立式气液分离器计算
气液重力分离器计算软件
本套公式根据GB50350-2005 6.2中立式重力分离器 和 石油化工 设备设计手册 第八篇第五部分直立式气液分离器 编辑
参数名称
符号
数据
单位
气体流量 操作温度 气体临界温度 操作压力 液体密度 气体密度 气体粘度 气体临界压力 液体流量 QL(m3/min) 液体滞留时间 t(min)
密度 kg/m3 1.169 0.694 1.613 2.416 2.327 1.784 1.13 1.895 1.222 1.138 0.081 1.385 2.407 2.327 3.387 0.648 0.814 3.021 1.13 1.785 1.292 0.081 1.808
动力粘度 μPa·s 18.448 10.093 22.624 7.406 8.163 14.932 17.649
15.91
0.00002055
109.69
0.000008915
4.507
0.000008146
气体压缩因子表
对比压力 =ቤተ መጻሕፍቲ ባይዱ对比温度 =
4.971 1.769 1.52 1.972 2.515 2.375 2.051 2.637 3.378 2.813 4.839 2.505 3.215 3.704 1.612 3.569 1.644 5.24 1.715 1.731 1.787 1.827 5.937 7.913 1.384 3.44 1.767 4.317
(qvTZ)/(PWoK1) 972266.8734
计算过程 请勿改动
[4gdL(ρL-ρG)]/3ρ Gf
0.075598609
(ρL-ρG)/ρG 332.3333333
E 液体区(m) 9.8984E-05
立式气液分离器
(1)筒体材料选择Q235-C,筒体内径 mm,厚度6mm,高度1500mm。
(2)封头材料选择Q235-C,选用标准椭圆形封头,内径500mm、厚度6mm、高度150mm、直边高度25mm。
(3)法兰材料选择20#钢,选用带颈对焊法兰。
(4)支座材料选用Q235-B,选用腿式支座B系列。
(5)筒体水压试验压力2.1875MPa,水压试验合格,经校核,法兰和支腿均满足要求。
关键词:立式气液分离器;结构设计;强度校核
Thedesignofvertical heavy energy liquid separator
(4)立式离心气液分离器
离心气液分离器主要是指气液旋流分离,是利用离心力来分离气流中的液滴。因离心力能达到重力数十倍甚至更多,故它比重力分离的效率要高。虽没有过滤分离效率高,但其具备停留时间短、设备体积小、易安装、操作灵活、运行稳定、无易损件、维护方便等优点,成为广泛研究的气液分离方式。其主要结构类型有管柱式、旋流板式、螺旋式、轴流式等 。
1.1立式气液分离器
气液分离器经过专业人员几十年的努力研究,该技术已基本成熟。各种立式气液分离器都有很大的进展。如立式气液分离器当前研究的重点是研制高效的内部填料以提高其分离效率;立式惯性气液分离器当前研究的重点是克服阻力等。当今主要研究方向是将立式气液分离器基本类型进行组合,得到新型的气液分离器 。
1.2本课题研究内容及目的
本课题研究内容是立式气液分离器的结构优化,工艺条件下管路尺寸、法兰及附件的设计。
(1)立式气液分离器采用重力沉降的原理分离气液两相混合物,结构采用内压筒体与丝网捕雾器组合。
立式重力气液分离器的工艺设计
size of st ruct ure
一般认为 ,气相段高度 H1 (直边段) 与气
液分离器直径相当即可 ,即
H1 = (018~112) D
(12)
气体入口流速较高时 ,气相段高度相应取
上限值 。
3 液相段高度的确定
气液分离器的液相段高度由被分离液体
在气液分离器中的停留时间决定 。
当连续排出气液分离器中的液体时 ,可将
5~10min 的液体量控制在液位计的可视范围
液相段直边高度 ,m ; t —被分离液体的停留时
间 ,可根据需要定为 2~8h 。
设计计算的立式重力气液分离器简图如
图 1 所示 。
图 1 立式重力气液分离器简图
4 接管尺寸
4. 1 入口管管径和高度的确定 入口尺寸不小于入口管接管直径 ,较低的
入口位置有利于气液分离 。
一般认为 ρG U 2 ≤1000Ρa
求出液滴的沉降速度 U t (等于气体流速 U ) 后 ,可用下式计算气液分离器的最小直径 :
D min
=
1818
( V) Ut
1/
2
(9)
式中 Dmin —气 液 分 离 器 的 最 小 直 径 , mm ;
V —气体流量 (操作状态下) ,m3/ h ; U t —同前
实际上 ,在一般化工过程的立式气液分离
器中 ,气液相对运动大多数处于过渡区 ,此时 ,
如要 U ≤U t ,根据式 (6) 求 U t ,而
U
=
π 4
V D2 ·3600
则
π
4
V D2 ·3600
≤017805
(ρL - ρG) 01714 d11143 ρL 01286μ≈01429
气-液分离器设计
4
SLDI 233A14-98
得 ALA = Ab + 2A1 = 0.107 + 2 × 0.4 = 0.289
ATOT
ATOT
3.14
查图2.5.1—5得 hLA = 0.333,从最低液位经2min后得到液面高度为 DT
hLA = 0.333 × DT = 0.333× 2000 = 666mm(hLA即是图中h)
2
SLDI 233A14-98
a) 入口接管
两相入口接管的直径应符合式(2.2.2—3)要求。
式中
ρG uP2 <1000Pa
(2.2.2—3)
up——接管内流速,m/s; рG——气体密度,kg/m3。
由此导出
式中
DP>3.34×10-3(VG+VL)0.5
ρ
0. 25 G
(2.2.2—4)
VG、VL——分别为气体与液体体积流量,m3/h; DP——接管直径,m。
低液位(LL)与高液位(HL)之间的距离,采用式(2.2.2—2)计算
式中
HL
=
VLt 47.1D2
(2.2.2—2)
HL——液体高度,m;
t——停留时间,min;
D——容器直径,m; VL——液体体积流量,m3/h。
气、液
图2.2.2 立式重力分离器 停留时间(t)以及釜底容积的确定,受许多因素影响。这些因素包括上、下游设备的工艺要求以及停 车时塔板上的持液量。当液体量较小时,规定各控制点之间的液体高度最小距离为100mm。表示为:LL(低 液位)-100mm-LA(低液位报警)-100mm-NL(正常液位)-100mm-HA(高液位报警)-100mm-HL(高液位)。 2.2.2.3 接管直径
气液分离器设计计算
缓冲时间计算得到。最小的气液分离面积 AVD 一般 被设定为 ( 1 ~ 2) ft,或是分离器内径的 20% ,然
后选取两者 之 中 的 较 大 者。 对 于 卧 式 分 离 器, 从
气体中分离出来的液滴有一个水平拖曳力,该力
并不象立式分离器中的那样与重力方向相反。这
里不对两维颗粒运动做详细的处理,多数文献承
**本文受到国家科技重大专项项目 “煤层气田地面集输工艺及监测技术” ( 编号: 2009ZX05039) 的资助。
2011,21( 5)
冯 宇 气液分离器设计计算
19
其中:
槡 K = 4gDp 3CD
实际上较小的液滴只靠重力沉降是分离不出 来的,但这些 较 小 液 滴 可 以 聚 集 成 较 大 的 液 滴, 再通过重力沉降才能分离。在分离器中的液滴聚 集设备可以使气体通过曲折的通道,使液滴之间 或液滴与聚集设备间相互碰撞形成较大液滴。由 于聚集后的液滴直径很难预测,所以捕雾器的 K 值一般取经验值。K 值的选取便是分离器设计中比 较敏感的问题之一。对于设有捕雾器的分离器 K 值可参照表 1 选取。对于没设捕雾器的分离器,推 荐 K 值为有捕雾器分离器的一半或通过上述公式 计算出其理论 K 值。如果知道聚集液滴的尺寸, 选取曳力系数 CD,见表 1。
< 300psia
> 300psia
15
6
15
6
15
6
6
6
6
6
6
6
卧式分离器 LLL ( in)
9 10 11 12 13 15
( 5) 计算从低液位到正常液位的高度:
HH
=
(
VH π /4)
DV 2
( ft)
气液分离器设计资料
中国石化集团兰州设计院标准SLDI 233A14-98中国石化集团兰州设计院目次1 说明 (1)2 立式和卧式重力分离器设计 (1)2.1 应用范围 (1)2.2 立式重力分离器的尺寸设计 (1)2.3 卧式重力分离器的尺寸设计 (3)2.4 立式分离器(重力式)计算举例 (5)2.5 附图 (6)3 立式和卧式丝网分离器设计 (11)3.1 应用范围 (11)3.2 立式丝网分离器的尺寸设计 (12)3.3 卧式丝网分离器的尺寸设计 (15)3.4 计算举例 (16)3.5 附图 (17)4 符号说明 (19)1 说明1.1 本规定适用于两种类型的气—液分离器设计:立式和卧式重力分离器设计和立式和卧式丝网分离器设计。
2 立式和卧式重力分离器设计 2.1 应用范围2.1.1 重力分离器适用于分离液滴直径大于200μm 的气液分离。
2.1.2 为提高分离效率,应尽量避免直接在重力分离器前设置阀件、加料及引起物料的转向。
2.1.3 液体量较多,在高液面和低液面间的停留时间在6~9min ,应采用卧式重力分离器。
2.1.4 液体量较少,液面高度不是由停留时间来确定,而是通过各个调节点间的最小距离100mm 来加以限制的,应采用立式重力分离器。
2.2 立式重力分离器的尺寸设计 2.2.1 分离器内的气速 2.2.1.1 近似估算法5.0−=G GL s t K V ρρρ (2.2.1—1)式中V t ——浮动(沉降)流速,m/s ; ρL 、ρG ——液体密度和气体密度,kg/m 3; K S ——系数d *=200μm 时,K S =0.0512;d *=350μm 时,K S =0.0675。
近似估算法是根据分离器内的物料流动过程,假设Re =130,由图2.5.1—1查得相应的阻力系数C W =1,此系数包含在K s 系数内,K S 按式(2.2.1—1)选取。
由式(2.2.1—1)计算出浮动(沉降)流速(V t ),再设定一个气体流速(u e ),即作为分离器内的气速,但u e 值应小于V t 。
汽水分离器的效率计算方法
汽水分离器的效率计算方法汽水分离器是工业生产过程中常见的设备,用于去除混合物中的气体和液体。
了解汽水分离器的效率计算方法对于评估设备性能和优化生产流程至关重要。
本文将详细介绍汽水分离器的效率计算方法。
一、汽水分离器的工作原理汽水分离器主要通过重力分离和离心力分离两种方式实现气液分离。
混合物进入分离器后,由于气体的密度小于液体,气体上升并从顶部排出,而液体则下沉并从底部排出。
二、汽水分离器效率计算方法1.理论效率计算理论效率是指在理想状态下,汽水分离器能够实现的最高分离效率。
其计算公式如下:理论效率(η)=(实际分离的气体体积/ 进入分离器的气体总体积)× 100%2.实际效率计算实际效率是指在现实生产过程中,汽水分离器实际的分离效率。
实际效率受多种因素影响,如设备结构、操作参数、物料特性等。
实际效率计算公式如下:实际效率(η")=(实际分离的气体体积/ 进入分离器的气体总体积)× 100%3.影响效率的因素(1)设备结构:分离器直径、高度、进口和出口位置等结构参数对分离效率有直接影响。
(2)操作参数:流量、进口气体和液体流速、压力等操作参数的变化会影响分离效率。
(3)物料特性:气体和液体的密度、粘度、表面张力等物性参数对分离效率也有一定影响。
三、提高汽水分离器效率的方法1.优化设备结构:根据生产需求,合理设计分离器直径、高度等结构参数。
2.调整操作参数:根据物料特性和生产要求,调整流量、流速、压力等操作参数。
3.改善物料特性:通过添加助剂、调整温度等方法,改变气体和液体的物性参数,提高分离效率。
4.定期维护:确保分离器内部无堵塞、磨损等问题,保持设备正常运行。
四、总结汽水分离器效率计算方法对于评估设备性能和优化生产流程具有重要意义。
通过了解分离器的工作原理、掌握效率计算方法以及采取相应的提高效率措施,可以有效提高汽水分离器的分离效果,降低生产成本,提高企业经济效益。
分离器计算
油量Qo 7.14
m3/min 水量Qw m3/min 气量Qg
0.5m3/min 选择水在分离器内停留时间tw
5min
选择油在分离器内停留时间to 1min
分离器长径比 b=L/D 3液体横截面占筒体截面的比例a
0.8分离器内液体占有体积V L =Qo×to+Qw×tw
7.14
m3
1.5590945m T/T长度 L
4.6772835
m
选取直径 D 1.6m 选取T/T长度 L 4.8m 气相有效长度Le=L-D 3.2m 液相有效长度Le=0.75L
2.4
m
三相分离器计算
第一步 初选分离器尺寸
1、给出油气水体积流量,单位m3/min 卧式罐通常为3~5,立式通常为3.5~5
3、选定分离器尺寸视气量决定,气量大可选0.5,气量小可选0.8通常相等
2、由VL=(πD 2/4)×a×bD=Qo×to+Qw×tw反推直径D
1.2、1.4、1.6、1.8、
2.0、2.2、2.4、2.6、2.8、
3.0、3.2、3.4、3.6、3.8、
4.0、),圆筒长度范围1.8-16.8m,增量0.8m(即1.8、2.6、3.4、4.2、
5.0、5.8、
6.6、
7.4、
8.2、
9.0、9.8、10.6、11.4、12.2、13.0、13.8、14.6、15.4、16.2、16.8)
3
4L V D a b π
⨯=∙∙
第二步 按各相所需面积选分离器尺寸。
分离器的参数计算
②分离器其他结构尺寸的确定
• 立式分离器的其他结构尺寸,其确定原则如下: • 除雾分离段H1:对于水平安装的丝网除雾器,一
般不大于400㎜,通常为150㎜。 • 沉降分离段H2:一般不小于1m,通常取H2=D。 • 入口分离段H3:一般不小于600㎜。 • 液体储存段h:由原油在分离器内需要的停留的时
溶解于原油中的气泡越来不及析出或已析出的气 泡来不及浮至液面就被带出分离器,造成原油含 气率越高; • ③分离压力。压力愈高,气液密度差越小,气泡 越不易浮至液面,原油的含气率越高。
16
(2)按气泡在原油中的上升速度计算
• 气泡从原油中分离的匀速上升的速度为:
•
g
d 2g(l g ) 18l
3-3分离器的参数计算
• 引言: • 1、分离器作用 • 2、油气分离包括: • ⑴初次分离 • ⑵主要分离 • ⑶除雾器分离
从气体中分离油滴 从液体中分离气泡
1
(一)从气体中分离油滴计算
• 经初次分离得道的气体,携带大量的液滴进入重 力沉降部分后,流速突然变慢,液滴在重力作用 下以一定加速度下沉;随着液滴下沉速度的增大, 液滴受到向上的阻力增大,当液滴受合力为零时, 变为匀速下降。
• 液滴直径愈小,沉降速度
d 2(L g )g 18 g
愈慢。
• 要使较小直径的液滴在重 力沉降部分下沉至集液部 分,就必须降低气体在重 力沉降部分的流速。
9
通常根据液滴直径为100 m来确定气体的 允许流速。
• 考虑到液滴沉降速度计算公式的假设条件与实际 情况的出入,分离器重力沉降部分流动截面上气 流速度不均匀等因素
18
• 在规定的液体停留时间内,进入分离器的 液量应和集液部分的体积相等,从而可得
(完整word版)气液分离器选型
7.8气液分离器7.8.1概述气液分离器的作用是将气液两相通过重力的作用进行气液的分离。
7.8.2设计步骤(1) 立式丝网分离器的尺寸设计 1) 气体流速(G u )的确定气体流速对分离效率是一个重要因素。
如果流速太大,气体在丝网的上部将把液滴破碎,并带出丝网,形成“液泛”状态,如果气速太低,由于达不到湍流状态,使许多液滴穿过丝网而没有与网接触,降低了丝网的效率。
气速对分离效率的影响见下图:图7-69 分离效率与气速的关系图2) 计算方法G u 5.0)(GG L G K ρρρ-= 式中G u 为与丝网自由横截面积相关的气体流速,s m / L ρ、G ρ为分别为液体和气体的密度,3/m kgG K 为常数,通常107.0=G K 3) 尺寸设计丝网的直径为5.0)(0188.0GG G u V D = 式中 G u 为丝网自由截面积上的气体流速,s m / G D 为丝网直径,m 其余符号意义同前。
由于安装的原因(如支承环约为mm 1070/50⨯),容器直径须比丝网直径至少大l00mm,由图2.5.1-2可以快速求出丝网直径)(G D 4) 高度容器高度分为气体空间高度和液体高度(指设备的圆柱体部分)。
低液位(LL )和高液位(HL )之间的距离由下式计算:21.47DtV H L L = 式中D —容器直径,m ; L V —液体流量,h m /3; t —停留时间,min ;L H —低液位和高液位之间的距离,m ;液体的停留时间(以分计)是用邻近控制点之间的停留时间来表示的,停留时间应根据工艺操作要求确定。
气体空间高度的尺寸见下图所示。
丝网直径与容器直径有很大差别时,尺寸数据要从分离的角度来确定。
图7-70 立式丝网分离器5) 接管直径① 入口管径两相混合物的人口接管的直径应符合下式要求 Pa u GL G 15002<ρ 式中GL u ——接管内两相流速,s m /; G ρ——气相密度,3/m kg ; 由此导出25.05.03)(1002.3GG L p V V D ρ⨯+⨯⨯>-式中p D ——接管直径,m ;L V ——液体体积流量,h m /3; G V ——气体体积流量,h m /3; 其余符号意义同前。
易算云计算立式气液分离器工程计算软件
Re = d����������������
������������
3.4.1-2
式中
������������ —气体粘度,Pa.s 由计算求得 Re 数,从附件一图查得新C������,代入式 3.4.1-1,反复多次计算, 直到前后两次迭代的 Re 相等。(备注:软件已将附表一图表转化为二维数组,以
1、 浮动液滴的平衡条件计算
从浮动液滴的平衡条件,可以得出:
Vt
=
(4gd(ρL−ρG))0.5
3CwρG
3
备注 默认单位为 m,用户自行调整单位,
软件自动换算代入计算 默认单位为 Pa.S,用户自行调整单位,
软件自动换算代入计算 规范推荐 6~9min
根据用户输入乘以体积流量代入计算
3.4.1-1
L
m
11.
高宽比
L/D1
12.
液相高度
HL1
m
13.
气相高度
HG
m
14. 入口接管内径 Dw
mm
15. 气相出口内径 Dt
mm
16. 液相出口内径 Ds
mm
17. 入口接管流速 Vw
m/s
18. 气相出口流速 Vt
m/s
19. 液体出口流速 Vs
m/s
3.3、参数输入说明
3.4、易算云气液分离器软件计算说明
【关键词】分离器计算立式分离器重力分离器
引用标准规范
《气-液分离器设计》 《油气集输设计规范》 《分离器规范》 二、适用范围
HG/T 20570.8-95 GB 50350-2005 SYT 0515-2007
根据国家标准规范,本计算程序适用化工行业。
立式气液分离器设计计算
UVDsn=
85 %×UVmax
AVmin=QV/UVmax
Dmin=(4×AVmin/π)0.5
以AV=(15π0Dm圆2/m整4) UV=QV/AV 约为
51% UVmax 分离良好
设定
QLB=QL×tB
QLC=(π/12)×
0.5 ×D3
高值LH'L=液:=五位(段设Q高L计B-度QLC)/AmVmm4in50低液1位50设计150
100 mm 300 mm
(设定值:
以
50
mm 圆整
HL
H1 H2 HS 圆整后增量:
0
H3 ) 50 0
以 3 ≤ L/D ≤
5 为合理标准
恢复默认 隐
完整性: 合理性1: 合理性2:
类型:
操作分析:
分析1:
分析 2:
3段
流 量
密度 尺寸
kg/h
m3/h kg/m3 mm
立式气-液分离器工艺计算 已经破解了vba密码
已经破解了其中的表格锁定
气相 N2
H3=
300
m m
N1
H2=
150
m m
混合进料
WV= WL=
1500.0 kg/h 150.0 kg/h
QV= QL=
322.6 m3/h 0.2 m3/h
H1=
1182
m m
┈┈┈┈┈┈┈┈┈┈┈
操作分析: 1 1
◆约 为操作5量1%适 中,
允许气速 分离良好
D=
HL= 450 mm
N3
18
m m
液相
调试
计算过程
气-液分离: 1、 分离因子 分离常数 操作分离常数 最大气相流速 操作气相流速 2、 气相流通面积 筒体直径 ↓ 圆 整 实际流通面积 实际气相流速 3、 缓冲时间 存液容积 底部封头容积 最大液相高度 操作液相高度 4、 筒体长度 ↓ 圆 整 5、 长径比
气液分离器设计计算
项 目
带 捕 雾 器 的分 离 器
条件
l≤ P1≤ 15
15≤P1≤4o
40≤ P1≤5500
K值
K =0.1821+0.0029P +
0.0460 In(P)
K =0.35
K:0.430—0.023 ln(P)
0≤ P2≤ 1500
气液分离器依据重力沉 降原理 ,采用 《油气 集输设 计 规范 》 GB 50350—2005及 《分 离 器规 范》 SY/T 0515—2007进行 计算 和 选 取 ,并 以 以下 假设为基础 :①悬 浮物 的运动速率 为常数 ;②分 离器 内不 发 生凝 聚 和 分 散 作 用 ;③ 液 、 固 微 粒 均 是球 形 。计算 忽 略 微 粒 沉 降 的加 速 阶段 ,仅 考 虑 分 离不 小于 50lxm微 粒 的情 况 。此外 ,在计 算 中引 入 立式分 离 器 修 正 系数 K ,气 体 空 间 占有 的 空 间 面积分率 K 、气体空间占有 的高度分率 K,和长径 比 K 经验 参数 … ,这 无 疑 增加 分 离 器 计 算 的 不 确 定 性 。设 计 人 员 先 依 据 标 准 规 范 进 行 计 算 ,再 根 据 经验 及 工 程 需 要 进 行 修 正 ,有 时最 终 所 选 设 备 会 比计 算结 果 大 很 多 ,造 成 不 必 要 的 浪 费 。基 于 以上考 虑 ,综 合 多 种 计 算 方 法 得 出 分 离 器 计 算 方 法 。该 方法 不 仅 满 足 工 程 需 要 ,而 且 采 用 使 设 备 重 量最 轻 的优 化 过 程 使 投 资 最 低 ,可 为 气 液 分 离 器 选 型提供 参考 。
运行 :
气液分离器设计算表知识讲解
100 mm 300 mm
(设定值:
以
50
mm 圆整
HL
H1 H2 HS 圆整后增量:
0
H3 ) 50 0
以 3 ≤ L/D ≤
5 为合理标准
恢复默认 隐
完整性: 合理性1: 合理性2:
类型:
操作分析:
分析1:
分析 2:
3段
流 量
密度 尺寸
kg/h
m3/h kg/m3 mm
立式气-液分离器工艺计算 已经破解了vba密码
已经破解了其中的表格锁定
气相 N2
H3=
300
m m
N1
H2=
150
m m
混合进料
WV= WL=
1500.0 kg/h 150.0 kg/h
QV= QL=
322.6 m3/h 0.2 m3/h
H1=
1182
m m
┈┈┈┈┈┈┈┈┈┈┈
操作分析: 1 1
1500.0 150.0
4.7 100 892.0
1 min
1500.0 322.6 4.7 100
150.0
0.2
%设计流
量
0.0
0.0
892.0 50
重新计算
0.0
0.0
min
NOTE
操作分 结 束
恢复默认 隐 藏
整 合:
操作分析:
1
整 合:
3段
整 合:
结构合理
◆约 为操作5量1%适 中,
允许气速 分离良好
D=
HL= 450 mm
N3
18
m m
液相
调试
计算过程
气-液分离: 1、 分离因子 分离常数 操作分离常数 最大气相流速 操作气相流速 2、 气相流通面积 筒体直径 ↓ 圆 整 实际流通面积 实际气相流速 3、 缓冲时间 存液容积 底部封头容积 最大液相高度 操作液相高度 4、 筒体长度 ↓ 圆 整 5、 长径比
T-PE002303C 气液分离器计算及选型导则
ρL − ρv ρv
(2.3.3.1)
式中: uc——临界速度,m/s;
ρL——操作条件下的液体密度,kg/m3; ρv——操作条件下的气体密度,kg/m3。 2.3.3.2 安全系数 对于允许有一定液沫夹带的容器,如油气分离器、燃料气分液罐、紧急放空罐等, 容器中不装破沫网时,气体速度最高可取临界速度的 170 %。对液沫夹带严格限制的容 器,如压缩机入口分液罐等,不装破沫网时,气体速度可取 80 %临界速度;装破沫网 时,可取 100 %~150 %临界速度。有时为安全起见如重整气液分离罐带破沫网气速取 80 %临界速度,总之应从安全、投资、占地及工程经验综合考虑。 2.3.3.3 气相空间
第8页 共9页
T-PE002303C-2005
导则
图 2.3.5
图 2.3.5 典型的带分水包的回流罐结构图
图中:N 代表物料管口,P 代表压力计口,L 代表液位计口。
2.3.6 卧式气液分离器分水包确定原则
分水包的直径 d 按重相液体(一般为水)的速度取 0.0025 m/s 来决定,见式(2.3.6)。
导则
1 总则
1.1 目的 为规范炼油或石油化工装置靠重力气液分离器设备的工艺设计,特编制本导则。
1.2 范围 1.2.1 本导则规定了工艺装置气液分离器的选型,工艺计算方法和主要结构尺寸设计 的要求。 1.2.2 本导则适用于常规气-液分离,系指带有或不带有破沫网装置的卧式或立式分 离器中气体夹带的一定大小的液滴在容器的气体空间靠重力自然沉降的分离。
第4页 共9页
T-PE002303C-2005
导则
卧式容器的气体空间截面积是指高液面以上与液面垂直的弓形截面积,可由图
2.3.3.3 查出,立式容器的气体空间截面积指水平截面积。计算方法按式(2.3.3.3-1)、
气液分离器说明书
5.1.2气液分离器设计5.121 概述气液分离器的作用是将气液两相通过重力的作用进行气液的分离。
5.1.2.2 气液分离器设计由Aspen Plus模拟结果可知气液相密度分别为0.089kg/ 和779.542 kg/ ,气液相体积流量分别为721970.417 /h和15.318 /h。
(1)初步估算浮动(沉降)流速—步厂式中,「一浮动(沉降)流速,m/s;> -为分别为液体和气体的密度,kg/m3,分别为791.8和0.0899。
为常数,通常为0.0675。
初步估算浮动(沉降)流速6.317m/s,(2)分离器类型的选择根据HG/T 20570.8-95《气液分离器设计》的第2部分:立式和卧式重力分离器设计应用范围如下:①重力分离器适用于分离液滴直径大于200 pm的气液分离;②为提高分离效率,应尽量避免直接在重力分离器前设置阀件、加料及引起物料的转向;③液体量较多,在高液面和低液面间的停留时间在6~9mi n,应米用卧式重力分离器;④液体量较少,液面高度不是由停留时间来确定,而是通过各个调节点间的最小距离100mm来加以限制的,应采用立式重力分离器。
根据模拟数据知气液分离器的工艺参数,所以选用立式重力分离器。
(3)立式重力分离器的尺寸计算从浮动液滴的平衡条件,可以得出: ①浮动(沉降)流速—" [4 X 9.8^ X 3S0 X 1D~* X— 0.273J巧=L松J = [3^0.273=------ =6.317得=1.0由 =1.0,查雷诺数….与阻力系数一关系图,可得「「左右首先由假设氏一呗,由雷诺数Re 和阻力系数.关系图求出 ,然后由所要求的浮动液滴直径d 以及二、_,按下式来算出V,再由此式计算二。
反复迭代计算,直到前后两次迭代的 .数相等即吟「%为止,计算最终结 果-- 。
②直径计算分离器的最小直径由下面公式计算: 式中:恢十 为可能达到的最大气速。
i 4 T H II 讶>1.Fhll?1lls^—ILmgn rLi-I带入数据得:=0.0188 -----------------=0.644圆整得D=0.7m②进出口管径A气液进口管径>3.34=3.34 ----------------------=0.258m选取管规格为=240mmB气体出口管径气体出口管径要求不小于所连接的管道直径。
汽液分离器设计
汽液分离器设计方法及公式汽液分离器设计方法
以下是本人根据石油和化学工程师手册、HG-T 20570.8-1995气液分离器设计及相关论文总结的
计算公式及方法,请大家参考,希望对大家有所帮助和启发,由于水平所限制,请大家批评指正。
第一步:计算水量和蒸汽量,该总和根据所消耗的总蒸汽质量确定,二次蒸汽根据一次蒸汽的焓值和冷凝水的焓值计算,该计算
为最基本的计算,此处不再叙述,由此热量计算能是多少冷凝水温度的热水汽化成一温度的蒸汽,此值取该温度的汽化潜热。
第二步:根据二次蒸汽量确定筒体直径。
D=0.0188(V/1.0)^0.5,V 为蒸汽流量;
筒体高度=2.5D,进口管中心线离上封头线 1.2D+管口直径的一半。
第三步:进口直径d=0.00034*(V气+V液)^0.5*ρ气^0.25;
第四步:计算出汽口直径,按汽速20m/s计算。
(此计算非常简单了,此处不述)
第五步:计算出水口直径,按流速度0.5m/s计算。
同第四步。
第六步:完善筒体总尺寸,绘图完成设计。
这是我个人在实际设计过程中总结的经验,希望对大家有用,也真诚的希望大家发表一下看法,水平所限,请大家指正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Issued :Date:
2000m3/hour 50Kg/hour 0.75Kg/m3
1.25127E-05Pa*s
1000Kg/m3Or
2.00E-04m
1.7391m/s
20.8486
0.8814m/s
10.5664
2.8132m/s
33.7245
10.5664
μm
100-350μm
液滴直径d 200.00
1<Re<1000
沉降速度U t 2 Re计算Stoke 定律
立式重力气液分离器计算
Vertical Gravity Gas Liquid Separator Caculation
项目说明:
1 基础数据 Basic Data 液体密度ρl 液体介质名称 最终确定Re
液体流量W Ver-1
气体介质名称水蒸气气体黏度μg 冷凝水气体流量Q 气体密度ρg 沉降速度U t Allen 定律
沉降速度U t Re
牛顿定律
1000<Re<100000
FALSE
Re
Re
FALSE
0.001<Re<1
TRUE
2.8132m/s
550.00mm 0.55m
1.2601.52
m/s
圆整
650.00
mm
10min 35.08
mm
圆整
36.00
mm
0.02m 35hour 960.53
m
圆整
961.00
mm
36.51
m/s
139.21mm 圆整150.00mm
150mm 25m/s
3.5 入口管管径d1气体在入口管内流速U≤
ρl *U 2≤1000 Pa
2-8hour 3.6 出口管管径
封头容积V1
标准椭圆封头V=0.131D 3
H 4
被分离液体停留时间t 入口管底部至最高液面高度H2150-200mm
3.3 液位计可视高度H 3
液位计可视范围内液体量控制时间t 5-10min 最终沉降速度U t
H 3
D min
501.273 汽液分离器结构计算0.8-1.2mm 3.1 汽液分离器直径D
系数C H 1
3.2 气相段高度H 1气体在出口管内流速U g ≤
圆整
入口管管径d 1
3.4 液相段直边高度H 4
168.24mm 圆整200.00mm
1m/s 133.01
mm
圆整150.00mm
数据输入数据输出
出气管管径d 2
液体在出口管内流速U l ≤0.5-1.5
出液管管径d 3
进口Inlet
气体出口Gas outlet
液体出口Liquid outlet
H 1
H 2
LG
H 4
H 3
650.00
150
961.00
650.00
DN 200.00
DN 150.00
DN 150.00
Φ550.00。