离散数学 练习题七

合集下载

《离散数学》试题及答案

《离散数学》试题及答案

《离散数学》试题及答案一、选择题(每题5分,共25分)1. 下列关系中,哪个是等价关系?()A. 小于等于(≤)B. 大于等于(≥)C. 整除(|)D. 模2同余(≡)答案:D2. 下列哪个图是完全图?()A. 无向图B. 有向图C. 简单图D. n阶完全图答案:D3. 设A和B为集合,若A∪B=A,则下列哪个结论成立?()A. A⊆BB. B⊆AC. A=BD. A∩B=∅答案:B4. 下列哪个命题是永真命题?()A. (p→q)∧(q→p)B. (p∧q)→(p∨q)C. (p→q)∧(p→¬q)D. (p∧¬q)→(p→q)答案:B5. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的最小生成树的边数是()。

A. 4B. 5C. 6D. 7答案:B二、填空题(每题5分,共25分)6. 设A={1,2,3,4,5},B={3,4,5,6,7},则A∩B=_________。

答案:{3,4,5}7. 设图G的顶点集V={a,b,c,d},边集E={e1,e2,e3,e4,e5},其中e1=(a,b),e2=(a,c),e3=(b,d),e4=(c,d),e5=(d,a),则G的邻接矩阵为_________。

答案:[0 1 1 0 0; 1 0 0 1 0; 1 0 0 1 0; 0 1 1 0 1;0 0 0 1 0]8. 设p为真命题,q为假命题,则(p∧q)∨(¬p∧¬q)的值为_________。

答案:真9. 设G=(V,E)是一个连通图,其中V={v1,v2,v3,v4,v5},E={e1,e2,e3,e4,e5,e6},若G的度数序列为(3,3,3,3,3,3),则G的边数是_________。

答案:1510. 下列命题中,与“若p,则q”互为逆否命题的是_________。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 在集合论中,下列哪个选项表示两个集合A和B的并集?A. A ∩ BB. A ∪ BC. A - BD. A × B答案:B2. 命题逻辑中,下列哪个符号表示逻辑非?A. ∧B. ∨C. ¬D. →答案:C3. 在有向图中,如果存在一条从顶点u到顶点v的路径,那么称顶点v为顶点u的:A. 祖先B. 后代C. 邻居D. 连接点答案:B二、填空题1. 一个命题函数P(x)表示为“x是偶数”,那么其否定形式为________。

答案:x是奇数2. 在关系R上,如果对于所有的a和b,如果(a, b)∈R且(b, a)∈R,则称R为________。

答案:自反的三、简答题1. 简述什么是等价关系,并给出其三个基本性质。

答案:等价关系是一种特殊的二元关系,它满足自反性、对称性和传递性。

自反性指每个元素都与自身相关;对称性指如果a与b相关,则b也与a相关;传递性指如果a与b相关,b与c相关,则a与c也相关。

2. 解释什么是图的连通分量,并给出如何判断一个图是否是连通图。

答案:连通分量是指图中最大的连通子图,即图中任意两个顶点之间都存在路径。

判断一个图是否是连通图,可以通过深度优先搜索或广度优先搜索算法遍历整个图,如果所有顶点都被访问,则图是连通的。

四、计算题1. 给定命题公式P:((p → q) ∧ (r → ¬p)) → (q ∨ ¬r),证明P是一个重言式。

答案:通过使用命题逻辑的等价规则和真值表,可以证明P在所有可能的p, q, r的真值组合下都为真,因此P是一个重言式。

2. 给定一个有向图G,顶点集合V(G)={1, 2, 3, 4},边集合E(G)={(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}。

找出所有强连通分量。

答案:通过Kosaraju算法或Tarjan算法,可以找到图G的强连通分量,结果为{1, 4}和{2, 3}。

离散数学7习题解答

离散数学7习题解答

第7章习题解答7.1 (1),(2),(3),(5) 都能构成无向图的度数列,其中除⑸ 外又都能构成无向简单图的度数列.n 分析1 °非负整数列d!,d2,…,d n能构成无向图的度数列当且仅当di为i 4偶数,即d!,d2,…,d n中的奇数为偶数个.(1),(2),(3),(5) 中分别有4个,0个,4 个,4个奇数,所以,它们都能构成无向图的度数列,当然,所对应的无向图很可能是非简单图.而⑷中有3个奇数,因而它不能构成无向图度数列.否则就违背了握手定理的推论.2° (5)虽然能构成无向图的度数列,但不能构成无向简单度数列.否则,若存在无向简单图G,以1,3,3,3 为度数列,不妨设G中顶点为v! ,v2, v3,v4,且d(V i) =1,于是d(V2)=d(V3)=d(V4)=3.而V!只能与v?""之一相邻,设w 与v?相邻,这样一来,除V2能达到3度外,V3 ,V4都达不到3度,这是矛盾的.在图7.5所示的4个图中,(1)以1为度数列,(2)以2为度数列,(3)以3为度数列,(4)以4为度数列(非简单图).7.2设有几简单图D以2,2,3,3为度数列,对应的顶点分别为V1,V2, V3,V4 ,由于d(v)二 d (v) d_(v),所示,d (vj - d -(y) = 2 - 0 = 2,d(V2) = d(V2)-d “2)= 2—0 =2,d (vj =d(V s) _d—(V3) =3_2 =1,d (V4) = d(V q) _ d^v。

)= 3 _ 3 = 0由此可知,D 的出度列为2,2,1,0,且满足a dd -(V i ).请读者画出一个有向图•以2,2,3,3为度数列,且以0,0,2,3为入度列,以2,2,1,0为出度列.7.3 D 的入度列不可能为 1,1,1,1.否则,必有出度列为 2,2,2,2(因为 d(v) =d (v) d~(v)),)此时,入度列元素之和为4,不等于出度列元素之和 8,这 违背握手定理.类似地讨论可知,1,1,1,1也不能为D 的出席列.7.4不能.N 阶无向简单图的最大度 厶_ n 一1.而这里的n 个正整数彼此不同 因而这n 个数不能构成无向简单图的度数列,否则所得图的最大度大于n,这与最 大度应该小于等于n-1矛盾.7.5 (1) 16个顶点.图中边数m=16,设图中的顶点数为n.根据握手定理可n知 2m =32 二' d(vj=2 ni 4所以,n =16.(2) 13个顶点.图中边数m =21,设3度顶点个数为x,由握手定理有2m =42 =3 4 3x由此方程解出x =10.于是图中顶点数n =3 10 =13. (3) 由握手定理及各顶点度数均相同,寻找方程2 24 = nk的非负整数解,这里不会出现n,k 均为奇数的情况.其中n 为阶级,即顶点 数,k 为度数共可得到下面10种情况.① 个顶点,度数为48.此图一定是由一个顶点的24个环构成,当然为非简单⑥ 个顶点,每个顶点的度数均为6.所对应的非同构的图中有简单图,也有非 简单图.② 2个顶点,每个顶点的度数均为 非简单图.③ 3个顶点,每个顶点的度数均为 ④ 4个顶点,每个顶点的度数均为⑤ 6个顶点,每个顶点的度数均为 24.这样的图有多种非同构的情况,一定为 16.所地应的图也都是非简单图. 12.所对应的图也都是非简单图.8,所对应的图也都是非简单图.⑦ 12个顶点,每个顶点的度数均为4.所对应的非同构的图中有简单图,也 有非简单图•⑧ 16个顶点,每个顶点的度数均为3,所对应的非同构的图中有简单图,也有 非简单图•⑨ 24个顶点,每个顶点的度数均为2.所对应的非同构的图中有简单图,也有 非简单图•⑩ 48个顶点,每个顶点的度数均为1,所对应的图是唯一的,即由24个K 2构 成的简单图•分析 由于n 阶无向简单图G 中,:(G)< n —1,的以①-⑤所对应的图不可能 有简单图•⑥-⑨既有简单图,也有非简单图,读者可以画出若干个非同构的图,而 ⑩只能为简单图•7.6 设G 为n 阶图,由握手定理可知n70 =2 35 八 d(vj _3n ,i吕所以,这里,乂为不大于x 的最大整数,例如.2」=2,25」=2,空=23..3 一7.7由于:(G) = n-1,说明G 中任何顶点v 的度数d(v)八(G) = n-1,可是由于G 为简单图,因而列G)乞n -1,这又使得d(v)岂n -1,于是d(v)二n-1,也就 是说,G 中每个顶点的度数都是n-1,因而应有"G)乞n-1.于是G 为(n-1)阶正 则图,即G 为n 阶完全图K n .7.8由G 的补图G 的定义可知,G G 为K n ,由于n 为奇数,所以,K n 中各 项顶点的度数n -1为偶数.对于任意的V(G),应有v V(G),且d G (v)_d G (v)二 dg(v)二 n -1其中d G (v)表示v 在G 中的度数,d G(v)表示v 在G 中的度数.由于n_1为偶 数,所|70= 23.以,d G(v)与d G(v)同为奇数或同为偶数,因而若G有r个奇度顶点,则G也有r个奇度顶点.7.9由于D' D,所以,m'空m.而n阶有向简单图中,边数m乞n(n 一1),所以, 应有n(n _1) = m\ m 乞n(n -d)这就导致m = n(n -1),这说明D为n阶完全图,且D' = D .7.10图7.6给出了K4的18个非同构的子图,其中有11个生成子图(8-18), 其中连通的有6个11,12,13,14,16,17). 图7.6中,n,m分别为顶点数和边数.7.11 K4有11个生成子图,在图7.6中,它们分别如图8-18所示.要判断它们之中哪些是自补图,首先要知道同构图的性质,设G1与G2的顶点数和边数.若G1三G?,贝U门丄=门2「且m<i = m?.国(8)的补图为(14) -K4 ,它们的边数不同,所以,不可能同构.因而(8)与(14) 均不是自补图类似地,(9)的补图为(13),它们也非同构,因而它们也都不是自补图.(10)与(12)互为补图,它们非同构,因而它们都不是自补图.(15)与(17)互为补图,它们非同构,所以,它们都不是自补图•类似地,(16)与(18)互为补图且非同构,所以,它们也都不是自补图•而(11)与自己的补图同构,所以,(11)是自补图•7.12 3阶有向完全图共有20个非同构的子图,见图7.7所示,其中⑸-(20)为生成子图,生成子图中(8),(13),(16),(19) 均为自补图.分析在图7.7所示的生成子图中,(5)与(11)互为补图,(6)与(10)互为补图,(7)与(9)互为补图,(12)与(14)互为补图,(15)与(17)互为补图,(18)与(20) 互为补图,以上互为补图的两个图边数均不相同,所以,它们都不是自补图.而(8),(13),(16),(19)4 个图都与自己的补图同构,所以,它们都是自补图.7.13 不能.分析在同构的意义下,G,G2,G3都中K4的子图,而且都是成子图.而K4的两条边的生成子图中,只有两个是非同构的,见图7.6中(10)与(15)所示.由鸽巢原理可知,G,G2,G3中至少有两个是同构的,因而它们不可能彼此都非同构.鸽巢原理m只鸽飞进n个鸽巢,其中m 一n ,则至少存在一巢飞入至少[凹]只n鸽子.这里x表示不小于x的最小整数.例如,|2 = 2, |2.5 =3.7.14 G是唯一的,即使G是简单图也不唯一.分析由握手定理可知2m = 3n,又由给的条件得联立议程组'2m =3 n 、2n —3 = m.解出n = 6,m二9.6个顶点,9条边,每个顶点的度数都是3的图有多种非同构的情况,其中有多个非简单图(带平行边或环),有两个非同构的简单图,在图7.8 中(1),(2)给出了这两个非同构的简单图.满足条件的非同构的简单图只有图7.8中,(1),(2)所示的图,(1)与⑵所示的图,(1) 与(2)是非同构的.注意在⑴中不存在3个彼此相邻的顶点而在⑵ 中存在3个彼此相邻的顶点,因而⑴图与(2)图非同构.下面分析满足条件的简单图只有两个是非同构的.首先注意到(1)中与(2)中图都是K6的生成子图,并且还有这样的事实,设G,G2都是n阶简单图,则G^G2当且仅当G^e G2 ,其中G,G2分别为G与G2的补图.满足要求的简单图都是6阶9条边的3正则图,因而它们的补图都为6阶6条边的2正则图(即每个顶点度数都是2).而K6的所有生成子图中,6条边2正则的非同构的图只有两个,见图7.8中(3),(4)所示的图,其中(3) 为(1)的补图,(4)为(2)的补图,满足要求的非同构的简单图只有两个.但满足要求的非同简单图有多个非同构的,读者可自己画出多个来.7.15将K6的顶点标定顺序,讨论X所关联的边.由鸽巢原理(见7.13题),与V1关联的5条边中至少有3条边颜色相同,不妨设存在3条红色边,见图7.9 中⑴ 所示(用实线表示红色的边)并设它们关联另外3个顶点分别为V2,v4,V6.若V2,V4, V6构成的K g中还有红色边,比如边(V2M)为红色,则Vj^M构成的K g为红色K3,见图7.9中⑵ 所示.若V2,V4,V6构成的K3各边都是蓝色(用虚线表示), 则V2,V4,V6构成的K a为蓝色的.珂7.16在图7.10所示的3个图中,(1)为强连通图,(2)为单向连通图,但不是强连通的,(3)是弱连通的,不是单向连通的,更不是强连通的.图7. 10分析在⑴中任何两个顶点之间都有通路,即任何两个顶点都是相互可达的,因而它是强连能的.(2)中c不可达任何顶点,因而它不是强连通的,但任两个顶点存在一个顶点可达另外一个顶点,所以,它是单向可达的.(3)中a,c互相均不可达,因而它不是单向连通的,更不是强连通的.判断有向图的连通性有下面的两个判别法.1°有向图D是强连通的当且仅当D中存在经过每个顶点至少一次的回路.2°有向图D是单向连通的当且仅当D中存在经过每个顶点至少一次的通路.(1)中abcda为经过每个顶点一次的回路,所以,它是强连能的.(2)中abdc 为经过每个顶点的通路,所以,它是单向连通的,但没有经过每个顶点的回路,所以,它不是强连通的.(3)中无经过每个顶点的回路,也无经过每个顶点的通路,所以,它只能是弱连通的.7.17 G-E'的连通分支一定为2,而G-V'的连通分支数是不确定的.分析设E'为连通图G的边割集,则G - E'的连通分支数p(G - E')二2,不可能大于2.否则,比如p(G -E') =3,则G -E'由3个小图G「G2,G3组成,且E'中边的两个端点分属于两个不同的小图.设E"中的边的两个端点一个在G中,另一个在G 2中,则E " E ',易知p(G 一 E") =2 ,这与E '为边割集矛盾,所以, p(G 一 E") =2.但p(G-V ')不是定数,当然它大于等于2,在图7.11中,V 二{u,v }为⑴的点 割集,p(G-V)=2,其中G 为(1)中图.V ={v }为⑵ 中图的点割集,且v 为割tin i点,p(G -V ) =4,其中G 为⑵中图.屛1;■<]>£ 7.11(2)7.18解此题,只要求出D 的邻接矩阵的前4次幕即可.D 中长度为4的通路数为A 4中元素之和,等于15,其中对角线上元素之和为 3,即D 中长度为3的回路数为3. V 3到V 4的长度为4的通路数等于a 34)= 2.分析 用邻接矩阵的幕求有向图D 中的通路数和回路数应该注意以下几点: 1 °这里所谈通路或回路是定义意义下的,不是同构意义下的.比如,不同始 点(终点)的回路2 ° 这里的通路或回路不但有初级的、简单的,还有复杂的.例 如,V 1,V 2,w,V 2,V 1是一条长为4的复杂回路.3°回路仍然看成是通路的特殊情况.读者可利用A 2, A 3,求D 中长度为2和3的通路和回路数. 7.19 答案A:④.分析G 中有N k 个k 度顶点,有(n — NQ 个(k 1)度顶点,由握手定理可知0 11010 0 0 A = 0 10 1 .0 0 0 0一A 2A 3A 4~1 1 0 11 1 0 0 0 1 0 0 1211n、d(V j) =k N k(k 1)(n - N k) =2mi 4=N k=n (k 1)-2 n.7.20答案A:②;B:③.分析在图7.12中,图(1)与它的补同构,再没有与图(1)非同构的自补图了所以非同构的无向的4阶自补图只有1个.图⑵与它的补同构,图⑶与它的补也同构,而图⑵ 与图⑶ 不同构,再没有与(2),(3)非同构的自补图了,所以,非同械的5阶自补图有2个.<1)(Z) ⑶圉7.127.21答案A:④;B:③;C:④;D:①.分析(1)中存在经过每个顶点的回路,如adcba..(2)中存在经过每个顶点的通路,但无回路.(3)中无经过每个顶点至少一次的通路,其实,b,d两个顶点互不可达.(4)中有经过每个顶点至少一次的通路,但无回路,aedcbd为经过每个顶点的通路.(5)中存在经过每个顶点至少一次的回路,如aedbcdba.(6)中也存在经过每个顶点的回路,如baebdcb.由7.16题可知,(1),(5) ,(6) 是强连通的,(1),(2),(4),(5),(6) 是单向连能的,(2),(4)是非强连通的单向连通图.注意,强连通图必为单向连通图.6个图中,只有(3)既不是强连通的,也不是连通的,它只是弱连通图.在⑶中,从a到b无通路,所以d, ::: a,b「:,而b到a有唯一的通路ba,所以d b, a =1.7.22 答案A: ①;B:⑥㈩C:②;D:④.分析用Dijkstra标号法,将计算机结果列在表7.1中.表中第x列最后标定y/Z表示b到x的最短路径的权为y,且在b到x的最短路径上,Z邻接到x,即x的前驱元为Z.由表7.1可知,a的前驱元为c(即a邻接到c),c的前驱元为b, 所以,b到a的最短路径为bca,其权为4.类似地计论可知,b到c的最短路径为be,其权为1.b到d的最短路径为bcegd ,其权为9.b到e的最短路径为bee,其权为7.7.23 答案A:⑧;B:⑩ C:③;D:③和④.分析按求最早、最晚完成时间的公式,先求各顶点的最早完成时间,再求最晚完成时间,最后求缓冲时间(1)最早完成时间:TE(vJ =0-_(V2)二{vM, TE(v2) =max{0 3} =3-_(V3)二{vz}, TE(v3) =max{0 2,3 C} -3厂(vj 二{WM},TE(vJ =max{0 4,3 2} = 5-(V5)二M M},TE(V5)= max{34,3 4} - 711 /11TL(V 9)=13 -(V 8)二{V 9},TL(v 8) =mi n{13_1} =12; -(V 6) ={V 8},TL(v 6) = mi n{12 -3 = 9; -(V 7)二 g},TL(v 7) =mi n{12 —1} =11; -(V 5) ={V 6,V 9}, TL(v 5) =min{9-0,13 -6} = 7; :(V 4)*7}, TL (V4)= min {11-5=6; -(V 3)二{V 4,V 5,V 6},TL(v 3) =min{6-2.7-4.9-4二 5; (v 2 ) = {v 3, V 5}, TL(v 2) =mi n{3-0.7-4} =3; ;(vj ={V 2,V 3,V 4},TL(vJ = mi n{ 3 —3.3 —2,6 —'4} = 0;(3)缓冲时间: TS(V i )二TS(V 2)=TS(V 3)=TS(V 5)=TS(V 9)=0 TS(V 4)=1,TS (V 6)=2,TS (V 7)=TS (V 8)=1.(4)关键路径有两条: V 1,V 2,V 5,V 9 和 V 1,V 2,V 3,V 5,V 9.-一山)={V 4,V 5},TE(v 7) = max{5 5,10 0} =10 (V 8 ) = { V 6, V 7 }, TE(v 8) = max{7 3,10 1} =11-讥)二{V 5,V 8},TE(v 9) =max{7 6,11 1} =13 -_(V 6)二“他},TE(v 6) =max{3 4,7 0} = 7 (2)最晚完成时间:。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、单项选择题(每题2分,共20分)1. 在集合论中,空集的表示符号是()。

A. {0}B. ∅C. {}D. Ø答案:B2. 如果A和B是两个集合,那么A∩B表示()。

A. A和B的并集B. A和B的交集C. A和B的差集D. A和B的补集答案:B3. 命题逻辑中,p ∧ q的真值表中,当p和q都为假时,p ∧ q的值为()。

A. 真B. 假C. 不确定D. 无定义答案:B4. 在图论中,如果一个图中的任意两个顶点都由一条边相连,则称这个图为()。

A. 连通图B. 无向图C. 完全图D. 有向图答案:C5. 布尔代数中,逻辑或运算符表示为()。

A. ∧B. ∨C. ¬D. →答案:B6. 一个关系R是从集合A到集合B的二元关系,如果对于A中的每个元素x,B中都存在唯一的元素y与之对应,则称R为()。

A. 单射B. 满射C. 双射D. 单满射答案:C7. 在命题逻辑中,如果p是假命题,那么¬p的值为()。

A. 真B. 假C. 不确定D. 无定义答案:A8. 一个有向图是无环的,那么它一定是()。

A. 有向无环图B. 无向无环图C. 有向有环图D. 无向有环图答案:A9. 在集合论中,如果集合A是集合B的子集,那么A⊆B表示()。

A. A包含于BB. A是B的真子集C. A是B的超集D. A与B相等答案:A10. 命题逻辑中,p → q的真值表中,当p为真,q为假时,p → q 的值为()。

A. 真B. 假C. 不确定D. 无定义答案:B二、多项选择题(每题3分,共15分)1. 在集合论中,以下哪些符号表示的是集合的并集()。

A. ∪B. ∩C. ⊆D. ⊂答案:A2. 在图论中,以下哪些说法是正确的()。

A. 有向图可以是无环的B. 无向图可以是无环的C. 有向图一定是连通的D. 无向图一定是连通的答案:A B3. 在命题逻辑中,以下哪些符号表示的是逻辑与()。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。

2. 存在三个可识别的状态A,B,C。

置换群 $S_3$ 作用在状态集上。

定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。

确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。

3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。

4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。

b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。

答案1. $A \cap B = \{2,4,6\}$。

2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。

这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。

所以合数的个数不小于任意$n$。

4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。

如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。

所以从这条路径中任意取出的子路径都是最短路径。

b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。

因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。

所以从$i$到$j$的最短路径可能不唯一。

离散数学课后习题答案第七章

离散数学课后习题答案第七章

第七章 特 殊 图 类习题7.11.解 因 m=n-1,这里m=6,所以n=6+1=7.2.解 不正确。

与平凡图构成的非连通图中有4个结点3条边,但是它不是树。

3K 3.证明 必要性。

因为G 中有n 个结点,边数m=n-1,又因为G 是连通的,由本节定理1可知,G 为树,因而G 中无回路。

再证充分性。

因为G 中无回路,又因为边数m=n-1,由本节定理1,可知G 为树,所以G 是连通的。

4.解 因 m=n-r,这里n=15,r=3,所以m=15-3=12,即G 有12条边。

5.解6个结点的所有不同构的树如图7-1所示。

图7-16.证明 由定理1,在任意的树中,边数),(m n 1−=n m;所以,由握手定理得)1(22)(1−==∑=n m v d ni i①⑴若T 没有树叶,则由于T 是连通图,所以T 中任一结点均有,从而2)(≥i v d n v d ni i2)(1≥∑= ②则①与②矛盾。

⑵若树T 仅有1片树叶,则其余1−n个结点的度数不小于2,于是121)1(2)(1−=+−≥∑=n n v d ni i③从而①、③相矛盾。

综合⑴,⑵得知T 中至少有两片树叶。

7.解 图7-2⑴中共有两棵非同构的生成树(如图7-3⑴,⑵)。

图7-2⑵中共有3棵非同构的生成树(如图7-3⑶,⑷,⑸)。

⑵⑴⑶⑷ ⑸图7-38.解 在图7-4中共有8棵生成树,如图7-5⑴~⑻所示,第i 生成树用表示。

,,,)8,,2,1( =iT i 7)(8=T W 8)()(61==T W T W 6)()(52==T W T W )()(73==T W T W 9)(4=T W 。

其中T 2,T 5是图中的最小生成树。

9.解 最小生成树T 如图7-7所示,W (T )=18。

a bc da b cda ba bcdabc d⑴⑵⑶⑷⑸⑹⑺ ⑻图7-5图7-4图7-6图7-7习题7.21.解 不一定是。

如图7-8就不是根树.2.解 五个结点可形成3棵非同构的无向树,如图7-9⑴,⑵,⑶所示。

离散数学第7章 图论 习题

离散数学第7章 图论 习题
证明:设无向图G中两个奇数度的结点为u和v。 从u开始构造一条迹,即从u出发经关联于结点u的边e1到达结点 u1,若deg(u1)为偶数,则必可由u1再经关联于结点u1的边e2到达结 点u2,如此继续下去,每边只取一次,直到另一个奇数度结点停止, 由于图G中只有两个奇数度结点,故该结点或是u或是v。如果是v, 那么从u到v的一条路就构造好了。如果仍是结点u,此路是闭迹。
300页(2) 如果u可达v,它们之间可能不止一条
路,在所有这些路中,最短路的长度 称为u和v之间的距离(或短程线), 记作d<u,v>,如果从u到v是不可达的, 则通常写成 d<u,v> =∞
距离矩阵为
0 1 2 1 ∞ 0 1 1 ∞ 1 0 1 ∞ 1 2 0 dij=1表示存在边<vi,vj>。
c)画一个没有一条欧拉回路,但有一条汉密尔顿回路的图。
设G是一个具有k个奇数度结点(k>0)的连通图, 证明在G中的边能剖分为k/2条路(边不相重)。 证明:因为一个图中度数为奇数的结点个数必为偶数, 故k必为偶数。 将G中k个奇数度结点分为数目相等的两组{u1,u2,…,uk/2} 和{v1,v2,…,vk/2} 。对图G添加边(u1,v1), (u2,v2),…, (uk/2,vk/2)共k/2条边,得到图G’。由于图G’中每个结 点的度数均为偶数,故G’中存在一条欧拉回路。 在图G’中删去边(u1,v1),得到一条欧拉路, 此路的两个端 点是u1和v1。结点u2和v2必在路的中间, 再删去边 (u2,v2),得到两条边互不相重的迹,这两个迹的端点 分别为u2和v2。结点u3和v3必在某一条迹的中间。 再删去边(u3,v3) ,则将一条迹(包含u3和v3的迹)又分 为两条边互不相重的迹,共得到3条互不相重的迹。 以此继续下去,直到所有的添加边(u1,v1), (u2,v2),…, (uk/2,vk/2)全部删去,得到k/2条边互不相重的路(迹)。

离散数学-第7章习题

离散数学-第7章习题

第7章习题:1.设A={0,1},试给出半群<A A,︒>的运算表,其中︒为函数的复合运算。

2.S={a,b,c},*是S上的二元运算,且∀x,y∈S, x *y = x(1) 证明S关于*运算构成半群;(2) 试通过增加最少的元素使得S扩张成一个独异点。

3.给定代数结构〈R,∗〉,其中R是实数集合,对R中任意元a和b,∗定义如下:a∗b=a+b+ab试证:〈R,∗〉是独异点。

4.给定半群〈S,∗〉,a∈S,对于S中的任意元x和y,定义二元运算如下:x⊕y=x∗a∗y试证:〈R,⊕〉是半群。

5.指出下述各代数系统哪些是半群,并说明理由。

(1)[Z;−]。

(2)[C;×]。

(3)[M m,n(Q);+]。

(4)[Z n;⊕],⊕为同余类的加法运算。

6.设V=<{a,b},*>是半群,且a*a=b,证明:(1) a*b=b*a(2) b*b=b7.S={a,b,c},∗是S上的二元运算,且∀x ,y∈S,x∗y=x.(1)证明S关于∗运算构成半群。

(2)试通过增加最少的元素使得S扩张成一个独异点。

8.设Z为整数集合,在Z上定义二元运算︒如下:∀x,y∈Z,x︒y=x+y-2问Z关于︒运算能否构成群?为什么?9.设A={x|x∈R∧x≠0,1} ,在A上定义6个函数如下:f1(x)=x; f2(x)=x-1; f3(x)=1-x;f4(x)=(1-x)-1; f5(x)=(x-1)x-1; f6(x)=x(x-1)-1令F为这6个函数构成的集合,︒运算为函数的复合运算,(1) 给出︒运算的运算表(2) 验证<F, ︒>是一个群10.判断下列集合关于指定的运算是否构成半群,独异点和群。

(1)a是正实数,G={a n|n∈Z},运算是普通乘法。

(2)Q+为正有理数,运算是普通乘法。

(3)Q+为正有理数,运算是普通加法。

(4)一元实系数多项式的集合关于多项式的乘法。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

离散数学习题+答案

离散数学习题+答案

1. (单选题) 一棵无向树的顶点数n与边数m关系是。

( B)(本题2.0分)A、n =mB、m=n-1C、n =m -1D、不能确定2. (单选题) 设G是有n个结点m条边的连通平面图,且有k个面,则k等于。

( A)(本题2.0分)A、m-n+2B、n-m-2C、n+m-2D、m+n+2。

3. (单选题) 有n个结点的树,其结点度数之和是(A )。

(本题2.0分)A、2n-2B、n-2C、n-1D、2n。

4. (单选题) A={a,b},B={c},则A B=(D )。

(本题2.0分)A、{a}B、{b}C、{a,c}D、{a,b,c}。

5. (单选题) 设A={a, b},则P (A)= (D )。

(本题2.0分)A、{a}B、{{a},{b}}C、{{a},{b},{a,b}}D、{,{a},{b},{a,b}6. (单选题) 公式yP(y)∧x(R(x)→Q(x))中,y约束出现了次(B )。

(本题2.0分)B、 1.0C、 2.0D、3。

7. (单选题) 设A={a},B={0,1},求A×B=(A )。

(本题2.0分)A、{<a,0 style="box-sizing: border-box;">,<a,1 style="box-sizing:border-box;">}B、{<a,0 style="box-sizing: border-box;">}C、{,<a,1 style="box-sizing: border-box;">}D、{<0,a >,<1,a >}8. (单选题) 下图中结点V3的出度是(B )。

(本题2.0分)B、 1.0C、 2.0D、 3.09. (单选题) 下面给出的集合中,哪一个不是前缀码( C)。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

《离散数学》练习题和参考答案

《离散数学》练习题和参考答案

《离散数学》练习题和参考答案《离散数学》练习题和参考答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P 答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( ) (1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P 答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。

(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)P↔(4)QP→⌝P⌝⌝(2)QQ→P⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。

(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y 对任一整数x满足x+y=09、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( ) (3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。

离散数学习题答案1-2-6-7-8-9章-2009-12-17

离散数学习题答案1-2-6-7-8-9章-2009-12-17

习题1:1. 解 (1){2,3,5,7,11,13,17,19}(2){x|x=20*k,k 是自然数}(3){2,-1}2. 解 (1){2,4}(2){1,2,3,4,5}(3){1,3}(4){1,3,5}3. 解 (1){1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}(2)φ(3)全体自然数(4){0,2,4,6,8,10,12,14,16,18,20}(5)1,3,5,7,9,11,13,15,17,19}4. 解 (1)正确(2)正确(3)错误(4)正确5. 解 (1)A={1},B={{1}},C={{1}}(2)A={1},B={{1}},C={{{1}}}6. 解 (1)正确。

由子集的定义。

(2) 不一定。

如:A={1},B={{1}},C={{1}}。

(3)不一定。

如:A={1},B={1,2},C={{1,2}}(4)不一定。

如:A={1},B={1,2},C={{1,2}}。

7. 解 A={1,2},B={1},C={2},有B A ≠,但是C B C A =成立。

A={1,2},B={1},C={1},有B A ≠,但是C B C A =成立。

8. 解 (1)φ(2){φ}(3){{φ}}(4){φ,{φ}}9. 解 (1){1,2,3,4,5,6,7,8,9}(2){0,1,2,3,4,5,6,7,8,9,10}(3){0,3,6,7,8,9}10. 解 33311. 解 2512. 解(1)454(2)124(3)22013. 解 (1){φ}(2){φ,{a}}(3){φ,{φ},{a},{φ,a}}(4){φ,{φ},{{φ}},{{φ},φ}}(5){φ,{{φ}},{φ},{a},{{φ},φ},{{φ},a},{φ,a},{{φ},φ,a}}14. 证明:假设B ≠C ,则至少存在一元素x ∈B 且x ∉C 。

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 下列哪个是由离散数学的基本概念组成的?A. 集合论和函数论B. 图论和逻辑C. 运算符和关系D. 全数论和数论答案:B2. 下列哪个是离散数学的一个应用领域?A. 数据结构和算法分析B. 微积分和线性代数C. 概率论和统计学D. 数值分析和微分方程答案:A3. 集合A={1, 2, 3},集合B={2, 3, 4},则A交B的结果是:A. {1, 2, 3, 4}B. {2, 3}C. {2}D. {1}答案:B4. 下列哪个是对于集合的补集运算的正确描述?A. A∪A' = ∅B. A∩A' = ∅C. A - A' = AD. A'∩B' = (A∪B)'答案:B5. 若命题p为真,命题q为假,则命题p→q的真值为:A. 真B. 假C. 不确定D. 无法确定答案:B二、填空题1. 对于命题“如果x是偶数,则x能被2整除”,其逆命题为________________。

答案:如果x不能被2整除,则x不是偶数。

2. 在一个完全图中,如果有12条边,则这个图有__________个顶点。

答案:6个顶点。

3. 设集合A={1, 2, 3, 4},则A的幂集的元素个数是__________。

答案:2^4=16个元素。

4. 设关系R={(-1, 0), (0, 1), (1, 0)},则R的逆关系是__________。

答案:R^(-1)={(0, -1), (1, 0), (0, 1)}。

5. 若集合A={1, 2, 3},集合B={2, 3, 4},则A的笛卡尔积B是__________。

答案:A×B={(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

三、计算题1. 求集合A={1, 2, 3}和集合B={2, 3, 4}的并集。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、单项选择题(每题5分,共20分)1. 在离散数学中,以下哪个概念不是布尔代数的基本元素?A. 逻辑与B. 逻辑或C. 逻辑非D. 逻辑异或答案:D2. 下列哪个命题不是命题逻辑中的命题?A. 所有学生都是勤奋的B. 有些学生是勤奋的C. 学生是勤奋的D. 勤奋的学生答案:D3. 在集合论中,以下哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 以下哪个图不是无向图?A. 简单图B. 完全图C. 有向图D. 多重图答案:C二、填空题(每题5分,共20分)1. 如果一个命题的逆否命题为真,则原命题的________为真。

答案:逆命题2. 在图论中,如果一个图的任意两个顶点都由一条边连接,则称这个图为________图。

答案:完全3. 一个集合的幂集是指包含该集合的所有________的集合。

答案:子集4. 如果一个函数的定义域和值域都是有限集合,那么这个函数被称为________函数。

答案:有限三、简答题(每题10分,共30分)1. 请简述什么是图的欧拉路径。

答案:欧拉路径是一条通过图中每条边恰好一次的路径。

2. 解释什么是二元关系,并给出一个例子。

答案:二元关系是指定义在两个集合之间的关系,它将第一个集合中的元素与第二个集合中的元素联系起来。

例如,小于关系就是一个二元关系。

3. 请说明什么是递归函数,并给出一个简单的例子。

答案:递归函数是一种通过自身定义来计算函数值的函数。

例如,阶乘函数就是一个递归函数,定义为:n! = n * (n-1)!,其中n! = 1当n=0时。

四、计算题(每题10分,共30分)1. 计算以下逻辑表达式:(P ∧ Q) ∨ ¬R答案:首先计算P ∧ Q,然后计算¬R,最后计算两者的逻辑或。

2. 给定集合A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。

答案:A ∪ B = {1, 2, 3, 4}3. 已知函数f(x) = 2x + 3,求f(5)。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项表示“属于”关系?A. ⊆B. ⊂C. ∈D. ⊇答案:C2. 以下哪个命题是真命题?A. p ∧ ¬pB. p ∨ ¬pC. p → ¬pD. ¬(p → q) → p答案:B3. 以下哪个选项是命题逻辑中的德摩根定律?A. ¬(p ∨ q) = ¬p ∧ ¬qB. ¬(p ∧ q) = ¬p ∨ ¬qC. ¬(p → q) = p ∧ ¬qD. ¬(p ∨ q) = ¬p ∨ ¬q答案:A4. 以下哪个选项是命题逻辑中的蕴含等价?A. p → q ≡ ¬p ∨ qB. p → q ≡ ¬q → ¬pC. p → q ≡ p ∨ ¬qD. p → q ≡ ¬p ∧ q答案:A5. 以下哪个选项是关系的性质?A. 反身性B. 对称性C. 传递性D. 所有选项都是答案:D6. 以下哪个选项是图论中的有向图?A. 无向图中的边没有方向B. 有向图中的边有方向C. 混合图中的边既有方向也有无方向D. 所有选项都是答案:B7. 在图论中,以下哪个选项是树的性质?A. 树是无环的B. 树是连通的C. 树是无向图D. 所有选项都是答案:D8. 以下哪个选项是布尔代数的基本运算?A. 与(AND)B. 或(OR)C. 非(NOT)D. 所有选项都是答案:D9. 以下哪个选项是组合数学中的排列?A. 从n个不同元素中取出m个元素的组合B. 从n个不同元素中取出m个元素的排列C. 从n个相同元素中取出m个元素的组合D. 从n个相同元素中取出m个元素的排列答案:B10. 以下哪个选项是集合论中的幂集?A. 一个集合的所有子集的集合B. 一个集合的所有真子集的集合C. 一个集合的所有超集的集合D. 一个集合的所有子集的个数答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的等价命题是什么?答案:等价命题是指两个命题在所有可能的真值赋值下都具有相同真值的命题。

离散数学-第七章习题答案

离散数学-第七章习题答案

第7章习题答案1.f(x)=2|x|+1是从整数集合到正整数集合的函数,它的值域是什么?解:它的值域是正奇数集合。

2.试问下列关系中哪个能构成函数?(1){〈x,y〉|x,y∈N,x+y<10}(2){〈x,y〉|x,y∈R,y=x2}(3){〈x,y〉|x,y∈R,y2=x}解;(1)、(3)不满足函数的定义,只有(2)是函数。

3.下列集合能够定义函数吗?如果能,求出它们的定义域和值域。

(1){〈1,〈2,3〉〉,〈2,〈3,4〉〉,〈3,〈1,4〉〉,〈4,〈1,4〉〉}(2){〈1,〈2,3〉〉,〈2,〈3,4〉〉,〈3,〈3,2〉〉}(3){〈1,〈2,3〉〉,〈2,〈3,4〉〉,〈1,〈2,4〉〉}(4){〈1,〈2,3〉〉,〈2,〈2,3〉〉,〈3,〈2,3〉〉}解:(1)、(2)、(4)定义的是函数。

(1)的定义域是{1,2,3,4},值域是{〈2,3〉,〈3,4〉,〈1,4〉}(2)的定义域是{1,2,3},值域是{〈2,3〉,〈3,4〉,〈3,2〉}(4)的定义域是{1,2,3},值域是{〈2,3〉}4.设f,g都是函数,并且有f⊆g和dom(g)=dom(f),证明f=g证明:假设f≠g,因为f⊆g和dom(g)=dom(f),则存在x1∈dom(g)和dom(f),使得〈x1,y1〉∈g但〈x1,y1〉∉f,因为f是函数,在定义域上处处有定义,所以必存在y2,使得〈x1,y2〉∈f,由f⊆g得〈x1,y2〉∈g,这与g是函数满足单值性矛盾。

故假设错误,必有f=g。

6.设X={0,1,2},求出X X中的如下函数(1) f2(x)=f(x)(2) f2(x)=x(3) f3(x)=x解:(1)有10个函数,分别是:f1(x)={〈0,0〉,〈1,0〉,〈2,0〉}f2(x)={〈0,1〉,〈1,1〉,〈2,1〉}f3(x)={〈0,2〉,〈1,2〉,〈2,2〉}f4(x)={〈0,1〉,〈1,1〉,〈2,2〉}f5(x)={〈0,2〉,〈1,1〉,〈2,2〉}f6(x)={〈0,0〉,〈1,0〉,〈2,2〉}f7(x)={〈0,0〉,〈1,2〉,〈2,2〉}f8(x)={〈0,0〉,〈1,1〉,〈2,0〉}f9(x)={〈0,0〉,〈1,1〉,〈2,1〉}f10(x)={〈0,0〉,〈1,1〉,〈2,2〉}(2)有4个函数,分别是:f1(x)={〈0,0〉,〈1,1〉,〈2,2〉}f2(x)={〈0,0〉,〈1,2〉,〈2,1〉}f3(x)={〈0,2〉,〈1,1〉,〈2,0〉}f4(x)={〈0,1〉,〈1,0〉,〈2,2〉}(3)有3个函数,分别是:f 1(x )={〈0,0〉,〈1,1〉,〈2,2〉}f 2(x )={〈0,1〉,〈1,2〉,〈2,0〉}f 3(x )={〈0,2〉,〈1,0〉,〈2,1〉}8.设f,g,h 是N → N 的函数, 其中N 是自然数集合,f(n)=n +1, g(n)=2n,⎩⎨⎧=是奇数若是偶数若n n n h 10)(试确定:f f ,f g ,g h ,h g 及(f g) h 。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学试题第一部分选择题一、单项选择题1.下列是两个命题变元p,q的小项是( C )A.p∧┐p∧q B.┐p∨qC.┐p∧q D.┐p∨p∨q2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐qC.p∧q D.p∧┐q3.下列语句中是命题的只有( A )A.1+1=10 B.x+y=10C.sinx+siny<0 D.x mod 3=24.下列等值式不正确的是( C )A.┐(∀x)A⇔(∃x)┐AB.(∀x)(B→A(x))⇔B→(∀x)A(x)C.(∃x)(A(x)∧B(x))⇔(∃x)A(x)∧(∃x)B(x)D.(∀x)(∀y)(A(x)→B(y))⇔(∃x)A(x)→(∀y)B(y)5.谓词公式(∃x)P(x,y)∧(∀x)(Q(x,z)→(∃x)(∀y)R(x,y,z)中量词∀x的辖域是( C )A.(∀x)Q(x,z)→(∃x)(∀y)R(x,y,z))B.Q(x,z)→(∀y)R(x,y,z)C.Q(x,z)→(∃x)(∀y)R(x,y,z)D.Q(x,z)6.设A={a,b,c,d},A上的等价关系R={<a,b>,<b,a>,<c,d>,<d,c>}∪I A,则对应于R的A的划分是( D )A.{{a},{b,c},{d}} B.{{a,b},{c},{d}}C.{{a},{b},{c},{d}} D.{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是( A )A.{Ø,{Ø}}∈B B.{{Ø,Ø}}∈BC.{{Ø},{{Ø}}}∈B D.{Ø,{{Ø}}}∈B8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是( A )A.(X-Y)-Z=X-(Y∩Z)B.(X-Y)-Z=(X-Z)-YC.(X-Y)-Z=(X-Z)-(Y-Z)D.(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,下列定义的运算中不可结合的只有( D )A.a*b=min(a,b)B.a*b=a+bC.a*b=GCD(a,b)(a,b的最大公约数)02324# 离散数学试题第1 页共4页02324# 离散数学试题 第 2 页 共4页D .a*b=a(mod b)10.设R 和S 是集合A 上的关系,R ∩S 必为反对称关系的是( A ) A .当R 是偏序关系,S 是等价关系; B .当R 和S 都是自反关系; C .当R 和S 都是等价关系; D .当R 和S 都是传递关系11.设R 是A 上的二元关系,且R ·R ⊆R,可以肯定R 应是( D ) A .对称关系; B .全序关系; C .自反关系; D .传递关系第二部分 非选择题二、填空题1.设论域是{a,b,c},则(∀x)S(x)等价于命题公式 S(a)∧S(b)∧S(c) ;(x ∃)S(x)等价于命题公式 S(a)∨S(b) ∨S(c) 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.给定算式: {[(a +b)*c]*(d +e)}+[f -(g *h)] 此算式的波兰符号表示式为( ), 逆波兰符号表示式为( ).
A 、+**a +bc +def -g *h
B 、+**+abc +de -f *gh
C 、*-*+abc +de -fgh +
D 、ab +c *de +*fgh *-+
10.设R,Z,N 分别为实数,整数和自然数集,函数f :R →R ,f(x)=x ,f 是( );
g: Z →N, g(x)=|x|, g 是( ); h: N →N ×N. h(n)=﹤n,n +1﹥,h({5})=( ) A .满射函数 B .单射函数 C .双射函数 D .非单射非满射
E. 满射非单射
F.单射非满射 G ,<5,6> H,{<5,6>} J,以上答案都不对.
11. 75个学生去书店买语文,数学,英语书,每种书每个学生至多买1本.已知20个学生每人 买3本书,55个学生每人至少买2本书.每本书的价格都是1元,所有学生总共花费 140元,恰好买2本书的有( )多少个学生.至少买2本书的学生花费( )元.买 1本书的有( )个学生.至少买1本书的有( )个学生.没买书的有( )个学生. A.55 B.40 C.35 D.15 E.30 F.130 G.65 H.140 J.60 K.10
12. 为每个逻辑断言选择正确的解释。

T(x):x 今天来上课,S(x):x 学计算机专业的学生,
P(x):x 编程序,G(x):x 玩游戏。

个体域是殷都大学。

∀x T(x)表示( ),⌝∃x T(x)表示( ),∃x ⌝ T(x)表示( ),∀x(S(x)→P(x))表示( ),∃x(S(x)∧G(x))表示( ),∀x(S(x)∧P(x))表示( ),∃x(S(x)→G(x))表示( )。

A 学计算机专业的学生会编程序,
B 殷都大学的学生都是计算机专业且会编程序。

C 有些计算机专业的学生玩游戏,
D 所有同学今天都来上课了,
E 今天有同学没来上课。

F 计算机专业的学生玩游戏,
G 今天没有同学来上课。

二、计算与应用题(共40分)
1. S={ 1,2,…,10 },定义S 上的关系R={<x,y> | x,y ∈S ∧ x+y=10 }, 试列举出R 中的所有有序对,并分析说明R 具有哪些性质。

(10分)
2.在偏序集<Z,≤>中,其中Z={1,2,3,4,6,8,12,24},≤是Z 中的整除关系,求集合D={2,3,4,6}的极大元,极小元,最大元,最小元,最小上界和最大下界。

(12分)
3.设7个字母在通信中出现的频率如下:
a: 35%, b: 20%, c: 15%, d: 10%, e: 10%, f: 5%, g: 5%.
编一个最佳2元前缀码.在这个前缀码中,a,b,c,d,e,f,g 的码长分别是多少? 传输10000个按上述比例出现的字母需要多少个二进制数字.(8分).
4. 若图G 的邻接矩阵是A ,试通过矩阵讨论图的连通性。

(10分)
———————————密———————————————封——
—————————————线——————————
——
密 封 线 内 不 要 答 题
____________________ 系
____________________专业_____________ 班 姓名_______________学号______________
_
三,证明题(共35分)
1.有N 个人,已知他们中的任何二人合起来认识其余的N-2个人。

证明:当N ≥3时,
这N 个人 能排成一列,使得任何两个相邻的人都相互认识。

而当N ≥4时,这N 个人 能排成一个圆圈,使得每个人都认识两旁的人。

(12分)
2.设f 是A 到B 的映射,g 是B 到A 的映射。

证明:f 是单射的充分必要条件是fg=I A ;
f 是满射的充分必要条件是gf=I B 。

(13分)
3. 设G 为n (n ≥5)阶简单图,证明G 或G 中必含圈。

(10分)
———————————密———————————————封———————————————线———————————— 密 封 线 内 不 要 答 题 ___________________
系 ____________________专业_____________ 班 姓名_______________学_____________ ______ ———————————密———————————————封———————————————线———————————— 密 封 线 内 不 要 答 题
__________________ 系
____________________专业_____________ 班
姓名_______________号______________
______。

相关文档
最新文档