高中数学基本初等函数、函数与方程及函数的应用知识点总结与典型例题讲解及经典题型专题训练带答案解析

合集下载

函数概念与基本初等函数高中数学知识点总结

函数概念与基本初等函数高中数学知识点总结

函数概念与基本初等函数高中数学知识点总结函数贯穿整个初中和高中阶段,不但是中考的重要内容,也是高考重要内容,所以参加高考的考生务必重视,酷课网精心为今年考生准备了本章的,希望能给考生带来意想不到的帮助。

一、命题热点分析近几年的高考试题,可以发现函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题.在近几年的高考试卷中,一般以选择题和填空题的形式考查函数的性质、函数与方程、基本初等函数等,以解答题的形式与导数交汇在一起考查函数的定义域、单调性以及函数与不等式、函数与方程等知识.其中函数与方程思想、数形结合思想等都是考考查的热点。

选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新.以基本函数为模型的应用题和综合题是高考命题的新趋势。

20XX 年高考热点主要有:①考查函数的表示法、定义域、值域、单调性、奇偶性、反函数和函数的图象.②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点.③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想.二、知识点总结1.映射:注意: ①第一个集合中的元素必须有象;②一对一或多对一.2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ;⑥利用均值不等式 2222b a b a ab +≤+≤; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(χχχcos sin 、、a 等);⑨平方法;⑩ 导数法3.复合函数的有关问题:(1)复合函数定义域求法:① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a ≤ g(x) ≤ b 解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域.(2)复合函数单调性的判定:①首先将原函数)]([x g f y =分解为基本函数:内函数)(x g u =与外函数)(u f y =②分别研究内、外函数在各自定义域内的单调性③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性.4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示)

高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示)

第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln1-x x +1+1x的定义域是( ) A .[-1,0)∪(0,1) B .[-1,0)∪(0,1] C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则(1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [题组训练] 1.函数f (x )=1lnx +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln x +1≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f x +1x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f x +f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f x =3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,①f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2x -1,x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f x -1,x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2, ∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f 2x +1log 2x +1的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f 2x +1log 2x +1有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x=f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③. 9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1. 所以该函数的定义域为(0,1].答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,则f (f (-9))=________. 解析:∵函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2. 答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3.答案:-312.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-x -12,x >0,使f (x )≥-1成立的x 的取值范围是________. 解析:由题意知⎩⎪⎨⎪⎧ x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧ x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故所求x 的取值范围是[-4,2].答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1). (1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧ -2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.。

最全函数概念及基本性质知识点总结及经典例题

最全函数概念及基本性质知识点总结及经典例题

函数及基本性质一、函数的概念(1)设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.(2)函数的三要素:定义域、值域和对应法则.注意1:只有定义域相同,且对应法则也相同的两个函数才是同一函数 例1.判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x ()F x =⑸21)52()(-=x x f ,52)(2-=x x f 。

A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2:求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.如:943)(2-+=x x x f ,R x ∈ ②()f x 是分式函数时,定义域是使分母不为零的一切实数.如:()635-=x x f ,2≠x ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.如()1432+-=x x x f ,131><x x 或 ④对数函数的真数大于零0,log )(>=x x x f a ,当对数或指数函数的底数中含变量时,底数须大于零且不等于1。

如:()212()log 25f x x x =-+⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.如:2)32()(-+=x x f⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.如:)2(log 22x y --=⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.如:()[]()x f x f 28,2,的定义域是的定义域为 822≤≤x⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. 例:求函数()())1lg(lg x k x x f -+-=的定义域。

高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)

高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)

第一部分基本初等函数知识点整理第二章 基本初等函数一、指数函数 (一)指数1、 指数与指数幂的运算:复习初中整数指数幂的运算性质: a m *a n =a m+n(a m )n=a mn(a*b)n =a n b n2、根式的概念:一般地,若a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数。

此时,a 的n 次方根用符号 表示。

当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数。

此时正数a 的正的n 次方根用符号 表示,负的n 的次方根用符号 表示。

正的n 次方根与负的n 次方根可以合并成 (a>0)。

注意:负数没有偶次方根;0的任何次方根都是0,记作00=n。

当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。

3、 分数指数幂正数的分数指数幂的)1,,,0(*>∈>=n N n m a a an m nm ,)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义4、 有理数指数米的运算性质(1)r a ·s r ra a+=),,0(R s r a ∈>; (2)rss r a a =)( ),,0(R s r a ∈>;(3)s r r a a ab =)(),,0(R s r a ∈>.5、无理数指数幂一般的,无理数指数幂a a(a>0,a 是无理数)是一个确定的实数。

有理数指数幂的运算性质同样使用于无理数指数幂。

(二)、指数函数的性质及其特点1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.为什么?(1)在[a ,b]上,值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; (4)当a>1时,若X 1<X 2 ,则有f(X 1)<f(X 2)。

基本初等函数与函数应用基础知识

基本初等函数与函数应用基础知识

基本初等函数与函数应用基础知识一、基础知识梳理1. 二次函数的概念、图像和性质.(1)注意解题中灵活运用二次函数的一般式2()(0)f x ax bx c a =++≠二次函数的顶点式2()()(0)f x a x m n a =-+≠和 二次函数的坐标式12()()()(0)f x a x x x x a =--≠(2)解二次函数的问题(如单调性、最值、值域、二次三项式的恒正恒负、二次方程根的范围等)要充分利用好两种方法:配方、图像,很多二次函数都用数形结合的思想去解. ①2()(0)f x ax bx ca =++≠,当240b ac ∆=->时图像与x 轴有两个交点.M (x 1,0)N(x 2,0),|MN|=| x 1- x 2|=||a .② 二次函数在闭区间上必有最大值和最小值,它只能在区间的端点或二次函数的顶点处取得.2.指数函数的图象和性质(1)指数函数的图象和性质如下表所示:(2)应用指数函数性质比较大小比较大小是指数函数性质应用的常见题型.当底数相同时,直接比较指数即可;当底数和指数不同时,要借助于中间量进行比较.不同类的函数值的大小常借助中间量0、1等进行比较. 3.对数运算性质如果a >0且a≠1,M >0,N >0,则有 (1);(2);(3).3.对数换底公式及对数恒等式:(a>0且a≠1,b>0且b≠1,N>0),推论:,对数恒等式:(a>0,a≠1,N>0).4.对数函数的图象和性质(1)对数函数的图象和性质如下表所示:(2)应用对数函数性质比较大小③当x>1时,指数大的图像在上方.5.幂函数的概念一般地,形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.幂函数的特征:(1)以幂的底为自变量,指数为常数(高中阶段只学习指数为有理数的幂函数);(2)xα前的系数为1,项数只有1项.要注意幂函数与指数函数y=a x(a>0,且a≠1)的区别,这里底数a为常数,指数为变量.2.五个具体幂函数的图象与性质当α=1,2,3,12,-1时,在同一坐标平面内作这五个幂函数的图象如图所示.结合图象我们可以得到以上五个幂函数的性质如下:(1)在区间(0,+∞)上都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴;当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴;(4)当α=1,3,-1时,幂函数为奇函数;当α=2时,幂函数为偶函数;当α=12时,幂函数既不是奇函数也不是偶函数.说明:对于五个具体的幂函数在第一象限的图象的大致情况可以归纳为“正抛负双,大竖小横”这一记忆的口诀.即α>0(α≠1)时的图象是抛物线型,α>1时的图象是竖直抛物线型,0<α<1时的图象是横卧抛物线型,α<0时的图象是双曲线型一、选择题:本大题共12小题。

专题二:函数与基本初等函数(知识点梳理)

专题二:函数与基本初等函数(知识点梳理)
(2)偶函数: 一般地,如果对于函数 f (x) 的定义域内任意一个 x ,都有
f x f x,那么就称函数 f (x) 为奇函数.奇函数图象关于原点对称.
(3) 奇、偶函数的性质: ① 奇、偶函数的定义域一定关于原点对称. ② 如果 f (x) 为奇函数,且在原点有定义,则 f (0) 0. ③ 如果 f (x) 为偶函数,则 f (x) f (x) f ( x ). ④奇函数的图像关于原点对称,图像关于原点对称的函数是奇函数;偶函数
步骤:取值—作差—变形—定号—判断
格式:解:设 x1, x2 a,b 且 x1 x2 ,则: f x1 f x2 =…
2、奇偶性
(1)奇函数: 一般地,如果对于函数 f (x) 的定义域内任意一个 x ,都有
f x f x,那么就称函数 f (x) 为偶函数.偶函数图象关于 y 轴对称.
高考数学必记知识点归纳总结 第三章 函数
一、函数的概念: 1、函数的定义:在某一个变化过程中有两个变量 x 和 y,设变量 x 的取值 范围为数集 D,如果对于 D 内的每一个 x 值,按照某个对应法则 f,y 都有 唯一确定的值与之对应,那么,把 x 叫做自变量,把 y 叫做 x 的函数.记为:
y f(x)
的图像关于 y 轴对称,图像关于 y 轴对称的函数是偶函数.
⑤奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的 区间上的单调性相反. ⑥在公共定义域内:两个奇函数的和是奇函数,两个奇函数的积是偶函数; 两个偶函数的和与积都是偶函数;一个奇函数与一个偶函数的积是奇函数.
注意:判断函数的奇偶性时,首先判断定义域是否关于原点对称,若定义域
⑴当 a 1时,
f (x) 0 loga f (x) loga g(x) g(x) 0

高中数学 必修一函数性质详解及知识点总结及题型详解

高中数学 必修一函数性质详解及知识点总结及题型详解

(经典)高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射集合A ,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:(x,y)→(x 2+y 2,xy),求象(5,2)的原象.3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11-x ,则集合A 中的元素最多有几个?写出元素最多时的集合A.2、函数。

构成函数概念的三要素 ①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域函 数 解 析 式 的 七 种 求 法待定系数法:在已知函数解析式的构造时,可用待定系数法。

例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。

但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。

例2 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

与配凑法一样,要注意所换元的定义域的变化。

例3 已知x x x f 2)1(+=+,求)1(+x f四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。

例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

例5 设,)1(2)()(x xf x f x f =-满足求)(x f 例6 设)(x f 为偶函数,)(xg 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。

2020高考数学精讲二轮第二讲 基本初等函数、函数与方程及函数的应用

2020高考数学精讲二轮第二讲 基本初等函数、函数与方程及函数的应用

2020高考数学复习:第二讲 基本初等函数、函数与方程及函数的应用考点一 指数函数、对数函数及幂函数1.指数与对数式的运算公式2.指数函数、对数函数的图象和性质指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况:当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数.[对点训练]1.(2018·河南洛阳二模)已知点⎝ ⎛⎭⎪⎫a ,12在幂函数f (x )=(a -1)x b 的图象上,则函数f (x )是( )A .奇函数B .偶函数C .定义域内的减函数D .定义域内的增函数[解析] ∵点⎝ ⎛⎭⎪⎫a ,12在幂函数f (x )=(a -1)x b 的图象上,∴a -1=1,解得a=2,则2b =12,∴b =-1,∴f (x )=x -1,∴函数f (x )是定义域(-∞,0)∪(0,+∞)上的奇函数,且在每一个区间内是减函数,故选A.[答案] A2.(2018·天津卷)已知a =log 2e ,b =ln2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b[解析] 由已知得c =log 23,∵log 23>log 2e>1,b =ln2<1,∴c >a >b ,故选D.[答案] D3.(2018·山东潍坊一模)若函数f (x )=a x -a -x (a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象可以是( )[解析] 因函数f (x )=a x -a -x (a >0且a ≠1)在R 上为减函数,故0<a <1. 易知函数y =log a (|x |-1)是偶函数,定义域为{x |x >1或x <-1},x >1时函数y =log a (|x |-1)的图象可以通过函数y =log a x 的图象向右平移1个单位得到,故选D.[答案] D4.(2018·江西九江七校联考)若函数f (x )=log 2(x 2-ax -3a )在区间(-∞,-2]上是减函数,则实数a 的取值范围是________.[解析] 由题意得x 2-ax -3a >0在区间(-∞,-2]上恒成立且函数y =x 2-ax -3a 在(-∞,-2]上递减,则a2≥-2且(-2)2-(-2)a -3a >0,解得实数a 的取值范围是[-4,4).[答案][-4,4)[快速审题]看到指数式、对数式,想到指数、对数的运算性质;看到指数函数、对数函数、幂函数,想到它们的图象和性质.基本初等函数的图象与性质的应用技巧(1)对数函数与指数函数的单调性都取决于其底数的取值,当底数a的值不确定时,要注意分a>1和0<a<1两种情况讨论:当a>1时,两函数在定义域内都为增函数;当0<a<1时,两函数在定义域内都为减函数.(2)由指数函数、对数函数与其他函数复合而成的函数,其性质的研究往往通过换元法转化为两个基本初等函数的有关性质,然后根据复合函数的性质与相关函数的性质之间的关系进行判断.(3)对于幂函数y=xα的性质要注意α>0和α<0两种情况的不同.考点二函数的零点1.函数的零点及其与方程根的关系对于函数f(x),使f(x)=0的实数x叫做函数f(x)的零点.函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.2.零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.角[解析]当x≤0时,由f (x )=0,即x 2+2017x -2018=0, 得(x -1)(x +2018)=0, 解得x =1(舍去)或x =-2018;当x >0时,设g (x )=x -2,h (x )=ln x ,如图,分别作出两个函数的图象, 由图可知,两函数图象有两个交点,所以函数f (x )在x >0时有两个零点. 综上,函数f (x )有3个零点,故选C. [答案] C[快速审题] 看到函数的零点,想到求方程的根或转化为函数图象的交点.[解析] 在平面直角坐标系中作出函数y =f (x )的图象,如图,而函数y =mx -12恒过定点⎝ ⎛⎭⎪⎫0,-12,设过点⎝ ⎛⎭⎪⎫0,-12与函数y =ln x 的图象相切的直线为l 1,切点坐标为(x 0,ln x 0).因为y =ln x 的导函数y ′=1x ,所以图中y =ln x 的切线l 1的斜率为k =1x 0,则1x 0=ln x 0+12x 0-0,解得x 0=e ,所以k =1e.又图中l 2的斜率为12,故当方程f (x )=mx -12恰有四个不相等的实数根时,实数m 的取值范围是⎝ ⎛⎭⎪⎫12,e e .[答案] ⎝ ⎛⎭⎪⎫12,e e[探究追问] 将例2中“方程f (x )=mx -12恰有四个不相等的实数根”改为“方程f (x )=m ⎝ ⎛⎭⎪⎫x -54恰有三个不相等的实数根”,结果如何?[解析] 在平面直角坐标系中作出函数y =f (x )的图象,如图.函数y =m ⎝ ⎛⎭⎪⎫x -54恒过定点⎝ ⎛⎭⎪⎫54,0,设过点⎝ ⎛⎭⎪⎫54,0与函数y =1-x 2的图象相切的直线为l 1,设切点坐标为(x 0,1-x 20),因为y =1-x 2(x ≤1)的导函数y ′=-2x 0,所以切线l 1斜率k =-2x 0,则-2x 0=1-x 20x 0-54,解得x 0=12或x 0=2(舍).所以直线l 1的斜率为-1,结合图可知,当方程f (x )=m ⎝ ⎛⎭⎪⎫x -54恰有三个不相等的实根时,实数m 的取值范围是(-1,0).[答案](-1,0)(1)判断函数零点个数的3种方法(2)利用函数零点的情况求参数值(或范围)的3种方法[对点训练]1.[角度1]已知函数f(x)=6x-log2x.在下列区间中,包含f(x)零点的区间是()A.(0,1) B.(1,2)C.(2,4) D.(4,+∞)[解析]易知f(x)是单调递减函数.∵f(1)=6-log21=6>0,f(2)=3-log22=2>0,f(4)=64-log24=32-2<0,∴选项中包含f(x)零点的区间是(2,4).[答案] C[解析]f(x)=k有三个不同的实数根,即函数y=f(x)的图象与函数y=k的图象有三个交点,如图所示.当-1<k<0时,y=f(x)与y=k有三个交点.故-1<k<0.[答案](-1,0)考点三函数的实际应用解决函数实际应用题的关键(1)认真读题,缜密地审题,确切地理解题意,明确问题的实际背景,然后进行科学地抽象概括,将实际问题归纳为相应的数学问题.(2)合理选取参变量,设定变量之后,就要寻找它们之间的内在联系,选用恰当的代数式表示问题中的关系,建立相应的函数模型,最终求解数学模型使实际问题获解.[对点训练]1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()A.y=2x-2 B.y=12(x2-1)C.y=log2x D.y=log12x[解析]由题中表可知函数在(0,+∞)上是增函数,且y的变化随x的增大而增大的越来越快,分析选项可知B符合,故选B.[答案] B2.(2018·西安四校联考)某大型民企为激励创新,计划逐年加大研发资金投入.若该民企2018年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30)()A.2019年B.2020年C.2021年D.2022年[解析]设从2018年起,过了n(n∈N*)年该民企全年投入的研发资金超过200万元,则130×(1+12%)n ≥200,则n ≥lg 2013lg1.12≈0.30-0.110.05=3.8,由题意取n =4,则n +2018=2022,故选D.[答案] D3.如图,某小区有一边长为2的正方形地块OABC ,其中阴影部分是一个游泳池,计划在地块OABC 内修一条与池边AE 相切的直路l (宽度不计),切点为M ,并把该地块分为两部分.现以点O 为坐标原点,以线段OC 所在直线为x 轴,建立如图所示的平面直角坐标系,若池边AE 为函数y =-x 2+2(0≤x ≤2)的图象,且点M 到边OA 的距离为t ⎝ ⎛⎭⎪⎫23≤t ≤43,则地块OABC 在直路l 不含泳池那侧的面积的最大 值为________.[解析] M (t ,-t 2+2),过切点M 的切线l :y -(-t 2+2)=-2t (x -t ),即y =-2tx +t 2+2,令y =2得x =t 2,故切线l 与AB 交于点⎝ ⎛⎭⎪⎫t 2,2;令y =0,得x=t 2+1t ,故切线l 与OC 交于点⎝ ⎛⎭⎪⎫t 2+1t ,0,又x =t 2+1t 在⎣⎢⎡⎦⎥⎤23,43上单调递减,所以x =t 2+1t ∈⎣⎢⎡⎦⎥⎤1712,116,所以地块OABC 在切线l 右上部分区域为直角梯形,面积S=12⎝ ⎛⎭⎪⎫2-t 2-1t +2-t 2×2=4-t -1t =4-⎝ ⎛⎭⎪⎫t +1t ≤2,当且仅当t =1时等号成立,故地块OABC 在直路l 不含泳池那侧的面积的最大值为2.[答案] 2[快速审题] 看到实际应用题,想到函数模型.应用函数模型解决实际问题的一般程序[解析][答案] A2.(2018·全国卷Ⅰ)已知函数f (x )=⎩⎨⎧e x,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)[解析] g (x )=f (x )+x +a 存在2个零点等价于函数f (x )=⎩⎨⎧e x,x ≤0,ln x ,x >0与h (x )=-x -a 的图象存在2个交点,如图,当x =0时,h (0)=-a ,由图可知要满足y =f (x )与y =h (x )的图象存在2个交点,需要-a ≤1,即a ≥-1,故选C.[答案] C3.(2017·北京卷)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080,则下列各数中与M N 最接近的是 ( )(参考数据:lg3≈0.48)A .1033B .1053C .1073D .1093 [解析] 因为lg3≈0.48,所以3≈100.48,所以M N =33611080≈(100.48)3611080=100.48×3611080=10173.281080=1093.28≈1093,故选D. [答案] D4.(2018·全国卷Ⅲ)函数f (x )=cos ⎝ ⎛⎭⎪⎫3x +π6在[0,π]的零点个数为________.[解析] 令f (x )=0,得cos ⎝ ⎛⎭⎪⎫3x +π6=0,解得x =k π3+π9(k ∈Z ).当k =0时,x=π9;当k =1时,x =4π9;当k =2时,x =7π9,又x ∈[0,π],所以满足要求的零点有3个.[答案] 35.(2018·天津卷)已知a >0,函数f (x )=⎩⎨⎧x 2+2ax +a ,x ≤0,-x 2+2ax -2a ,x >0.若关于x 的方程f (x )=ax 恰有2个互异的实数解,则a 的取值范围是________.[解析] 设g (x )=f (x )-ax =⎩⎨⎧x 2+ax +a ,x ≤0,-x 2+ax -2a ,x >0,方程f (x )=ax 恰有2个互异的实数解即函数y =g (x )有两个零点,即y =g (x )的图象与x 轴有2个交点,满足条件的y =g (x )的图象有以下两种情况:情况一:则⎩⎨⎧Δ1=a 2-4a >0,Δ2=a 2-8a <0,∴4<a <8. 情况二:则⎩⎨⎧Δ1=a 2-4a <0,Δ2=a 2-8a >0,不等式组无解. 综上,满足条件的a 的取值范围是(4,8). [答案] (4,8)1.基本初等函数作为高考的命题热点,多考查利用函数的性质比较大小,一般出现在第5~11题的位置,有时难度较大.2.函数的应用问题多体现在函数零点与方程根的综合问题上,近几年全国课标卷考查较少,但也要引起重视,题目可能较难.热点课题5 复合函数的零点[感悟体验]1.(2018·山西质量检测)已知f (x )=⎩⎨⎧2x +1,x ≤0,|ln x |,x >0,则方程f [f (x )]=3的根的个数是( )A .3B .4C .5D .6 [解析][答案] C2.(2018·安徽马鞍山一模)已知函数f (x )=⎩⎨⎧3|x -1|,x >0,-x 2-2x +1,x ≤0,若关于x的方程[f (x )]2+(a -1)f (x )-a =0有7个不等的实数根,则实数a 的取值范围是( ) A .[1,2] B .(1,2) C .(-2,-1) D .[-2,-1][解析]函数f (x )={ 3|x -1|,x >0,-x 2-2x +1,x ≤0的图象如图.关于x 的方程[f (x )]2+(a -1)f (x )-a =0有7个不等的实数根,即[f (x )+a ][f (x )-1]=0有7个不等的实数根,易知f (x )=1有3个不等的实数根,∴f (x )=-a必须有4个不相等的实数根,由函数f (x )的图象可知-a ∈(1,2),∴a ∈(-2,-1),故选C.[答案] C专题跟踪训练(十一)一、选择题[解析][答案] C2.(2018·广东揭阳一模)曲线y =⎝ ⎛⎭⎪⎫13x与y =x12 的交点横坐标所在区间为( )A.⎝ ⎛⎭⎪⎫0,13 B.⎝ ⎛⎭⎪⎫13,12 C.⎝ ⎛⎭⎪⎫12,23 D.⎝ ⎛⎭⎪⎫23,1 [解析]根据零点存在性定理可得函数零点所在区间为⎝ ⎛⎭⎪⎫13,12,即所求交点横坐标所在区间为⎝ ⎛⎭⎪⎫13,12,故选B.[答案] B3.(2018·孝感一模)若函数f (x )=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,14 B.⎝ ⎛⎭⎪⎫-14,12 C.⎝ ⎛⎭⎪⎫14,12 D.⎣⎢⎡⎦⎥⎤-14,12 [解析] 依题意并结合函数f (x )的图象可知,[答案] C4.(2018·河南焦作二模)已知函数f (x )=⎩⎨⎧e x,x ≤0,x 2+ax +1,x >0,F (x )=f (x )-x -1,且函数F (x )有2个零点,则实数a 的取值范围为( ) A .(-∞,0] B .[1,+∞) C .(-∞,1)D .(0,+∞)[解析] 当x ≤0时,F (x )=e x -x -1,此时有一个零点0;当x >0时,F (x )=x [x +(a -1)],∵函数F (x )有2个零点,∴1-a >0,∴a <1,故选C. [答案] C5.(2018·湖南十三校二模)函数f (x )=ln x +e x (e 为自然对数的底数)的零点所在的区间是( )A.⎝ ⎛⎭⎪⎫0,1e B.⎝ ⎛⎭⎪⎫1e ,1 C .(1,e) D .(e ,+∞)[解析][答案] A6.(2018·河南郑州模拟)已知函数f (x )=x 2+m 与函数g (x )=-ln 1x -3x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤12,2的图象上至少存在一对关于x 轴对称的点,则实数m 的取值范围是( )A.⎣⎢⎡⎦⎥⎤54+ln2,2 B.⎣⎢⎡⎦⎥⎤2-ln2,54+ln2C.⎣⎢⎡⎦⎥⎤54+ln2,2+ln2 D .[2-ln2,2][解析] 由已知,得方程x 2+m =ln 1x +3x ,∴m =-ln x +3x -x 2在⎣⎢⎡⎦⎥⎤12,2上有解.设h (x )=-ln x +3x -x 2,求导,得h ′(x )=-1x +3-2x =-2x 2-3x +1x=-(2x -1)(x -1)x∵12≤x ≤2,令h ′(x )=0,解得x =12或x =1. 当h ′(x )>0时,12<x <1,函数单调递增, 当h ′(x )<0时,1<x <2,函数单调递减, ∴h (x )在x =1处有唯一的极值点. ∵h ⎝ ⎛⎭⎪⎫12=ln2+54,h (2)=-ln2+2,且知h (2)<h ⎝ ⎛⎭⎪⎫12,∴h (x )最大值=h (1)=2,h (x )min =2-ln2.故方程m =-ln x +3x -x 2在⎣⎢⎡⎦⎥⎤12,2上有解等价于2-ln2≤m ≤2.所以m 的取值范围是[2-ln2,2],故选D. [答案] D 二、填空题7.(2018·河北石家庄模拟)若函数f (x )=m +⎝ ⎛⎭⎪⎫13x 的零点是-2,则实数m =________.[解析] 由m +⎝ ⎛⎭⎪⎫13-2=0,得m =-9.[答案] -98.设二次函数f (x )=ax 2+2ax +1在[-3,2]上有最大值4,则实数a 的值为________.[解析] f (x )的对称轴为x =-1.当a >0时,f (2)=4a +4a +1=8a +1,f (-3)=3a +1.∴f (2)>f (-3),即f (x )max =f (2)=8a +1=4,∴a =38;当a <0时,f (x )max =f (-1)=a -2a +1=-a +1=4,∴a =-3.综上所述,a =38或a =-3.[答案] 38或-39.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未出租的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,要使租赁公司的月收益最大,则每辆车的月租金应定为________元.[解析] 设每辆车的月租金为x (x >3000)元,则租赁公司月收益为y =⎝⎛⎭⎪⎫100-x -300050·(x -150)-x -300050×50,整理得y =-x 250+162x -21000=-150(x-4050)2+307050.所以当x =4050时,y 取最大值为307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大为307050元.[答案] 4050 三、解答题10.(2018·唐山一中期末)已知函数f (x )=e x -e -x (x ∈R ,且e 为自然对数的底数).(1)判断函数f (x )的单调性与奇偶性;(2)是否存在实数t ,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立?若存在,求出t ;若不存在,请说明理由.[解] (1)∵f (x )=e x -⎝ ⎛⎭⎪⎫1e x ,∴f ′(x )=e x+⎝ ⎛⎭⎪⎫1e x,∴f ′(x )>0对任意x ∈R 都成立, ∴f (x )在R 上是增函数.又∵f (x )的定义域为R ,且f (-x )=e -x -e x =-f (x ),∴f (x )是奇函数.(2)存在.由(1)知f (x )在R 上是增函数和奇函数,则 f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立, ⇔f (x 2-t 2)≥f (t -x )对一切x ∈R 都成立, ⇔x 2-t 2≥t -x 对一切x ∈R 都成立,⇔t 2+t ≤x 2+x =⎝ ⎛⎭⎪⎫x +122-14对一切x ∈R 都成立,⇔t 2+t ≤(x 2+x )min =-14⇔t 2+t +14 =⎝ ⎛⎭⎪⎫t +122≤0, 又⎝ ⎛⎭⎪⎫t +122≥0,∴⎝ ⎛⎭⎪⎫t +122=0, ∴t =-12.∴存在t =-12,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立. 11.(2018·江西三校联考)食品安全问题越来越引起人们的重视,农药、化肥的滥用给人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P (单位:万元)、种黄瓜的年收入Q (单位:万元)与投入a (单位:万元)满足P =80+42a ,Q =14a +120,设甲大棚的投入为x (单位:万元),每年两个大棚的总收益为f (x )(单位:万元).(1)求f (50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f (x )最大? [解] (1)依题意f (x )=80+42x +14(200-x )+120=-14x +42x +250,其中⎩⎨⎧x ≥20,200-x ≥20,所以20≤x ≤180.故f (50)=-14×50+42×50+250=277.5.(2)由(1)知f (x )=-14x +42x +250(20≤x ≤180), 令x =t ,则25≤t ≤65,y =-14t 2+42t +250=-14(t -82)2+282,因此当t =82时,函数取得最大值282,此时x =128,故投入甲大棚128万元,乙大棚72万元时,总收益最大,最大总收益是282万元.12.(2018·江西吉安一中摸底)已知函数f (x )=⎩⎨⎧e x ,x ≥0,lg (-x ),x <0, 若关于x 的方程[f (x )]2+f (x )+t =0有三个不同的实数根,求实数t 的取值范围.[解] 原问题等价于[f (x )]2+f (x )=-t 有三个不同的实数根,即直线y =-t 与y =[f (x )]2+f (x )的图象有三个不同的交点.当x ≥0时,y =[f (x )]2+f (x )=e 2x +e x 为增函数,在x =0处取得最小值2,其图象与直线y =-t 最多只有一个交点.当x <0时,y =[f (x )]2+f (x )=[lg(-x )]2+lg(-x ),根据复合函数的单调性,其在(-∞,0)上先减后增,最小值为-14.所以要使函数的图象有三个不同的交点,只需-t ≥2,解得t ≤-2.。

高考基本初等函数知识点总结

高考基本初等函数知识点总结

基本初等函数综合复习一、知识点总结 1. 对数函数的概念一般地,把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是 . 2. 对数函数y =log a x (a >0,且a ≠1)的图象与性质定义 y =log a x (a >0,且a ≠1)底数a >10<a <1图象定义域 值域 R单调性 在(0,+∞)上是增函数在(0,+∞)上是减函数共点性 图象过定点 ,即x =1时,y =0函数值特点x ∈(0,1)时,y ∈ ;x ∈[1,+∞)时,y ∈ x ∈(0,1)时,y ∈ ;x ∈[1,+∞)时,y ∈ 对称性函数y =log a x 与y =1log ax 的图象关于 对称【易错题1】 如图,已知正方形ABCD 的边长为2,BC 平行于x 轴,顶点A ,B 和C 分别在 函数y 1=3log a x ,y 2=2log a x 和y 3=log a x (a >1)的图象上,则实数a 的值为________。

【题模1】 函数图象(1)底数与图像位置关系:1、指数函数图象恒过(0,1)在第一象限是“底大图高”,2、对数函数图象恒过(1,0):在直线1x =的右侧,当1a >时,底数越大,图象越靠近x 轴;当01a <<时,底数越小,图象越靠近x 轴,即“底大图低”.3、幂函数图象恒过(1,1),在(1,1)右侧:是“指大图高”.2)函数图象变换①y =f (x )―――――→关于x 轴对称y =-f (x ). ②y =f (x )―――――→关于y 轴对称y =f (-x ). ③y =f (x )―――――→关于原点对称y =-f (-x ).④y =a x (a >0且a ≠1)―――――→关于y =x 对称y =log a x (a >0且a ≠1). (3)伸缩变换①y =f (x )――――――――――――――――――――→a >1,横坐标缩短为原来的倍,纵坐标不变0<a <1,横坐标伸长为原来的倍,纵坐标不变 y =f (ax ).②y =f (x )―――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变 y =af (x ). (4)翻折变换①y =f (x )――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去 y =|f (x )|. ②y =f (x )―――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象 y =f (|x |). 【讲透例题】1.设0,1a a >≠且,函数2log (2)a y x =++的图象恒过定点P ,则P 点的坐标是A .(1,2)-B .(2,1)-C .(3,2)-D .(3,2)2、不论a 为何值时,函数图象恒过一定点,这个定点坐标是 .3. 函数()2e e x xf x x--=的图像大致为 ( ) A . B . C . D .5、设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是( ) A .y =f (|x |) B .y =-|f (x )| C .y =-f (-|x |) D .y =f (-|x |)6.(多选)若函数y =a x +b -1(a >0,且a ≠1)的图象经过第一、三、四象限,则下列选项中正确的有( )A .a >1B .0<a <1C .b >0D .b <07、已知指数函数()x f x a =,将函数()f x 的图象上的每个点的横坐标不变,纵坐标扩大为原来的3倍,得到函数()g x 的图象,再将()g x 的图象向右平移2个单位长度,所得图象恰好与函数()f x 的图象重合,则a 的值是( ) A .32B .23C .33D .3【相似题练习】1. 已知函数2(log )y x a b =++的图象不经过第四象限,则实数a b 、满足( ) A .1,0a b ≥≥ B .0,1a b >≥ C . 2log 0b a +≥ D .20b a +≥ 2.函数f (x )=ln(x 2+1)的图象大致是( )3、 已知()g x 图像与x y e =关于y 轴对称,将函数()g x 的图像向左平移1个单位长度,得到()f x ,则()f x =( )A. 1x e +B.1x e -C.1x e -+D. 1x e -- 4、(多选题)为了得到函数ln()y ex =的图象,可将函数ln y x =的图象( )A .纵坐标不变,横坐标伸长为原来的e 倍B .纵坐标不变,横坐标缩短为原来的1eC .向上平移一个单位长度D .向下平移一个单位长度 5、函数y =a x -a (a >0,且a ≠1)的图象恒过定点( , ) 6、函数(其中且的图象一定不经过第 象限。

基本初等函数、函数与方程及函数的应用(题型归纳)

基本初等函数、函数与方程及函数的应用(题型归纳)

基本初等函数、函数与方程及函数的应用【考情分析】1.考查特点:基本初等函数作为高考的命题热点,多考查指数式与对数式的运算、利用函数的性质比较大小,难度中等;函数的应用问题多体现在函数零点与方程根的综合问题上,题目有时较难,而与实际应用问题结合考查的指数、对数函数模型也是近几年考查的热点,难度中等.2.关键能力:逻辑思维能力、运算求解能力、数学建模能力、创新能力.3.学科素养:数学抽象、逻辑推理、数学建模、数学运算.【题型一】基本初等函数的图象与性质【典例分析】【例1】(2021•焦作一模)若函数||(0,1)x y a a a =>≠的值域为{|1}y y ,则函数log ||a y x =的图象大致是()A .B .C .D .【答案】B【解析】若函数||(0,1)x y a a a =>≠的值域为{|1}y y ,则1a >,故函数log ||a y x =的图象大致是:故选:B .【例2】(2021·陕西西安市·西安中学高三模拟)若1(,1)x e -∈,ln a x =,ln 1()2xb =,ln 2xc =,则a ,b ,c 的大小关系为()A .c b a >>B .b a c >>C .a b c >>D .b c a>>【答案】D【解析】因1(,1)x e -∈,且函数ln y x =是增函数,于是10a -<<;函数2x y =是增函数,1ln 0ln 1x x -<<<-<,而ln ln 1()22xx -=,则ln 11()22x <<,ln 1212x<<,即1122c b <<<<,综上得:b c a >>故选:D【例3】(2021·湖南长沙长郡中学高三模拟)若函数()()4log 1,13,1x x x f x m x ⎧->=⎨--≤⎩存在2个零点,则实数m 的取值范围为()A .[)3,0-B .[)1,0-C .[)0,1D .[)3,-+∞【答案】A【解析】因函数f (x )在(1,+∞)上单调递增,且f (2)=0,即f (x )在(1,+∞)上有一个零点,函数()()4log 1,13,1x x x f x m x ⎧->=⎨--≤⎩存在2个零点,当且仅当f (x )在(-∞,1]有一个零点,x≤1时,()03x f x m =⇔=-,即函数3x y =-在(-∞,1]上的图象与直线y =m 有一个公共点,在同一坐标系内作出直线y =m 和函数3(1)x y x =-≤的图象,如图:而3x y =-在(-∞,1]上单调递减,且有330x -≤-<,则直线y =m 和函数3(1)x y x =-≤的图象有一个公共点,30m -≤<.故选:A【提分秘籍】1.指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.2.研究对数函数的性质,应注意真数与底数的限制条件.如求f(x)=ln(x 2-3x+2)的单调区间,易只考虑t=x 2-3x+2与函数y=ln t 的单调性,而忽视t>0的限制条件.3.指数、对数、幂函数值的大小比较问题的解题策略:(1)底数相同,指数不同的幂用指数函数的单调性进行比较.(2)底数相同,真数不同的对数值用对数函数的单调性进行比较.(3)底数不同、指数也不同,或底数不同、真数也不同的两个数,常引入中间量或结合图象比较大小.【变式演练】1.【多选】(2021·山东省实验中学高三模拟)已知函数()2121x x f x -=+,则下列说法正确的是()A .()f x 为奇函数B .()f x 为减函数C .()f x 有且只有一个零点D .()f x 的值域为[)1,1-【答案】AC【解析】()2121x x f x -=+ ,x ∈R ,2121x=-+2112()()2112x xx xf x f x ----∴-===-++,故()f x 为奇函数,又()21212121x x xf x -==-++ ,()f x ∴在R 上单调递增,20x> ,211x ∴+>,20221x∴<<+,22021x∴-<-<+,1()1f x ∴-<<,即函数值域为()1,1-令()21021x x f x -==+,即21x =,解得0x =,故函数有且只有一个零点0.综上可知,AC 正确,BD 错误.故选:AC2.(2021·山东潍坊市·高二一模(理))设函数()322xxf x x -=-+,则使得不等式()()2130f x f -+<成立的实数x 的取值范围是【答案】(),1-∞-【解析】函数的定义域为R ,()()322xx f x x f x --=--=-,所以函数是奇函数,并由解析式可知函数是增函数原不等式可化为()()213f x f -<-,∴213x -<-,解得1x <-,∴x 的取值范围是(),1-∞-.【题型二】函数与方程【典例分析】【例4】(2021·宁夏中卫市·高三其他模拟)函数3()9x f x e x =+-的零点所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【答案】B【解析】由x e 为增函数,3x 为增函数,故3()9x f x e x =+-为增函数,由(1)80f e =-<,2(2)10f e =->,根据零点存在性定理可得0(1,2)x ∃∈使得0()0f x =,故选:B.【例5】(2021·北京高三一模)已知函数22,,()ln ,x x x t f x x x t⎧+=⎨>⎩(0)t >有2个零点,且过点(,1)e ,则常数t 的一个取值为______.【答案】2(不唯一).【解析】由220x x +=可得0x =或2x =-由ln 0x =可得1x =因为函数22,,()ln ,x x x t f x x x t⎧+=⎨>⎩(0)t >有2个零点,且过点(,1)e ,所以1e t >≥,故答案为:2(不唯一)【提分秘籍】1.判断函数零点个数的方法直接法直接求零点,令f(x)=0,则方程解的个数即为函数零点的个数定理法利用零点存在性定理,利用该定理只能确定函数的某些零点是否存在,必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点数形结合法对于给定的函数不能直接求解或画出图象的,常分解转化为两个能画出图象的函数的交点问题2.利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在性定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解.【变式演练】1.(2021·湖北十堰市高三模拟)函数()()()23log 111f x x x x =+->-的零点所在的大致区间是()A .()1,2B .()2,3C .()3,4D .()4,5【答案】B【解析】易知()f x 在()1,+∞上是连续增函数,因为()22log 330f =-<,()33202f =->,所以()f x 的零点所在的大致区间是()2,3.故选:B2.(2021·天津高三二模)设函数2,1()4()(2),1x a x f x x a x a x ⎧-<=⎨--≥⎩,若1a =,则()f x 的最小值为______;若()f x 恰有2个零点,则实数a 的取值范围是__________.【答案】1-112a ≤<或2a ≥【解析】当1a =时,()()211()4(1)(2)1x x f x x x x ⎧-<⎪=⎨--≥⎪⎩,1x <,()211xf x =-<,1≥x ,()()()234124112f x x x x ⎛⎫=--=--≥- ⎪⎝⎭所以()f x 的最小值为1-.设()f x 的零点为1x 、2x ,若()1,1x ∈-∞,[)21x ∈+∞,,则20012a a a a->⎧⎪>⎨⎪<≤⎩,得112a ≤<若[)12,1,x x ∈+∞,则0201a a a >⎧⎪-≤⎨⎪≥⎩,得2a ≥,综上:112a ≤<或2a ≥.故答案为:1-;112a ≤<或2a ≥.【题型三】函数的实际应用【典例分析】1.(2021·北京高三二模)20世纪30年代,里克特制定了一种表明地震能量大小的尺度,就是使用地震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M ,其计算公式为0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是标准地震的振幅,2008年5月12日,我国四川汶川发生了地震,速报震级为里氏7.8级,修订后的震级为里氏8.0级,则修订后的震级与速报震级的最大振幅之比为()A .0.210-B .0.210C .40lg39D .4039【答案】B【解析】由0lg lg M A A =-,可得01AM gA =,即10M A A =,010M A A =⋅,当8M =时,地震的最大振幅为81010A A =⋅,当7.8M =时,地震的最大振幅为7.82010A A =⋅,所以,修订后的震级与速报震级的最大振幅之比是887.80.2017.82010101010A A A A -⋅===⋅.故选:B.2.为加强环境保护,治理空气污染,某环保部门对辖区内一工厂产生的废气进行了监测,发现该厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量(mg /L)P 与时间(h)t 的关系为0ktP P e -=.如果在前5个小时消除了10%的污染物,那么污染物减少19%需要花的时间为()A .7小时B .10小时C .15小时D .18小时【答案】B【解析】因为前5个小时消除了10%的污染物,所以()50010.1kP P P e -=-=,解得ln 0.95k =-,所以ln 0.950tP P e =,设污染物减少19%所用的时间为t ,则()0010.190.81P P -=()()ln 0.92ln 0.955500000.90.9t t t P P e P eP ====,所以25t=,解得10t =,故选:B 3.(2021·山东滕州一中高三模拟)为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒,出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (毫克/立方米)与时间t (分钟)之间的函数关系为100.1,0101,102ta t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩(a 为常数),函数图象如图所示.如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是A .9:40B .9:30C .9:20D .9:10【答案】9:30【解析】根据函数的图象,可得函数的图象过点(10,1),代入函数的解析式,可得1121a-⎛⎫⎪⎝⎭=,解得1a =,所以1100.1,0101,102t t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩,令0.25y ≤,可得0.10.25t ≤或11020.251t -⎛⎝≤⎫⎪⎭,解得0 2.5t <≤或30t ≥,所以如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是9:30.故选:B.【提分秘籍】1.构建函数模型解决实际问题的失分点:(1)不能选择相应变量得到函数模型;(2)构建的函数模型有误;(3)忽视函数模型中变量的实际意义.2.解决新概念信息题的关键:(1)依据新概念进行分析;(2)有意识地运用转化思想,将新问题转化为我们所熟知的问题.【变式演练】(2020·湖北黄冈市·黄冈中学高三模拟)“百日冲刺”是各个学校针对高三学生进行的高考前的激情教育,它能在短时间内最大限度激发一个人的潜能,使成绩在原来的基础上有不同程度的提高,以便在高考中取得令人满意的成绩,特别对于成绩在中等偏下的学生来讲,其增加分数的空间尤其大.现有某班主任老师根据历年成绩在中等偏下的学生经历“百日冲刺”之后的成绩变化,构造了一个经过时间()30100t t ≤≤(单位:天),增加总分数()f t (单位:分)的函数模型:()()1lg 1kPf t t =++,k 为增分转化系数,P 为“百日冲刺”前的最后一次模考总分,且()1606f P =.现有某学生在高考前100天的最后一次模考总分为400分,依据此模型估计此学生在高考中可能取得的总分约为()(lg 61 1.79≈)A .440分B .460分C .480分D .500分【答案】B【解析】由题意得:()1601lg 61 2.796kP kP f P ===+, 2.790.4656k ∴≈=;∴()0.465400186186100621lg1011lg100lg1.013f ⨯==≈=+++,∴该学生在高考中可能取得的总分约为40062462460+=≈分.故选:B.1.(2021·江苏金陵中学高三模拟)函数()2ln 1xf x x =+-的零点所在的区间为().A .31,2⎛⎫⎪⎝⎭B .3,22⎛⎫⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】D【解析】函数()2ln 1xf x x =+-为()0,∞+上的增函数,由()110f =>,1311112ln 21ln 21ln 2ln 0222222f e ⎛⎫=-<--=-<-=⎪⎝⎭,可得函数()f x 的零点所在的区间为1,12⎛⎫⎪⎝⎭.故选:D.2.(2021·山东潍坊一中高三模拟)若函数()1af x x x =+-在(0,2)上有两个不同的零点,则a 的取值范围是()A .1[2,]4-B .1(2,)4-C .1[0,]4D .1(0,)4【答案】D【解析】函数()1a f x x x=+-在(0,2)上有两个不同的零点等价于方程10ax x +-=在(0,2)上有两个不同的解,即2a x x =-+在(0,2)上有两个不同的解.此问题等价于y a =与2(02)y x x x =-+<<有两个不同的交点.由下图可得104a <<.故选:D.3.(2021·长沙市·湖南师大附中高三三模)已知函数()()()ln 2ln 4f x x x =-+-,则().A .()f x 的图象关于直线3x =对称B .()f x 的图象关于点()3,0对称C .()f x 在()2,4上单调递增D .()f x 在()2,4上单调递减【答案】A【解析】()f x 的定义域为()2,4x ∈,A :因为()()()()3ln 1ln 13f x x x f x +=++-=-,所以函数()f x 的图象关于3x =对称,因此本选项正确;B :由A 知()()33f x f x +≠--,所以()f x 的图象不关于点()3,0对称,因此本选项不正确;C :()()()2ln 2ln 4ln(68)x x x f x x =-+-=-+-函数2268(3)1y x x x =-+-=--+在()2,3x ∈时,单调递增,在()3,4x ∈时,单调递减,因此函数()f x 在()2,3x ∈时单调递增,在()3,4x ∈时单调递减,故本选项不正确;D :由C 的分析可知本选项不正确,故选:A4.(2021·辽宁本溪高级中学高三模拟高三模拟)设函数2ln(1)ln(1)()1x x f x x +--=-,则函数的图象可能是()A .B .C .D .【答案】D【解析】2ln(1)ln(1)()1x x f x x +--=-,定义域为()1,1-,且()()f x f x -=-,故函数为奇函数,图象关于原点对称,故排除A,B,C ,故选:D.5.(2021·新安县第一高级中学高三模拟)被誉为信息论之父的香农提出了一个著名的公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭,其中C 为最大数据传输速率,单位为bit /s :W 为信道带宽,单位为Hz :SN为信噪比.香农公式在5G 技术中发挥着举足轻重的作用.当99SN=,2000Hz W =时,最大数据传输速率记为1C ;在信道带宽不变的情况下,若要使最大数据传输速率翻一番,则信噪比变为原来的多少倍()A .2B .99C .101D .9999【答案】C【解析】当99S N =,2000Hz W =时,()1222log 12000log 1994000log 10S C W N ⎛⎫=+=+= ⎪⎝⎭,由228000log 102000log 1S N ⎛⎫=+⎪⎝⎭,得224log 10log 1S N ⎛⎫=+ ⎪⎝⎭,所以9999S N =,所以999910199=,即信噪比变为原来的101倍.故选:C .6.(2021·浙江温州市·瑞安中学高三模拟)已知函数()f x 是定义在R 上的奇函数,满足()()2f x f x +=-,且当[]0,1x ∈时,()()2log 1f x x =+,则函数()3y f x x =-的零点个数是()A .2B .3C .4D .5【答案】B【解析】由()()2f x f x +=-可得()f x 关于1x =对称,由函数()f x 是定义在R 上的奇函数,所以()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-,所以()f x 的周期为4,把函数()3y f x x =-的零点问题即()30y f x x =-=的解,即函数()y f x =和3y x =的图像交点问题,根据()f x 的性质可得如图所得图形,结合3y x =的图像,由图像可得共有3个交点,故共有3个零点,故选:B.7.(2021·珠海市第二中学高三模拟)设21()log (1)f x x a=++是奇函数,若函数()g x 图象与函数()f x 图象关于直线y x =对称,则()g x 的值域为()A .11(,)(,)22-∞-+∞ B .11(,22-C .(,2)(2,)-∞-+∞D .(2,2)-【答案】A【解析】因为21()log (1)f x x a=++,所以1110x a x a x a+++=>++可得1x a <--或x a >-,所以()f x 的定义域为{|1x x a <--或}x a >-,因为()f x 是奇函数,定义域关于原点对称,所以1a a --=,解得12a =-,所以()f x 的定义域为11(,)(,)22-∞-+∞ ,因为函数()g x 图象与函数()f x 图象关于直线y x =对称,所以()g x 与()f x 互为反函数,故()g x 的值域即为()f x 的定义域11(,)(,)22-∞-+∞ .故选:A .8.(2021·浙江杭州高级中学高三模拟)已知函数22log ,0,()44,0.x x f x x x x ⎧>=⎨--+<⎩若函数()()g x f x m =-有四个不同的零点1234,,,x x x x ,则1234x x x x 的取值范围是()A .(0,4)B .(4,8)C .(0,8)D .(0,)+∞【答案】A【解析】函数()g x 有四个不同的零点等价于函数()f x 的图象与直线y m =有四个不同的交点.画出()f x 的大致图象,如图所示.由图可知(4,8)m ∈.不妨设1234x x x x <<<,则12420x x -<<-<<,且124x x +=-.所以214x x =--,所以()()212111424(0,4)x x x x x =--=-++∈,则3401x x <<<,因为2324log log x x =,所以2324log log x x -=,所以12324log log x x -=,所以341x x ⋅=,所以123412(0,4)x x x x x x ⋅⋅⋅=∈⋅.故选:A9.(2021·天津南开中学高三模拟)若函数()1x f x e =-与()g x ax =的图象恰有一个公共点,则实数a 可能取值为()A .2B .1C .0D .1-【答案】BCD【解析】函数()1x f x e =-的导数为()x f x e '=;所以过原点的切线的斜率为1k =;则过原点的切线的方程为:y x =;所以当1a 时,函数()1x f x e =-与()g x ax =的图象恰有一个公共点;故选BCD10.(2021·广东佛山市·高三模拟)函数()()()ln 1ln 1xxf x e e =+--,下列说法正确的是()A .()f x 的定义域为(0,)+∞B .()f x 在定义域内单调递増C .不等式(1)(2)f m f m ->的解集为(1,)-+∞D .函数()f x 的图象关于直线y x =对称【答案】AD【解析】要使函数有意义,则10(0,)10x xe x e ⎧+>⇒∈+∞⎨->⎩,故A 正确;()()12()ln 1ln 1ln ln(111x xxx x e f x e e e e +=+--==+--,令211xy e =+-,易知其在(0,)+∞上单调递减,所以()f x 在(0,)+∞上单调递减,故B 不正确;由于()f x 在(0,)+∞上单调递减,所以对于(1)(2)f m f m ->,有1020(1,)12m m m m m ->⎧⎪>⇒∈+∞⎨⎪-<⎩,故C 不正确;令()ln(211x y f x e +=-=,解得11ln()11y xy y y e e e x e e ++=⇒=--,所以()f x 关于直线y x =对称,故D 正确.故选:AD11.(2021·福建厦门市高三模拟)某医药研究机构开发了一种新药,据监测,如果患者每次按规定的剂量注射该药物,注射后每毫升血液中的含药量y (微克)与时间t (小时)之间的关系近似满足如图所示的曲线.据进一步测定,当每毫升血液中含药量不少于0.125微克时,治疗该病有效,则()A .3a =B .注射一次治疗该病的有效时间长度为6小时C .注射该药物18小时后每毫升血液中的含药量为0.4微克D .注射一次治疗该病的有效时间长度为31532时【答案】AD【解析】由函数图象可知()4(01)112t at t y t -<⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,当1t =时,4y =,即11()42a-=,解得3a =,∴()34(01)112t t t y t -<⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,故A 正确,药物刚好起效的时间,当40.125t =,即132t =,药物刚好失效的时间31()0.1252t -=,解得6t =,故药物有效时长为131653232-=小时,药物的有效时间不到6个小时,故B 错误,D 正确;注射该药物18小时后每毫升血液含药量为140.58⨯=微克,故C 错误,故选:AD .12.(2021·辽宁省实验中学高三模拟)(多选题)已知函数()f x ,()g x 的图象分别如图1,2所示,方程(())1f g x =,(())1g f x =-,1(())2g g x =-的实根个数分别为a ,b ,c ,则()A .a b c +=B .b c a+=C .b a c=D .2b c a+=【答案】AD【解析】由图,方程(())1f g x =,1()0g x -<<,此时对应4个解,故4a =;方程(())1g f x =-,得()1f x =-或者()1f x =,此时有2个解,故2b =;方程1(())2g g x =-,()g x 取到4个值,如图所示:即2()1g x -<<-或1()0g x -<<或0()1g x <<或1()2g x <<,则对应的x 的解,有6个,故6c =.根据选项,可得A ,D 成立.故选AD .13.(2021·山东淄博实验中学高三模拟)如果函数y =a 2x +2a x -1(a >0,且a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.【答案】3或13【解析】令a x =t ,则y =a 2x +2a x -1=t 2+2t -1=(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈1,a a ⎡⎤⎢⎥⎣⎦,又函数y =(t +1)2-2在1,a a ⎡⎤⎢⎥⎣⎦上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去).当0<a <1时,因为x ∈[-1,1],所以t ∈1a a ⎡⎤⎢⎥⎣⎦,,又函数y =(t +1)2-2在1a a ⎡⎤⎢⎥⎣⎦,上单调递增,则y max =211a ⎛⎫+ ⎪⎝⎭-2=14,解得a =13(负值舍去).综上,a =3或a =13.14.(2021·北京高三一模)已知函数22,1,()log ,1,x x f x x x ⎧<=⎨-⎩则(0)f =________;()f x 的值域为_______.【答案】1(),2-∞【解析】0(0)2=1=f ;当1x <时,()()20,2=∈xf x ,当1x ≤时,()2log 0=-≤f x x ,所以()f x 的值域为(),2-∞故答案为:1;(),2-∞.15.(2021·重庆南开中学高三模拟)已知定义域为[4,4]-的函数()f x 的部分图像如图所示,且()()0f x f x --=,函数(lg )1f a ≤,则实数a 的取值范围为______.【答案】1,1010⎡⎤⎢⎥⎣⎦【解析】由题意知()()f x f x -=,且函数()f x 的定义域为[4,4]-,所以()f x 是偶函数.由图知()11f =,且函数()f x 在[0,4]上为增函数,则不等式(lg )1f a ≤等价于(|lg |)(1)f a f ≤,即|lg |1a ≤,所以1lg 1a -≤≤,解得11010a ≤≤.故实数a 的取值范围为1,1010⎡⎤⎢⎥⎣⎦.故答案为:1,1010⎡⎤⎢⎥⎣⎦16.(2021·湖南长沙市·长沙一中高三其他模拟)设函数()222,034,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________.【答案】41,3⎛⎤ ⎥⎝⎦【解析】作出函数()f x 图像如下互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==不妨设123x x x <<,则23,x x 关于1x =对称,所以232x x +=根据图像可得1213x -<≤-所以123413x x x <++≤,所以123x x x ++的取值范围为41,3⎛⎤ ⎥⎝⎦。

(完整版)基本初等函数知识点及函数的基本性质

(完整版)基本初等函数知识点及函数的基本性质

指数函数及其性质一、指数与指数幂的运算 (一)根式的概念1、如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a的n次方根用符号n 是偶数时,正数a 的正的n的n次方根用符号0的n 次方根是0;负数a 没有n 次方根.2n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.3、根式的性质:na =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (二)分数指数幂的概念1、正数的正分数指数幂的意义是:0,,,m na a m n N +>∈且1)n >.0的正分数指数幂等于0. 2、正数的负分数指数幂的意义是: 1()0,,,mm nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. 3、a 0=1 (a ≠0) a -p = 1/a p (a ≠0;p ∈N *) 4、指数幂的运算性质(0,,)r s r s a a a a r s R +⋅=>∈ ()(0,,)r s rs a a a r s R =>∈ ()(0,0,)r r r ab a b a b r R =>>∈5、0的正分数指数幂等于0,0的负分数指数幂无意义。

二、指数函数的概念一般地,函数)1a ,0a (a y x≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:○1 指数函数的定义是一个形式定义; ○2 注意指数函数的底数的取值范围不能是负数、零和1.(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [ (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈ (3)对于指数函数)1a 0a (a )x (f x≠>=且,总有a )1(f =(4)当1a >时,若21x x <,则)x (f )x (f 21< 四、底数的平移对于任何一个有意义的指数函数:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

人教版高中数学必修一《基本初等函数》全章知识小结

人教版高中数学必修一《基本初等函数》全章知识小结

数学·必修1(人教版)基本初等函数一、目标解读函数是高中数学的主要内容之一,这是因为函数思想方法灵活多样,逻辑思维性强,许多数学问题都可以从函数的角度来认识、研究.函数知识与数学的其他各分支的巧妙结合容易形成综合性较强的新颖的试题,这样的试题往往成为高考中极具份量的一类解答题,综合考查考生应用函数知识分析问题、解决问题的能力.而在命题的具体设计上,总是具有从易到难、逐步设问的特点,以较隐蔽的方式给出解题思路,在考查函数内容的同时也考查应用函数的思想方法,观察问题、分析问题和解决问题的能力,同时考查学生数形结合的思想和分类讨论的思想的应用能力.函数是中学数学的重要组成部分.它所涉及的内容是升入大学继续学习的基础,因此,函数不仅是中学数学教学的重点,也是高考考查的重点.近年来,函数的分值占30%左右.函数是高中代数的主线.它体系完整,内容丰富,应用广泛.由于它描述的是自然界中量的依存关系,是对问题本身数量的制约关系的一种刻画,所以是对数量关系本质特征的一种揭示,为我们从运动、变化、联系、发展的角度认识问题打开了思路.本章主要研究的是基本初等函数:指数函数、对数函数和幂函数的概念、图象和性质.包括理解分数指数幂的概念,掌握有理指数幂的运算性质,理解对数的概念,掌握对数的运算性质,能运用函数的一般性质和指数函数、对数函数的特征性质解决某些简单的实际问题.指数函数与对数函数都是初等超越函数.在历年的高考题中出现的频率较大.出现在小题时是较基本的考查方式;出现在大题中时,往往与其他知识综合形成开放性问题,加大对开放性问题的考查力度.通过本章的学习达到以下基本目标:①了解指数函数模型的实际背景,体会指数函数是一类重要的函数模型.②理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③理解指数函数的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.④了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型.⑤能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.⑥理解对数的概念及其运算性质,能用换底公式将一般对数转化成自然对数或常用对数.⑦了解指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数.⑧了解幂函数的概念,结合函数y =x α(α=1,2,3,12,-1)的图象,了解它们的变化情况.二、主干知识(一)指数与指数幂的运算 1.整数指数幂的概念. (1)正整数指数幂的意义:(2)零指数幂:a 0=1(a ≠0).(3)负整数指数幂:a -n =1an (a ≠0,n ∈N *).2.整数指数幂的运算性质: ①a m ·a n =a m +n ;②(a m )n =a mn ;③(ab )n =a n b n .3.如果x n =a ,那么x 叫做a 的n 次方根,其中n >0,且n ∈N *.(1)当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.此时a 的n 次方根用符号na 表示.(2)方根的性质:①当n 是奇数时,na n=a ; ②当n 是偶数时,nan=|a |=⎩⎪⎨⎪⎧aa ≥0,-a a <0.4.分数指数幂.(1)正数的分数指数幂的意义:设a >0,m ,n ∈N *,n >1,规定(2)0的正分数指数幂等于0,0的负分数指数幂没有意义.5.有理指数幂的运算性质: ①a r ·a s =a r +s(a >0,r ,s ∈Q);②(a r )s =a rs(a >0,r ,s ∈Q);③(ab )r =a r b r(a >0,b >0,r ∈Q).(二)指数函数及其性质1.函数y =a x(a >0,且a ≠1)叫做指数函数,其中x 是自变量.2.指数函数y =a x(a >0,且a ≠1)的图象和性质(见下表):(1.如果a x=N (a >0,a ≠1),那么数x 叫做以a 为底N 的对数.记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.对数式的书写格式:(1)以10为底的对数叫做常用对数,并把常用对数log 10N 简记为lg N ;(2)以无理数e =2.718 28……为底的对数,叫自然对数,并把自然对数log e N 简记为ln N .2.指数与对数的关系:设a >0,且a ≠1,则a x=N ⇔log a N =x .3.对数的性质.(1)在指数式中N >0,故0和负数没有对数,即式子log a N 中N 必须大于0;(2)设a >0,a ≠1,则有a 0=1,所以log a 1=0,即1的对数为0;(3)设a >0,a ≠1,则有a 1=a ,所以log a a =1,即底数的对数为1.4.对数恒等式.(1)如果把a b=N 中的b 写成log a N 形式,则有(2)如果把x =log a N 中的N 写成a x 形式,则有log a a x=x .5.对数的运算性质.设a >0,a ≠1,M >0,N >0,则有:(1)log a (MN )=log a M +log a N ,简记为:积的对数=对数的和;(2)log a M N =log a M -log a N ,简记为:商的对数=对数的差;(3)log a M n=n log a M (n ∈R).(四)对数函数及其性质1.函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).2.对数函数的图象、性质(见下表):函数y=log a x(a>1)y=log a x(0<a<1)图象定义域R+R+值域R R单调性增函数减函数过定点(1,0)(1,0)(1)当a>1时,若x>1,则log a x>0,若0<x<1,则log a x<0;(2)当0<a<1时,若0<x<1,则log a x>0,若x>1,则log a x<0.3.函数y=a x与y=log a x(a>0,且a≠1)互为反函数,互为反函数的两个函数的图象关于直线y=x对称.(五)幂函数1.形如y=xα(α∈R)的函数叫做幂函数,其中α为常数.只研究α为有理数的情形.3.幂函数的性质.(1)幂函数在(0,+∞)都有定义,并且图象都过点(1,1).(2)当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸.(3)当α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于+∞时,图象在x轴上方无限地逼近x轴正半轴.4.图象形状:当α>0(α≠1)时,图象为抛物线型;当α<0时,图象为双曲线型;当α=0,1时,图象为直线型.1.正数的分数指数幂的意义:设a>0,m,n∈N*,n>1,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义.2.有理指数幂的运算性质:①a r·a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).答案:12 011►跟踪训练解析:由平方差公式化简即得答案.答案:-27答案:-6a指数幂的运算3.幂函数y =f (x )的图象经过点⎝⎛⎭⎪⎫-2,-18,则满足f (x )=27的x 的值是________.答案:131.设a >0,且a ≠1,则a x =N ⇔log a N =x ;a log a N =N; log a a x=x .2.设a >0,a ≠1, M >0,N >0 ,则有 (1)log a (MN )=log a M +log a N ,(2)log a M N=log a M -log a N ,(3)log a M n=n log a M (n ∈R).3.设a >0,a ≠1,b >0,b ≠1,则log a x =log b xlog b a.设2a =5b=m ,且1a +1b=2,则m =( )A.10 B .10 C .20 D .100解析:由2a =5b=m 得a =log 2m ,b =log 5m , ∴1a +1b=log m 2+log m 5=log m 10=2,∴m 2=10,又∵m >0,∴m =10.答案:A►跟踪训练4.已知函数f (x )=log 2(x +1),若f (α)=1,则α=( ) A .0 B .1C .2D .3解析:α+1=2,故α=1,选B. 答案:B指数与对数运算5.2log 510+log 50.25=( ) A .0 B .1C .2D .4解析:2log 510+log 50.25=log 5100+log 50.25=log 525=2. 答案:C6.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,2x,x ≤0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=( ) A .4 B.14C .-4D .-147.设g (x )=⎩⎪⎨⎪⎧e x,x ≤0,ln x ,x >0,则g ⎝ ⎛⎭⎪⎫g ⎝ ⎛⎭⎪⎫12=________.解析:答案:121.指数函数y =a x(a >0,且a ≠1)的定义域是R ,值域是()0,+∞,过定点(0,1).当a >1时,指数函数y =a x 是R 上的增函数;当0<a <1时,指数函数y =a x是R 上的减函数.2.对数函数y =log a x (a >0,且a ≠1)的定义域是()0,+∞,值域是R ,过定点(1,0). 当a >1时,对数函数y =log a x 是()0,+∞上的增函数;当0<a <1时,对数函数y =log a x 是()0,+∞上的减函数.函数y =1log 0.54x -3的定义域为( )指数函数与对数函数的性质A.⎝ ⎛⎭⎪⎫34,1B.⎝ ⎛⎭⎪⎫34,+∞ C .(1,+∞) D.⎝ ⎛⎭⎪⎫34,1∪(1,+∞) 解析:由log 0.5(4x -3)>0且4x -3>0可解得34<x <1,故A 正确.答案:A►跟踪训练8.函数y =2x 的图象大致是()答案:C9.函数f (x )=lg(x -1)的定义域是( ) A .(2,+∞) B .(1,+∞)C .[1,+∞)D .[2,+∞) 解析:x -1>0,得x >1,选B. 答案:B10.函数f (x )=log 2(3x+1)的值域为( ) A .(0,+∞) B .[0,+∞)C .(1,+∞)D .[1,+∞)答案:A研究由基本初等函数的和与差等运算构成的新函数的性质时,必须明确各基本初等函数的相关性质.设函数的集合P =f (x )=log 2(x +a )+研究基本初等函数及其组合的性质A .4个B .6个C .8个D .10个解析:当a =0,b =0;a =0,b =1;a =12,b =0; a =12,b =1;a =1,b =-1;a =1,b =1时满足题意,选B.答案:B►跟踪训练11.若函数f (x )=3x +3-x 与g (x )=3x -3-x的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数B .f (x )为偶函数,g (x )为奇函数C .f (x )与g (x )均为奇函数D .f (x )为奇函数,g (x )为偶函数解析:f (-x )=3-x +3x =f (x ),g (-x )=3-x -3x=-g (x ). 答案:BA .①②B .②③C .③④D .①④答案:B13.设函数f (x )=x (e x +a e -x)(x ∈R)是偶函数,则实数a =________.解析:由条件知,g (x )=e x +a e -x为奇函数,故g (0)=0,得a =-1. 答案:-1数形结合的思想方法是根据数量与图形的对应关系,通过数与形的相互转化来解决问题的一种思想方法.转化与化归的思想方法则是将问题不断转化,直到转化为比较容易解决或已经解决的问题.而分类讨论的核心是通过增强条件来分情况逐一研究,使问题易于解决.一、数形结合思想数学思想方法的应用直线y =1与曲线y =x 2-||x +a 有四个交点,则a 的取值范围是 _______ .解析:曲线y =x 2-|x |+a 关于y 轴对称,当x ≥0时,y =x 2-x +a =⎝ ⎛⎭⎪⎫x -122+a -14,结合图象要使直线y =1与曲线y =x 2-|x |+a 有四个交点,需⎩⎪⎨⎪⎧a >1,a -14<1,解得1<a <54.故a 的取值范围是⎝ ⎛⎭⎪⎫1,54.答案:⎝ ⎛⎭⎪⎫1,54►跟踪训练14.已知c <0,下列不等式中成立的一个是( )A .c >2cB .c >⎝ ⎛⎭⎪⎫12cC .2c <⎝ ⎛⎭⎪⎫12cD .2c>⎝ ⎛⎭⎪⎫12c解析:在同一直角坐标系下作出y =x ,y =⎝ ⎛⎭⎪⎫12x ,y =2x 的图象,显然c <0时,x <2x <⎝ ⎛⎭⎪⎫12x ,即c <0时,c <2c<⎝ ⎛⎭⎪⎫12c .答案:C15.下列函数图象中,正确的是( )答案:C16.已知y =f (x )是偶函数,当x >0时,y =f (x )是减函数,并且f (1)>0>f (2),则方程f (x )=0的实根的个数是_________个.答案:2二、转化与化归的思想设a =333+1334+1,b =334+1335+1,试比较a 、b 的大小. 解析:如果比较a -b 与0或a b与1的大小,即用作差法、作商法来做,较繁杂、不易判断.由于a 、b 两数的结构特点可构造函数f (x )=3x +13x +1+1,则a =f (33),b =f (34),若能判断出此函数的单调性,那么就可简捷地比较出a 、b 的大小.f (x )=3x +13x +1+1=3x +1+333x +1+1=3x +1+1+233x +1+1=13+233x +1+1. ∵3x +1在R 上递增,∴233x +1+1在R 上递减. ∴ f (x )=13+233x +1+1在R 上递减. ∴ f (33)>f (34),即a >b .►跟踪训练17.解方程:(lg 2x )·(lg 3x )=lg 2·lg 3.解析:原方程可化为(lg 2+lg x )(lg 3+lg x )=lg 2·lg 3,即lg 2x +lg 6·lg x =0,解得lg x =0或lg x =-lg 6.∴x =1或x =16, 经检验x =1,x =16都是原方程的解. ∴原方程的解为x 1=1或 x 2=16.18.比较log 0.30.1和log 0.20.1的大小.解析:log 0.30.1=1log 0.10.3>0, log 0.20.1=1log 0.10.2>0. ∵log 0.10.3<log 0.10.2,∴log 0.30.1>log 0.20.1.19.某池塘中野生水葫芦的面积与时间的函数关系的图象如下图所示.假设其关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30 m 2;③野生水葫芦从4 m 2蔓延到12 m 2只需1.5个月;④设野生水葫芦蔓延到2 m 2,3 m 2,6 m 2所需的时间分别为t 1,t 2,t 3, 则有t 1+t 2=t 3;⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.其中正确的说法有 ______________ (填序号).答案:①②④三、分类讨论思想若a >0,且a ≠1,p =log a (a 3+a +1),q =log a (a 2+a +1),则p 、q 的大小关系为( )A .p =qB .p <qC .p >qD .a >1时,p >q ;0<a <1时,p <q解析:要比较p 、q 的大小,只需先比较a 3+a +1与a 2+a +1的大小,再利用对数函数的单调性.而决定a 3+a +1与a 2+a +1的大小的a 值的分界点为使(a 3+a +1)-(a 2+a +1)=a 2(a -1)=0的a 值:a =1,当a >1时,a 3+a +1>a 2+a +1,此时log a (a 3+a +1)>log a (a 2+a +1),即p >q .当0<a <1时,a 3+a +1<a 2+a +1,此时log a (a 3+a +1)>log a (a 2+a +1),即p >q .可见,不论a >1还是0<a <1,都有p >q .答案:C►跟踪训练20.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x ,x ≤0. 若f (a )=12,则a =( ) A .-1 B. 2C .-1或 2D .1或- 2解析:讨论a >0和a ≤0两种情况.答案:C21.已知函数f (x )=log a x 在[2,π]上的最大值比最小值大1,则a 等于( ) A.2π B.π2C.2π或π2D .不同于A 、B 、C 答案解析:研究函数的最值需考查函数的单调性,而题中对数函数的增减性与底数a 的取值有关,故应对a 进行分类讨论.(1)当a >1时,f (x )在[2,π]上是增函数,最大值是f (π),最小值是f (2),据题意,f (π)-f (2)=1,即log a π-log a 2=1,∴a =π2. (2)当0<a <1时,f (x )在[2,π]上是减函数,最大值是,最小值是f (π),故f (2)-f (π)=1,即log a 2-log a π=1,∴a =2π. 由(1)(2)知,选C.答案: C22.已知f (x )=1+log x 3,g (x )=2log x 2试比较f (x )和g (x )的大小.解析:f (x )-g (x )=log x 3x 4. (1)当⎩⎪⎨⎪⎧ x >1,3x 4>1⇒x >43,或⎩⎪⎨⎪⎧ 0<x <1,0<3x 4<1⇒0<x <1,即x >43或0<x <1时,f (x )>g (x ). (2)当3x 4=1即x =43时,f (x )=g (x ). (3)当⎩⎪⎨⎪⎧ x >1,0<3x 4<1⇒1<x <43,或⎩⎪⎨⎪⎧ 0<x <1,3x 4>1⇒x ∈∅,即1<x <43时,f (x )<g (x ). 综上所述:①当x ∈(0,1)∪⎝ ⎛⎭⎪⎫43,+∞时,f (x )>g (x ); ②当x =43时,f (x )=g (x ); ③当x ∈⎝ ⎛⎭⎪⎫1,43时,f (x )<g (x ).23.已知f (x )=log a (a x -1)(a >0且a ≠1).(1)求定义域;(2)讨论函数的单调区间.解析:(1)由a x -1>0⇒a x >1,当a >1时,函数定义域为(0,+∞),当0<a <1时,函数定义域为(-∞,0).点评:底数含字母a ,要进行分类讨论.。

基本初等函数、函数与方程及函数的应用

基本初等函数、函数与方程及函数的应用

2<0,f(1)=e-1>0,所以f(a)=0时a∈(0,1).又g(x)=ln x+
x2-3在(0,+∞)上单调递增,且g(1)=-2<0,所以g(a)<0.
由g(2)=ln 2+1>0,g(b)=0得b∈(1,2),又f(1)=e-1>0,且
f(x)=ex+x-2在R上单调递增,所以f(b)>0.综上可知,
在零点的个数进行判断,如2013年重庆T6,天津T7,湖南T5等.
4.利用零点(方程实根)的存在求相关参数的值或取值范围.
5.对函数实际应用问题的考查,题目大多以社会生活为背景,
函数的实际应用 设问新颖、灵活,而解决这些问题所涉及的数学知识、思想方法都
问题
是高中教材和课标中所要求掌握的概念、公式、法则、定理等.
个零点分别位于区间(a,b)和(b,c)内.
答案:A
3.(2013·天津高考)函数f(x)=2x|log0.5x|-1的零点个数为
A.1
B.2
()
C.3
D.4
解析:函数f(x)=2x|log0.5x|-1的零点个数即为函数y=
|log0.5x|与y=
1 2x
图像的交点个数.在同一直角坐标系中作出
函数y=|log0.5x|与y=21x的图像,易知有2个交点. 答案:B
4.(2013·湖南高考)函数f(x)=2ln x的图像与函数g(x)=x2-4x+
5的图像的交点个数为
()
A.3
B.2
C.1
D.0
解析:由已知g(x)=(x-2)2+1,所以其顶点为(2,1),又f(2)
=2ln 2∈(1,2),可知点(2,1)位于函数f(x)=2ln x图像的下

新高考数学二轮复习知识点总结与题型归纳 第5讲 基本初等函数、函数与方程(解析版)

新高考数学二轮复习知识点总结与题型归纳 第5讲 基本初等函数、函数与方程(解析版)

第5讲 基本初等函数、函数与方程[考情分析] 1.基本初等函数的图象、性质是高考考查的重点,利用函数性质比较大小是常见题型.2.函数零点的个数判断及参数范围是高考的热点,常以压轴题形式出现.基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质. 【知识要点】1.一次函数:y =kx +b (k ≠0)(1)定义域为R ,值域为R ; (2)图象如图所示,为一条直线;(3)k >0时,函数为增函数,k <0时,函数为减函数;(4)当且仅当b =0时一次函数是奇函数.一次函数不可能是偶函数. (5)函数y =kx +b 的零点为⋅-kb2.二次函数:y =ax 2+bx +c (a ≠0)通过配方,函数的解析式可以变形为⋅-++=a b ac ab x a y 44)2(22 (1)定义域为R :当a >0时,值域为),44[2+∞-a b ac ;当a <0时,值域为]44,(2ab ac --∞;(2)图象为抛物线,抛物线的对称轴为abx 2-=,顶点坐标为)44,2(2a b ac a b --.当a >0时,抛物线开口向上;当a <0时,抛物线开口向下. (3)当a >0时,]2,(a b --∞是减区间,),2[+∞-ab是增区间; 当a <0时,]2,(a b --∞是增区间,),2[+∞-ab是减区间. (4)当且仅当b =0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式∆=b 2-4ac >0时,函数有两个变号零点aacb b 242-±-;当判别式∆=b 2-4ac =0时,函数有一个不变号零点ab 2-; 当判别式∆=b 2-4ac <0时,函数没有零点. 3.指数函数y =a x(a >0且a ≠1) (1)定义域为R ;值域为(0,+∞).(2)a >1时,指数函数为增函数;0<a <1时,指数函数为减函数; (3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y =log a x (a >0且a ≠1),对数函数y=log a x与指数函数y=a x互为反函数.(1)定义域为(0,+∞);值域为R.(2)a>1时,对数函数为增函数;0<a<1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x ,使得x n =a (a ∈R ,n >1,n ∈N +),则x 叫做a 的n 次方根. 负数没有偶次方根.),1()(+∈>=N n n a a n n ;⎩⎨⎧=为偶数时当为奇数时当n a n a a nn|,|,)( (2)分数指数幂,)0(1>=a a a n n;,0()(>==a a a a n m m n nm n ,m ∈N *,且nm为既约分数). *N ,,0(1∈>=-m n a aanm nm ,且nm为既约分数). (3)幂的运算性质a m a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n ,a 0=1(a ≠0).(4)一般地,对于指数式a b=N ,我们把“b 叫做以a 为底N 的对数”记为log a N , 即b =log a N (a >0,且a ≠1). (5)对数恒等式:Na alog =N .(6)对数的性质:零和负数没有对数(对数的真数必须大于零!); 底的对数是1,1的对数是0. (7)对数的运算法则及换底公式:N M NMN M MN a a aa a a log log log ;log log )(log -=+=; M M a a log log αα=; bNN a a b log log log =.(其中a >0且a ≠1,b >0且b ≠1,M >0,N >0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y =x ,y =x 2,y =x 3,21,1x y xy ==这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.函数的图象 在函数图象上,定义域、值域、对应关系、单调性、奇偶性和周期性一览无遗.因此,快速准确地作出函数图象成为学习函数的一项基本功,而读图也从“形”的角度成为解决函数问题及其他相关问题的一种重要方法.【知识要点】作函数图象最基本的方法是列表描点作图法.常用的函数图象变换有:1.平移变换y=f(x+a):将y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位可得.y=f(x)+a:将y=f(x)的图象向上(a>0)或向下(a<0)平移|a|个单位可得.2.对称变换y=-f(x):作y=f(x)关于x轴的对称图形可得.y=f(-x):作y=f(x)关于y轴的对称图形可得.3.翻折变换y=|f(x)|:将y=f(x)的图象在x轴下方的部分沿x轴翻折到x轴的上方,其他部分不变即得.y=f(|x|):此偶函数的图象关于y轴对称,且当x≥0时图象与y=f(x)的图象重合.【复习要求】1.能够在对函数性质作一定的讨论之后,用描点法作出函数的图象.2.能够对已知函数y=f(x)的图象,经过适当的图象变换得到预期函数的图象.3.通过读图能够分析出图形语言所表达的相关信息(包括函数性质及实际意义),运用数形结合的思想解决一些与函数有关的问题.考点一基本初等函数的图象与性质核心提炼1.指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)互为反函数,其图象关于y=x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两函数图象的异同.2.幂函数y=xα的图象和性质,主要掌握α=1,2,3,12,-1五种情况.【例题分析】1.=()A.2B.C.D.﹣2【考点】有理数指数幂及根式.【专题】转化思想;定义法;函数的性质及应用;数学运算.【答案】B【分析】利用根式与有理指数幂的互化以及有理指数幂的运算性质求解即可.【解答】解:原式=.故选:B.【点评】本题考查了有理数指数幂及根式的运算,主要考查了有理指数幂的互化以及有理指数幂的运算性质,属于基础题.2.函数y=2x(x≤0)的值域是()A.(0,1)B.(﹣∞,1)C.(0,1]D.[0,1)【考点】指数函数的定义、解析式、定义域和值域.【专题】函数思想;转化法;函数的性质及应用.【答案】C【分析】本题可利用指数函数的值域.【解答】解:∵y=2x(x≤0)为增函数,且2x>0,∴20=1,∴0<y≤1.∴函数的值域为(0,1].故选:C.【点评】本题考查的是函数值域的求法,关键是要熟悉指数函数的单调性,本题计算量极小,属于容易题.3.如果函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,则()A.b<﹣1B.﹣1<b<0C.0<b<1D.b>1【考点】指数函数的图象与性质.【专题】计算题;函数思想;转化法;函数的性质及应用;数学运算.【答案】B【分析】利用函数图象的平移变换,得到关于b的不等式,再求出b的范围.【解答】解:∵函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,∴函数f(x)=3x+b是由函数f(x)=3x的图象向下平移|b|个单位长度得到,且|b|<1,又∵图象向下平移,∴b<0,∴﹣1<b<0,故选:B.【点评】本题主要考查了函数图象的平移变换,是基础题.函数的最值最大值与最小值是研究变量问题时常需要考虑的问题,也是高中数学中最重要的问题之一.函数的最大值、最小值问题常与实际问题联系在一起.函数的最值与值域在概念上是完全不同的,但对于一些简单函数,其求法是相通的. 【知识要点】本节主要讨论两类常见的函数最值的解决方法及其应用.1.基本初等函数在特定区间上的最值(或值域)问题.解决这类问题的方法是:作出函数图象,观察单调性,求出最值(或值域).2.一些简单的复合函数的最值问题.解决这类问题的方法通常有: (1)通过作出函数图象变成第1类问题; (2)通过换元法转化成第1类问题; (3)利用平均值定理求最值;(4)通过对函数单调性进行讨论进而求出最值.其中讨论单调性的方法可以用单调性定义或导数的知识(导数的方法在后面相应章节复习); (5)转化成几何问题来求解,如线性规划问题等. 【复习要求】从整体上把握求函数最值的方法,明确求最值的一般思路.函数与方程【知识要点】1.如果函数y =f (x )在实数a 处的值等于零,即f (a )=0,则a 叫做这个函数的零点. 函数零点的几何意义:如果a 是函数y =f (x )的零点,则点(a ,0)一定在这个函数的函数图象上,即这个函数与x 轴的交点为(a ,0). 2.零点的判定如果函数y =f (x )在区间[a ,b ]上的图象是不间断的,而且f (a )f (b ),则这个函数在区间[a ,b ]上至少有一个零点.这也是二分法的依据.注意:上述判定零点的方法只是判断零点存在的充分条件.这种判定零点方法主要适用于在无法对函数进行作图而且也不易对函数所对应的方程求根的情况下.如果可以画出函数的图象(这时判断函数零点的方法将是非常直观的),如果函数所对应的方程可以求根,那么就可以用“作图”和“求根”的方法判断零点. 3.用二分法求函数y =f (x ),x ∈D 零点的一般步骤为:第一步、确定初始区间,即在D 内取一个闭区间[a ,b ],使得f (a )f (b )<0; 第二步、求中点及其对应的函数值,即求)(21b a x +=<0以及f (x )的值,如果f (x )=0,则计算终止,否则进一步确定零点所在的区间;第三步、计算精确度,即计算区间的两个端点按给定的精确度取近似值时是否相等,若相等,则计算终止,否则重复第二步.【复习要求】1、结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2、能够用二分法求相应方程的近似解.考点二函数的零点核心提炼判断函数零点个数的方法:(1)利用零点存在性定理判断法.(2)代数法:求方程f(x)=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y=f(x)的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.规律方法利用函数零点的情况求参数值(或取值范围)的三种方法【例题分析】1.函数f(x)=﹣lnx的零点所在的大致区间是()A.(1,2)B.(2,3)C.(3,4)D.(e,+∞)【考点】函数的零点.【专题】函数的性质及应用.【答案】B【分析】由函数的解析式可得f(2)•f(3)<0,再利用函数的零点的判定定理可得函数的零点所在的大致区间.【解答】解:∵函数满足f(2)=>0,f(3)=1﹣ln3<0,∴f (2)•f(3)<0,根据函数的零点的判定定理可得函数的零点所在的大致区间是(2,3),故选:B .【点评】本题主要考查函数的零点的判定定理的应用,属于基础题. 2.已知函数f (x )=﹣log 2x ,在下列区间中,函数f (x )有零点的是( ) A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)【考点】函数的零点.【专题】计算题;函数思想;试验法;函数的性质及应用. 【答案】B【分析】首先判断函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续;从而由零点的判定定理判断即可.【解答】解:易知函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续; f (1)=1﹣0=1>0,f (2)=﹣1=﹣<0; 故函数f (x )有零点的区间是(1,2); 故选:B .【点评】本题考查了函数的性质的判断与应用及零点的判定定理的应用,注意掌握基本初等函数的性质.3.函数24,0()(),0x x f x g x x ⎧->=⎨<⎩是奇函数,则函数()f x 的零点是 2± .【答案】2±.【考点】函数的零点;函数奇偶性的性质与判断【专题】整体思想;综合法;函数的性质及应用;数学运算 【分析】由已知函数解析式及奇函数的对称性即可求解. 【解答】解:当0x >时,()240x f x =-=, 解得,2x =,根据奇函数的对称性可知,2x =-也是函数()f x 的零点, 故答案为:2±.【点评】本题主要考查了函数零点的求解,属于基础题.考点3 函数零点的判定定理 【例题分析】1.在下列区间中,存在函数3()2f x lnx x =-+的零点的是( )A .1(0,)2B .1(,1)2C .(1,2)D .(2,3)【答案】AD【考点】函数零点的判定定理【专题】计算题;方程思想;转化思想;综合法;函数的性质及应用;数学运算【分析】根据题意,求出函数的导数,分析()f x 的单调区间,由函数零点判断定理依次分析选项,综合即可得答案.【解答】解:根据题意,3()2f x lnx x =-+,其定义域为(0,)+∞,其导数11()1xf x x x -'=-=,在区间(0,1)上,()0f x '>,()f x 为增函数, 在区间(1,)+∞上,()0f x '<,()f x 为减函数, 依次分析选项:对于A ,()f x 在1(0,)2上递增,2222111311()022f ln e e e e =-+=--<,1113()12022222ef ln ln ln =-+=-=>,在()f x 在1(0,)2上存在零点,A 正确,对于B ,()f x 在1(2,1)上递增,1()1202f ln =->,f (1)3111022ln =-+=>,在()f x 在1(2,1)上不存在零点,B 错误,对于C ,()f x 在(1,2)上递减,f (1)102=>,f (2)31222022ln ln =-+=->, 在()f x 在(1,2)上不存在零点,C 错误, 对于D ,()f x 在(2,3)上递减,f (2)1202ln =->,f (3)33333022ln ln =-+=-<, 在()f x 在(2,3)上存在零点,D 正确, 故选:AD .【点评】本题考查函数的零点判断定理,解题的关键是确定区间端点对应的函数值异号,属于基础题.2.函数2()2log f x x x =-+的零点所在的一个区间是( ) A .(4,5) B .(3,4)C .(2,3)D .(1,2)【答案】D【考点】函数零点的判定定理【专题】转化思想;定义法;函数的性质及应用;逻辑推理【分析】由函数解析式,判断f (1)f (2)0<,由零点的存在性定理进行分析求解即可. 【解答】解:因为2()2log f x x x =-+, 所以f (1)212log 110=-+=-<, f (2)222log 210=-+=>,所以f (1)f (2)0<,由零点的存在性定理可得,函数2()2log f x x x =-+的零点所在的一个区间是(1,2). 故选:D .【点评】本题考查了函数零点的问题,主要考查了函数零点的存在性定理的应用,属于基础题.3.利用二分法求方程20lnx x +-=的近似解,已求得()2f x lnx x =+-的部分函数值的数据如表:A .1.55B .1.62C .1.71D .1.76【答案】A【考点】函数零点的判定定理【专题】函数思想;定义法;函数的性质及应用;逻辑推理【分析】利用表格中的数据,在结合零点的存在性定理进行分析求解即可. 【解答】解:根据表中的数据可得,(1.5)0.0945f =-,(1.5625)0.0088f =, 故函数()f x 的零点在区间(1.5,1.5625)之间, 只有1.55符合要求. 故选:A .【点评】本题考查了函数零点的求解,涉及了零点存在性定理的应用,解题的关键是熟练掌握函数零点的存在性定理,属于基础题. 函数零点与方程根的关系 【例题分析】1.已知函数2,12()1,21log x x f x x x <⎧⎪=⎨>⎪-⎩,若方程()0f x a -=至少有两个实数根,则实数a 的取值范围为( ) A .(0,1)B .(0,1]C .[0,2)D .[0,2]【答案】A【考点】函数的零点与方程根的关系【专题】计算题;数形结合;转化思想;演绎法;函数的性质及应用;逻辑推理;数学运算【分析】首先将问题转化为两个函数交点个数的问题,然后数形结合即可确定实数a的取值范围.【解答】解:原问题等价于函数y a与函数()f x至少有两个交点,绘制函数图象如图所示,观察可得,实数a的取值范围是(0,1).故选:A.【点评】本题主要考查由函数的零点个数求参数的方法,等价转化的数学思想,数形结合的数学思想等知识,属于基础题.2.若方程|2x﹣2|=b有一个零点,则实数b的取值范围是.【考点】函数的零点;函数的零点与方程根的关系.【专题】数形结合;数形结合法;函数的性质及应用;逻辑推理.【答案】(2,+∞)∪{0}..【分析】根据函数与方程之间的关系,作出两个函数的图象,利用数形结合进行求解即可.【解答】解:作出函数y=|2x﹣2|的图象如图:要使方程|2x﹣2|=b有一个零点,则函数y=|2x﹣2|与y=b有一个交点,则b>2或b=0,故实数b的取值范围是b>2或b=0,即(2,+∞)∪{0}.故答案为:(2,+∞)∪{0}.【点评】本题主要考查函数与方程的应用,作出函数图象,利用数形结合是解决本题的关键,是基础题.3.已知关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =,则实数a 的值是() A .5 B .6 C .7 D .15【答案】B【考点】函数的零点与方程根的关系【专题】方程思想;转化法;高考数学专题;函数的性质及应用;数学运算【分析】根据条件可得3log (10)(010)x a a =±<<,然后由212x x =,得到33log (10)2log (10)a a +=-或33log (10)2log (10)a a -=+,再求出a 的值.【解答】解:关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,∴由|310|x a -=,可知010a <<,3log (10)(010)x a a ∴=±<<,关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =, 33log (10)2log (10)a a ∴+=-或33log (10)2log (10)a a -=+ 210(10)a a ∴+=-或210(10)a a -=+,6a ∴=±或15a =±,又010a <<, 6a ∴=.故选:B .【点评】本题考查了函数的零点与方程根的关系,考查了方程思想和转化思想,属基础题.。

高中数学知识点总结全(一)

高中数学知识点总结全(一)

高中数学知识点总结全(一)一、函数与极限1. 函数概念(1)函数的定义:设A、B是非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素f(x)和它对应,那么就称为f:A→B的一个函数。

(2)函数的表示方法:解析法、表格法、图象法。

(3)函数的分类:常函数、一次函数、二次函数、三次函数、反比例函数、指数函数、对数函数、复合函数、分段函数等。

2. 函数的性质(1)单调性:增函数、减函数。

(2)奇偶性:奇函数、偶函数。

(3)周期性:周期函数。

(4)对称性:轴对称、中心对称。

(5)有界性:有界函数、无界函数。

3. 函数图像(1)基本初等函数图像:正比例函数、一次函数、二次函数、三次函数、反比例函数、指数函数、对数函数。

(2)复合函数图像:两个基本初等函数组合而成的函数图像。

(3)分段函数图像:函数在不同区间内采用不同表达式或不同图像的函数。

4. 极限(1)数列极限的定义:如果当n趋向于无穷大时,数列{an}的值无限接近于某个确定的常数A,那么就称A为数列{an}的极限。

(2)函数极限的定义:设函数f(x)在点x0的某一去心邻域内有定义,如果当x趋向于x0时,f(x)的值无限接近于一个确定的常数A,那么就称A为函数f(x)当x趋向于x0时的极限。

(3)极限的性质:唯一性、有界性、保号性、四则运算法则。

(4)求极限的方法:直接代入法、因式分解法、有理化方法、等价无穷小替换法、泰勒展开法等。

二、导数与微分1. 导数概念(1)导数的定义:设函数y=f(x)在点x0处附近有定义,如果当x趋向于x0时,函数值的增量与自变量的增量之比f(x0+Δx)f(x0)Δx当Δx趋近于0时的极限存在,那么就称这个极限为函数f(x)在点x0处的导数。

(2)导数的几何意义:导数表示函数图像在某一点处的切线斜率。

2. 导数的性质(1)线性性质:导数的加减法和数乘法。

(2)乘积法则:两个函数乘积的导数。

高考数学复习考点题型专题讲解30 基本初等函数、函数与方程

高考数学复习考点题型专题讲解30 基本初等函数、函数与方程

高考数学复习考点题型专题讲解专题30 基本初等函数、函数与方程高考定位 1.基本初等函数的图象与性质是高考考查的重点,利用函数性质比较大小、解不等式是常见题型;2.函数零点的个数判断及参数范围是高考热点,常以压轴题的形式出现.1.(2022·全国甲卷)已知9m=10,a=10m-11,b=8m-9,则( )A.a>0>bB.a>b>0C.b>a>0D.b>0>a答案 A解析因为9m=10,所以m=log910,所以a=10m-11=10log910-11=10log910-10l og1011 .因为log910-log1011=lg 10lg 9-lg 11lg 10=(lg 10)2-lg 9·lg 11lg 9·lg 10>(lg 10)2-(lg 9+lg 112)2lg 9·lg 10=1-(lg 992)2lg 9>0,所以a>0.b=8log910-9=8log910-8log89,因为log910-log89=lg 10lg 9-lg 9lg 8=lg 10·lg 8-(lg 9)2lg 9·lg 8<(lg 10+lg 82)2-(lg 9)2lg 9·lg 8=(lg 802)2-(lg 812)2lg 9·lg 8<0,所以b <0.综上,a >0>b .故选A.2.(2019·浙江卷)设a ,b ∈R ,函数f (x )=⎩⎨⎧x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0. 若函数y =f (x )-ax -b 恰有3个零点,则( ) A.a <-1,b <0 B.a <-1,b >0 C.a >-1,b <0 D.a >-1,b >0 答案 C解析 由题意可得,当x ≥0时,f (x )-ax -b =13x 3-12(a +1)x 2-b .令f (x )-ax -b =0,则b =13x 3-12(a +1)x 2=16x 2[2x -3(a +1)].因为对任意的x ∈R ,f (x )-ax -b =0有3个不同的实数根,所以要使其满足条件, 则当x ≥0时,b =16x 2[2x -3(a +1)]必须有2个实根,所以3(a +1)2>0,解得a >-1.所以b <0.故选C. 3.(2021·天津卷)设a ∈R ,函数f (x )=⎩⎨⎧cos (2πx -2πa ),x <a ,x 2-2(a +1)x +a 2+5,x ≥a ,若f (x )在区间(0,+∞)内恰有6个零点,则a 的取值范围是( )A.⎝ ⎛⎦⎥⎤2,94∪⎝ ⎛⎦⎥⎤52,114 B.⎝ ⎛⎭⎪⎫74,2∪⎝ ⎛⎦⎥⎤52,114C.⎝ ⎛⎦⎥⎤2,94∪⎣⎢⎡⎭⎪⎫114,3D.⎝ ⎛⎭⎪⎫74,2∪⎣⎢⎡⎭⎪⎫114,3答案 A解析 因为x 2-2(a +1)x +a 2+5=0最多有2个根, 所以cos (2πx -2πa )=0至少有4个根.由2πx -2πa =π2+k π,k ∈Z 可得x =k 2+14+a ,k ∈Z .由0<k 2+14+a <a ,可得-2a -12<k <-12.①当x <a 时,当-5≤-2a -12<-4时,f (x )有4个零点,即74<a ≤94;当-6≤-2a -12<-5时,f (x )有5个零点,即94<a ≤114;当-7≤-2a -12<-6时,f (x )有6个零点,即114<a ≤134; ②当x ≥a 时,f (x )=x 2-2(a +1)x +a 2+5, Δ=4(a +1)2-4(a 2+5)=8(a -2), 当a <2时,Δ<0,f (x )无零点;当a =2时,Δ=0,f (x )有1个零点x =3;当a >2时,令f (a )=a 2-2a (a +1)+a 2+5=-2a +5≥0,则2<a ≤52,此时f (x )有2个零点;所以当a >52时,f (x )有1个零点.综上,要使f (x )在区间(0,+∞)内恰有6个零点,则应满足⎩⎪⎨⎪⎧74<a ≤94,2<a ≤52或⎩⎪⎨⎪⎧94<a ≤114,a =2或a >52或⎩⎨⎧114<a ≤134,a <2. 则可解得a 的取值范围是⎝ ⎛⎦⎥⎤2,94∪⎝ ⎛⎦⎥⎤52,114. 4.(2021·北京卷)已知f (x )=|lg x |-kx -2,给出下列四个结论: ①若k =0,则f (x )有两个零点; ②∃k <0,使得f (x )有一个零点; ③∃k <0,使得f (x )有三个零点; ④∃k >0,使得f (x )有三个零点. 以上正确结论的序号是________. 答案 ①②④解析 令f (x )=|lg x |-kx -2=0,可转化成两个函数y 1=|lg x |,y 2=kx +2的图象的交点个数问题. 对于①,当k =0时,y 2=2与y 1=|lg x |的图象有两个交点,①正确; 对于②,存在k <0,使y 2=kx +2与y 1=|lg x |的图象相切,②正确;对于③,若k<0,则y1=|lg x|与y2=kx+2的图象最多有2个交点,③错误;对于④,当k>0时,过点(0,2)存在函数g(x)=lg x(x>1)图象的切线,此时共有两个交点,当直线斜率稍微小于相切时的斜率时,就会有3个交点,故④正确.热点一基本初等函数的图象与性质1.指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,其图象关于y=x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两个函数图象的异同.2.幂函数y=xα的图象和性质,主要掌握α=1,2,3,12,-1五种情况.例1 (1)(2022·青岛二模)已知函数f(x)=ax+b的图象如图所示,则函数y=log a(|x|+b)的图象可以是( )(2)(2022·临汾二模)若x log34=1,则4x-4-x=( )A.73B.83C.103D.163答案 (1)D (2)B解析 (1)由函数f (x )=ax +b 的图象可知,0<a <1,-1<b <0, 函数y =f (x )=log a (|x |+b )的定义域为(-∞,b )∪(-b ,+∞), 且f (-x )=log a (|-x |+b )=log a (|x |+b )=f (x ), 即函数y =log a (|x |+b )为偶函数,又函数y =log a (|x |+b )=⎩⎨⎧log a (x +b ),x >-b ,log a (-x +b ),x <b ,所以y =log a (|x |+b )在(-b ,+∞)上单调递减.故选D. (2)∵x log 34=1, ∴x =1log 34=log 43,∴4x -4-x =4log 43-4-log 43=3-13=83.故选B.规律方法 1.指数函数、对数函数的图象与性质受底数a 的影响,解决指数函数、对数函数问题时,首先要看底数a 的取值范围.2.基本初等函数的图象和性质是统一的,在解题中可相互转化.训练1 (1)(2022·南通调研)设a =20.3,b =log 0.32,c =0.32,则三者的大小顺序是( ) A.a >b >c B.a >c >b C.c >b >a D.b >a >c(2)若2x -2y <3-x -3-y ,则( )A.ln(y -x +1)>0B.ln(y -x +1)<0C.ln|x -y |>0D.ln|x -y |<0 答案 (1)B (2)A解析 (1)因为a =20.3>1,b =log 0.32<0,c =0.32∈(0,1), 所以a >c >b ,故选B. (2)设函数f (x )=2x -3-x .因为函数y =2x与y =-3-x在R 上均单调递增, 所以f (x )在R 上单调递增. 原已知条件等价于2x -3-x <2y -3-y , 即f (x )<f (y ),所以x <y ,即y -x >0,y -x +1>1,所以A 正确,B 不正确.因为|x -y |与1的大小不能确定,所以C ,D 不正确. 热点二 函数的零点判断函数零点个数的方法: (1)利用零点存在定理判断.(2)代数法:求方程f (x )=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y =f (x )的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.考向1 函数零点的判断例2 已知函数f (x )=⎩⎨⎧x 2+2x ,x ≤0,|lg x |,x >0,则函数g (x )=f (1-x )-1的零点个数为( )A.1B.2C.3D.4 答案 C解析 由g (x )=0可得f (1-x )=1. 当x ≤0时,x 2+2x =1⇒x =-1-2, 或x =-1+2(舍去),当x >0时,|lg x |=1⇒x =10或x =110.故1-x =-1-2⇒x =2+2是g (x )的零点, 1-x =10⇒x =-9是g (x )的零点, 1-x =110⇒x =910是g (x )的零点.综上所述,g (x )共有3个零点.故选C. 考向2 求参数的值或范围例3 (多选)设函数f (x )=⎩⎨⎧|ln x |,x >0,e x (x +1),x ≤0.若函数g (x )=f (x )-b 有三个零点,则实数b 可取的值可能是( ) A.0 B.13C.12D.1 答案 BCD解析 函数g (x )=f (x )-b 有三个零点等价于函数y =f (x )的图象与函数y =b 的图象有三个不同的交点,当x ≤0时,f (x )=(x +1)e x ,则f ′(x )=e x +(x +1)e x =(x +2)e x ,所以f (x )在(-∞,-2)上单调递减, 在(-2,0]上单调递增,且f (-2)=-1e 2,f (0)=1,lim x →-∞f (x )=0,从而可得f (x )的图象如图所示,通过图象可知,若函数y =f (x )的图象与函数y =b 的图象有三个不同的交点,则b ∈(0,1].考向3 零点的代数式问题例4(2022·浙江五校联考)设函数f (x )=⎩⎨⎧-x 2+4x ,x ≤4,|log 2(x -4)|,x >4,关于x 的方程f (x )=t 有四个实根x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4),则x 1+x 2+x 3+14x 4的最小值为________. 答案 10解析 作出函数f (x )的大致图象如图所示.由图可知x 1+x 2=4,由|log 2(x -4)|=f (2)=4, 得x =6516或20,则5<x 4<20.又因为log 2(x 3-4)+log 2(x 4-4)=0, 所以(x 3-4)(x 4-4)=1, 所以x 3=1x 4-4+4, 则x 3+14x 4=14(x 4-4)+1x 4-4+5,又x 4-4∈(1,16), 所以x 3+14x 4≥214+5=6, 当且仅当14(x 4-4)=1x 4-4,即x 4=6时等号成立.故x 1+x 2+x 3+14x 4的最小值为10.规律方法 利用函数零点的情况求参数值(或取值范围)的三种方法训练2 (1)函数f (x )=e x +x 3-9的零点所在的区间为( ) A.(0,1) B.(1,2) C.(2,3) D.(3,4)(2)(2022·湖州质检)已知函数f (x )=⎩⎨⎧e x,x ≥0,lg (-x ),x <0,若关于x 的方程f 2(x )+f (x )+t =0有三个不同的实根,则t 的取值范围是( ) A.(-∞,-2] B.[1,+∞)C.[-2,1]D.(-∞,-2]∪[1,+∞)(3)(2022·成都诊断)已知函数f (x )=⎩⎨⎧|ln x |,x >0,-3x 2-x ,x ≤0,若函数g (x )=f (x )-m (m ∈R )有三个不同的零点x 1,x 2,x 3.则x 1x 2x 3的值为________. 答案 (1)B (2)A (3)0或-16解析 (1)由y =e x为增函数,y =x 3为增函数, 可知f (x )=e x +x 3-9为增函数, 由f (1)=e -8<0,f (2)=e 2-1>0,根据零点存在定理可得∃x 0∈(1,2)使得f (x 0)=0,故选B. (2)设m =f (x ),作出函数f (x )的图象如图,则当m ≥1时,m =f (x )有两个根, 当m <1时,m =f (x )有1个根,若关于x 的方程f 2(x )+f (x )+t =0有三个不同的实根, 则m 2+m +t =0有2个不同的实根, 且m ≥1或m <1,若m =1时,t =-2,此时由m 2+m -2=0得m =1或m =-2, 满足f (x )=1有两个根,f (x )=-2有1个根,满足条件; 当m ≠1时,设h (m )=m 2+m +t , 则h (1)<0,即1+1+t <0,则t <-2. 综上,t ≤-2,故选A. (3)f (x )的图象如下:其中f ⎝ ⎛⎭⎪⎫-16=112,若函数g (x )=f (x )-m (m ∈R )有三个不同的零点x 1,x 2,x 3. 则m =0或m =112. 当m =0时,三个零点为-13,0,1,故x 1x 2x 3=0,当m =112时,小于0的零点为-16,大于0的两个零点之积为1,所以x 1x 2x 3=-16.热点三 函数模型及其应用应用函数模型解决实际问题的一般程序和解题关键: (1)一般程序:――→读题文字语言⇒――→建模数学语言⇒――→求解数学应用⇒――→反馈检验作答(2)解题关键:解答这类问题的关键是确切地写出相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.例5 (1)牛顿曾经提出了常温环境下的温度冷却模型:θ-θ0=(θ1-θ0)e -kt ,其中t 为时间(单位:min),θ0为环境温度,θ1为物体初始温度,θ为冷却后温度,假设在室内温度为20 ℃的情况下,一杯开水由100 ℃降低到60 ℃需要10 min ,则k 的值约为( )(结果精确到0.001,参考数据:e 2≈7.389,ln 2≈0.693) A.0.035 B.0.069 C.0.369 D.0.740(2)(2022·天津模拟)一种药在病人血液中的量不少于1 500 mg 才有效,而低于500 mg 病人就有危险.现给某病人注射了这种药2 500 mg ,如果药在血液中以每小时20%的比例衰减,为了充分发挥药物的利用价值,那么从现在起经过________小时向病人的血液补充这种药,才能保持疗效.(参考数据:lg 2≈0.301 0,lg 3≈ 0.477 1,结果精确到0.1 h)( ) A.2.3小时 B.3.5小时 C.5.6小时 D.8.8小时 答案 (1)B (2)A解析(1)由题意可知θ0=20 ℃,θ1=100 ℃,θ=60 ℃,t=10 min,则有60-20=(100-20)e-10k,所以e-10k=1 2,两边取自然对数,得ln e-10k=ln 1 2,即-10k=-ln 2,所以k=ln 210≈0.069.故选B.(2)设应在病人注射这种药x小时后再向病人的血液补充这种药,则500≤2 500×(1-20%)x≤1 500,整理可得0.2≤0.8x≤0.6,两边取对数,得log0.80.6≤x≤log0.80.2,∵log0.80.6=lg 0.6lg 0.8=lg 6-1lg 8-1=lg 2+lg 3-13lg 2-1≈2.3,log0.80.2=lg 0.2lg 0.8=lg 2-13lg 2-1≈7.2,∴2.3≤x≤7.2,即应在用药2.3小时后再向病人的血液补充这种药.故选A.规律方法 1.构建函数模型解决实际问题的失分点(1)不能选择相应变量得到函数模型.(2)构建的函数模型有误.(3)忽视函数模型中变量的实际意义.2.解决新概念信息题的关键(1)仔细审题,明确问题的实际背景,依据新概念进行分析.(2)有意识地运用转化思想,将新问题转化为我们所熟知的问题.训练3 (1)体育运动是增强体质的最积极有效的方法,经常进行体育运动能增强身体机能,提高抗病能力.对于14~18岁的青少年,每天进行中等强度的运动有助于提高睡眠质量,使第二天精神充足,学习效率更高.是否达到中等强度运动,简单测量方法为f (t )=a ·e t ,其中t 为运动后心率(单位:次/分)与正常时心率的比值,a 为每个个体的体质健康系数.若f (t )介于25~28之间,则达到了中等强度运动;若低于25,则运动不足;若高于28,则运动过量.已知某同学正常时心率为78,体质健康系数a =5,他经过慢跑后心率y (单位:次/分)满足y =78·⎝⎛⎭⎪⎫lnx400+1,x 为慢跑里程(单位:米).已知学校运动场每圈400米,若该同学要达到中等强度运动,则较合适的慢跑圈数为( ) (e 为自然对数的底数,e≈2.718) A.3 B.4 C.5 D.6(2)已知海面上的大气压强是760 mmHg ,大气压强p (单位:mmHg)和高度h (单位:m)之间的关系为p =760e -hk (e 是自然对数的底数,k 是常数),根据实验知1 000 m 高空处的大气压强是645 mmHg ,则3 000 m 高空处的大气压强约为( ) 参考数据:⎝ ⎛⎭⎪⎫1291522≈0.72,⎝ ⎛⎭⎪⎫1291523≈0.61.A.322.5 mmHgB.463.6 mmHgC.215.0 mmHgD.146.0 mmHg 答案 (1)B (2)B解析 (1)由题意设跑了k (k ∈N *)圈, 则x =400k ,t =y 78=lnx 400+1=ln(e k ),则f (t )=5·e t =5·e ln (e k )=5e k ∈(25,28),则k =4,故选B.(2)依题意,645=760e -1 000k ,则k =-11 000ln 645760=-11 000ln 129152,故当h =3 000时,p =760e -3 000×⎝ ⎛⎭⎪⎫-11 000ln 129152=760×⎝ ⎛⎭⎪⎫1291523≈760×0.61=463.6.故选B.一、基本技能练1.(2022·徐州模拟)已知a =log 637,b =log 736,c =60.1,则( ) A.b <c <a B.b <a <c C.c <a <b D.a <b <c 答案 B解析 因为a =log 637=13log 67>13log 66=13,log 637<log 66=1,所以13<a <1. 因为b =log 736=13log 76<13log 77=13,即b <13.因为c =60.1>60=1,c >1. 所以b <a <c .2.(2022·合肥二模)函数f (x )=e x +4-e -x (e 是自然对数的底数)的图象关于( ) A.直线x =-e 对称 B.点(-e ,0)对称 C.直线x =-2对称 D.点(-2,0)对称 答案 D解析 由题意f (-2e -x )=e -x -2e +4-e -(-2e -x )=e -x -2e +4-e 2e +x ,它与f(x)之间没有恒等关系,相加也不为0,A,B均错;而f(-4-x)=e-4-x+4-e-(-4-x)=e-x-e4+x=-f(x),所以f(x)的图象关于点(-2,0)对称.故选D.3.已知x0是函数f(x)=x+log2(x+1)-4的零点,则(x0-1)(x0-2)(x0-3)(x0-4)的值( )A.为正数B.为负数C.等于0D.无法确定正负答案 B解析由题可知f(x)在[0,+∞)上单调递增(增函数+增函数=增函数),且f(3)=3+log4-4<0,2f(4)=2+log5-4>0,则x0∈(3,4),2所以(x0-1)>0,(x0-2)>0,(x0-3)>0,(x0-4)<0,所以(x0-1)(x0-2)(x0-3)(x0-4)<0.4.(2022·泰安模拟)已知函数f(x)是定义在R上的奇函数,满足f(x+2)=f(-x),且当x∈[0,1]时,f(x)=log2(x+1),则函数y=f(x)-x3的零点个数是( )A.2B.3C.4D.5答案 B解析由f(x+2)=f(-x)可得f(x)关于x=1对称,由函数f(x)是定义在R上的奇函数,所以f(x)=-f(x+2)=-[-f(x+2+2)]=f(x+4),所以f(x)的周期为4,函数y =f (x )-x 3的零点,即y =f (x )-x 3=0的解, 即函数y =f (x )和y =x 3的图象交点,根据f (x )的性质可得如图所示的图象,结合y =x 3的图象,由图象可得共有3个交点,即共有3个零点, 故选B.5.若正实数a ,b ,c 满足a +2-a =2,b +3b =3,c +log 4c =4,则正实数a ,b ,c 之间的大小关系为( ) A.b <a <c B.a <b <c C.a <c <b D.b <c <a 答案 A解析 ∵y =2-x 与y =2-x 的图象在(0,+∞)只有一个交点, ∴x +2-x -2=0在(0,+∞)只有一个根,设为a . 令f (x )=x +2-x -2,∵f (2)=2+2-2-2=14>0,f (1)=1+2-1-2=-12<0,f (1)f (2)<0,∴1<a <2.同理可得12<b <1,3<c <4,∴b <a <c .故选A.6.教室通风的目的是通过空气的流动,排出室内的污浊空气和致病微生物,降低室内二氧化碳和致病微生物的浓度,同时送进室外的新鲜空气.按照某地标准,室内空气中二氧化碳日平均最高容许浓度为0.1%.经测定,刚下课时,某教室空气中含有0.2%的二氧化碳,若开窗通风后教室内二氧化碳的浓度为y %,且y 随时间t (单位:分钟)的变化规律可以用函数y =0.05+λe -t 10(λ∈R )描述,则该教室内的二氧化碳浓度达到当地标准至少需要的时间为( )(参考数据:ln 2≈0.7,ln 3≈1.1) A.7分钟 B.9分钟 C.14分钟 D.11分钟 答案 D解析 由题意知,当t =0时,y =0.2, 即0.05+λe 0=0.2,解得λ=0.15, ∴y =0.05+0.15e-t 10,令0.05+0.15e-t10≤0.1,解得e -t10≤13, ∴-t10≤-ln 3,∴t ≥10ln 3≈11,故选D.7.(2022·张家口模拟)已知当x ∈(0,+∞)时,函数f (x )=k e x 的图象与函数g (x )=2x2x +1的图象有且只有两个交点,则实数k 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,e 2e B.⎝ ⎛⎭⎪⎫0,1eC.⎝ ⎛⎭⎪⎫1e ,+∞D.⎝ ⎛⎭⎪⎫ee ,+∞答案 A解析 由题设,当x ∈(0,+∞)时,k =2xe x (2x +1),令h (x )=2xe x (2x +1),则h ′(x )=-2(2x -1)(x +1)e x (2x +1)2,所以当0<x <12时,h ′(x )>0,则h (x )单调递增,当x >12时,h ′(x )<0,则h (x )单调递减.又h (x )>0,且h (x )≤h ⎝ ⎛⎭⎪⎫12=e 2e ,所以当0<k <e2e时,y =k 与h (x )的图象有两个交点.故选A. 8.(多选)(2022·重庆诊断)在同一直角坐标系中,函数y =a x 与y =log a (x -2)的图象可能是( )答案 BD解析 当a >1时,y =a x 在(-∞,+∞)单调递增且其图象恒过点(0,1),y =log a (x -2)在(2,+∞)单调递增且其图象恒过点(3,0),则选项B 符合要求;当0<a <1时,y =a x 在(-∞,+∞)单调递减且其图象恒过点(0,1),y =log a (x -2)在(2,+∞)单调递减且其图象恒过点(3,0), 则选项D 符合要求;综上所述,选项B ,D 符合要求.9.(多选)(2022·济南二模)已知函数f (x )=2x -12x +1,则下列说法正确的是( )A.f (x )为奇函数B.f (x )为减函数C.f (x )有且只有一个零点D.f (x )的值域为[-1,1) 答案 AC解析 由题意得f (-x )=2-x -12-x +1=1-2x1+2x =-f (x ),故f (x )为奇函数,又∵f (x )=2x -12x +1=1-22x +1,∴f (x )在R 上单调递增,∵2x>0,∴2x+1>1,∴0<22x +1<2,∴-2<-22x +1<0,∴-1<f (x )<1,即函数值域为(-1,1), 令f (x )=2x -12x +1=0,即2x =1,解得x =0,故函数有且只有一个零点0.综上可知,AC 正确,BD 错误.故选AC.10.(多选)已知函数f (x )=⎩⎨⎧e x-1,x ≥m ,-x 2-4x -4,x <m(m ∈R ,e 为自然对数的底数),则下列说法正确的是( )A.函数f(x)至多有2个零点B.函数f(x)至少有1个零点C.当m<-3时,对∀x1≠x2,总有f(x1)-f(x2)x2-x1<0成立D.当m=0时,方程f[f(x)]=0有3个不同实数根答案ABC解析作出函数y=e x-1和y=-x2-4x-4的图象如图所示,当m>0时,函数f(x)只有1个零点;当-2<m≤0时,函数f(x)有2个零点;当m≤-2时,函数f(x)只有1个零点,故选项A,B正确;当m<-3时,函数f(x)为单调递增函数,故选项C正确;当m=0时,令t=f(x),则f(t)=0,t1=-2,t2=0,当f(x)=t1=-2时,该方程有两个解;当f(x)=t2=0时,该方程有两个解,所以方程f[f(x)]=0有4个不同实数根,故选项D错误.综上,故选ABC.11.(2022·武汉调研)已知3x=32,y·log33=1,则x+y=________.答案2-log32解析因为3x=32,y·log33=1,所以x =log 332=1-log 32,y =1,∴x +y =2-log 32.12.(2022·北京房山区一模)函数f (x )的图象在区间(0,2)上连续不断,能说明“若f (x )在区间(0,2)上存在零点,则f (0)·f (2)<0”为假命题的一个函数f (x )的解析式可以为f (x )=________. 答案 (x -1)2(答案不唯一)解析 函数f (x )的图象在区间(0,2)上连续不断,且“若f (x )在区间(0,2)上存在零点,则f (0)·f (2)<0”为假命题,可知函数f (x )满足在(0,2)上存在零点,且f (0)·f (2)≥0, 所以满足题意的函数解析式可以为f (x )=(x -1)2. 二、创新拓展练13.(多选)(2022·本溪模拟)已知奇函数f (x )的定义域为R ,且在(0,+∞)上单调递减,若f ⎝ ⎛⎭⎪⎫12=f (-2)=1,则下列命题中正确的是( )A.f (x )有两个零点B.f (-1)>-1C.f (-3)<1D.f ⎝ ⎛⎭⎪⎫12>f (2)答案 BD解析 根据题意可得函数f (x )在(0,+∞)上为减函数,在(-∞,0)上为减函数且f (0)=0.由f ⎝ ⎛⎭⎪⎫12=f (-2)=1可得f ⎝ ⎛⎭⎪⎫-12=f (2)=-1.对于A ,由f (x )在(0,+∞)上为减函数,且f ⎝ ⎛⎭⎪⎫12=1,f (2)=-1,所以存在x 0∈⎝ ⎛⎭⎪⎫12,2,f (x 0)=0,所以f (x )在(0,+∞)上有一个零点, 同理f (x )在(-∞,0)上有一个零点,又因为f (0)=0,所以f (x )有三个零点,故A 错误; 对于B ,因为函数f (x )在(-∞,0)上为减函数, 所以f (-1)>f ⎝ ⎛⎭⎪⎫-12=-1,故B 正确;对于C ,因为函数f (x )在(-∞,0)上为减函数, 所以f (-3)>f (-2)=1,故C 错误;对于D ,f ⎝ ⎛⎭⎪⎫12=1,f (2)=-1,所以f ⎝ ⎛⎭⎪⎫12>f (2),故D 正确.故选BD.14.(多选)(2022·苏州八校适考)已知函数f (x )=e sin|x |-|cos x |,则( ) A.f (x )是周期函数B.f (x )是偶函数C.f (x )是⎝ ⎛⎭⎪⎫0,π2上的增函数D.f (x )的最小值为e -1答案 BC解析 因为f (x )=e sin|x |-|cos x |,令g (x )=|cos x |-sin |x |,则f (x )=e -g (x ), 对于A ,因为y =|cos x |是周期为π的周期函数,y =sin|x |关于y 轴对称,不是周期函数,所以g (x )=|cos x |-sin |x |不是周期函数,则f (x )=e -g (x )也不是周期函数,故A 错误;对于B ,g (x )的定义域为R ,且g (-x )=|cos(-x )|-sin|-x |=|cos x |-sin |x |=g (x ),所以g (x )为偶函数,则f (-x )=e -g (-x )=e -g (x )=f (x ),故f (x )为偶函数,故B 正确; 对于C ,当x ∈⎝⎛⎭⎪⎫0,π2时,g (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,x +π4∈⎝ ⎛⎭⎪⎫π4,3π4, 所以g (x )单调递减,则f (x )=e -g (x )单调递增,故C 正确; 对于D ,当x =5π4时,g ⎝ ⎛⎭⎪⎫5π4=⎪⎪⎪⎪⎪⎪cos 5π4-sin 5π4=22+22=2,则f ⎝ ⎛⎭⎪⎫5π4=e -g ⎝⎛⎭⎪⎫5π4=e -2<e -1,故f (x )的最小值不为e -1,故D 错误.故选BC.15.(多选)(2022·金丽衢12校联考)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=x -1ex ,则下列结论正确的是( )A.当x <0时,f (x )=-e x (x +1)B.函数f (x )在R 上有且仅有三个零点C.若关于x 的方程f (x )=m 有解,则实数m 的取值范围是{m |f (-2)≤m ≤f (2)}D.∀x 1,x 2∈R ,|f (x 2)-f (x 1)|<2 答案 BD解析 对于A ,设x <0时,则-x >0,则f (-x )=-x -1e-x=-(x +1)e x . 又由f (x )为奇函数,则f (x )=-f (-x )=e x (x +1),故A 选项错误; 对于B ,当x >0时,f (x )=x -1e x,令f (x )=0,即x =1.又由f (x )为奇函数,则f (-1)=-f (1)=0,f (0)=0, 即函数f (x )在R 上有且仅有三个零点,故B 选项正确; 对于C ,当x >0时,f (x )=x -1e x,所以f ′(x )=2-xe x,在区间(0,2)上,f ′(x )>0,函数f (x )为增函数; 在区间(2,+∞)上,f ′(x )<0,函数f (x )为减函数, 则f (x )在区间(0,+∞)上有极大值f (2)=1e2,而x →0,f (x )→-1,则f (x )在区间(0,+∞)上,有-1<f (x )≤1e 2.又由f (x )为奇函数,则f (x )在区间(-∞,0)上,有-1e2≤f (x )<1,综上,f (x )的值域为(-1,1),若关于x 的方程f (x )=m 有解,则实数m 的取值范围是-1<m <1,故C 选项错误;对于D ,由C 选项的结论,f (x )的值域为(-1,1),则∀x 1,x 2∈R ,|f (x 2)-f (x 1)|<1-(-1)=2,故D 选项正确.综上,故选BD.16.已知函数f (x )=⎩⎨⎧2-⎝ ⎛⎭⎪⎫12x ,x ≤0,|log 2x |,x >0,方程f 2(x )+2f (x )-m =0(m >0)有4个不同的实数根,从小到大依次是x 1,x 2,x 3,x 4,则下列说法正确的是( ) A.x 1<-3 B.x 1+x 2<-2 C.x 3x 4=2 D.m 可以取到8 答案 B解析根据函数f (x )=⎩⎨⎧2-⎝ ⎛⎭⎪⎫12x ,x ≤0,|log 2x |,x >0,画出函数的大致图象如图所示.已知方程f 2(x )+2f (x )-m =0有4个不同的实数根, 令t =f (x ),则t 2+2t -m =0.因为m >0,所以Δ=4+4m >0,方程t 2+2t -m =0有两个不同实根分别为t 1,t 2, 因为t 1+t 2=-2,t 1t 2=-m <0, 所以t 1,t 2一正一负,不妨设t 1<0<t 2. 要使已知中关于x 的复杂方程有4个不等实根,则关于x 的2个简单方程f (x )=t 1与f (x )=t 2总共有4个不等实数根, 由f (x )的图象可知,f (x )=t 1只有一个解x 1, 则f (x )=t 2有三个解x 2,x 3,x 4. 所以t 2∈(0,1],因为t 1+t 2=-2, 所以m =-t 1t 2=t 2(t 2+2)∈(0,3],D 错误; 由t 1+t 2=-2,t 2∈(0,1]得t 1∈[-3,-2), 则-3≤2-⎝ ⎛⎭⎪⎫12x 1<-2,解得-log 25≤x 1<-2,A 错误;由图可知,-1<x 2≤0,所以x 1+x 2<-2,B 正确; 因为x 3,x 4是f (x )=t 2的两个解, 所以有log 2x 4=-log 2x 3, 所以x 3x 4=1,C 错误.故选B.17.(2022·长沙二模)已知函数f (x )=4-x 2+k (x -4)有2个不同的零点,则k 的取值范围是________. 答案⎣⎢⎡⎭⎪⎫0,33解析 因为函数f (x )=4-x 2+k (x -4)有2个不同的零点,所以关于x 的方程4-x 2=-k (x -4)在区间[-2,2]内有两个不等的实根, 即曲线y =4-x 2(圆x 2+y 2=4的上半部分)与经过定点P (4,0)的直线y =-k (x -4)有两个不同的交点,如图.过P (4,0)作圆x 2+y 2=4的切线PA ,则点O 到切线PA 的距离d =|-4k |k 2+1=2, 解得k =33(舍去)或k =-33, 所以-33<-k ≤0, 得0≤k <33, 即k 的取值范围是⎣⎢⎡⎭⎪⎫0,33.18.(2022·茂名模拟)已知函数f (x )=⎩⎨⎧|log 2x |,0<x <2,-x +3,x ≥2,若x 1,x 2,x 3均不相等,且f (x 1)=f (x 2)=f (x 3),则x 1·x 2·x 3的取值范围是________. 答案 (2,3)解析不妨设x1<x2<x3,由图可得,|log2x1|=|log2x2|=-x3+3∈(0,1),所以log2x1=-log2x2,即x1x2=1,由f(x1)=f(x2)=f(x3)得,x3∈(2,3),所以x1x2x3的取值范围是(2,3).。

新高考数学复习考点知识专题讲义 2---基本初等函数、函数与方程

新高考数学复习考点知识专题讲义 2---基本初等函数、函数与方程

新高考数学复习考点知识专题讲义第2讲基本初等函数、函数与方程[考情分析]1.基本初等函数的图象、性质是高考考查的重点,利用函数性质比较大小是常见题型.2.函数零点的个数判断及参数范围是高考的热点,常以压轴题形式出现.考点一基本初等函数的图象与性质核心提炼1.指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)互为反函数,其图象关于y=x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两函数图象的异同.2.幂函数y=xα的图象和性质,主要掌握α=1,2,3,12,-1五种情况.例1(1)已知f(x)=2x-1,g(x)=1-x2,规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|<g(x)时,h(x)=-g(x),则h(x)()A.有最小值-1,最大值1B.有最大值1,无最小值C.有最小值-1,无最大值D.有最大值-1,无最小值答案C解析画出y=|f(x)|=|2x-1|与y=g(x)=1-x2的图象,它们交于A,B两点.由“规定”,在A ,B 两侧,|f (x )|≥g (x ),故h (x )=|f (x )|;在A ,B 之间,|f (x )|<g (x ),故h (x )=-g (x ).综上可知,y =h (x )的图象是图中的实线部分,因此h (x )有最小值-1,无最大值.(2)已知函数f (x )=e x +2(x <0)与g (x )=ln(x +a )+2的图象上存在关于y 轴对称的点,则a 的取值范围是()A.⎝ ⎛⎭⎪⎫-∞,1e B .(-∞,e) C.⎝ ⎛⎭⎪⎫-1e ,e D.⎝ ⎛⎭⎪⎫-e ,1e 答案B解析由题意知,方程f (-x )-g (x )=0在(0,+∞)上有解, 即e -x +2-ln(x +a )-2=0在(0,+∞)上有解,即函数y =e -x 与y =ln(x +a )的图象在(0,+∞)上有交点. 函数y =ln(x +a )可以看作由y =ln x 左右平移得到, 当a =0时,两函数有交点,当a <0时,向右平移,两函数总有交点,当a >0时,向左平移,由图可知,将函数y =ln x 的图象向左平移到过点(0,1)时,两函数的图象在(0,+∞)上不再有交点,把(0,1)代入y=ln(x+a),得1=ln a,即a=e,∴a<e.规律方法(1)对数函数与指数函数的单调性都取决于其底数的取值,当底数a的值不确定时,要注意分a>1和0<a<1两种情况讨论:当a>1时,两函数在定义域内都为增函数;当0<a<1时,两函数在定义域内都为减函数.(2)基本初等函数的图象和性质是统一的,在解题中可相互转化.跟踪演练1(1)函数f(x)=ln(x2+2)-e x-1的大致图象可能是()答案A解析当x→+∞时,f(x)→-∞,故排除D;函数f(x)的定义域为R,且在R上连续,故排除B;f(0)=ln2-e-1,由于ln2>ln e=12,e-1<12,所以f(0)=ln2-e-1>0,故排除C.(2)已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=1-2-x,则不等式f(x)<-1 2的解集是()A.(-∞,-1) B.(-∞,-1] C.(1,+∞) D.[1,+∞)答案A解析当x >0时,f (x )=1-2-x >0. 又f (x )是定义在R 上的奇函数,所以f (x )<-12的解集和f (x )>12的解集关于原点对称,由1-2-x >12得2-x <12=2-1, 即x >1,则f (x )<-12的解集是(-∞,-1).故选A.考点二函数的零点 核心提炼判断函数零点个数的方法: (1)利用零点存在性定理判断法. (2)代数法:求方程f (x )=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y =f (x )的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.考向1函数零点的判断例2(1)(2022·长沙调研)已知函数f (x )=⎩⎨⎧x e x ,x ≤0,2-|x -1|,x >0,若函数g (x )=f (x )-m 有两个不同的零点x 1,x 2,则x 1+x 2等于()A.2B.2或2+1 eC.2或3D.2或3或2+1 e答案D解析当x≤0时,f′(x)=(x+1)e x,当x<-1时,f′(x)<0,故f(x)在(-∞,-1)上单调递减,当-1<x≤0时,f′(x)>0,故f(x)在(-1,0]上单调递增,所以x≤0时,f(x)的最小值为f(-1)=-1e.又当x≥1时,f(x)=3-x,当0<x<1时,f(x)=x+1.作出f(x)的图象,如图所示.因为g(x)=f(x)-m有两个不同的零点,所以方程f(x)=m 有两个不同的根,等价于直线y=m与f(x)的图象有两个不同的交点,且交点的横坐标分别为x1,x2,由图可知1<m<2或m=0或m=-1e.若1<m<2,则x1+x2=2;若m =0,则x 1+x 2=3;若m =-1e ,则x 1+x 2=-1+3+1e =2+1e .(2)设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (2-x ),当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x -1,则关于x 的方程f (x )-log 8(x +2)=0在区间(-2,6)上根的个数为()A .1B .2C .3D .4 答案C解析对于任意的x ∈R ,都有f (2+x )=f (2-x ), ∴f (x +4)=f [2+(x +2)]=f [2-(x +2)]=f (-x )=f (x ), ∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x -1,且函数f (x )是定义在R 上的偶函数,且f (6)=1,则函数y =f (x )与y =log 8(x +2)在区间(-2,6)上的图象如图所示,根据图象可得y =f (x )与y =log 8(x +2)在区间(-2,6)上有3个不同的交点,即f (x )-log 8(x +2)=0在区间(-2,6)上有3个根.考向2求参数的值或取值范围例3(1)已知关于x 的方程9-|x -2|-4·3-|x -2|-a =0有实数根,则实数a 的取值范围是________. 答案[-3,0)解析设t =3-|x -2|(0<t ≤1), 由题意知a =t 2-4t 在(0,1]上有解, 又t 2-4t =(t -2)2-4(0<t ≤1), ∴-3≤t 2-4t <0,∴实数a 的取值范围是[-3,0).(2)已知函数f (x )=⎩⎨⎧x +3,x >a ,x 2+6x +3,x ≤a ,若函数g (x )=f (x )-2x 恰有2个不同的零点,则实数a 的取值范围为____________________. 答案[-3,-1)∪[3,+∞)解析由题意得g (x )=⎩⎪⎨⎪⎧x +3-2x ,x >a ,x 2+6x +3-2x ,x ≤a ,即g (x )=⎩⎪⎨⎪⎧3-x ,x >a ,x 2+4x +3,x ≤a ,如图所示,因为g(x)恰有两个不同的零点,即g(x)的图象与x轴有两个交点.若当x≤a时,g(x)=x2+4x+3有两个零点,则令x2+4x+3=0,解得x=-3或x=-1,则当x>a时,g(x)=3-x没有零点,所以a≥3.若当x≤a时,g(x)=x2+4x+3有一个零点,则当x>a时,g(x)=3-x必有一个零点,即-3≤a<-1,综上所述,a∈[-3,-1)∪[3,+∞).规律方法利用函数零点的情况求参数值(或取值范围)的三种方法跟踪演练2(1)已知偶函数y=f(x)(x∈R)满足f(x)=x2-3x(x≥0),若函数g(x)=⎩⎪⎨⎪⎧log 2x ,x >0,-1x,x <0,则y =f (x )-g (x )的零点个数为()A .1B .3C .2D .4 答案B解析作出函数f (x )与g (x )的图象如图,由图象可知两个函数有3个不同的交点,所以函数y =f (x )-g (x )有3个零点.(2)(多选)已知函数f (x )=⎩⎨⎧x +2a ,x <0,x 2-ax ,x ≥0,若关于x 的方程f (f (x ))=0有8个不同的实根,则a 的值可能为() A .-6B .8C .9D .12 答案CD解析当a ≤0时,f (x )仅有一个零点x =0,故f (f (x ))=0有8个不同的实根不可能成立.当a >0时,f (x )的图象如图所示,当f (f (x ))=0时,f 1(x )=-2a ,f 2(x )=0,f 3(x )=a .又f (f (x ))=0有8个不同的实根,故f 1(x )=-2a 有三个根,f 2(x )=0有三个根,f 3(x )=a 有两个根,又x 2-ax =⎝ ⎛⎭⎪⎫x -a 22-a24,所以-2a >-a 24且a <2a ,解得a >8且a >0,综上可知,a >8.专题强化练一、单项选择题1.(2022·全国Ⅰ)设a log 34=2,则4-a 等于() A.116B.19C.18D.16 答案B解析方法一因为a log 34=2, 所以log 34a =2, 所以4a =32=9, 所以4-a =14a =19. 方法二因为a log 34=2,所以a =2log 34=2log 43=log 432=log 49,所以4-a =4log 94-=14log 94-=9-1=19.2.函数f (x )=ln x +2x -6的零点一定位于区间()A.(1,2) B.(2,3) C.(3,4) D.(4,5)答案B解析函数f(x)=ln x+2x-6在其定义域上连续且单调,f(2)=ln2+2×2-6=ln2-2<0,f(3)=ln3+2×3-6=ln3>0,故函数f(x)=ln x+2x-6的零点在区间(2,3)上.3.在同一直角坐标系中,函数f(x)=2-ax和g(x)=log a(x+2)(a>0且a≠1)的大致图象可能为()答案A解析由题意知,当a>0时,函数f(x)=2-ax为减函数.若0<a<1,则函数f(x)=2-ax的零点x0=2a∈(2,+∞),且函数g(x)=log a(x+2)在(-2,+∞)上为减函数;若a>1,则函数f(x)=2-ax的零点x0=2a∈(0,2),且函数g(x)=log a(x+2)在(-2,+∞)上为增函数.故A 正确.4.(2022·广东省揭阳三中模拟)已知a ,b ,c 满足4a =6,b =12log 4,c 3=35,则()A .a <b <cB .b <c <aC .c <a <bD .c <b <a 答案B解析4a =6>4,a >1,b =12log 4=-2,c 3=35<1,0<c <1,故a >c >b .5.(2022·全国Ⅲ)Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K 1+e-0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln19≈3)() A .60B .63C .66D .69 答案C 解析因为I (t )=K1+e -0.23(t -53),所以当I (t *)=0.95K 时,*0.23531et K⎛⎫-- ⎪⎝⎭+=0.95K ,即*0.235311et ⎛⎫-- ⎪⎝⎭+=0.95,即1+*0.2353et ⎛⎫-- ⎪⎝⎭=10.95,即*0.2353et ⎛⎫-- ⎪⎝⎭=10.95-1,∴*0.2353et ⎛⎫- ⎪⎝⎭=19,∴0.23(t *-53)=ln19, ∴t *=ln190.23+53≈30.23+53≈66.6.(2022·泉州模拟)若函数y =log a (x 2-ax +1)有最小值,则a 的取值范围是() A .1<a <2B .0<a <2,a ≠1 C .0<a <1D .a ≥2 答案A解析令u (x )=x 2-ax +1,函数y =log a (x 2-ax +1)有最小值,∴a >1,且u (x )min >0,∴Δ=a 2-4<0,∴1<a <2,∴a 的取值范围是1<a <2.7.(2022·太原质检)已知函数f (x )=⎩⎨⎧e x ,x >0,-2x 2+4x +1,x ≤0(e 为自然对数的底数),若函数g (x )=f (x )+kx 恰好有两个零点,则实数k 等于() A .-2eB .eC .-eD .2e 答案C解析g (x )=f (x )+kx =0,即f (x )=-kx ,如图所示,画出函数y =f (x )和y =-kx 的图象, -2x 2+4x +1=-kx ,即2x 2-(4+k )x -1=0, 设方程的两根为x 1,x 2,则Δ=(4+k )2+8>0,且x 1x 2=-12, 故g (x )在x <0时有且仅有一个零点, y =-kx 与y =f (x )在x >0时相切.当x >0时,设切点为(x 0,-kx 0),f (x )=e x , f ′(x )=e x ,f ′(x 0)=0e x =-k ,0e x =-kx 0, 解得x 0=1,k =-e.8.已知函数f (x )=⎩⎪⎨⎪⎧a ,x =0,⎝ ⎛⎭⎪⎫1e |x |+1,x ≠0,若关于x 的方程2f 2(x )-(2a +3)f (x )+3a =0有五个不同的解,则a 的取值范围是() A .(1,2) B.⎣⎢⎡⎭⎪⎫32,2C.⎝ ⎛⎭⎪⎫1,32D.⎝ ⎛⎭⎪⎫1,32∪⎝ ⎛⎭⎪⎫32,2 答案D解析作出f (x )=⎝ ⎛⎭⎪⎫1e |x |+1,x ≠0的图象如图所示.设t =f (x ),则原方程化为2t 2-(2a +3)t +3a =0, 解得t 1=a ,t 2=32.由图象可知,若关于x 的方程2f 2(x )-(2a +3)f (x )+3a =0有五个不同的实数解,只有当直线y =a 与函数y =f (x )的图象有三个不同的交点时才满足条件, 所以1<a <2.又方程2t 2-(2a +3)t +3a =0有两个不相等的实数根, 所以Δ=(2a +3)2-4×2×3a =(2a -3)2>0, 解得a ≠32,综上,得1<a <2,且a ≠32. 二、多项选择题9.(2022·临沂模拟)若10a =4,10b =25,则() A .a +b =2B .b -a =1 C .ab >8lg 22D .b -a >lg6 答案ACD解析由10a =4,10b =25,得a =lg4,b =lg25,则a +b =lg4+lg25=lg100=2,故A 正确;b-a=lg25-lg4=lg 254>lg6且lg254<1,故B错误,D正确;ab=lg4·lg25=4lg2·lg5>4lg2·lg4=8lg22,故C正确.10.已知函数f(x)=log a(x+1),g(x)=log a(1-x),a>0,a≠1,则()A.函数f(x)+g(x)的定义域为(-1,1)B.函数f(x)+g(x)的图象关于y轴对称C.函数f(x)+g(x)在定义域上有最小值0D.函数f(x)-g(x)在区间(0,1)上是减函数答案AB解析∵f(x)=log a(x+1),g(x)=log a(1-x),a>0,a≠1,∴f(x)+g(x)=log a(x+1)+log a(1-x),由x+1>0且1-x>0得-1<x<1,故A对;由f(-x)+g(-x)=log a(-x+1)+log a(1+x)=f(x)+g(x),得函数f(x)+g(x)是偶函数,其图象关于y轴对称,B对;∵-1<x<1,∴f(x)+g(x)=log a(1-x2),∵y=1-x2在[0,1)上单调递减,由复合函数的单调性可知,当0<a<1时,函数f(x)+g(x)在[0,1)上单调递增,有最小值f(0)+g(0)=log a(1-0)=0;当a>1时,函数f(x)+g(x)在[0,1)上单调递减,无最小值,故C错;∵f(x)-g(x)=log a(x +1)-log a(1-x),当0<a<1时,f(x)=log a(x+1)在(0,1)上单调递减,g(x)=log a(1-x)在(0,1)上单调递增,函数f(x)-g(x)在(0,1)上单调递减;当a>1时,f(x)=log a(x+1)在(0,1)上单调递增,g(x)=log a(1-x)在(0,1)上单调递减,函数f(x)-g(x)在(0,1)上单调递增,故D错.11.(2022·淄博模拟)已知函数y =f (x )是R 上的奇函数,对于任意x ∈R ,都有f (x +4)=f (x )+f (2)成立.当x ∈[0,2)时,f (x )=2x -1.给出下列结论,其中正确的是() A .f (2)=0B .点(4,0)是函数y =f (x )图象的一个对称中心C .函数y =f (x )在区间[-6,-2]上单调递增D .函数y =f (x )在区间[-6,6]上有3个零点 答案AB解析对于A ,因为f (x )为奇函数且对任意x ∈R ,都有f (x +4)=f (x )+f (2),令x =-2,则f (2)=f (-2)+f (2)=0,故A 正确;对于B ,由A 知,f (2)=0,则f (x +4)=f (x ),则4为f (x )的一个周期,因为f (x )的图象关于原点(0,0)成中心对称,则(4,0)是函数f (x )图象的一个对称中心,故B 正确;对于C ,因为f (-6)=0,f (-5)=f (-5+4)=f (-1)=-f (1)=-1,-6<-5,而f (-6)>f (-5),所以f (x )在区间[-6,-2]上不是单调递增的,故C 错误;对于D ,因为f (0)=0,f (2)=0,所以f (-2)=0,又4为f (x )的一个周期,所以f (4)=0,f (6)=0,f (-4)=0,f (-6)=0,所以函数y =f (x )在区间[-6,6]上有7个零点,故D 错误. 12.对于函数f (x )=⎩⎪⎨⎪⎧sinπx ,x ∈[0,2],12f (x -2),x ∈(2,+∞),则下列结论正确的是()A .任取x 1,x 2∈[2,+∞),都有|f (x 1)-f (x 2)|≤1B .函数y =f (x )在[4,5]上单调递增C .函数y =f (x )-ln(x -1)有3个零点D .若关于x 的方程f (x )=m (m <0)恰有3个不同的实根x 1,x 2,x 3,则x 1+x 2+x 3=132 答案ACD解析f (x )=⎩⎨⎧sinπx ,x ∈[0,2],12f (x -2),x ∈(2,+∞)的图象如图所示,当x ∈[2,+∞)时,f (x )的最大值为12,最小值为-12,∴任取x 1,x 2∈[2,+∞),都有|f (x 1)-f (x 2)|≤1恒成立,故A 正确;函数y =f (x )在[4,5]上的单调性和在[0,1]上的单调性相同,则函数y =f (x )在[4,5]上不单调,故B 错误;作出y =ln(x -1)的图象,结合图象,易知y =ln(x -1)的图象与f (x )的图象有3个交点,∴函数y =f (x )-ln(x -1)有3个零点,故C 正确;若关于x 的方程f (x )=m (m <0)恰有3个不同的实根x 1,x 2,x 3,不妨设x 1<x 2<x 3,则x 1+x 2=3,x 3=72,∴x 1+x 2+x 3=132,故D 正确. 三、填空题13.(2022·全国Ⅱ)已知f (x )是奇函数,且当x <0时,f (x )=-e ax .若f (ln2)=8,则a =________. 答案-3解析当x >0时,-x <0,f (-x )=-e -ax .因为函数f (x )为奇函数,所以当x >0时,f (x )=-f (-x )=e -ax ,所以f (ln2)=e -a ln2=⎝⎛⎭⎪⎫12a=8,所以a =-3. 14.已知函数f (x )=|lg x |,若f (a )=f (b )(a ≠b ),则函数g (x )=⎩⎨⎧x 2+22x +5,x ≤0,ax 2+2bx ,x >0的最小值为________. 答案2 2解析因为|lg a |=|lg b |,所以不妨令a <b , 则有-lg a =lg b ,所以ab =1,b =1a(0<a <1),所以g (x )=⎩⎨⎧(x +2)2+3,x ≤0,ax +2ax ,x >0,当x ≤0时,g (x )=(x +2)2+3≥3,取等号时x =-2; 当x >0时,g (x )=ax +2ax ≥2ax ·2ax =22,当且仅当x =2a 时,等号成立, 综上可知,g (x )min =2 2.15.定义在R 上的奇函数f (x ),当x ≥0时,f (x )=⎩⎪⎨⎪⎧-2x x +1,x ∈[0,1),1-|x -3|,x ∈[1,+∞),则函数F (x )=f (x )-1π的所有零点之和为________.答案11-2π解析由题意知,当x <0时, f (x )=⎩⎪⎨⎪⎧-2x 1-x ,x ∈(-1,0),|x +3|-1,x ∈(-∞,-1],作出函数f (x )的图象如图所示,设函数y =f (x )的图象与y =1π交点的横坐标从左到右依次为x 1,x 2,x 3,x 4,x 5,由图象的对称性可知,x 1+x 2=-6,x 4+x 5=6,x 1+x 2+x 4+x 5=0,令-2x 1-x =1π,解得x 3=11-2π,所以函数F (x )=f (x )-1π的所有零点之和为11-2π. 16.对于函数f (x )与g (x ),若存在λ∈{x ∈R |f (x )=0},μ∈{x ∈R |g (x )=0},使得|λ-μ|≤1,则称函数f (x )与g (x )互为“零点密切函数”,现已知函数f (x )=e x -2+x -3与g (x )=x 2-ax -x +4互为“零点密切函数”,则实数a 的取值范围是________. 答案[3,4]解析由题意知,函数f (x )的零点为x =2, 设g (x )的零点为μ,满足|2-μ|≤1, 因为|2-μ|≤1,所以1≤μ≤3.21 / 21 方法一因为函数g (x )的图象开口向上,所以要使g (x )的至少一个零点落在区间[1,3]上,则需满足g (1)g (3)≤0,或⎩⎪⎨⎪⎧ g (1)>0,g (3)>0,Δ≥0,1<a +12<3,解得103≤a ≤4,或3≤a <103,得3≤a ≤4. 故实数a 的取值范围为[3,4].方法二因为g (μ)=μ2-aμ-μ+4=0, a =μ2-μ+4μ=μ+4μ-1,因为1≤μ≤3,所以3≤a ≤4.故实数a 的取值范围为[3,4].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档