.当-3≤x≤0时,-x^2+2mx-2m+2≤0,则m的取值范围是_______.15.抛物线y=a(x-6)+k经过点(0,2),当x=9时y>2.43,当x=18时y<2,则k的取值范围是__________.试卷第1页,总2页16.在函数y=(x-2)/(x^2+2)中自变量X的取值范围是_____________.17.已知点(m,n)在直线y=x-2上,且k=m^2+n^2,则k的取值范围为________.18.点A(x1,y1)和B(x2,y2)在抛物线y=x^2+2mx+2上。
培优专题01 二次函数含参数最值问题(解析版)
培优专题01二次函数含参数最值问题【题型目录】题型一:定轴动区间问题题型二:定区间动轴问题题型三:含绝对值二次函数问题题型四:定义域为[]n m ,,值域为[]kn km ,求参数问题题型五:二次函数值域包含性问题【典型例题】题型一:定轴动区间问题【例1】已知二次函数满足2()(0)f x ax bx c a =++≠,满足(1)()21f x f x x +-=-,且(0)0f =.(1)求()f x 的解析式;(2)当[]()2R x t t t ∈+∈,时,求函数()f x 的最小值()g t (用t 表示).【答案】(1)()22f x x x =-(2)()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩【详解】(1)因为二次函数2()(0)f x ax bx c a =++≠,且满足(0)0f =,(1)()21f x f x x +-=-,所以0c =,()()221121221a x b x ax bx x ax a b x +++--=-⇒++=-,所以221a ab =⎧⎨+=-⎩,得12a b =⎧⎨=-⎩.所以()22f x x x =-.(2)()22f x x x =-是图象的对称轴为直线1x =,且开口向上的二次函数.当1t ≥时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递增,则()()2min 2f x f t t t ==-;当21t +≤即1t ≤-时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递减,则()()()()22min 22222f x f t t t t t =+=+-+=+;当11t t <<+,即11t -<<时,()()()2min 11211f x f ==-=-;综上所述()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩.【例2】已知定义在R 上的函数)f x ,满足()226f x x x -=--.(1)求()f x 的解析式.(2)若()f x 在区间[]0,m 上的值域为25,44⎡⎤--⎢⎥⎣⎦,写出实数m 的取值范围(不必写过程).f x 在区间[],2t t +上的最小值为6,求实数t 的值.【例3】对于函数()f x ,若存在0R x ∈,使得()00f x x =成立,则称0x 为()f x 的不动点,已知函数2()(2)4f x ax b x =+++的两个不动点分别是-2和1.(1)求,a b 的值及()f x 的表达式;[,1]t t +【例4】已知函数为二次函数,不等式的解集是,且在区间上的最小值为12-.(1)求()f x 的解析式;上的最大值为【例1】已知函数2()f x x mx m =-+-.(1)若函数()f x 在[]1,0-上单调递减,求实数m 的取值范围;(2)若当1x >时,()4f x <恒成立,求实数m 的取值范围;(3)是否存在实数m ,使得()f x 在[]2,3上的值域恰好是[]2,3?若存在,求出实数m 的值;若不存在,说明上单调递减,应满足【例2】已知二次函数的图象过点,且不等式20ax bx c ++≤1(1)求()f x 的解析式:24g x f x t x =--在区间[]1,2-上有最小值2,求实数t 的值.(1)若函数()f x 在(1,)+∞上是增函数,求实数a 的取值范围;(2)若不等式()0f x ≤的解集为{|02}x x ≤≤,求,a b 的值;时,函数【例4】已知函数,R b ∈.(1)若函数()f x 的图象经过点()4,3,求实数b 的值;(2)在(1)条件下,求不等式()0f x <的解集;1,2x ∈-时,函数()y f x =的最小值为1,求当[]1,2x ∈-时,函数()y f x =的最大值.【例5】在①2,2x ∀∈-,②1,3x ∃∈这两个条件中任选一个,补充到下面问题的横线中,并求解该问题.已知函数()24f x x ax =++.(1)当2a =-时,求函数()f x 在区间]22-,上的值域;【例1】已知二次函数()()20,,,f x ax bx c a a b c =++>∈R ,()11f -=,对任意x ∈R ,()()2f x f x +=-,且()0f x x +≥恒成立.(1)求二次函数()f x 的解析式;(1)若x f 为偶函数,求a 的值;(1)当2a =时,试写出函数()()g x f x x =-的单调递增区间;)x(1)当2a =时,求f x 的单调增区间;,所以(1)若函数f x 在[]1,2上单调递增,求实数m 的取值范围;2g x xf x m =+在[]1,2的最小值为7,求实数m 的值.【例1】已知a ,b 是常数,0a ≠,()2f x ax bx =+,()20f =,且方程()f x x =有两个相等的实数根.(1)求a ,b 的值;(2)是否存在实数m ,n ()m n <,使得()f x 的定义域和值域分别为[],m n 和[]2,2m n ?若存在,求出实数m ,=【例2】已知函数()1,111,01x xf x x x⎧-≥⎪⎪=⎨⎪-<<⎪⎩.(1)当0a b <<,且()()f a f b =时,求11a b+的值;(2)若存在实数,(1)a b a b <<,使得函数()y f x =的定义域为[],a b 时,其值域为[],ma mb ,求实数m 的取值【例3】已知函数()22f x a a x=+-,实数a R ∈且0a ≠.(1)设0m n <<,判断函数()f x 在[],m n 上的单调性,并说明理由;f x 的定义域和值域都是[],m n ,求n m -的最大值.【例4】已知二次函数,满足对任意实数(3)(1)f x f x -=-,且关于x 的方程()2f x x =有两个相等的实数根.(1)求函数()f x 的解析式:(2)是否存在实数m 、()n m n <,使得()f x 的定义域为[,]m n ,值域为22,m n ⎡⎤⎣⎦?若存在,求出m ,n 的值;【例5】已知函数-2x +b 的自变量的取值区间为A ,若其值域区间也为A ,则称A 为的保值区间.(1)若b =0,求函数f (x )形如[,)()t t R ∞+∈的保值区间;m n <【例6】已知函数()2f x x-=.(1)求函数()y f x =的值域;(2)若不等式()231x f x x kx +≥+在[]1,2x ∈时恒成立,求实数k 的最大值;(3)设()()1g x t f x =⋅+(11,x m n ⎡⎤∈⎢⎥⎣⎦,0m n >>,0t >),若函数()y g x =的值域为[]23,23m n --,求实数【例7】已知是定义在R 上的函数,且0f x f x +-=,当0x >时,(1)求函数()f x 的解析式;(2)当[)1,x ∞∈+时,()()g x f x =,当(),1x ∞∈-时()223g x x mx m =-+-,()g x 在R 上单调递减,求m 的取值范围;(3)是否存在正实数a b ,,当[],x a b ∈时,()()h x f x =且()h x 的值域为11,b a ⎡⎤⎢⎥⎣⎦,若存在,求出a b ,,若不【例1】已知函数()1f x x x=+,()21g x x ax a =-+-.(1)若()g x 的值域为[)0,∞+,求a 的值.证明:对任意1,2x ∈,总存在1,3x ∈-,使得f x g x =成立.【例2】函数y f x =的图象关于坐标原点成中心对称图形的充要条件是函数y f x =为奇函数,可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数,给定函数()261+-=+x x f x x .(1)求()f x 的对称中心;(2)已知函数()g x 同时满足:①()11+-g x 是奇函数;②当[]0,1x ∈时,()2g x x mx m =-+.若对任意的0,2x ∈1,5x ∈,使得()()g x f x =所以【例3】已知函数(1)若函数()g x 的值域为[0,)+∞,求a 的取值集合;[2,2]x ∈-[2,2]x ∈-f x g x =。
中考专题复习 二次函数求有关参数取值范围 教案
课程主题二次函数求有关参数取值范围学习目标1.深入理解二次函数的性质,掌握数型结合的解题思想。
教学内容1.(2016•河南)某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x …﹣3 ﹣﹣2 ﹣1 0 1 2 3 …y … 3 m ﹣1 0 ﹣1 0 3 …其中,m=.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;②方程x2﹣2|x|=2有个实数根;③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是.【分析】(1)把x=﹣2代入函数解释式即可得m的值;(2)描点、连线即可得到函数的图象;(3)根据函数图象得到函数y=x2﹣2|x|的图象关于y轴对称;当x>1时,y随x的增大而增大;(4)①根据函数图象与x轴的交点个数,即可得到结论;②如图,根据y=x2﹣2|x|的图象与直线y=2的交点个数,即可得到结论;③根据函数的图象即可得到a的取值范围是﹣1<a<0.【解答】解:(1)把x=﹣2代入y=x2﹣2|x|得y=0,即m=0,故答案为:0;(2)如图所示;(3)由函数图象知:①函数y=x2﹣2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大;(4)①由函数图象知:函数图象与x轴有3个交点,所以对应的方程x2﹣2|x|=0有3个实数根;②如图,∵y=x2﹣2|x|的图象与直线y=2有两个交点,∴x2﹣2|x|=2有2个实数根;③由函数图象知:∵关于x的方程x2﹣2|x|=a有4个实数根,∴a的取值范围是﹣1<a<0,故答案为:3,3,2,﹣1<a<0.【点评】本题考查了二次函数的图象和性质,正确的识别图象是解题的关键.【例题精讲】例1:(2016•三明)如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.【分析】(1)根据抛物线F:y=x2﹣2mx+m2﹣2过点C(﹣1,﹣2),可以求得抛物线F的表达式;(2)根据题意,可以求得y P的最小值和此时抛物线的表达式,从而可以比较y1与y2的大小;(3)根据题意可以列出相应的不等式组,从而可以解答本题【解答】解:(1)∵抛物线F经过点C(﹣1,﹣2),∴﹣2=(﹣1)2﹣2×m×(﹣1)+m2﹣2,解得,m=﹣1,∴抛物线F的表达式是:y=x2+2x﹣1;(2)当x=﹣2时,y p=4+4m+m2﹣2=(m+2)2﹣2,∴当m=﹣2时,y p的最小值﹣2,此时抛物线F的表达式是:y=x2+4x+2=(x+2)2﹣2,∴当x≤﹣2时,y随x的增大而减小,∵x1<x2≤﹣2,∴y1>y2;(3)m的取值范围是﹣2≤m≤0或2≤m≤4,理由:∵抛物线F与线段AB有公共点,点A(0,2),B(2,2),∴或,解得,﹣2≤m≤0或2≤m≤4.【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.例2:(2016•厦门)已知抛物线y=﹣x2+bx+c与直线y=﹣4x+m相交于第一象限不同的两点,A(5,n),B(e,f)(1)若点B的坐标为(3,9),求此抛物线的解析式;(2)将此抛物线平移,设平移后的抛物线为y=﹣x2+px+q,过点A与点(1,2),且m﹣q=25,在平移过程中,若抛物线y=﹣x2+bx+c向下平移了S(S>0)个单位长度,求S的取值范围.【分析】(1)根据点B的坐标可求出m的值,写出一次函数的解析式,并求出点A的坐标,最后利用点A、B两点的坐标求抛物线的解析式;(2)根据题意列方程组求出p、q、m、n的值,计算抛物线与直线最上和最下满足条件的解析式,并计算其顶点坐标,向下平移的距离主要看顶点坐标的纵坐标之差即可.【解答】解:(1)∵直线y=﹣4x+m过点B(3,9),∴9=﹣4×3+m,解得:m=21,∴直线的解析式为y=﹣4x+21,∵点A(5,n)在直线y=﹣4x+21上,∴n=﹣4×5+21=1,∴点A(5,1),将点A(5,1)、B(3,9)代入y=﹣x2+bx+c中,得:,解得:,∴此抛物线的解析式为y=﹣x2+4x+6;(2)由抛物线y=﹣x2+px+q与直线y=﹣4x+m相交于A(5,n)点,得:﹣25+5p+q=n①,﹣20+m=n②,y=﹣x2+px+q过(1,2)得:﹣1+p+q=2③,则有解得:∴平移后的抛物线为y=﹣x2+6x﹣3,一次函数的解析式为:y=﹣4x+22,A(5,2),∵当抛物线在平移的过程中,a不变,∵抛物线与直线有两个交点,如图所示,抛物线与直线一定交于点A,所以当抛物线过点C以及抛物线在点A处与直线相切时,只有一个交点介于点A、C之间,①当抛物线y=﹣x2+bx+c过A(5,2)、C(0,22)时,得c=22,b=1,抛物线解析式为:y=﹣x2+x+22,顶点(,);②当抛物线y=﹣x2+bx+c在点A处与直线相切时,,﹣x2+bx+c=﹣4x+22,﹣x2+(b+4)x﹣22+c=0,△=(b+4)2﹣4×(﹣1)×(﹣22+c)=0①,∵抛物线y=﹣x2+bx+c过点A(5,2),﹣25+5b+c=2,c=﹣5b+27,把c=﹣5b+27代入①式得:b2﹣12b+36=0,b1=b2=6,则c=﹣5×6+27=﹣3,∴抛物线的解析式为:y=﹣x2+6x﹣3,y=﹣(x﹣3)2+6,顶点坐标为(3,6),﹣6=;则0<S<.【点评】本题考查了二次函数的图象和图形变换,考查了利用待定系数法求二次函数的解析式,注意抛物线平移后的形状不变,故a不变;平移的距离要看二次函数的顶点坐标,所以求抛物线平移的距离时,只考虑平移后的顶点坐标即可.例3:(2016•北京)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【分析】(1)利用配方法即可解决问题.(2)①m=1代入抛物线解析式,求出A、B两点坐标即可解决问题.②根据题意判断出点A的位置,利用待定系数法确定m的范围.【解答】解:(1)∵y=mx2﹣2mx+m﹣1=m(x﹣1)2﹣1,∴抛物线顶点坐标(1,﹣1).(2)①∵m=1,∴抛物线为y=x2﹣2x,令y=0,得x=0或2,不妨设A(0,0),B(2,0),∴线段AB上整点的个数为3个.②如图所示,抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,∴点A在(﹣1,0)与(﹣2,0)之间(包括(﹣1,0)),当抛物线经过(﹣1,0)时,m=,当抛物线经过点(﹣2,0)时,m=,∴m的取值范围为<m≤.【点评】本题考查抛物线与x轴的交点、配方法确定顶点坐标、待定系数法等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.课堂巩固1.(2017•长春)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x ﹣1,它的相关函数为y=.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣x2+4x﹣.①当点B(m,)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M,N的坐标分别为(﹣,1),(,1),连结MN.直接写出线段MN 与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围.【分析】(1)函数y=ax﹣3的相关函数为y=,将然后将点A(﹣5,8)代入y=﹣ax+3求解即可;(2)二次函数y=﹣x2+4x﹣的相关函数为y=,①分为m<0和m≥0两种情况将点B的坐标代入对应的关系式求解即可;②当﹣3≤x<0时,y=x2﹣4x+,然后可此时的最大值和最小值,当0≤x≤3时,函数y=﹣x2+4x﹣,求得此时的最大值和最小值,从而可得到当﹣3≤x≤3时的最大值和最小值;(3)首先确定出二次函数y=﹣x2+4x+n的相关函数与线段MN恰好有1个交点、2个交点、3个交点时n的值,然后结合函数图象可确定出n的取值范围.【解答】解:(1)函数y=ax﹣3的相关函数为y=,将点A(﹣5,8)代入y=﹣ax+3得:5a+3=8,解得:a=1.(2)二次函数y=﹣x2+4x﹣的相关函数为y=①当m<0时,将B(m,)代入y=x2﹣4x+得m2﹣4m+=,解得:m=2+(舍去)或m=2﹣.当m≥0时,将B(m,)代入y=﹣x2+4x﹣得:﹣m2+4m﹣=,解得:m=2+或m=2﹣.综上所述:m=2﹣或m=2+或m=2﹣.②当﹣3≤x<0时,y=x2﹣4x+,抛物线的对称轴为x=2,此时y随x的增大而减小,∴此时y的最大值为.当0≤x≤3时,函数y=﹣x2+4x﹣,抛物线的对称轴为x=2,当x=0有最小值,最小值为﹣,当x=2时,有最大值,最大值y=.综上所述,当﹣3≤x≤3时,函数y=﹣x2+4x﹣的相关函数的最大值为,最小值为﹣;(3)如图1所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有1个公共点.所以当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3.如图2所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点∵抛物线y=x2﹣4x﹣n与y轴交点纵坐标为1,∴﹣n=1,解得:n=﹣1.∴当﹣3<n≤﹣1时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=﹣x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2﹣4x﹣n经过点M(﹣,1),∴+2﹣n=1,解得:n=.∴1<n≤时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是﹣3<n≤﹣1或1<n≤.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=﹣x2+4x+n的相关函数与线段MN恰好有1个交点、2个交点、3个交点时n的值是解题的关键.课后作业1.(2016•河北)如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.【分析】(1)设点P(x,y),只要求出xy即可解决问题.(2)先求出A、B坐标,再求出对称轴以及点M坐标即可解决问题.(3)根据对称轴的位置即可判断,当对称轴在直线MP左侧,L的顶点就是最高点,当对称轴在MP右侧,L于MP的交点就是最高点.(4)画出图形求出C、D两点的纵坐标,利用方程即可解决问题.【解答】解:(1)设点P(x,y),则MP=y,由OA的中点为M可知OA=2x,代入OA•MP=12,得到2x•y=12,即xy=6.∴k=xy=6.(2)当t=1时,令y=0,0=﹣(x﹣1)(x+3),解得x=1或﹣3,∵点B在点A左边,∴B(﹣3,0),A(1,0).∴AB=4,∵L是对称轴x=﹣1,且M为(,0),∴MP与L对称轴的距离为.(3)∵A(t,0),B(t﹣4,0),∴L的对称轴为x=t﹣2,又∵MP为x=,当t﹣2≤,即t≤4时,顶点(t﹣2,2)就是G的最高点.当t>4时,L与MP的解得(,﹣t2+t)就是G的最高点.(4)结论:5或78+.理由:对双曲线,当4≤x0≤6时,1≤y0≤,即L与双曲线在C(4,),D(6,1)之间的一段有个交点.①由=﹣(4﹣t)(4﹣t+4)解得t=5或7.②由1=﹣(6﹣t)(6﹣t+4)解得t=8+和8﹣.随t的逐渐增加,L的位置随着A(t,0)向右平移,如图所示,当t=5时,L右侧过过点C.当t=8﹣<7时,L右侧过点D,即5≤t.当8﹣<t<7时,L右侧离开了点D,而左侧未到达点C,即L与该段无交点,舍弃.当t=7时,L左侧过点C.当t=8+时,L左侧过点D,即7≤t≤8+.【点评】本题考查二次函数综合题、待定系数法、平移等知识,解题的关键是理解题意,学会利用图形信息解决问题,学会用方程的思想思考问题,考虑问题要全面,属于中考常考题型.2.(2017•济南)如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.(1)求点D的坐标和抛物线M1的表达式;(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m(m>0)个单位得到抛物线M2.①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m的取值范围.【分析】(1)如图1中,作DH⊥OA于H.则四边形CDHO是矩形.在Rt△ADH中,解直角三角形,求出点D坐标,利用待定系数法即可解决问题;(2)如图1﹣1中,设P(2,m).由∠CPA=90°,可得PC2+PA2=AC2,可得22+(m﹣6)2+22+m2=42+62,解方程即可;(3)①求出D′的坐标;②构建方程组,利用判别式△>0,求出抛物线与直线AE有两个交点时的m的范围;③求出x=m时,求出平移后的抛物线与直线AE的交点的横坐标;结合上述的结论即可判断.【解答】解:(1)如图1中,作DH⊥OA于H.则四边形CDHO是矩形.∵四边形CDHO是矩形,∴OC=DH=6,∵tan∠DAH==2,∴AH=3,∵OA=4,∴CD=OH=1,∴D(1,6),把D(1,6),A(4,0)代入y=ax2+bx中,则有,解得,∴抛物线M1的表达式为y=﹣2x2+8x.(2)如图1﹣1中,设P(2,m).∵∠CPA=90°,∴PC2+PA2=AC2,∴22+(m﹣6)2+22+m2=42+62,解得m=3±,∴P(2,3+),P′(2,3﹣).(3)①如图2中,易知直线AE的解析式为y=﹣x+4,x=1时,y=3,∴D′(1,3),平移后的抛物线的解析式为y=﹣2x2+8x﹣m,把点D′坐标代入可得3=﹣2+8﹣m,∴m=3.②由,消去y得到2x2﹣9x+4+m=0,当抛物线与直线AE有两个交点时,△>0,∴92﹣4×2×(4+m)>0,∴m<,③x=m时,﹣m+4=﹣2m2+8m﹣m,解得m=2+或2﹣(舍弃),综上所述,当2+≤m<时,抛物线M2与直线AE有两个交点.【点评】本题考查二次函数综合题、一次函数的应用、解直角三角形、锐角三角函数、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程组,利用判别式解决问题,属于中考压轴题.预习思考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数专题之参数范围问题
1.在平面直角坐标系xoy 中,抛物线y=2
1
x 2-x+2与y 轴交于点A,顶点为点B ,点C 与点A 关于抛物
线的对称轴对称。
(1)求直线BC 的解析式;
(2)点D 在抛物线上,且点D 的横坐标为4,将抛物线在点A,D 之间的部分(包含点A,D )记为图像G,若图象G 向下平移t (t >0)个单位后与直线BC 只有一个公共点,求t 的取值范围。
2.已知关于x 的一元二次方程ax 2-2(a-1)x+a-2=0(a >0). (1)求证:方程有两个不等的实数根.
(2)设方程的两个实数根分别为x 1,x 2(其中x 1>x 2).若y 是关于a 的函数,且y=ax 2+x 1,求这个函数的表达式.
(3)在(2)的条件下,若使y ≤-3a 2+1,则自变量a 的取值范围为?
3.已知关于x的方程x2+(m-2)x+m-3=0.
(1)求证:方程x2+(m-2)x+m-3=0总有两个实数根;
(2)求证:抛物线y=x2+(m-2)x+m-3总过x轴上的一个定点;
(3)在平面直角坐标系xoy中,若(2)中的定点记作A,抛物线y=x2+(m-2)x+m-3与x轴的另一个交点为B,与y轴交于点C,且△OBC的面积小于或等于8,求m的取值范围.
4.在平面直角坐标系xoy中,二次函数y=(a-1)x2+2x+1的图像与x轴有交点,a为正整数.
(1)求a的值.
(2)将二次函数y=(a-1)x2+2x+1的图像先向右平移m个单位长度,再向下平移m2+1个单位长度,当-2≤x≤1时,二次函数有最小值-3,求实数m的值.
5、已知二次函数y x22bx c(b,c为常数)
(1)当b1,c3时,求二次函数在2x2上的最小值;
(2)当c3时,求二次函数在0x4上的最小值;
(3)当c4b2时,若在自变量x的值满足2b x2b3的情况下,与其对应的函数值y的最小值为 21,求
此时二次函数的解析式.
6、在平面直角坐标系xoy 中,抛物线y=mx 2-2mx-3(m ≠0)与x 轴交于A (3,0),B 两点.
(1)求抛物线的表达式及点B 的坐标.
(2)当-2<x <3时的函数图像记为G ,求此时函数y 的取值范围.
(3)在(2)的条件下,将图像G 在x 轴上方的部分沿x 轴翻折,图像G 的其余部分保持不变,得到一个新图像M.若经点C(4,2)的直线y=kx+b (k ≠0)与图像M 在第三象限内有两个公共过点,结合图像求b 的取值范围.
7、 在平面直角坐标系中,我们定义点P(a ,b )的“变换点”为Q. 且规定:
当a ≥b 时,Q 为(b ,a -);当a <b 时,Q 为(a ,b -). (1)点(2,1)的变换点坐标为 ; (2)若点A(a ,2-)的变换点在函数1
y x
=
的图象上,求a 的值; (3)已知直线l 与坐标轴交于(6,0),(0,3)两点.将直线l 上所有点的变换点
组成一个新的图形记作M . 判断抛物线c x y +=2与图形M 的交点个数,以及相应的c 的取值范围,请直接写出结论.
8、已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;
(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;
(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.
9、
10、
11、
12、
8、【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(x﹣1)2+2,
∵抛物线经过原点,
∴0=a(0﹣1)2+2,
∴a=﹣2,
∴抛物线解析式为y=﹣2x2+4x.……4分
(2)∵抛物线经过原点,
∴设抛物线为y=ax2+bx,
∵h=﹣,
∴b=﹣2ah,
∴y=ax2﹣2ahx,……6分
∵顶点A(h,k),
∴k=ah2﹣2ah,
抛物线y=tx2也经过A(h,k),
∴k=th2,
∴th2=ah2﹣2ah2,
∴t=﹣a,……8分
(3)∵点A在抛物线y=x2﹣x上,
∴k=h2﹣h,又k=ah2﹣2ah2,
∴h=,……10分
∵﹣2≤h<1,
∴﹣2≤<1,
①当1+a>0时,即a>﹣1时,,解得a>0,
②当1+a<0时,即a<﹣1时,解得a≤﹣,……12分综上所述,a的取值范围a>0或a≤﹣.……13分
9、
10 10、
11、解:(1)抛物线C 的顶点坐标为)1,(-h ,┄┄┄┄┄2分
当h x =时,112-=--=kh kh y ,┄┄┄┄4分
所以直线l 恒过抛物线C 的顶点;
(2)当1-=a 时,抛物线C 解析式为1)(21---=h x y ,
不妨令33-=x y ,
如图1,抛物线C 的顶点在直线1-=y 上移动,
当m ≤x ≤2时,y 1≥x -3恒成立,
则可知抛物线C 的为顶点)1,2(-,┄┄┄┄┄7分
设抛物线C 与直线33-=x y 除顶点外的另一交点为M ,
此时点M 的横坐标即为m 的最小值,
由⎩
⎨⎧-=---=,,31)2(2x y x y 解得:11=x ,22=x ,┄┄┄8分 所以m 的最小值为1.┄┄┄┄┄9分
(3)法一:如图2,由(1)可知:抛物线C 与直线l 都过点A )1,(-h , 当20≤<a ,0>k 时,在直线l 下方的抛物线C 上至少存在两个横坐标为整数
的点,
即当2+=h x 时,12y y >恒成立┄┄┄┄11分
所以1)2(1)2(2--+>--+h h a kh h k ,整理得:a k 2>,┄┄13分 又因为20≤<a ,
所以420≤<a ,所以4>k .┄┄┄┄┄14分
法二:由⎩⎨⎧--=--=,
,11)(2kh kx y h x a y 解得:h x =1,a k h x +=2,┄┄┄11分 如图2,A ,B 为抛物线C 与直线l 的交点,过点B 作⊥BC 直线1-=y 于点C ,
所以AC =a
k h a k h x x =-+=-12, 当20≤<a ,0>k 时,
欲使得在直线l 下方的抛物线C 上至少存在两个横坐标为整数的点, 只要2>a
k 即可,所以a k 2>,┄┄┄┄┄13分 又因为20≤<a ,
所以420≤<a ,所以4>k .┄┄┄┄14分
12、解:(1)依题意,可设1L 的“友好抛物线”的表达式为:2y x bx =-+,…1分 ∵1L :222(1)1y x x x =-=--,
∴1L 的顶点为(1,-1). ……………2分
∵2y x bx =-+过点(1,-1),∴211b -=-+,即b =0. …………3分
∴1L 的“友好抛物线”为:2
y x =-. ……………4分 (2) ∵2L :2
y mx nx =+的顶点为2
(,)24n n m m
--, 1L :2y ax bx =+的顶点为2
(,)24b b a a --. ………5分 ∵ 2L 为1L 的“友好抛物线”,
∴ m =-a . ………6分
∵2L 过1L 的顶点,
∴22()()422b b b m n a a a
-=⨯-+⨯-. 化简得 bn =0. ……………7分 把x =m
n 2-代入2y ax bx =+,得 y =2()()22n n a b m m
⨯-+⨯-=22
424n bn n m m m --=-. ∴抛物线1L 经过2L 的顶点. ……………8分 又∵1L 与2L 的开口大小相同,方向相反,
∴抛物线1L 也是2L 的“友好抛物线”. ……………9分
(3)依题意,得 m =-a .
∴2L :2
y ax nx =-+的顶点为2
(,)24n n a a
. ……………10分 ∴2
24n a =,即2108a n =>. ……………11分 当2L 经过点P (1,0)时,
0a n -+=,∴a =8. ……………12分 当2L 经过点Q (3,0)时,
930a n -+=,∴89
a =
. ……………13分 ∴抛物线2L 与线段PQ 没有公共点时,809a <<或8a >. ……14分。