误差理论与测量平差期试题汇总
误差理论与测量平差习题
![误差理论与测量平差习题](https://img.taocdn.com/s3/m/4413d458c77da26924c5b0b9.png)
−1 1 2
试求函数方差1 ,2 和相互协方差1 2 。
解:1 =421 +322
2 =18
1 2 =72 - 1
3.2.14 已知边长 S 及坐标方位角 α 的中误差各位 和 ,试求坐标增量 ΔX=S·cosα 和 ΔY=S·sinα 的
中误差。
2
解: =√cos 2 2 + ()2 2 ∕
3.2.10 设有观测值向量 = [1
31
4
=[0
0
试分别求下列函数的方差:
(1)1 =1 -33 ;
(2)2 =32 3 。
解:1 =22
2 =1822 +2723
2 3 ]T,其协方差阵为
0 0
3 0],
0 2
6 −1 −2
3.2.11 设有观测值向量 = [1 2 3 ] ,其协方差阵为 =[−1 4
误差理论与测量平差习题
第一章
绪论
1.1.04 用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定
(1)误差的性质及符号:
(2)长不准确;
(3)尺尺不水平;
(4)估读小数不准确;
(5)尺垂曲;
(6)尺端偏离直线方向。
1.1.05 在水准测量中,有下列几种情况使水准尺读数带有误差,试判别误差的
̂2 =2.4
̂1 =2.7
̂2 =3.6
两组观测值的平均误差相同,而中误差不同。由于中误差对大的误差反应灵敏,故通常采用中误差作
为衡量精度的指标。本题中,̂1 <̂2 ,因此,第一组观测值的精度高。
2.6.18 设有观测值向量 = [1
21
4 −2
2
解: =(
误差理论和测量平差试卷及答案6套试题+答案
![误差理论和测量平差试卷及答案6套试题+答案](https://img.taocdn.com/s3/m/6eb33c3733d4b14e84246824.png)
误差理论和测量平差试卷及答案6套试题+答案(总23页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《误差理论与测量平差》课程自测题(1)一、正误判断。
正确“T”,错误“F”。
(30分)1.在测角中正倒镜观测是为了消除偶然误差()。
2.在水准测量中估读尾数不准确产生的误差是系统误差()。
3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y 相互独立()。
4.观测值与最佳估值之差为真误差()。
5.系统误差可用平差的方法进行减弱或消除()。
6.权一定与中误差的平方成反比()。
7.间接平差与条件平差一定可以相互转换()。
8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。
10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。
11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。
12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。
13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
14.定权时σ0可任意给定,它仅起比例常数的作用()。
15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
二、用“相等”或“相同”或“不等”填空(8分)。
已知两段距离的长度及其中误差为±;23±。
则:1.这两段距离的中误差( )。
2.这两段距离的误差的最大限差( )。
3.它们的精度( )。
4.它们的相对精度( )。
三、 选择填空。
只选择一个正确答案(25分)。
1.取一长为d 的直线之丈量结果的权为1,则长为D 的直线之丈量结果的权P D =( )。
a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±秒,如果要使其中误差为±秒,则还需增加的测回数N=( )。
误差理论与测量平差基础试题
![误差理论与测量平差基础试题](https://img.taocdn.com/s3/m/163f1a35e87101f69e3195a8.png)
误差理论与测量平差基础试题平差练习题及题解第一章1.1.04 用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)尺长不准确;系统误差。
当尺长大于标准尺长时,观测值小,符号为“+”;当尺长小于标准尺长时,观测值大,符号为“-”。
(2)尺不水平;系统误差,符号为“-”。
(3)估读小数不准确;偶然误差,符号为“+”或“-”。
(4)尺垂曲;系统误差,符号为“-”。
(5)尺端偏离直线方向。
系统误差,符号为“-”。
第二章2.6.17 设对某量进行了两组观测,他们的真误差分别为:第一组:3,-3,2,4,-2,-1,0,-4,3,-2第二组:0,-1,-7,2,1,-1,8,0,-3,1试求两组观测值的平均误差?1、?2^^^^^和中^?1、?2,并比较两组观测值的精度。
^^解:?1=2.4,?2=2.4,?1=2.7,?2=3.6。
两组观测值的平均误差相同,而中误差不同。
由于中误差对大的误差反应灵敏,故通常采用中误差作为衡量精度的指标。
本题中?1<?2,因此,第一组观测值的精度高。
^^第三章3.2.14 已知观测值向量L1、L2和L3及其协方差阵为n1n2n3D11 D12 D13 D21 D22 D23 D31D32 D ,现组成函数:X=AL1+A0,Y=BL2+B0,Z=CL3+C0,式中A、B、C为系数阵,A0、B0、C0为常数阵。
令W=[X Y Z],试求协方差阵DWW 解答:XX DXY DXZ 11A AD12B AD13CDWW = DYX DYY DYZ = BD21A BD22B BD23CZX DZY D 31A CD32B CD33C3.2.19 由已知点A(无误差)引出支点P,如图3-3所示。
其中误差为?0,?0为起算方位角,观测角β和边长S的中误差分别为??和?S,试求P点坐标X、Y的协方差阵。
TTTTTTTTTT图3-1解答:令P点坐标X、Y的协方差阵为2 ?xyx2xy ?2???XAP2222?02 式中:?x=()?S+?YAP-2+?YAP2 ?S?22???YAP2222?02)?S+?XAP-2+?XAP2 ?y=(?S?2???XAP?YAP?022)?S-?XAP?YAP2-?XAPYAP2 ?xy=(2?S?2?xy=?yx3.5.62 设有函数F=f1x+f2y,其中x??1L1??2L2????nLn,y??1L1??2L2????nLn,?i,?i(i?1,2,?n)为无误差的常数,而L1,L2?Ln的权分别为P1,P2?Pn,试求函数F的权倒数1。
误差理论与测量平差期试题讲解
![误差理论与测量平差期试题讲解](https://img.taocdn.com/s3/m/2768f9b4ec3a87c24028c492.png)
《 误差理论与测量平差 》试卷(D )卷 考试时间:100 分钟 考试方式:闭 卷学院 班级 姓名 学号一、填空题 (共20分,每空 2 分)1、观测误差产生的原因为:仪器、 、2、已知一水准网如下图,其中A 、B 为已知点,观测了8段高差,若设E 点高程的平差值与B 、E 之间高差的平差值为未知参数21ˆˆX X 、,按附有限制条件的条件平差法(概括平差法)进行平差时,必要观测个数为 ,多余观测个数为 ,一般条件方程个数为 ,限制条件方程个数为C3、取一长度为d 的直线之丈量结果的权为1,则长度为D 的直线之丈量结果的权为 ,若长度为D 的直线丈量了n 次,则其算术平均值的权为 。
4、已知某点(X 、Y)的协方差阵如下,其相关系数ρXY = ,其点位方差为2=mm 2⎪⎪⎭⎫ ⎝⎛=00.130.030.025.0XXD二、设对某量分别进行等精度了n 、m 次独立观测,分别得到观测值),2,1(,n i L i =,),2,1(,m i L i =,权为p p i =,试求:1)n 次观测的加权平均值][][p pL x n=的权n p 2)m 次观测的加权平均值][][p pL x m=的权m p 3)加权平均值mn mm n n p p x p x p x ++=的权x p (15分)三、 已知某平面控制网中待定点坐标平差参数y xˆˆ、的协因数为 ⎪⎪⎭⎫ ⎝⎛=2115.1ˆˆX X Q 其单位为()2s dm ,并求得2ˆ0''±=σ,试用两种方法求E 、F 。
(15分)四、得到如下图所示,已知A 、B 点,等精度观测8个角值为:L1L2L3L4L5L6L7L8ABCD若选择∠ABC 平差值为未知参数Xˆ,用附有参数的条件平差法列出其平差值条件方程式。
(10分)五、如图所示水准网,A 、B 、C 三点为已知高程点,P 1,P 2为未知点,各观测高差及路线长度如下表所列。
《误差理论与测量平差基础》考试试卷(含参考答案)
![《误差理论与测量平差基础》考试试卷(含参考答案)](https://img.taocdn.com/s3/m/1cf5a6e82dc58bd63186bceb19e8b8f67c1cef9b.png)
《误差理论与测量平差基础》考试试卷一、名词解释1.观测条件2.偶然误差3.精确度4.多余观测5.权6.权函数式7.相对误差椭圆8.无偏性二、填空题1.观测误差包括偶然误差、、。
2.偶然误差服从分布,其图形越陡峭,则方差越。
3.独立观测值L1和L2的协方差为。
4.条件平差的多余观测数为减去。
5.间接平差的未知参数协因数阵由计算得到。
6.观测值的权与精度成关系,权越大,则中误差越。
7. 中点多边形有个极条件和个圆周条件。
8. 列立测边网的条件式时,需要确定与边长改正数的关系式。
9. 秩亏水准网的秩亏数为个。
三、 问答题1. 写出协方差传播律的应用步骤。
2. 由最小二乘原理估计的参数具有哪些性质?3. 条件平差在列立条件式时应注意什么?什么情况下会变为附有参数的条件平差?4. 如何利用误差椭圆求待定点与已知点之间的边长中误差?5. 为什么在方向观测值的误差方程式里面有测站定向角参数?6. 秩亏测角网的秩亏数是多少?为什么?7. 什么是测量的双观测值?举2个例子说明。
8. 方向观测值的误差方程式有何特点?四、 综合题1. 下列各式中的Li (i=1,2,3)均为等精度独立观测值,其中误差为σ,试求X 的中误差:(1) 321)(21L L L X ++= ,(2)321L L L X =。
2. 如图1示,水准网中A,B,C 为已知高程点,P1,P2,P3为待定点,h1~h6为高差观测值,按条件平差方法,试求: (1) 全部条件式; (2) 平差后P2点高程的权函数式。
3. 如图2示,测边网中A,B,C 为已知点,P 为未知点,观测边长为L1~L3,设P 点坐标P X 、P Y 为参数,按间接平差方法,试求: (1) 列出误差方程式; (2) 按矩阵符号写出法方程及求解参数平差值的公式; (3) 平差后AP 边长的权函数式。
4. 在条件平差中,0=+∆WA ,试证明估计量^L 为其真值~L 的无偏估计。
(提示:~)(L L E =,须证明0)(=V E )5. 在某测边网中,设待定点P 的坐标为未知参数,即[]TX X X 21^=,平差后得到^X 的协因数阵为⎥⎦⎤⎢⎣⎡=yy xyxy xx XX Q Q Q Q Q ^^,且单位权中误差为0^σ,求:(1)P 点的纵横坐标中误差和点位中误差; (2)P 点误差椭圆三要素 E ϕ、E 、F 。
误差理论与测量平差基础习题集
![误差理论与测量平差基础习题集](https://img.taocdn.com/s3/m/6333cb17a26925c52cc5bff3.png)
第一章绪论§1-1观测误差1.1.01为什么说观测值总是带有误差,而且观测误差是不可避免的?1.1.02观测条件是由哪些因素构成的?它与观测结果的质量有什么联系?1.1.03测量误差分为哪几类?它们各自是怎样定义的?对观测成果有何影响?试举例说明。
1.1.04用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)长不准确;(2)尺尺不水平;(3)估读小数不准确;(4)尺垂曲;(5)尺端偏离直线方向。
1.1.05在水准测量中,有下列几种情况使水准尺读数带有误差,试判别误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下沉;(3)读数不准确;(4)水准尺下沆。
§1-2测量平差学科的研究对象1.2.06 何谓多余观测?测量中为什么要进行多余观测?1.2.07 测量平差的基本任务是什么?§1-3测量平差的简史和发展1.3.08 高斯于哪一年提出最小二乘法?其主要是为了解决什么问题?1.3.09 自20世纪五六十年代开始,测量平差得到了很大发展,主要表现在那些方面?§1-4 本课程的任务和内容1.4.10 本课程主要讲述哪些内容?其教学目的是什么?第二章误差分析与精度指标§2-1 正态分布2.1.01 为什么说正态分布是一种重要的分布?试写出一维随机变量X的正态分布概率密度式。
§2-2 偶然误差的规律性2.2.02 观测值的真误差是怎样定义的?三角形的闭合差是什么观测值的真误差?2.2.03 在相同的观测条件下,大量的偶然误差呈现出什么样的规律性?2.2.04 偶然误差*服从什么分布?它的数学期望和方差各是多少?§2-3 衡量精度的指标2.3.05 何谓精度?通常采用哪几种指标来衡量精度?2.3.06 在相同的观测条件下,对同一个量进行若干次观测得到一组观测值,这些观测值的精度是否相同?能否认为误差小的观测值比误差大的观测值精度高?2.3.07 若有两个观测值的中误差相同,那么,是否可以说这两个观测值的真误差一定相同?为什么?2.3.08 为了鉴定经纬度的精度,对已知精确测定的水平角α=45O00’00”作12次观测,结果为:45o00’06” 44o59’55” 44o59’58” 45o00’04”45o00’03” 45o00’04” 45o00’00” 44o59’58”44o59’59” 44o59’59” 45o00’06” 45o00’03”设α没有误差,试求观测值的中误差。
误差理论与测量平差基础习题集
![误差理论与测量平差基础习题集](https://img.taocdn.com/s3/m/6333cb17a26925c52cc5bff3.png)
第一章绪论§1-1观测误差1.1.01为什么说观测值总是带有误差,而且观测误差是不可避免的?1.1.02观测条件是由哪些因素构成的?它与观测结果的质量有什么联系?1.1.03测量误差分为哪几类?它们各自是怎样定义的?对观测成果有何影响?试举例说明。
1.1.04用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)长不准确;(2)尺尺不水平;(3)估读小数不准确;(4)尺垂曲;(5)尺端偏离直线方向。
1.1.05在水准测量中,有下列几种情况使水准尺读数带有误差,试判别误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下沉;(3)读数不准确;(4)水准尺下沆。
§1-2测量平差学科的研究对象1.2.06 何谓多余观测?测量中为什么要进行多余观测?1.2.07 测量平差的基本任务是什么?§1-3测量平差的简史和发展1.3.08 高斯于哪一年提出最小二乘法?其主要是为了解决什么问题?1.3.09 自20世纪五六十年代开始,测量平差得到了很大发展,主要表现在那些方面?§1-4 本课程的任务和内容1.4.10 本课程主要讲述哪些内容?其教学目的是什么?第二章误差分析与精度指标§2-1 正态分布2.1.01 为什么说正态分布是一种重要的分布?试写出一维随机变量X的正态分布概率密度式。
§2-2 偶然误差的规律性2.2.02 观测值的真误差是怎样定义的?三角形的闭合差是什么观测值的真误差?2.2.03 在相同的观测条件下,大量的偶然误差呈现出什么样的规律性?2.2.04 偶然误差*服从什么分布?它的数学期望和方差各是多少?§2-3 衡量精度的指标2.3.05 何谓精度?通常采用哪几种指标来衡量精度?2.3.06 在相同的观测条件下,对同一个量进行若干次观测得到一组观测值,这些观测值的精度是否相同?能否认为误差小的观测值比误差大的观测值精度高?2.3.07 若有两个观测值的中误差相同,那么,是否可以说这两个观测值的真误差一定相同?为什么?2.3.08 为了鉴定经纬度的精度,对已知精确测定的水平角α=45O00’00”作12次观测,结果为:45o00’06” 44o59’55” 44o59’58” 45o00’04”45o00’03” 45o00’04” 45o00’00” 44o59’58”44o59’59” 44o59’59” 45o00’06” 45o00’03”设α没有误差,试求观测值的中误差。
误差理论和测量平差试题+问题详解
![误差理论和测量平差试题+问题详解](https://img.taocdn.com/s3/m/770f164cb90d6c85ec3ac699.png)
《误差理论与测量平差》(1)1.正误判断。
正确“T”,错误“F”。
(30分)1.在测角中正倒镜观测是为了消除偶然误差()。
2.在水准测量中估读尾数不准确产生的误差是系统误差()。
3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。
4.观测值与最佳估值之差为真误差()。
5.系统误差可用平差的方法进行减弱或消除()。
6.权一定与中误差的平方成反比()。
7.间接平差与条件平差一定可以相互转换()。
8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。
10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。
11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。
12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。
13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
14.定权时σ0可任意给定,它仅起比例常数的作用()。
15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
16.用“相等”或“相同”或“不等”填空(8分)。
已知两段距离的长度及其中误差为300.158m ±3.5cm;600.686m ±3.5cm 。
则:1.这两段距离的中误差( )。
2.这两段距离的误差的最大限差( )。
3.它们的精度( )。
4.它们的相对精度( )。
17. 选择填空。
只选择一个正确答案(25分)。
1.取一长为d 的直线之丈量结果的权为1,则长为D 的直线之丈量结果的权P D =( )。
a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。
(完整word版)误差理论和测量平差试卷及答案6套 试题+答案(word文档良心出品)
![(完整word版)误差理论和测量平差试卷及答案6套 试题+答案(word文档良心出品)](https://img.taocdn.com/s3/m/5dce9d0701f69e3142329445.png)
《误差理论与测量平差》课程自测题(1)一、正误判断。
正确“T”,错误“F”。
(30分)1.在测角中正倒镜观测是为了消除偶然误差()。
2.在水准测量中估读尾数不准确产生的误差是系统误差()。
3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。
4.观测值与最佳估值之差为真误差()。
5.系统误差可用平差的方法进行减弱或消除()。
6.权一定与中误差的平方成反比()。
7.间接平差与条件平差一定可以相互转换()。
8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。
10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。
11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。
12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。
13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
14.定权时σ0可任意给定,它仅起比例常数的作用()。
15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
二、用“相等”或“相同”或“不等”填空(8分)。
已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。
则:1.这两段距离的中误差()。
2.这两段距离的误差的最大限差()。
3.它们的精度()。
4.它们的相对精度()。
三、选择填空。
只选择一个正确答案(25分)。
1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。
a) d/D b) D/d c) d 2/D 2d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。
误差理论及测量平差基础习题集
![误差理论及测量平差基础习题集](https://img.taocdn.com/s3/m/d2f7bacb58fb770bf68a55ad.png)
.第七章间接平差§7-1 间接平差原理7.1.01在间接平差中,独立参数的个数与什么量有关?偏差方程和法方程的个数是多少?7.1.02在某平差问題中,假如剩余现测个数少于必需观察个数,此时间接平差中的法方程和条件平差中的法方程的个数哪—个少,为何?7.1.03假如某参数的近似值是依据某些现测值计算而得的,那么这些观察值的偏差方程的常数项都会等于零吗?7.1.04在图7-1所示的闭合水平网中, A 为已知点( H A=10.OOOm),P1, P2为高程未知点,测得离差及水平路线长度为:h1= 1.352m,S 1=2km,h2 =-0.531m ,S2 = 2km,h 3 = - 0.826m,S 3 = lkm。
试用间接平差法求各髙差的平差值。
7.1.05在三角形(图7-2)中,以不等精度测得α=78o 23′12" ,Pα =1;β= 85 o 30 '06 ",P?=2;γ=16o 06'32" , Pγ =1;δ=343o 53'24", P δ =1;试用间接平差法求各内角的平差值。
7.1.06设在单调附合水平路线(图7-3)中已知A,B两点高程为H A,H B,路线长为.S1, S2,观察高差为 h1 h 2,试用间接平差法写出P 点高程平差值的公式。
7. 1.07 在测站 0 点观察了 6 个角度 ( 如图 7-4 所示 ) ,得同精度独立观察值 :L1=32o 25'18", L 2 =61 o14'36",L3=94o 09'40",L 4 172010'17"L5=93o 39'48", L6=155o24'20"已知 A 方向方向角αA =21o 10'15" ,试按间接平差法求各方向方向角的平差值。
误差理论与测量平差基础习题集
![误差理论与测量平差基础习题集](https://img.taocdn.com/s3/m/1b0cf22ed1f34693dbef3e63.png)
第五章条件平差§5-1条件平差原理条件平差中求解的未知量是什么?能否由条件方程直接求得5. 1. 02 设某一平差问题的观测个数为n.必要观测数为t,若按条件平差法进行平差,其条件方程、法方程及改正数方程的个数各为多少?5. 试用符号写出按条件平差法平差时,单一附合水准路线中(如图5-1所示)各观测值平差值的表达式。
图5-15. 1. 04 在图5-2中,已知A ,B的高程为Ha = m , Hb=11. 123m,观测高差和线路长度为:图5-2S1=2km,S2=Ikm,S3=,h1=,h2= m,h3= m,求改正数条件方程和各段离差的平差值。
在图5-3的水准网中,A为已知点B、C、D为待定点,已知点高程HA=,观测了5条路线的高差:h1=,h2=0. 821 m,h3=,h4=,h5= m。
各观测路线长度相等,试求:(1)改正数条件方程;(2)各段高差改正数及平差值。
有水准网如图5-4所示,其中A、B、C三点高程未知,现在其间进行了水准测量,测得高差及水准路线长度为h1=1 .335 m,S1=2 km;h2= m,S2=2 km;h3= m,S3=3km。
试按条件平差法求各高差的平差值。
如图 5-5 所示,L1=63°19′40″,=30″;L2=58°25′20″,=20″;L3=301°45′42″,=10″.(1)列出改正数条件方程;(2)试用条件平差法求∠C的平差值(注: ∠C是指内角)。
5-2条件方程5. 对某一平差问题,其条件方程的个数和形式是否惟一?列立条件方程时要注意哪些问题?如何使得一组条件方程彼此线性无关?. 10 指出图5-6中各水准网条件方程的个数(水准网中P i表示待定高程点,h i表示观测高差)。
(a) (b)图5-65. 2. 11指出图5-7中各测角网按条件平差时条件方程的总数及各类条件的个数(图中P i 为待定坐标点)。
误差理论和测量平差试卷及答案6套 试题+答案
![误差理论和测量平差试卷及答案6套 试题+答案](https://img.taocdn.com/s3/m/618fecd926fff705cc170ab0.png)
《误差理论与测量平差》课程自测题(1)一、正误判断。
正确“T”,错误“F”。
(30分)1.在测角中正倒镜观测是为了消除偶然误差()。
2.在水准测量中估读尾数不准确产生的误差是系统误差()。
3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。
4.观测值与最佳估值之差为真误差()。
5.系统误差可用平差的方法进行减弱或消除()。
6.权一定与中误差的平方成反比()。
7.间接平差与条件平差一定可以相互转换()。
8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。
10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。
11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。
12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。
13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
14.定权时σ0可任意给定,它仅起比例常数的作用()。
15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
二、用“相等”或“相同”或“不等”填空(8分)。
已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。
则:1.这两段距离的中误差()。
2.这两段距离的误差的最大限差()。
3.它们的精度()。
4.它们的相对精度()。
三、选择填空。
只选择一个正确答案(25分)。
1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。
a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。
《误差理论与测量平差基础》考试试卷
![《误差理论与测量平差基础》考试试卷](https://img.taocdn.com/s3/m/efb00709f7ec4afe04a1dfbf.png)
《误差理论与测量平差基础》考试试卷3一、填空题(每空3分,共15分)1、有一段距离,其观测值及其中误差为 ,该观测值的相对中误差为 (1) 。
2、已知常系数矩阵A 和B ,随机向量L 的方差阵LL D ,并有随机向量的函数L A x T,L B y T 。
x 和y 的互协方差阵为 (2) 。
3、已知独立观测值 T L L L 211,2 的方差阵160064LL D,单位权方差420 ,则其权阵LL P 为 (3) 。
4、设有某个物理量同精度观测了n 次,得),,2,1(n i L i ,若每次观测的精度为 ,权为p ,则其算术平均值L 的权为 (3) 。
5、已知某三角网中P 点坐标的协因数阵为22ˆˆ 2.100.25/"0.25 1.60XX Q cm,单位权方差的估值为22"0ˆ 1.0,位差的极大值方向E 为 (5) 。
二、单选题(每题3分,共15分)1、设有观测向量 TL L X 211,2 ,已知2ˆ1 L,4ˆ2 L ,2)'('2ˆ21 L L ,其协方差阵XX D 为( )。
A 、4222 , B 、 4222 , C 、44416 , D 、16224 2、设有观测向量L ,其协方差阵为432LLD 。
函数11233F L L L 的方差为( )。
A 、9 ,B 、41 ,C 、 17 ,D 、25mm m 153003、已知观测向量L 的权阵为5224LL P ,观测值的权1L p 和2L p 分别为( )。
A 、165和4, B 、41和51, C 、 165和41, D 、4和54、有图(1)所示的三角网,其中B 、C 为已知点,A 、D 、E 为待定点,观测角)10,,2,1( i L i 。
则网中必要观测数和多余观测数分别是( )。
A 、6和4,B 、4和6,C 、5和 5 ,D 、7和35、下列说法错误的是( )。
A 、一个平差问题中,必要观测的个数取决于该问题本身的性质,与观测值的多少无关。
误差理论与测量平差期试题讲解
![误差理论与测量平差期试题讲解](https://img.taocdn.com/s3/m/2768f9b4ec3a87c24028c492.png)
《 误差理论与测量平差 》试卷(D )卷 考试时间:100 分钟 考试方式:闭 卷学院 班级 姓名 学号一、填空题 (共20分,每空 2 分)1、观测误差产生的原因为:仪器、 、2、已知一水准网如下图,其中A 、B 为已知点,观测了8段高差,若设E 点高程的平差值与B 、E 之间高差的平差值为未知参数21ˆˆX X 、,按附有限制条件的条件平差法(概括平差法)进行平差时,必要观测个数为 ,多余观测个数为 ,一般条件方程个数为 ,限制条件方程个数为C3、取一长度为d 的直线之丈量结果的权为1,则长度为D 的直线之丈量结果的权为 ,若长度为D 的直线丈量了n 次,则其算术平均值的权为 。
4、已知某点(X 、Y)的协方差阵如下,其相关系数ρXY = ,其点位方差为2=mm 2⎪⎪⎭⎫ ⎝⎛=00.130.030.025.0XXD二、设对某量分别进行等精度了n 、m 次独立观测,分别得到观测值),2,1(,n i L i =,),2,1(,m i L i =,权为p p i =,试求:1)n 次观测的加权平均值][][p pL x n=的权n p 2)m 次观测的加权平均值][][p pL x m=的权m p 3)加权平均值mn mm n n p p x p x p x ++=的权x p (15分)三、 已知某平面控制网中待定点坐标平差参数y xˆˆ、的协因数为 ⎪⎪⎭⎫ ⎝⎛=2115.1ˆˆX X Q 其单位为()2s dm ,并求得2ˆ0''±=σ,试用两种方法求E 、F 。
(15分)四、得到如下图所示,已知A 、B 点,等精度观测8个角值为:L1L2L3L4L5L6L7L8ABCD若选择∠ABC 平差值为未知参数Xˆ,用附有参数的条件平差法列出其平差值条件方程式。
(10分)五、如图所示水准网,A 、B 、C 三点为已知高程点,P 1,P 2为未知点,各观测高差及路线长度如下表所列。
误差理论与测量平差基础习题集-二期
![误差理论与测量平差基础习题集-二期](https://img.taocdn.com/s3/m/b4a920dedaef5ef7ba0d3ca2.png)
误差理论与测量平差基础习题集1.1 设对一段距离丈量了三次,三次结果分别为9.98m ,10.00m ,10.02m ,试根据测量平差概念,按独立等精度最小二乘原理(21min ni i v ==∑)求这段距离的平差值以及消除矛盾时各次结果所得的最或然改正数。
11223311231.1ˆˆˆ 9.98 ˆˆˆ 10 ˆˆˆ 10.0219.98ˆ110110.02ˆ()130103ˆ9.982ˆ100ˆ10.022T T L X V XL X V XL X V XV X X B B B l V Xcm V Xcm V Xcm ->>⎧==-⎪⎪==-⎨⎪==-⎪⎩⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦==⨯==-==-==-=-1.2 一段距离丈量了三次,三次结果分别为9.98m ,10.00m ,10.02m ,令三次结果的权分别为1,2,1,试按独立非等精度最小二乘原理(21min ni i i p v ==∑)求这段距离的平差值以及消除矛盾时各次结果所得的最或然改正数。
111231.21001001000202001001ˆ()1(9.9810210.02)104ˆ9.982ˆ100ˆ10.022T T Q P Q X B PB B Pl V Xcm V Xcm V Xcm -->>⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⇒==⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦==⨯+⨯+==-==-==-=-1.3 设一平面三角形三内角观测值为A 、B 、C ,180W A B C =++-︒为三角形闭合差,试根据测量平差概念,按独立等精度最小二乘原理证明三内角的评差值为ˆ3W A A =-、ˆ3W B B =-、ˆ3W C C =-。
()1231231231.3ˆˆˆ18001800011100AB C A V B V C V V V V W V V W V AV W P E Q E>>++-︒=+++++-︒=+++=⎡⎤⎢⎥+=⎢⎥⎢⎥⎣⎦+===按条件平差法有1123()111311313131ˆ31ˆ31ˆ3T T T T V QA K A K A AA W WW W W A A V A W B B V B W C C V C W -===-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦⎡⎤-⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥-⎣⎦=+=-=+=-=+=-123ˆˆˆ ˆˆˆ ˆˆˆˆˆ+180 +18010ˆ01ˆ11180ˆˆA A B B A B A B A B A B A X V X A B X V X B C X X V X X C A XV B X C X X ⎧==-⎪⎪==-⎨⎪=--︒=--︒-⎪⎩⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦---︒⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎢⎣⎦按参数平差11()101011010101101111180121801321801331ˆ31ˆ31ˆˆˆ1801803T TB PB B Pl A BC A W A B C A B C B W AA W BB W CA B A W B --=⎥⎡⎤⎡⎤⎛⎫⎛⎫--⎛⎫⎛⎫⎢⎥⎢⎥ ⎪ ⎪= ⎪ ⎪⎢⎥⎢⎥ ⎪ ⎪--⎝⎭⎝⎭ ⎪ ⎪⎢⎥⎢⎥---︒⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤-⎢⎥--+︒⎡⎤==⎢⎥⎢⎥-+-+︒⎣⎦⎢⎥-⎢⎥⎣⎦=-=-=︒--=︒-+-+即132180313W A B C W CC W=︒---++=-1.4 已知独立等精度观测某三角锁段共得15个三角形,其闭合差如下表 所示。
《误差理论与测量平差》复习题
![《误差理论与测量平差》复习题](https://img.taocdn.com/s3/m/fa8bff0e42323968011ca300a6c30c225901f0ec.png)
《误差理论与测量平差》复习题一、填空题1、测量平差的任务是:、。
2、观测误差产生的原因:、、。
3、观测误差一般分为:、、。
4、最小二乘法最早由提出,其基本思想是。
5、图1所示水准网中观测总数n= 、必要观测个数t= 、多余观测数r= 。
6、四种基本平差方法:、、、。
图17、误差椭圆三要素指、、。
8、观测误差的主要来源有:、、。
9、根据观测误差对测量误差的影响性质可分为:、、三类。
10、最小二乘法的基本思想是。
11、常用衡量精度的指标有:、、、、。
二、判断题1、在水准测量中估读尾数不准确产生的误差是系统误差。
()2、对于大量的偶然误差具有一定的概率统计规律。
()3、系统误差可用四种基本平差模型进行减弱或消除。
()4、粗差在测量过程中是不可避免的。
()5、对于同一几何模型,如果按件平差法解算,不同的人列出的条件方程可能不同。
()6、定权时是可以任意选定的常数。
()7、权一定无单位。
()8、精度是指误差分布的密集或离散的程度。
()9、设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高。
()10、当观测值个数大于必要观测数时,该平差模型可被唯一地确定。
()11、在水准测量中估读水准尺上的毫米数不准确产生的误差是偶然误差。
()12、对于大量的偶然误差也不具有一定的概率统计规律。
()13、系统误差可用四种基本平差模型进行减弱或消除。
()14、粗差在测量过程中是可以避免的。
()15、对于同一几何模型按条件平差法解算,不同的人列出的条件方程一定是相同的。
()16、准确度是用来描述系统误差的指标。
()17、权一定没有单位。
()18、精度是指误差分布的密集或离散的程度。
()19、设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高。
()20、各观测值权之间的比例关系与观测值中误差的大小无关。
()三、选择题1、现有一组观测数据,其真误差为3、-3、2、4、-2、-1、0、-4、3、-2,请问这组观测值的中误差为()。
误差理论和测量平差习题集(含答案)
![误差理论和测量平差习题集(含答案)](https://img.taocdn.com/s3/m/f6f7072b5f0e7cd185253627.png)
1.1 观测条件是由那些因素构成的?它与观测结果的质量有什么联系?1.2 观测误差分为哪几类?它们各自是怎样定义的?对观测结果有什么影响?试举例说明。
1.3用钢尺丈量距离,有下列几种情况使得结果产生误差,试分别判定误差的性质及符号:(1)尺长不准确;(2)尺不水平;(3)估读小数不准确;(4)尺垂曲;(5)尺端偏离直线方向。
1.4 在水准了中,有下列几种情况使水准尺读书有误差,试判断误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下沉;(3)读数不准确;(4)水准尺下沉。
1.5 何谓多余观测?测量中为什么要进行多余观测?答案:1.3 (1)系统误差。
当尺长大于标准尺长时,观测值小,符号为“+”;当尺长小于标准尺长时,观测值大,符号为“-”。
(2)系统误差,符号为“-”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”(5)系统误差,符号为“-”1.4 (1)系统误差,当i角为正时,符号为“-”;当i角为负时,符号为“+”(2)系统误差,符号为“+”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”2.1 为了鉴定经纬仪的精度,对已知精确测定的水平角'"450000α=作12次同精度观测,结果为:'"450006 '"455955'"455958'"450004'"450003'"450004'"450000 '"455958'"455959 '"455959 '"450006 '"450003设a 没有误差,试求观测值的中误差。
2.2 已知两段距离的长度及中误差分别为300.465m ±4.5cm 及660.894m ±4.5cm ,试说明这两段距离的真误差是否相等?他们的精度是否相等?2.3 设对某量进行了两组观测,他们的真误差分别为: 第一组:3,-3,2,4,-2,-1,0,-4,3,-2 第二组:0,-1,-7,2,1,-1,8,0,-3,1试求两组观测值的平均误差1ˆθ、2ˆθ和中误差1ˆσ、2ˆσ,并比较两组观测值的精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《 误差理论与测量平差 》试卷(D )卷 考试时间:100 分钟 考试方式:闭 卷学院 班级 姓名 学号一、填空题 (共20分,每空 2 分)1、观测误差产生的原因为:仪器、 、2、已知一水准网如下图,其中A 、B 为已知点,观测了8段高差,若设E 点高程的平差值与B 、E 之间高差的平差值为未知参数21ˆˆX X 、,按附有限制条件的条件平差法(概括平差法)进行平差时,必要观测个数为 ,多余观测个数为 ,一般条件方程个数为 ,限制条件方程个数为C3、取一长度为d 的直线之丈量结果的权为1,则长度为D 的直线之丈量结果的权为 ,若长度为D 的直线丈量了n 次,则其算术平均值的权为 。
4、已知某点(X 、Y)的协方差阵如下,其相关系数ρXY = ,其点位方差为2=mm 2⎪⎪⎭⎫ ⎝⎛=00.130.030.025.0XXD二、设对某量分别进行等精度了n 、m 次独立观测,分别得到观测值),2,1(,n i L i =,),2,1(,m i L i =,权为p p i =,试求:1)n 次观测的加权平均值][][p pL x n=的权n p 2)m 次观测的加权平均值][][p pL x m=的权m p 3)加权平均值mn mm n n p p x p x p x ++=的权x p (15分)三、 已知某平面控制网中待定点坐标平差参数y xˆˆ、的协因数为 ⎪⎪⎭⎫ ⎝⎛=2115.1ˆˆX X Q 其单位为()2s dm ,并求得2ˆ0''±=σ,试用两种方法求E 、F 。
(15分)四、得到如下图所示,已知A 、B 点,等精度观测8个角值为:L1L2L3L4L5L6L7L8ABCD若选择∠ABC 平差值为未知参数X ˆ,用附有参数的条件平差法列出其平差值条件方程式。
(10分)五、如图所示水准网,A 、B 、C 三点为已知高程点,P 1,P 2为未知点,各观测高差及路线长度如下表所列。
(20分)用条件平差法计算未知点P 1,P 2的高程平差值及其中误差;AC六、如下图所示,A,B点为已知高程点,试按间接平差法求证在单一附合水准路线中,平差后高程最弱点在水准路线中央。
(20分)A参考答案及评分标准一、填空题 (共20分,每空 2 分) 1:外界环境、观测者 2:4、4、5、1 3:d/D 、nd/D 4:0.6、1.25 二、解:因为p p i =1)()()()()T n n n n L L L nL L L n pL pL pL np p pL x 212121*111111][][=+++=+++==(2分) 根据协因数传播定律,则x n 的权n p :()np n np p pp n 11111**11111111=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=(2分) 则:np p n = (1分)2)()()()()T m m m m L L L mL L L m pL pL pL m p p pL x 212121*111111][][=+++=+++==(2分) 根据协因数传播定律,则x m 的权m p :()m p m mp p pp m 11111**11111111=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=(2分) 则:mp p m = (1分)3)⎪⎪⎭⎫⎝⎛⎪⎭⎫⎝⎛++=++=++=m n m n m n m m n n x x m n m mn nmp np x mp x np p p x p x p x ** (2分) 根据协因数传播定律,则x 的权x p :p m n m n m m n n m n m mn np mp npx )(1111+=⎪⎪⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛++= (2分)则:p m n p x )(+= (1分)三、解:(1)极值方向的计算与确定425.11*222tan 0-=-=-=yyxx xy Q Q Q ϕ所以︒︒=︒︒=018.142018.52036.284036.104200;;ϕϕ因为Q xy >0,则极大值E 在一、三象限,极小值F 在二、四象限,则:︒︒=︒︒=018.322018.142018.232018.52;;F E ϕϕ (5分)(2)极大值E 、极小值F 的计算 方法一 根据任意方向位差计算公式123.11))018.52*2sin(*1018.52sin *2018.52cos *5.1(*4)2sin sin cos (ˆ2222202=︒+︒+︒=++=E xy E yy E xx Q Q Q E ϕϕϕσ 877.2))018.142*2sin(*1018.142sin *2018.142cos *5.1(*4)2sin sin cos (ˆ2222202=︒+︒+︒=++=F xy F yy F xx Q Q Q F ϕϕϕσ dm F dmE 70.134.3±=±= (5分)⎪⎪⎭⎫⎝⎛=2115.1ˆˆX X Q 方法二5.325.15.025.1=+=+=-=-yy xx yy xx Q Q Q Q062.21*45.04)(2222=+=+-=xy yy xx Q Q Q H877.2)062.25.3(*4*21)(21123.11)062.25.3(*4*21)(21202202=-=-+==+=++=H Q Q F H Q Q E yy xx yy xx σσdmF dm E 70.134.3±=±= (5分) 四、解:本题n =8,t=4,r=n-t=4,u=1 (4分) 其平差值条件方程式为:1ˆsin *ˆsin *ˆsin ˆsin *ˆsin *ˆsin 0ˆˆˆ0180ˆˆˆ0180ˆˆˆ0180ˆˆˆˆˆˆ14265365854761654321==-+=︒-++=︒-++=︒-+++++L L L L L L X L L L L L L L L L L L L L L (6分)五、解:1)本题n=4,t=2,r=n-t=2 (2分)则平差值条件方程式0ˆ0=+A h A 为: 0ˆˆˆ0ˆˆ13412=-++-=-++A C AB H h h h H H h h H (2分)则改正数方程式0=-w Av 为:02431121=--+=-+w v v v w v v则⎪⎪⎭⎫⎝⎛-=10101011A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321v v v v v ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-++--++-=+-=42)(134120A CA B H h h h H H h h H A Ah W (3分)令C =1,观测值的权倒数为:⎪⎪⎪⎪⎪⎭⎫⎝⎛=-11111P (1分) 则组成法方程,并解法方程:⎪⎪⎭⎫ ⎝⎛==-31121TA AP N ⎪⎪⎭⎫ ⎝⎛-==-221W N K (2分)求改正数,计算平差值⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--==⎪⎪⎪⎭⎫ ⎝⎛=-22201321K A P v v v v T ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=+=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=245.1543.0309.1044.1ˆˆˆˆˆ4321v h h h h h h (2分) 则P 1,P 2点高程为:mh H H m h H H C P A P 051.32ˆ044.33ˆ4211=-==-= (1分)2)单位权中误差:mm pvv r pv v T T 45.262ˆ0±=±=±=±=σ (1分)由上知:()()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+=-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+=-=432142432111ˆˆˆˆ1000ˆˆˆˆˆ0001ˆh h h h H h H H h h h hH h H H CC P AA P (2分)由L L T L L L L LL AQ N A Q Q Q 1ˆˆ--=则P 1,P 2点的权倒数为:53521211=-==-=--TLL T LL T LL p T LL T LL T LL p f AQ N A fQ f fQ Q f AQ N A fQ f fQ Q (2分) 则P 1,P 2点的中误差为:m mm m Q m m m m Q P P P P 90.11053ˆˆ55.11552ˆˆ202101±=±==±=±==σσσσ(2分)六、证明:设AC 距离为T ,则BC 距离为S-T ; 设每公里中误差为单位权中误差,则AC 之间的高差的权为1/T ,BC 之间高差的权为1/(S-T);则其权阵为:⎪⎪⎭⎫⎝⎛-=)/(100/1T S T P (5分)选C 点平差值高程为参数Xˆ,则 平差值方程式为:X H h H X h BAˆˆˆˆ21-=-= (3分)则⎪⎪⎭⎫ ⎝⎛-=11B (2分)则平差后C 点高程的权倒数为:()ST S T PB B N Q P TX X C )(111ˆˆ-====-- (5分) 求最弱点位,即为求最大方差,由方差与协因数之间的关系可知,也就是求最大协因数(权倒数),上式对T 求导令其等零,则02=-STS T=S/2 (3分) 则在水准路线中央的点位的方差最大,也就是最弱点位,命题得证。
(2分)中国矿业大学2008~2009学年第 二 学期 《 误差理论与测量平差 》试卷(B )卷 考试时间:100 分钟 考试方式:闭 卷一、填空题 (共20分,每空 2 分)1、如下图,其中A 、B 、C 为已知点,观测了5个角,若设L 1、L 5观测值的平差值为未知参数21ˆˆX X 、,按附有限制条件的条件平差法进行平差时,必要观测个数为 ,多余观测个数为 ,一般条件方程个数为 ,限制条件方程个数为ABCDEL 1L 2L 3L 4L 52、测量是所称的观测条件包括 、观测者、3、已知某段距离进行了同精度的往返测量(L 1、L 2),其中误差cm 221==σσ,往返测的平均值的中误差为 ,若单位权中误差cm 40=σ,往返测的平均值的权为4、已知某观测值X 、Y 的协因数阵如下,其极大值方向为 ,若单位权中误差为±2mm ,极小值F 为 mm 。
⎪⎪⎭⎫⎝⎛--=0.15.05.00.2XXQ二、已知某观测值X 、Y 的协因数阵如下,求X 、Y 的相关系数ρ。
(10分)⎪⎪⎭⎫ ⎝⎛--=25.015.015.036.0XXQ三、设有一函数2535+=x T ,6712+=y F 其中:⎩⎨⎧+++=+++=n n nn L L L y L L L x βββααα 22112211 αi =A 、βi =B (i =1,2,…,n )是无误差的常数,L i 的权为p i =1,p ij =0(i≠j )。