材料力学习题01拉压剪切
材料力学习题册1-14概念答案
第一章绪论之迟辟智美创作一、是非判断题1.1 资料力学的研究方法与理论力学的研究方法完全相同.( ×)1.2 内力只作用在杆件截面的形心处. ( × )1.3 杆件某截面上的内力是该截面上应力的代数和.( × )1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况. ( ∨)1.5 根据各向同性假设,可认为资料的弹性常数在各方向都相同. ( ∨ )1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同. ( ∨ )1.7 同一截面上正应力σ与切应力τ必相互垂直. ( ∨)1.8 同一截面上各点的正应力σ肯定年夜小相等,方向相同. (×)1.9 同一截面上各点的切应力τ必相互平行.(×)1.10 应变分为正应变ε和切应变γ. ( ∨)1.11 应酿成无量纲量. ( ∨)1.12 若物体各部份均无变形,则物体内各点的应变均为零.( ∨)1.13 若物体内各点的应变均为零,则物体无位移.(×)1.14 平衡状态弹性体的任意部份的内力都与外力坚持平衡. ( ∨ )1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形.( ∨)1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形.(×)二、. 1.2 1.3 剪切的受力特征是,变形特征是.1.4 扭转的受力特征是,变形特征是. 1.5 弯曲的受力特征是,变形特征是. 1.6 组合受力与变形是指. 1.7 构件的承载能力包括,和三个方面. 所谓,是指资料或构件抵当破坏的能力.所谓,是指构件抵当变形的能力.所谓,是指资料或构件坚持其原有平衡形B题5图 题6图 外力的合力作用线通过杆轴线 杆件 应力应变 沿杆轴线伸长或缩短 受一对等值,反向,作用线距离很近的力的作用 沿剪切面发生相对错动外力偶作用面垂直杆轴线 任意二横截面发生绕杆轴线的相对转动 外力作用线垂直杆轴线,外力偶作用面通过杆轴线 梁轴线由直线酿成曲线 包括两种或两种以上基本变形的组合 强度 刚度 稳定性强度 刚度 稳定性式的能力.1.9 根据固体资料的性能作如下三个基本假设,,.认为固体在其整个几何空间内无间隙地布满了组成该物体的物质,这样的假设称为.根据这一假设构件的、和就可以用坐标的连续函数来暗示.填题 1.11图所示结构中,杆1发生变形,杆2发生变形,杆3发生变形. 1.12 下图 (a)、(b)、(c)分别为构件内某点处取出的单位体,变形后情况如虚线所示,则单位体(a)的切应变γ=;单位体(b)的切应变γ=;单位体(c)的切应变γ=.三、选择题 ABC ,作用力P 后移至AB ’C ’,但右半段BCDE 的形状不发生变动.试分析哪一种谜底正确.1、AB 、BC 两段都发生位移.2、AB 、BC 两段都发生变形. α>βα αα α α β (a)(b)(c) 填题1.11图 ’ 连续性 均匀性 各向同性连续性假设 应力 应变 变形拉伸 压缩 弯曲2α α-β 0正确谜底是1.1.2 选题1.2图所示等截面直杆在两端作用有力偶,数值为M,力偶作用面与杆的对称面一致.关于杆中点处截面A —A在杆变形后的位置(对左端,由 A’—A’暗示;对右端,由A”—A”暗示),有四种谜底,试判断哪一种谜底是正确的.正确谜底是C.1.3 等截面直杆其支承和受力如图所示.关于其轴线在变形后的位置(图中虚线所示),有四种谜底,根据弹性体的特点,试分析哪一种是合理的.正确谜底是C .第二章拉伸、压缩与剪切一、是非判断题因为轴力要按平衡条件求出,所以轴力的正负与坐标轴的指向一致. (×)2.2 轴向拉压杆的任意截面上都只有均匀分布的正应力.( × ) 2.3 强度条件是针对杆的危险截面而建立的.( ×)2.4. 位移是变形的量度.( × )2.5 甲、乙两杆几何尺寸相同,轴向拉力相同,资料分歧,2.6 空心圆杆受轴向拉伸时,在弹性范围内,其外径与壁厚的变形关系是外径增年夜且壁厚也同时增年夜. ( × )已知低碳钢的σp =200MPa ,E =200GPa ,现测得试件上的应变ε=0.002,则其应力能用胡克定律计算为:σ=Eε=200×103×0.002=400MPa. ( × )2.9 图示三种情况下的轴力图是不相同的. ( × )的三个等分点.在杆件变形过程中,此三点的位移相等. ( × )2.11考虑. ( × )连接件发生的挤压应力与轴向压杆发生的压应力是不相同的.( ∨ )二、填空题2.1 轴力的正负规定为.2.2 受轴向拉伸或压缩的直杆,其最年夜正应力位于横截面,计算公式为,最年夜切应力位于450截面,计算公式拉力为正,压力为负 maxmax )(A F N =σmax max max )(A F N 22==στ为.2.3 拉压杆强度条件中的不等号的物理意义是最年夜工作应力σmax不超越许用应力[σ],强度条件主要解决三个方面的问题是(1)强度校核;(2)截面设计;(3)确定许可载荷.2.4 轴向拉压胡克定理的暗示形式有2种,其应用条件是σmax≤σp.2.5 由于平安系数是一个__年夜于1_____数,因此许用应力总是比极限应力要___小___.2.6 两拉杆中,A1=A2=A;E1=2E2;υ1=2υ2;若ε1′=ε2′(横向应变),则二杆轴力F N1_=__F N2.2.7 低碳钢在拉伸过程中依次暗示为弹性、屈服、强化、局部变形四个阶段,其特征点分别是σp,σe,σs,σb.衡量资料的塑性性质的主要指标是延伸率δ、断面收缩率ψ.2.9 延伸率δ=(L1-L)/L×100%中L1指的是拉断后试件的标距长度.2.10 塑性资料与脆性资料的判别标准是塑性资料:δ≥5%,脆性资料:δ<5%.图示销钉连接中,2t2>t1,销钉的切应力τ=2F/πd2,销钉的最年夜挤压应力σbs =F/dt1.螺栓受拉力F 作用,尺寸如图.若螺栓资料的拉伸许用应力为[σ],许用切应力为[τ],按拉伸与剪切等强度设计,螺栓杆直径d 与螺栓头高度h 的比值应取d/h =4[τ]/[σ].木榫接头尺寸如图示,受轴向拉力F 作用.接头的剪切面积A =hb ,切应力τ=F/hb ;挤压面积A bs =cb ,挤压应力σbs =F/cb .两矩形截面木杆通过钢连接器连接(如图示),在轴向力F 作用下,木杆上下两侧的剪切面积A =2lb ,切应力τ=F/2lb ;挤压面积A bs =2δb ,挤压应力σbs =F/2δb . 挤压应力作用在构件的外概况,一般不是均匀分布;压杆中的压应力作用在杆的横截面上且均匀分布.2.16图示两钢板钢号相同,通过铆钉连接,钉与板的钢号分歧.对铆接头的强度计算应包括:铆钉的剪切、挤压计算;钢板的挤压和拉伸强度计算. 若将钉的排列由(a )改为(b ),上述计算中发生改变的是.对(a )、(b )两种排列,铆接头能接受较年夜拉力的是(a ).(建议画板的轴力图分析)三、选择题钢板的拉伸强度计算为提高某种钢制拉(压)杆件的刚度,有以下四种办法:(A) 将杆件资料改为高强度合金钢; (B) 将杆件的概况进行强化处置(如淬火等);(C) 增年夜杆件的横截面面积; (D) 将杆件横截面改为合理的形状.正确谜底是C甲、乙两杆,几何尺寸相同,轴向拉力F 相同,资料分歧,它们的应力和变形有四种可能:(Al 都相同;(B) l 相同;(C l 分歧;(D) △l 分歧.正确谜底是C长度和横截面面积均相同的两杆,一为钢杆,另一为铝杆,在相同的轴向拉力作用下,两杆的应力与变形有四种情况;(A )铝杆的应力和钢杆相同,变形年夜于钢杆; (B) 铝杆的应力和钢杆相同,变形小于钢杆;(C )铝杆的应力和变形均年夜于钢杆; (D) 铝杆的应力和变形均小于钢杆.正确谜底是A∵ E s > E a在弹性范围内尺寸相同的低碳钢和铸铁拉伸试件,在同样载(A;(B(C(D)不能确定.正确谜底是B2.5 等直杆在轴向拉伸或压缩时,横截面上正应力均匀分布是根据何种条件得出的.(A)静力平衡条件;(B)连续条件;(C)小变形假设;(D平面假设及资料均匀连续性假设.正确谜底是D第三章扭转一、是非判断题3.1 单位体上同时存在正应力和切应力时,切应力互等定理不成立. (×)3.2 空心圆轴的外径为D、内径为d,其极惯性矩和扭转截面系数分别为×)∵E ms > E ci3.3 资料分歧而截面和长度相同的二圆轴,在相同外力偶作用下,其扭矩图、切应力及相对扭转角都是相同的. ( ×)3.4 连接件接受剪切时发生的切应力与杆接受轴向拉伸时在斜截面上发生的切应力是相同的. ( ×)二、填空题3.1 图示微元体,已知右侧截面上存在与z 方向成θ 角的切应力τ,试根据切应力互等定理画出另外五个面上的切应力.3.2 试绘出圆轴横截面和纵截面上的扭转切应力分布图.3.3 坚持扭矩不变,长度不变,圆轴的直径增年夜一倍,则最年夜切应力τmax 是原来的1/ 8倍,单位长度扭转角是原来的1/ 16倍.两根分歧资料制成的圆轴直径和长度均相同,所受扭矩也相同,两者的最年夜切应力_________相等 __,单位长度扭转_分歧___ _______. 3.5 的适用范围是等直圆轴; τmax ≤τp .y对实心轴和空心轴,如果二者的资料、长度及横截面的面积相同,则它们的抗扭能力空心轴年夜于实心轴;抗拉(压)能力相同.3.7 当轴传递的功率一按时,轴的转速愈小,则轴受到的外力偶距愈__年夜__,当外力偶距一按时,传递的功率愈年夜,则轴的转速愈 年夜.3.8两根圆轴,一根为实心轴,直径为D 1,另一根为空心轴,内径为d 2,外径为D 2,.3.9 等截面圆轴上装有四个皮带轮,合理安插应为D 、C 轮位置对换.3.10 图中T3.1145º螺旋面断裂;图(c ),发生非常年夜的扭角后沿横截面断开;图(d ),概况呈现纵向裂纹.据此判断试件的资840134.-=α料为,图(b ):灰铸铁;图(c ):低碳钢,图(d ):木材.若将一支粉笔扭断,其断口形式应同图(b ).三、选择题3.1 图示圆轴,已知GI p ,当m 为何值时,自由真个扭转角为零. (B )A. 30 N ·m ;B. 20 N ·m ;C. 15 N ·m ;D. 10 N ·m .3.2 三根圆轴受扭,已知资料、直径、扭矩均相同,而长度分别为L ;2L ;4L ,则单位扭转角θ必为 D .A.第一根最年夜;B.第三根最年夜;C.第二根为第一和第三之和的一半; D.相同.3.3 实心圆轴和空心圆轴,它们的横截面面积均相同,受相同扭转作用,则其最年夜切应力 是 C .AD. 无法比力.α= d /D 的空心圆轴,扭转时横截面上的最年夜切应力为τ,则内圆周处的切应力为 B .实空)()(t t W W >A. τ;B. ατ;C. (1-α3)τ;D. (1-α4)τ;3.5 满足平衡条件,但切应力超越比例极限时,下列说法正确的是D.A B C D切应力互等定理:成立不成立不成立成立剪切虎克定律:成立不成立成立不成立3.6 在圆轴扭转横截面的应力分析中,资料力学研究横截面变形几何关系时作出的假设是C.A.资料均匀性假设; B.应力与应酿成线性关系假设;C.平面假设.3.7 图示受扭圆轴,若直径d不变;长度l不变,所受外力偶矩M不变,仅将资料由钢酿成铝,则轴的最年夜切应力(E),轴的强度(B),轴的扭转角(C),轴的刚度(B).A.提高 B.降低 C.增年夜 D.减小 E.不变第四章弯曲内力一、是非判断题4.1 杆件整体平衡时局部纷歧定平衡. (×)4.2 不论梁上作用的载荷如何,其上的内力都按同一规律变动. (×)4.3 任意横截面上的剪力在数值上即是其右侧梁段上所有荷载的代数和,向上的荷载在该截面发生正剪力,向下的荷载在该截面发生负剪力. (×)4.4 若梁在某一段内无载荷作用,则该段内的弯矩图肯定是一直线段. (∨)简支梁及其载荷如图所示,假想沿截面 m-m将梁截分为二,若取梁的左段为研究对象,则该截面上的剪力和弯矩与q、M无关;若取梁的右段为研究对象,则该截面上的剪力和弯矩与F无关.(×)二、填空题4.1 外伸梁ABC接受一可移动的载荷如图所示.设F、l均为已知,为减小梁的最年夜弯矩值则外伸段的合理长度∵Fa = F(l - a) / 4a=l/5.4.2 图示三个简支梁接受的总载荷相同,但载荷的分布情况分歧.在这些梁中,最年夜剪力F Qmax=F/2;发生在三个梁的支座截面处;最年夜弯矩M max=F l/4;发生在(a)梁的C 截面处.三、选择题4.1 梁受力如图,在B 截面处D .A. F s 图有突变,M 图连续光滑; B . F s 图有折角(或尖角),M 图连续光滑;C . F s 图有折角,M 图有尖角;D . F s 图有突变,M 图有尖角.4.2 图示梁,剪力即是零截面位置的x 之值为D .A. 5a /6;B. 5a /6;C. 6a /7;D. 7a /6.在图示四种情况中,截面上弯矩 M 为正,剪力F s 为负的是(B).在图示梁中,集中力F 作用在固定于截面B 的倒 L 刚臂上.梁上最年夜弯矩 M max 与 C 截面上弯矩M C 之间的关系是B .题图 BFCAqxqa BaC3a 题图qAF sMF sMF sF s M(A)(B) (C) (D)4.5 在上题图中,如果使力 F 直接作用在梁的C 截面上,则梁上maxM与max s F 为C .A .前者不变,后者改变B .两者都改变C .前者改变,后者不变D .两者都不变附录I 平面图形的几何性质一、是非判断题 I.1静矩即是零的轴为对称轴.(× )I.2 在正交坐标系中,设平面图形对y 轴和z 轴的惯性矩分别为I y 和I z ,则图形对坐标原点的极惯性矩为I p = I y 2+ I z 2. ( × )I.3 若一对正交坐标轴中,其中有一轴为图形的对称轴,则图形对这对轴的惯性积一定为零.∵M C =F D a = 2 a F/ 3 M max = F D 2a = 4 a F/32F /3F /3(∨)二、填空题I.1 任意横截面对形心轴的静矩即是___0________.I.2 在一组相互平行的轴中,图形对__形心_____轴的惯性矩最小.三、选择题I.1 矩形截面,C 为形心,阴影面积对z C其余部份面积对z C 轴的静矩为(S z )B ,(S z )间的关系正确的是D .A. (S z )A >(S z )B ;B. (S z )A <(S z )B ;C.(S z )A =(S z )B ;D. (S z )A =-(S z )B .I.2 图示截面对形心轴z C 的W Zc A. bH 2/6-bh 2/6;B. (bH 2/6)〔1-(h /H )3〕;C. (bh 2/6)〔1-(H /h )3〕;D. (bh 2/6)〔1-(H /h )4〕.I.3 已知平面图形的形心为C ,面积为 A ,对z 轴的 惯性矩为I z ,则图形对在z 1轴的惯性矩正确的是D .选题图C选题图yA. I z+b2A;B. I z+(a+b)2A;C. I z+(a2-b2) A;D. I z+( b2-a2) A.第五章弯曲应力一、是非判断题5.1 平面弯曲变形的特征是,梁在弯曲变形后的轴线与载荷作用面同在一个平面内. (∨)5.2 在等截面梁中,正应力绝对值的最年夜值│σ│max必呈现在弯矩值│M│ma最年x夜的截面上.(∨)静定对称截面梁,无论何种约束形式,其弯曲正应力均与资料的性质无关. (∨)二、填空题5.1 直径为d 的钢丝绕在直径为D 的圆筒上,若钢丝仍处于弹性范围内,此时钢丝的最年夜弯曲正应力σmax =;为了减小弯曲正应力,应减小___钢丝___的直径或增年夜 圆筒的直径.5.2 圆截面梁,坚持弯矩不变,若直径增加一倍,则其最年夜正应力是原来的1/8倍.5.3 横力弯曲时,梁横截面上的最年夜正应力发生在截面的上下边缘处,梁横截面上的最年夜切应力发生在中性轴处.矩形截面的最年夜切应力是平均切应力的3/2倍.5.4 矩形截面梁,若高度增年夜一倍(宽度不变),其抗弯能力为原来的4倍;若宽度增年夜一倍(高度不变),其抗弯能力为原来的2倍;若截面面积增年夜一倍(高宽比不变),其抗弯能力为原来的倍.5.5 从弯曲正应力强度的角度考虑,梁的合理截面应使其资料分布远离中性轴.5.6 两梁的几何尺寸和资料相同,按正应力强度条件,(B )AB(a )dD Ed dD E +=⨯+12222(b)第六章 弯曲变形一、是非判断题6.1正弯矩发生正转角,负弯矩发生负转角. ( ×)6.2 弯矩最年夜的截面转角最年夜,弯矩为零的截面上转角为零. ( × )6.3 弯矩突变的处所转角也有突变. ( × )6.4 弯矩为零处,挠曲线曲率必为零. ( ∨ )6.5 梁的最年夜挠度必发生于最年夜弯矩处. ( × )二、填空题6.1 梁的转角和挠度之间的关系是 .6.2 梁的挠曲线近似微分方程的应用条件是 等直梁、线弹性范围内和小变形.6.3 画出挠曲线的年夜致形状的根据是 约束和弯矩图.判断挠曲线的凹凸性与拐点位置的根据是 弯矩的正负;正负弯矩的分界处.6.4 用积分法求梁的变形时,梁的位移鸿沟条件及连续性条)()(,x w x =θ件起确定积分常数的作用.6.5 梁在纯弯时的挠曲线是圆弧曲线,但用积分法求得的挠曲线却是抛物线,其原因是用积分法求挠曲线时,用的是挠曲线近似方程.6.6 两悬臂梁,其横截面和资料均相同,在梁的自由端作用有年夜小相等的集中力,但一梁的长度为另一梁的2倍,则长梁自由真个挠度是短梁的8倍,转角又是短梁的4倍.6.7 应用叠加原理的条件是线弹性范围内和小变形.6.8 试根据填题6.8图所示载荷及支座情况,写出由积分法求解时,积分常数的数目及确定积分常数的条件.积分常数6个;支承条件w A = 0,θA = 0,w B = 0.连续条件是w CL = w CR ,w BL = w BR,θBL = θBR.6.9试根据填题6.9图用积分法求图示挠曲线方程时,需应用的支承条件是w A = 0,w B = 0,w D = 0;连续条件是w CL = w CR ,w BL = w BR,θBL = θBR.填题图填题图一、是非判断题7.1纯剪应力状态是二向应力状态. (∨)7.2 一点的应力状态是指物体内一点沿某个方向的应力情况.(×)轴向拉(压)杆内各点均为单向应力状态. (∨)7.4单位体最年夜正应力面上的切应力恒即是零. (∨)7.5 单位体最年夜切应力面上的正应力恒即是零. (×)7.6 等圆截面杆受扭转时,杆内任一点处沿任意方向只有切应力,无正应力. (×)7.7 单位体切应力为零的截面上,正应力必有最年夜值或最小值. (×)7.8 主方向是主应力所在截面的法线方向. (∨)7.9 单位体最年夜和最小切应力所在截面上的正应力,总是年夜小相等,正负号相反.(×)一点沿某方向的正应力为零,则该点在该方向上线应变也必为零. (×) 二、填空题7.1 一点的应力状态是指过一点所有截面上的应力集合,一点的应力状态可以用单位体和应力圆暗示,研究一点应力状态的目的是解释构件的破坏现象;建立复杂应力状态的强度条件.7.2 主应力是指主平面上的正应力;主平面是指τ=0的平面三对相互垂直的平面上τ= 0的单位体.7.3 对任意单位体的应力,那时是单向应力状态;当时是二向应力状态;那时是三向应力状态;那时是纯剪切应力状态.7.4 在二个主应力相等的情况下,平面应力状态下的应力圆退化为一个点圆;在纯剪切情况下,平面应力状态下的应力圆的圆心位于原点;在单向应力状态情况下,平面应力状态下的应力圆与τ轴相切.7.5 应力单位体与应力圆的对应关系是:点面对应;转向相同;转角二倍.三个主应力中有二个不为0三个主应力都不为0单位体各正面上只有切应力7.6 对图示受力构件,试画出暗示A 点应力状态的单位体.C .A. 15 MPaB. 65 MPaC. 40 MPaD. 25 MPa图示各单位体中(d )为单向应力状态, (a )为纯剪应力状态.(a) (b) (c) (d)7.3 单位体斜截面上的正应力与切应力的关系中A . A. 正应力最小的面上切应力必为零; B. 最年夜切应力面上的正应力必为零; C. 正应力最年夜的面上切应力也最年夜; D. 最年夜切应力面上的正应力却最小.第八章组合变形一、是非判断题8.1 资料在静荷作用下的失效形式主要有脆性断裂和塑性屈服两种. (∨)8.2 砖、石等脆性资料的试样在压缩时沿横截面断裂.(×)8.3 在近乎等值的三向拉应力作用下,钢等塑性资料只可能发生断裂. (∨)8.4 分歧的强度理论适用于分歧的资料和分歧的应力状态.(∨)8.5 矩形截面杆接受拉弯组合变形时,因其危险点的应力状态是单向应力,所以不用根据强度理论建立相应的强度条件. ( ∨ )8.6 圆形截面杆接受拉弯组合变形时,其上任一点的应力状态都是单向拉伸应力状态.( ×)8.7拉(压)弯组合变形的杆件,横截面上有正应力,其中性轴过形心. (×)8.8设计受弯扭组合变形的圆轴时,应采纳分别按弯曲正应力强度条件及扭转切应力强度条件进行轴径设计计算,然后取二者中较年夜的计算结果值为设计轴的直径.(×)8.9 弯扭组合圆轴的危险点为二向应力状态.(∨)8.10立柱接受纵向压力作用时,横截面上只有压应力.偏心压缩呢?(×)二、填空题8.1铸铁制的水管在冬季常有冻裂现象,这是因为σ1>0且远远年夜于σ2,σ3;σbt 较小.8.2 将沸水倒入厚玻璃杯中,如果发生破坏,则必是先从外侧开裂,这是因为外侧有较年夜拉应力发生且σbt 较小.8.3 弯扭组合构件杆件资料应为8.4塑性资料制的圆截面折杆及其受力如图所示,杆的横截面面积为A ,抗弯截面模量为W ,则图(a)的危险点在A (b)的危险点在AB 段内任意截面的后边缘点,对应的强度条件为;试分别画出两图危险点的应力状态.所有受( × )[]σ≤+Z W Fa Fl 22)()([]σ≤Z[]σ≤ F(b)(a)C上下在临界载荷作用下,压杆既可以在直线状态坚持平衡,也可引起压杆失稳的主要原因是外界的干扰力. (×)所有两端受集中轴向力作用的压杆都可以采纳欧拉公式计算其临界压力. ( × )两根压杆,只要其资料和柔度都相同,则他们的临界力和临界应力也相同. ( × )临界压力是压杆丧失稳定平衡时的最小压力值.( ∨ )用同一资料制成的压杆,其柔度(长细比)愈年夜,就愈容易失稳.( ∨ )9.8 只有在压杆横截面上的工作应力不超越资料比例极限的前提下,才华用欧拉公式计算其临界压力. ( × )9.9 满足强度条件的压杆纷歧定满足稳定性条件;满足稳定性条件的压杆也纷歧定满足强度条件.( ∨ )低碳钢经过冷作硬化能提高其屈服极限,因而用同样的方法也可以提高用低碳钢制成的细长压杆的临界压力. ( ×)二、填空题 压杆的柔度λ综合地反映了压杆的对临界应力的影响. 柔度越年夜的压杆,其临界应力越小,越容易失稳.长度(l ),约束(μ),横截面的形状和年夜小(i )有应力集中时22)(l EI F cr μπ=影响细长压杆临界力年夜小的主要因素有E ,I ,μ,l . 如果以柔度λ的年夜小对压杆进行分类,则当λ≥λ1的杆称为年夜柔度杆,当λ2 <λ<λ1的杆称为中柔度杆,当λ≤λ2的杆称为短粗杆.年夜柔度杆的临界应力用欧拉公式计算,中柔度杆的临界应力用经验公式计算,短粗杆的临界应力用强度公式计算.两端为球铰支承的压杆,其横截面形状分别如图所示,试画出压杆失稳时横截面绕其转动的轴. 两根细长压杆的资料、长度、横截面面积、杆端约束均相同,一杆的截面形状为正方(矩)形,另一杆的为圆形,则先丧失稳定的是圆截面的杆. 三、选择题9.1 图示a ,b ,c,d 四桁架的几何尺寸、圆杆的横截面直径、资料、加力点及加力方向均相同.关于四行架所能接受的最年夜外力F Pmax 有如下四种结论,则正确谜底是A .(a)(c)(e)22λπσE cr =λσb a cr -=)(cr σσσ=I min 的轴34144126412222244πππππ=⨯⨯⨯⨯==d d a a d a I I R S / RS I I >∴(A(B(C(D9.2同样资料、同样截面尺寸和长度的两根管状细长压杆两端由球铰链支承,接受轴向压缩载荷,其中,管a内无内压作用,管b内有内压作用.关于二者横截面上的真实应力σ(a)与σ(b)、临界应力σcr(a)与σcr(b)之间的关系,有如下结论.则正确结论是.(A)σ(a)>σ(b),σcr(a)=σcr(b);(B)σ(a)=σ(b),σcr(a)<σcr(b)(C)σ(a)<σ(b),σcr(a)<σcr(b); (D)σ(a)<σ(b),σcr(a)=σcr(b)9.3 提高钢制细长压杆承载能力有如下方法.试判断哪一种是最正确的.(A)减小杆长,减小长度系数,使压杆沿横截面两形心主轴方向的长细比相等;(B)增加横截面面积,减小杆长;(C)增加惯性矩,减小杆长;(D)采纳高强度钢.A正确谜底是A .9.4 圆截面细长压杆的资料及支领情况坚持不变,将其横向及轴向尺寸同时增年夜1倍,压杆的A .(A )临界应力不变,临界力增年夜;(B )临界应力增年夜,临界力不变;(C )临界应力和临界力都增年夜; (D )临界应力和临界力都不变.第十章 动载荷一、是非题只要应力不超越比例极限,冲击时的应力和应变仍满足虎克定律. (∨)凡是运动的构件都存在动载荷问题. (×) 能量法是种分析冲击问题的精确方法. (× ) 不论是否满足强度条件,只要能增加杆件的静位移,就能提高其抵当冲击的能力.(×) 二、填空题10.1 图示各梁的资料和尺寸相同,但支承分歧,受相同的冲击载荷,则梁内最年夜冲击应力由年夜到小的排列顺序是(a)、(c)、(b).应在弹性范围内22λπσE cr =dlil ⋅=⋅=μμλ4夜一倍时,梁内的最年夜动应力增年夜倍?当H 增年夜一倍时,梁内的最年夜动应力增年夜倍?当L 增年夜一倍时,梁内的最年夜动应力增年夜倍?当b 增年夜一倍时,梁内的最年夜动应力增年夜倍?11.1 构件在交变应力下的疲劳破坏与静应力下的失效实质是相同的. ( ×)11.2 通常将资料的耐久极限与条件疲劳极限统称为资料的疲劳极限. ( ∨)11.3 资料的疲劳极限与强度极限相同. ( × )11.4 资料的疲劳极限与构件的疲劳极限相同. ( ×)(a)(b)(c)P121-lHEPb b Pl Pl HEb WPl EI Pl H H K st stst d d 32343223343===∆==max max max σσσ 1)P 增年夜一倍时: 2)H 增年夜一倍时:3)l 增年夜一倍时:4)b 增年夜一倍时: maxmax'd d σσ21=。
材料力学1 第五版 孙训方 第二章 拉伸压缩、剪切
F
F
(Sign convention for axial force)
m
m FN
(1)若轴力的指向背离截面,
则规定为正的, F
称为拉力(tensile force). (2)若轴力的指向指向截面,
则规定为负的,称为压力 (compressive force). FN
m
m
F
m
(Axial Tension & Compression,shear)
F
m
F
(Axial Tension & Compression,shear) m 若取 右侧为研究对 象,则在截开面上的轴 力与部分左侧上的轴力 F 数值相等而指向相反. m F m F
FN
m
m FN m F
(Axial Tension & Compression,shear)
2、轴力符号的规定
B F
C
2
Fx 0 Fy 0
FN1 cos45 FN 2 0 FN1 sin 45 F 0 FN 2 20kN FN1 28.3kN
FN 1
y
FN 2 45° B
F
西工大
x
FN 1 28.3 103 1 90106 P a 90MP a A1 202 106 4 FN 2 20103 6 1 2 89 10 Pa 89MPa 6 A2 15 10
(Axial Tension & Compression,shear)
例题2-2
A 1
45°
图示结构,试求杆件AB、CB的应力。 已知 F=20kN;斜杆AB为直径20mm的圆截面 杆,水平杆CB为15×15的方截面杆。 解:1、计算各杆件的轴力。(设斜杆为1杆,水 平杆为2杆)用截面法取节点B为研究对象
材料力学习题01拉压剪切
拉伸与压缩一、 选择题 (如果题目有5个备选答案选出其中2—5个正确答案,有4个备选答案选出其中一个正确答案。
)1.若两等直杆的横截面面积为A ,长度为l ,两端所受轴向拉力均相同,但材料不同,那么下列结论正确的是( )。
A .两者轴力相同应力相同B .两者应变和仲长量不同C .两者变形相同D .两者强度相同E .两者刚度不同2.一圆截面直杆,两端承受拉力作用,若将其直径增大一倍,其它条件不变,则( )。
A .其轴力不变B .其应力将是原来的1/4C .其强度将是原来的4倍D .其伸长量将是原来的1/4E .其抗拉强度将是原来的4倍3.设ε和1ε分别表示拉压杆的轴向线应变和横向线应变,μ为材料的泊松比,则下列结论正确的是( )。
A .εεμ1=B .εεμ1-=C .εεμ1= D .εεμ1-= E .常数时,=≤μσσ p 4.钢材经过冷作硬化处理后,其性能的变化是( )。
A .比例极限提高 B .屈服极限提高C .弹性模量降低D .延伸率提高E .塑性变形能力降低5.低碳钢的拉伸σ-ε曲线如图1-19所示若加载至强化阶段的C 点,然后卸载,则应力回到零值的路径是( )。
A .曲线cbaoB .曲线cbf (bf ∥oa )C .直线ce (ce ∥oa )D .直线cd (cd ∥o σ轴)6.低碳钢的拉伸σ-ε曲线如图l —19,若加载至强化阶段的C 点时,试件的弹性应变 和塑性应变分别是( )。
A .弹性应变是ofB .弹性应变是oeC .弹性应变是edD .塑性应变是ofE .塑性应变是oe7.图l-2l 表示四种材料的应力—应变曲线,则: (1)弹性模量最大的材料是( );(2)强度最高的材料是( ); (3)塑性性能最好的材料是( )。
8.等截面直杆承受拉力,若选用三种不同的截面形状:圆形、正方形、空心圆,比较材料用量,则( )。
A .正方形截面最省料B .圆形截面最省料C .空心圆截面最省料D .三者用料相同9.若直杆在两外力作用下发生轴向拉伸(压缩)变形,则此两外力应满足的条件是 A .等值 B .反向 C .同向D .作用线与杆轴线重合E .作用线与轴线垂直 10.轴向受拉杆的变形特征是( )。
中南大学材料力学练习题答案1
轴 向 拉 压 与 剪 切 (一)一、概念题1.C ;2.B ;3.B ;4. C ;5.B6.︒=0α的横截面;︒=90α的纵向截面;︒=45α的斜截面;︒=0α的横截面和︒=90α的纵向截面 7.230MPa ;325Mpa 8.0.47%;0.3%9.26.4%;65.2%;塑性材料10.杯口状;粒状;垂直;拉;成︒45左右的角;切 11.s σ;ssn σ;b σ;bbn σ二、计算题1.2.解:横截面上应力 M P a Pa A F N 10010100102010200643=⨯=⨯⨯==-σAB 斜截面(︒=50α):M P aM P aAB AB2.49100sin 21002sin 23.4150cos 100cos 22=︒===︒⨯==αστασσBC 斜截面(︒-=40α):MPaMPaBC BC2.49)80sin(21002sin 27.58)40(cos 100cos 22-=︒-===︒-⨯==αστασσ杆内最大正应力和最大切应力分别为:M P aM P a502100max max ====στσσ3.解:根据活塞杆的强度条件确定最大油压P 1:62112121013044)(⨯⨯=-d p d D ππ M P a p 1.181=根据螺栓的强度条件确定最大油压P 2:62221210110644)(⨯⨯⨯=-d p d D ππ M P a p 5.62=所以最大油压MPa p p 5.62==4.解: 研究A 轮,由静力平衡方程得 N A B AB F kN W F ===604 查型钢表得角钢的横截面面积 2410058.4m A -⨯=[]σσ<=*⨯⨯==-MPa AF NAB AB93.7310058.421060243所以斜杆AB 是安全的。
5.解:杆的轴力图为4923maxmax 105101004107.15-⨯=⨯⨯⨯===d AEF ENt t πσεmm d 20=6.解:(1)MPa Pa E 7351035.70035.01021089=⨯=⨯⨯==εσ(2)mmm ll l ll l 7.831037.810035.1)()(2222222=⨯=-=-+=-+∆=∆-ε(3)A F N σ=N F F N P 3.965.10037.834001.0107352sin 226=⨯⨯⨯⨯⨯==πθ轴 向 拉 压 与 剪 切 (二)一、概念题1. D ;2.A ;3.B ;4.D ;5.D ;6.D ;7.C 8.AP 25(压);)(27←EAPa9.[]τπ≤dhP;[]bs d D Pσπ≤-)(422;[]σπ≤24dP二、计算题1. 如图示,钢缆单位长度所受重力为γA q =,则x 截面上的轴力为 P x A P qx x F N +=+=γ)(。
材料力学拉压剪切习题
第二章 拉伸、压缩与剪切一、是非题2.1 使杆件产生轴向拉压变形的外力必须是一对沿杆件轴线的集中力。
( )2.2 轴力越大,杆件越容易被拉断,因此轴力的大小可以用来判断杆件的强度。
( )2.3 内力是指物体受力后其内部产生的相互作用力。
( )2.4 同一截面上,σ必定大小相等,方向相同。
( )2.5 杆件某个横截面上,若轴力不为零,则各点的正应力均不为零。
( )2.6 δ、ψ 值越大,说明材料的塑性越大。
( )2.7 研究杆件的应力与变形时,力可按力线平移定理进行移动。
( )2.8 杆件伸长后,横向会缩短,这是因为杆有横向应力存在。
( )2.9 线应变 ε 的单位是长度。
( )2.10 轴向拉伸时,横截面上正应力与纵向线应变成正比。
( )2.11 只有静不定结构才可能有温度应力和装配应力。
( )2.12 在工程中,通常取截面上的平均剪应力作为联接件的名义剪应力。
( )2.13 剪切工程计算中,剪切强度极限是真实应力。
( )2.14 轴向压缩应力σ与挤压应力σbs 都是截面上的真实应力。
( )二、选择题2.15 变形与位移关系描述正确的是( )A. 变形是绝对的,位移是相对的B. 变形是相对的,位移是绝对的C. 两者都是绝对的D. 两者都是相对的2.16 轴向拉压中的平面假设适用于( )A. 整根杆件长度的各处B. 除杆件两端外的各处C. 距杆件加力端稍远的各处2.17 变截面杆如图,设F 、F 12、F 3分别表示杆件中截面1-1、2-2、3-3上的内力,则下列结论中哪些是正确的( )。
题2. 17图A. F 1 ≠ F 2 ,F 2 ≠ F 3B. F 1 = F 2 ,F 2 > F 3C. F 1 = F 2 ,F 2 = F 3D. F 1 = F 2 ,F 2 < F 32.18 影响杆件工作应力的因素有( );影响极限应力的因素有( )。
A. 载荷B. 材料性质C. 截面尺寸D. 工作条件2.19 图示三种材料的应力—应变曲线, 则弹性模量最大的材料是( );强度最高的材料是( );塑性性能最好的材料是( )。
材料力学 拉压 剪切 扭转 弯曲
• 近似地认为应力、应变服
从胡克定律: =E
天津大学材料力学
低碳钢的压缩实验
天津大学材料力学
铸铁的压缩实验
天津大学材料力学
抗压强度σbc > 抗拉强度σbt
§1.5 许用应力和强度条件
1、极限应力 u
塑性材料: u = s、 0.2 脆性材料: u = bt、 bc
1、横截面上的应力
拉伸实验
实验结果观察:
① 纵向线伸长、横向线缩短; ② 横向线保持直线,仍与纵向线垂直; ③ 每根纵向线的伸长都相等。
天津大学材料力学
平截面假设
轴向拉、压杆件,变形前原为平面的横截面,变形后仍保 持为平面,且仍垂直于轴线。
横截面上应力均匀分布
FN
FN
A
正应力(法向应力):沿截面法线方向。
A0
材料学中规定,δ10≥5%的材料为塑性材料,δ10<5%的材料为脆性材料。
低碳钢Q235的 ψ=60%,10=26%。
天津大学材料力学
• 多数塑性材料没有明 显的屈服阶段
• 名义屈服极限0.2
天津大学材料力学
铸铁的拉伸实验
天津大学材料力学
铸铁的拉伸实验结果分析:
• 试件断口平齐、粗糙, 几乎没有塑性变形 ——脆性断裂
最大压应力。
c max
FNAD A1
FNAD
π
d
2 1
95.5M Pa
4
t max
FNBC A2
FNBC
π
d
2 2
191.0M Pa
4
2.利用强度条件校核杆的强度。
材料力学自测题一
材料力学自测题一第一章绪论第二章拉伸、压缩与剪切一、基本概念1、构件;2、强度;3、刚度;4、稳定性;5、承载能力;6、变性固体;7、静荷载;8、动荷载;9、外力;10、内力;11、应力;12、正应力;13、切应力;14、变形;15、位移;16、弹性变形;17、塑性变形;18、应变;19、正应变;20、切应变;21、轴向拉压;22、剪切;23、扭转;24、弯曲;25、轴向拉压的力学模型;26、轴力;27、材料力学性能;28、弹性极限;29、屈服极限;30、强度极限;31、弹性模量;32、伸长率;33、断面收缩率;34、名义屈服极限;35、失效;36、安全系数;37、许用应力;38、强度条件;39、泊松比;40、超静定;41、温度应力;42、装配应力;43、应力集中;44、圣维南原理;45、剪切面;46、挤压面。
二、基本理论1、连续性假设;2、均匀性假设;3、各向同性假设;4、小变形假设;5、轴向拉压横截面上的应力计算公式;6、轴向拉压斜截面上的应力计算公式;7、胡克定律;8、轴向拉压的强度条件;9、轴向拉压强度条件的三个应用;10、轴向拉压变形计算公式;11、剪切强度条件;12、挤压强度条件。
三、基本方法1、截面法;2、平衡法。
四、典型题:P16-17 例2-2 ,P29-31,例,2-3 ,例2-4 ,P33-35,例2-6 ,例2-7 ,P49-52,,例,2-14 ,例2-15 ,例,2-16 ,例2-17 。
P53-70 习题2-1,习题2-2,习题2-4,习题2-6,习题2-7,习题2-10,习题2-11,习题2- 12,习题2-13,习题2- 14,,习题2-17,习题2- 26,习题2-30,习题2- 38,习题2- 39,习题2-55,习题2- 56,习题2-57,习题2- 63,习题2-64 。
一、判断题:(对√,错ⅹ)1、材料力学的主要研究对象是等截面直杆。
( )2、材料力学研究的问题仅限于线弹性、小变形。
材料力学习题
α α(a) α(b) 第一章 绪论是非判断题1.材料力学是研究构件承载能力的一门学科。
( ) 2.材料力学的任务是尽可能使构件安全地工作。
( ) 3.材料力学主要研究弹性范围内的小变形情况。
( )4.因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
( ) 5.材料力学研究的内力是构件各部分间的相互作用力。
( )6.用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。
( ) 7.压强是构件表面的正应力。
( ) 8.应力是横截面上的平均内力。
( )9.材料力学只研究因构件变形引起的位移。
( ) 10.构件内一点处各方向线应变均相等。
( )11.切应变是变形后构件中任意两根微线段夹角角度的变化量。
( ) 12.构件上的某一点,若任何方向都无应变,则该点无位移。
( ) 13.材料力学只限于研究等截面直杆。
( )14.杆件的基本变形只是拉(压)、剪、扭、和弯四种,如果还有另一种变形,必定是这四种变形的某种组合。
( )填空题15.图中所示两个微元体受力变形后如虚线所示,图(a)、(b)所示微元体的切应变分别是=a γ______;=b γ_______。
16.构件的承载能力包括____________、___________和____________三个方面;根据材料的主要性能作如下三个基本假设___________、___________、____________。
17.构件的强度是指___________________________________________________________;刚度是指_________________________________________________________________________;稳定性是指_______________________________________________________________________。
《材料力学》讲义笔记习题答案(1)
课时一截面法1.基础知识题1.为了保证工程构件的正常工作,构件应满足、、。
解:强度条件、刚度条件、稳定性条件。
题2.在材料力学中,变形固体的三个基本假设为:、、。
解:连续性假设、均匀性假设、各向同性假设。
题3.在材料力学中,变形的四种基本形式为、、、。
解:拉压、剪切、扭转、弯曲。
2.截面法题1.杆件受力如图所示,则11-截面的轴力为,22-截面的轴力为。
解:11-截面:,11000N F +=,1100N F N⇒=-22-截面:,2100100N F +=,20N F N⇒=题2.材料力学中求内力的基本方法是。
解:截面法。
考点重要程度占分常见题型1.内容概要★★★04填空2.截面法必考基础知识填空100N ,1N F 11截面法:截、取、代、平22100NN,2F 100N21N200100N100N21x解:2234B q a a qa a F a ⨯⨯+⨯=⨯()2B F qa ⇒=↑22S F qa qa +=0S F ⇒=222qa a M qa a⨯+=⨯()22M qa ⇒=答案:0S F =,22M qa =课时一练习题1.材料力学的主要任务是解决零件设计中的强度问题、问题和问题。
2.材料力学中,对可变形固体作出了三个基本假设,即连续性、均匀性和假设。
3.下列变形中,不属于基本变形的是()。
.A 扭转.B 剪切.C 斜弯曲.D 拉伸与压缩4.在材料力学中,分析计算杆件内力采用的是()。
.A 几何法.B 解析法.C 截面法.D 矢量法5.如图所示结构,截面11-、22-、33-的轴力分别为、、。
6.如图所示外伸梁,截面B 的内力分别为:=S F ,M =。
S F :使隔离体顺时针转动为正M :下侧受拉为正qa2MCDBqa 2S F q2F qa =ABCDa2aaqABCDaaa2qa 23123140kN 20kN30kN课时二拉压变形1.轴力图题1.如图所示杆件,画出轴力图解题思路(考试时不必写出)(1)11-截面:(2)22-截面:(3)33-截面:解:考点重要程度分值常见题型1.轴力图必考58 作图题2.应力、应变与变形812 大题3.应力应变曲线★★★03填空、选择213140kN30kN20kN2350kNx1150kN1N F ,,150N F kN=,2,2504010N N F F kN=+⇒=3320020N N F F kN+=⇒=-,,50kN40kN,2N F 2220kN3N F ,3350kN 10kN+-+xNF2.应力、应变与变形题1.图示阶梯形杆221212,10,200,100,40,200AC P kN l l mm A mm A mm E GPa ======,求:(1)绘制轴力图;(2)确定杆横截面上的最大正应力是多少?处于哪一段?(3)AC 杆轴向总变形ACL ∆解:(1)(2)3861301031030010010σ-⨯===⨯=⨯ABN ABF Pa MPa A 38621010 2.5102504010σ-⨯===⨯=⨯BCN BCF Pa MPa A max 300σσ==AB MPa ,处于AB 段(3)2112BC AB N N AC AB BC F l F l l l l EA EA ⋅⋅∆=∆+∆=+333396963010200101010200102001010010200104010m ----⎛⎫⨯⨯⨯⨯⨯⨯=+ ⎪⨯⨯⨯⨯⨯⨯⎝⎭45.5100.55m mm -=⨯=(1)应力:σ=N F A(单位面积上的内力)(2)应变:NF E EAσε==(单位长度变形)(3)变形:N F l l l EAε∆=⋅=6110=MPa Pa 9110=GPa Pa3P2PPCBA1l 2l [][][]22444σσππσσπ⎧=≤⇒⎪⎪⎪⎪⇒≥⇒⎨⎪⎪⋅⎪≤⇒⎪⎩N N NF d F d d F 强度校核截面尺寸设计载荷设计(以圆截面杆为例)()2242σππ===N N NF F F A d d (:E 弹性模量)30kN 10kN++F题2.刚性杆ACB 由圆杆CD 悬挂在C 点,B 端作用集中力25P kN =。
材料力学习题册概念答案
第一章绪论一、是非判断题1.1资料力学的研究方法与理论力学的研究方法完整相同。
(×) 1.2内力只作用在杆件截面的形心处。
(×) 1.3杆件某截面上的内力是该截面上应力的代数和。
(×) 1.4确立截面内力的截面法,合用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或随意截面的广泛状况。
(∨) 1.5依据各向同性假定,可以为资料的弹性常数在各方向都相同。
(∨) 1.6依据均匀性假定,可以为构件的弹性常数在各点处都相同。
(∨) 1.7同一截面上正应力σ与切应力τ必互相垂直。
(∨) 1.8同一截面上各点的正应力σ必然大小相等,方向相同。
(×) 1.9同一截面上各点的切应力τ必互相平行。
(×)1.10应变分为正应变ε和切应变γ。
(∨)1.11应变为无量纲量。
(∨) 1.12若物体各部分均无变形,则物体内各点的应变均为零。
(∨) 1.13若物体内各点的应变均为零,则物体无位移。
(×) 1.14均衡状态弹性体的随意部分的内力都与外力保持均衡。
(∨) 1.15题 1.15 图所示构造中, AD 杆发生的变形为曲折与压缩的组合变形。
(∨) 1.16题 1.16 图所示构造中, AB 杆将发生曲折与压缩的组合变形。
(×)FFA A CBBCD D题 1.15 图题 1.16 图二、填空题1.1资料力学主要研究杆件受力后发生的变形,以及由此产生的应力,应变。
1.2拉伸或压缩的受力特色是外力的协力作用线经过杆轴线,变形特色是。
1沿杆轴线伸长或缩短1.3剪切的受力特色是受一平等值,反向,作用线距离很近的力的作用,变形特色是沿剪切面发生相对错动。
1.4扭转的受力特征是外力偶作用面垂直杆轴线,变形特色是随意二横截面发生绕杆轴线的相对转动。
1.5曲折的受力特色是外力作用线垂直杆轴线,外力偶作用面经过杆轴线,变形特征是梁轴线由直线变为曲线。
1.6组合受力与变形是指包含两种或两种以上基本变形的组合。
《材料力学》第1到8章复习题
材料力学第一章复习题1,下列结论中正确的是()A,内力是应力的代数和B,应力是内力的平均值C应力是内力的集度D内力必大于应力2. 一对自平衡的外载产生杆件的哪种基本变形只对杆件的某一局部存在影响。
( )A 拉伸与压缩B 剪切C扭转D弯曲3,已设计好的构件,若制造时仅对其材料进行更换通常不会影响其( )A稳定性 B 强度C几何尺寸D刚度4. 根据均匀性假设,可认为构件的下列各量中的( )在各点处都相同A屈服极限B材料的弹性常数C应力D应变第二章轴向拉伸压缩与剪切挤压的实用计算1.塑性材料的极限应力是A屈服极限B强度极限c比例极限D弹性极限2.脆性材料的极限应力是。
A屈服极限B比例极限C强度极限D弹性极限3.受轴向拉压的杆件内最大切应力为80 Mpa,则杆内最大正应力等于A160Mpa B 80Mpa C40Mpa D20Mpa4.在低碳钢Q235的拉伸试验中,材料暂时失去了抵抗变形能力是发生在哪个阶段A弹性B屈服C强化D缩颈断裂5材料进入强化阶段卸载,在室温中放置几天再重新加载可以获得更高的()。
A比例极限B强度极限C弹性变形D塑性变形6直径为d的圆截面钢杆受轴向拉力作用,已知其纵向线应变为e,弹性模量为E,杆轴力大小为()。
填空题(5.0分)7.在连接件上,剪切面和挤压面分别()于外力方向8.连接件剪切强度的实用计算中去,许用切应力是由( )9.插销穿过水平放置的平板上的圆孔,在其下端受拉力F作用。
该插销的剪切面面积和挤压面面积分别等于( a)。
填空题(5.0分)10.低碳钢拉伸试验中滑移线是( )造成的。
11.外力消失后,变形也消失,这种变形为( )12.当延伸率小于( )时为脆性材料,当延伸率大于( )时为塑性材料13.一个结构中有三根拉压杆,设由这三根杆的强度条件确定的结构许用载荷分别为F1、F2、F3,且F1<F2<F3,则该结构的实际许可载荷[F]为判断题(5.0分)14低碳钢的抗拉能力小于抗剪能力()A对 B 错15. 试求图中1-1,2-2,3-3截面上的轴力,并作轴力图。
《材料力学》习题集
《材料力学》第01章在线测试第一题、单项选择题(每题1分,5道题共5分)1、材料力学的研究对象是A、板B、壳C、实体D、杆件2、由于什么假设,可以将微元体的研究结果用于整个构件。
A、连续性假设B、均匀性假设C、各向同性假设D、小变形假设3、小变形假设指的是A、构件的变形很小B、构件没有变形是刚性的C、构件的变形可以忽略不计D、构件的变形比其几何尺寸小得多4、材料安全正常地的工作时允许承受的最大应力值是A、比例极限B、屈服极限C、强度极限D、[σ]5、长度、横截面和轴力相同的钢拉杆和铝拉杆的关系是两者的A、轴力和应力相同B、允许荷载相同C、纵向线应变相同D、伸长量相同第二题、多项选择题(每题2分,5道题共10分)1、各向同性假设是指材料在各个方向A、弹性模量具有相同的值B、变形相同C、具有相同的强度D、应力相同E、应力和变形的关系是相同2、下列材料可以认为是各向同性的是A、钢材B、浇注质量很好的混凝土C、木材D、塑料E、竹材3、下列哪些变形属于基本变形?A、轴向拉伸B、轴向压缩C、扭转D、偏心压缩E、剪切4、杆件的几何特征是A、长度远远大于截面的宽度B、长度远远大于截面的高度C、杆件三个方向的尺寸几乎一样大D、后度远远小于表面尺寸E、细长的构件5、下列哪些因素与材料的力学性质有关?A、构件的强度B、构件的刚度C、构件的稳定性D、静定构件的内力E、静定构件的反力第三题、判断题(每题1分,5道题共5分)1、同时受有多个外力作用的而引起的变形叫组合变形。
2、构件的刚度是指构件抵抗变形的能力。
3、杆件的轴线使其横截面形心的连线。
4、混凝土不能作为各向同性材料。
5、自然界中有一类物体,当外力解除后不留下任何残余变形,这类物体称为理想弹性体。
《材料力学》第02章在线测试第一题、单项选择题(每题1分,5道题共5分)1、拉压杆的受力特点是外力的合力作用线与杆的轴线A、平行B、相交C、垂直D、重合2、轴向压杆的变形特点是A、轴向伸长横向收缩B、轴向伸长横向伸长C、轴向收缩横向收缩D、轴向收缩横向伸长3、工程上常把延伸率大于多少的材料成为塑性材料?A、10%B、15%C、3%D、5%4、两根长度、容重相同的悬挂杆横截面面积分别为A2和A1,设N1、N2、σ1、σ2分别为两杆中的最大轴力和应力,则A、N1=N2、σ1=σ2B、N1≠N2、σ1=σ2C、N1=N2、σ1≠σ2D、N1≠N2、σ1≠σ25、一圆截面直杆,两端受的拉力相同,若将长度增大一倍其他条件不变,则下列结论错误的是A、轴力不变B、应力不变C、应变不变D、伸长量不变第二题、多项选择题(每题2分,5道题共10分)1、下列结果正确的是A、1MPa=1000000PaB、1MPa=1000000N/m2C、1MPa=1N/mm2D、1MPa=1N/m2E、1MPa=1000000N/mm22、低碳钢的拉伸图有哪四个阶段?A、弹性阶段B、比例阶段C、屈服阶段D、强化阶段E、颈缩阶段3、材料的极限应力是A、低碳钢是屈服极限B、其他塑性材料是名义屈服极限C、脆性材料是强度极限D、低碳钢是比例极限E、低碳钢是强度极限4、衡量材料强度的两个重要的指标是A、屈服极限B、强度极限C、比例极限D、弹性极限E、最大应力5、若两等直杆的横截面面积相同、长度不相同、两端受到的拉力相同,材料相同,那么两者A、轴力相同B、应力相同C、纵向线应变相同D、伸长量相同E、抗拉刚度相同第三题、判断题(每题1分,5道题共5分)1、应力分两种,即正应力和剪应力。
材料力学(金忠谋)第六版答案第01章
第一章 绪论1-1 求图示杆在各截面(I )、(II )、(III )上的内力,并说明它的性质.解:(a )I-I 截面: N = 20KN (拉)II-II 截面: N = -10KN (压)III-III 截面: N = -50KN (压)(b )I-I 截面: N = 40KN (拉)II-II 截面: N = 10KN (拉)III-III 截面: N = 20KN (拉)1-2 已知P 、M 0、l 、a ,分别求山下列图示各杆指定截面(I )、(II)上的内力 解:(a ):(I )截面:内力为零。
(II )截面:M = Pa (弯矩) Q = -P (剪力)(b ):(I )截面:θsin 31P Q =θs i n 61PL M =(II )截面:θsin 32P Q =θs i n 92PL M =(c ):(I )截面:LM Q 0-=021M M =(II )截面:LM Q 0-=031M M =1-3 图示AB 梁之左端固定在墙内,试求(1)支座反力,(2)1-1、2-2、3-3各横截面上的内力(1-1,2-2是无限接近集中力偶作用点.) 解:10110=⨯=A Y (KN )1055.110-=+⨯-=AM(KN-M )(1-1) 截面:10110=⨯=Q (KN )521110-=⨯⨯-=M(KN-M )(2-2)截面:10=Q (KN )055=-=M(KN-M )(2-3)截面:10=Q (KN )551110-=+⨯⨯-=M (KN-M )1-4 求图示挂钩AB 在截面 1-1、2-2上的内力. 解:(1-1)截面:P N 32=a P M ⋅=43(2-2)截面:P Q 32=a P M ⋅=321-5 水平横梁AB 在A 端为固定铰支座,B 端用拉杆约束住,求拉杆的内力和在梁1-1截面上的内力.解:(1)拉杆内力T :1230sin 0⨯=⨯⋅=∑P T MA10030sin 2100=⨯=T (KN )(拉)(2)(1-1)截面内力:Q 、N 、M :5030sin -=-=T Q (KN )6.8630cos -=-=T N (KN )(压)()2550.030sin =⨯=T M (KN-M )1-6 一重物 P =10 kN 由均质杆 AB 及绳索 CD 支持如图示,杆的自重不计。
材料力学复习题
《材料力学》复习部分一、轴的拉伸、压缩1、( )杆件所受到的轴力N 愈大,横截面上的正应力σ也一定愈大。
2、比较低碳钢和铸铁的拉伸实验结果,以下结论哪个是错误的( )A 、低碳钢拉伸经历线弹性阶段、屈服阶段、强化阶段和颈缩与破断阶段。
B 、低碳钢破断时有很大的塑性变形,其断口为杯状。
C 、铸铁拉伸经历线弹性阶段、屈服阶段、强化阶段。
D 、铸铁破断时没有明显的塑性变形,其断口呈颗粒状。
3、受轴向拉伸的杆件,在比例极限内受力,若要减小其纵向变形,则需改变杆件的抗拉刚试,即( )A 、增大EA 值;B 、减小EA 值;C 、增大EI 值;D 、减小EI 值。
4、图示低碳钢拉伸曲线上,对应C 点的弹性变形和塑必变形线段是( )。
A 、O 1O 2 OO 1B 、OO 1 O 1O 2C 、O 1O 2 O 1O 3D 、OO 2 OO 45、拉、压杆在外力和横截面积均相等的前提下比较矩形,正方形、圆形三种截面的应力大小,下列哪一项正确。
( )A 、σ矩=σ正=σ圆B 、σ矩>σ正>σ圆C 、σ矩=σ正>σ圆 D 、σ矩<σ正<σ圆6、受轴向拉伸的杆件,在比例极限内受力,若要减小其纵向变形,则需改变杆件的抗拉刚度,即增大EA 值。
( )7、对如图杆⑵,使用铸铁材料较为合理。
( )8、图示A 、B 、C 三杆,材料相同,承受相同的拉力;A 与B 等截面不等长,A 与C 等长但截面不等。
那么,对它们各截面正应力大小分析正确的是( )A 、 σA =σB =σC ;A 、 σcd ≠σcd’≠ σB ;B 、 σA =σB ≠σC ;D 、σA ≠σB ≠σC ;9、( )构件工作时,只要其工作应力大于其许用应力,则构件一定会发生强度破坏现象。
10、图示A 、B 、C 三杆,材料相同,承受相同的轴向拉力;A 与B 等截面不等长,A 与C 等长但截面不等。
那么,对它们的相对变形分析正确的是( )A 、因A 与C 等长,故εA =εC ;B 、εA ≠εB ≠εC ;C 、εA =εB11、图示A 、B 、C 三杆,材料相同,承受相同的拉力;A与B 等截面不等长,A 与C 等长但截面不等。
材料力学习题(00001)
材料力学习题仿真习题5.1 力学性能时,试件将( )。
5-1 当低碳钢试件的试验应力σ=σs(A)完全失去承载能力 (B)破断(C)发生局部颈缩现象 (D)产生很大的塑性变形5-2 图示为三种金属材料拉伸时的σ—ε曲线,则有( )。
(A)b强度高,c刚度大,a塑性好(B)a强度高,b刚度大,c塑性好(C)c强度高,b刚度大,a塑性好(D)无法判断5.2 拉伸和压缩5-3 图示轴向受力杆件,杆内最大拉力为( )。
(A)8kN (B)4kN(C)5kN (D)3kN=400mm2,CD部分5-4 在图示阶梯形杆件中,BC及DE部分的横截面面积A1=200mm2,杆内最大正应力为( )。
的横截面面积A2(A)125MPa (B)100MPa(C)200MPa (D)150MPa5-5 图示桁架,在外力P作用下,节点B的垂直位移和水平位移分别为( )。
5-6 如图,两根受拉杆件,若材料相同,杆长L2=2L1,横截面积A2=2A1,则两杆的伸长△L和轴向线应变ε之间的关系应为( )。
(A)△L2=△L1,ε2=ε1(B)△L2=2△L1,ε2=ε1(C)△L2=2△L1,ε2=2ε1(D)5-7 变截面杆受集中力P作用,如图所示。
设F1、F2和F3分别表示杆件中截面1-1、2-2和3-3上沿轴线方向的内力值,则下列结论中正确的是( )。
(A)F1=F2=F3(B)F1=F2≠F3(C)F1≠F2=F3(D)F1≠F2≠F35-8 等截面直杆受力P作用发生轴向拉伸变形。
已知横截面面积为A,则横截面上的正应力和45°斜截面上的正应力分别为( )。
5-9 图示受力杆件的轴力图有以下四种,其中正确的是( )。
5-10 一等截面直杆的材料为低碳钢,E=2×105MPa,杆的横截面面积A=500mm2,杆长L=1m,加轴向拉力P=150kN后,测得伸长△L=4mm,则卸载后杆的残余变形为( )。
(A)0 (B)1.5mm (C)2.5mm (D)5.5m5-11 图示结构中二杆的材料相同,横截面面积分别为A和2A,则该结构的许用载荷[P]为( )。
工程力学复习题(材料力学部分)
工程力学作业(材料力学)v1.0 可编辑可修改第一、二章 拉伸、压缩与剪切一、填空题1、铸铁压缩试件,破坏是在 截面发生剪切错动,是由于引起的。
2、a 、b 、c 三种材料的应力-应变曲线如图所示。
其中强度最高的材料 是 ,弹性模量最小的材料是 ,塑性最好的材料是 。
3、图示结构中杆1和杆2的截面面积和拉压许用应力均相同,设载荷P 可在刚性梁AD 上移动。
结构的许可载荷[ P ]是根据P 作用于 点处确定的。
aa1 2 PCDBAOσεa bc4、五根抗拉刚度EA 相同的直杆铰接成如图所示之边长为a 的正方形结构,A 、B 两处受力 P 作用。
若各杆均为小变形,则A 、B 两点的相对位移∆AB = 。
5、图示结构中。
若1、2两杆的EA 相同,则节点A 的竖向位移∆Ay = ,水平位移为∆Ax = 。
6、铆接头的连接板厚度t = d ,则铆钉的切应力τ为 , 挤压应力σ bs 为 。
P / 2 P / 2二、选择题1、当低碳钢试件的试验应力σ=σs时,试件将:(A) 完全失去承载能力; (B) 破断;(C) 发生局部颈缩现象; (D) 产生很大的塑性变形。
正确答案是。
2、图示木接头,水平杆与斜杆成α角,其挤压面积为A bs为:(A)b h;(B)b h tan α;(C)b h/ cos α;(D)b h /(cos α sin α)。
3、图示铆钉联接,铆钉的挤压应力为:(A)2 P / ( π d2 );(B)P / (2 d t );(C)P/ (2 b t );(D)4 P/ ( π d2 )。
正确答案是。
4、等截面直杆受轴向拉力P 作用而产生弹性伸长,已知杆长为l ,截面积为A ,材料弹性模量为E ,泊松比为ν,拉伸理论告诉我们,影响该杆横截面上应力的因素是:(A )E 、ν、P ; (B )l 、A 、P ; (C )l 、A 、E 、ν、P ; (D )A 、P 。
正确答案是 。
5、等截面直杆受轴向拉力P 作用而产生弹性伸长,已知杆长为截面积为A ,则横截面上的正应力和45º斜截面上的正应力分别为:(A )P / A ,P / ( 2 A ); (B )P / A ,P / ( 21/ 2A );(C )P / ( 2 A ),P / ( 2 A ); (D )P / A ,2 1 / 2P/ A 。
材料力学性能课后习题 (1)
材料力学性能课后习题第一章1.解释下列名词①滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
②弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
③循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
④包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
⑤塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
⑥韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
⑦加工硬化:金属材料在再结晶温度以下塑性变形时,由于晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,使金属的强度和硬度升高,塑性和韧性降低的现象。
⑧解理断裂:解理断裂是在正应力达到一定的数值后沿一定的晶体学平面产生的晶体学断裂。
2.解释下列力学性能指标的意义(1)E( 弹性模量);(2)σp(规定非比例伸长应力)、σe(弹性极限)、σs(屈服强度)、σ0.2(规定残余伸长率为0.2%的应力);(3)σb(抗拉强度);(4)n(加工硬化指数);(5)δ(断后伸长率)、ψ(断面收缩率)3.金属的弹性模量取决于什么?为什么说他是一个对结构不敏感的力学性能?取决于金属原子本性和晶格类型。
因为合金化、热处理、冷塑性变形对弹性模量的影响较小。
4.常用的标准试样有5倍和10倍,其延伸率分别用δ5和δ10表示,说明为什么δ5>δ10。
答:对于韧性金属材料,它的塑性变形量大于均匀塑性变形量,所以对于它的式样的比例,尺寸越短,它的断后伸长率越大。
5.某汽车弹簧,在未装满时已变形到最大位置,卸载后可完全恢复到原来状态;另一汽车弹簧,使用一段时间后,发现弹簧弓形越来越小,即产生了塑性变形,而且塑性变形量越来越大。
试分析这两种故障的本质及改变措施。
材力习题册1
材料力学习题册(1)班级学号姓名1-1 (a )m-m 截面(b )1-1和2-2截面1-2 四边形平板变形后成图示平行四边形,-(1)沿AB 边的平均线应变;(2)平板A 点1-3 刚性梁在A 点铰接,B 和C -4 三角形平板沿底边固定,顶点A 的水平位移为5mm ,求:(1)顶点A 的切应变垂位移为10mm ,求钢索CE 和BD1ϒxy ;(2)沿x 轴的平均线应变εx ;(3)沿x ′轴的平均线应变。
第二章2-1 试画出图示各杆的轴力c)d)图。
(a)(((e )f ) -2(2两斜杆BC 和BD 的横截面直径。
2-3 卧式拉床的油缸内径D =186mm 理,[σCr ]=130MPa 。
缸盖由6个-4 横截面面积A =10cm 2处d =17.3mm ,材料为35定最大油压p 。
2第三章 剪切3-1 图示杠杆机构中,销轴C 直τ]=100MPa ,[σbs ]=280MPa 。
试按销轴的强度确定F 的许可值径d =10mm ,销轴的[。
53-2 如图所示接头,受到轴向载荷F的作用。
已知F=100kN,b=150mm,δ=10mm,d=17mm,a=80mm,[σ]=160MPa,[τ]=120MPa,[σbs]=320MPa,铆钉和板的材料相同,试校核其强度。
3-3 如图所示,齿轮与轴通过平键连接。
已知键受外力F =12kN ,所用平键的尺寸:b =16mm ,h =10mm ,l =45mm 。
平键的[τ]=80MPa , -4 为[σbs ]=100MPa 。
试校核平键的强度。
3已递的力偶矩M e 。
第四章扭转4-1 作图示各轴的扭矩图。
(1)(2)4-2 图示一传动轴,转速n =300r/min ,轮1为主动轮,轮2和轮3为从动轮,输出功率分别为P 2=10kW ,P 3=20kW 。
试: (1)绘出轴的扭矩图。
(2)若将轮1和轮3位置对调,分析对轴的受力有何影响。
3 4-3 操纵杆受力如图示,轴AB 外径为10mm ,内径为8mm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉伸与压缩一、 选择题 (如果题目有 5个备选答案选出其中 2—5个正确答案, 有 4个备选答案选 出其中一个正确答案。
)A ,长度为 l ,两端所受轴向拉力均相同,但材料不同, )。
B .两者应变和仲长量不同 C .两者变形相同 D .两者强度相同 E .两者刚度不同2.一圆截面直杆,两端承受拉力作用,若将其直径增大一倍,其它条件不变,则()。
A .其轴力不变B .其应力将是原来的 1/4C .其强度将是原来的 4 倍D .其伸长量将是原来的 1/4E .其抗拉强度将是原来的 4 倍3.设 和 1 分别表示拉压杆的轴向线应变和横向线应变,B .屈服极限提高D .延伸率提高E .塑性变形能力降低曲线如图 1-19 所示若加载至强化阶段结论正确的是( A. D .)。
B . 1 C . E . p 时, 常数1.若两等直杆的横截面面积为那么下列结论正确的是 (为材料的泊松比,则下列4.钢材经过冷作硬化处理后,其性能的变化是( A .比例极限提高 C .弹性模量降低 5.低碳钢的拉伸力回到零值的路径是(A .曲线 cbao)。
的 C 点,然后卸载,则应)。
B.曲线 cbf (bf∥ oa) D.直线 cd (cd∥o 轴)6.低碳钢的拉伸 - 曲线如图 l — 19,若加载至强化阶段的 C 点时,试件的弹性应变和塑性应变分别是( )。
A .弹性应变是 ofB .弹性应变是 oeC .弹性应变是 edD .塑性应变是 ofE .塑性应变是 oe7.图 l-2l 表示四种材料的应力—应变曲线,则:(1)弹性模量最大的材料是( );(2)强度最高的材料是( );(3)塑性性能最好的材料是( )。
8.等截面直杆承受拉力,若选用三种不同的截面形状:圆形、正方形、空心圆,比较 材料用量,则( )。
A .正方形截面最省料B .圆形截面最省料C .空心圆截面最省料D .三者用料相同9.若直杆在两外力作用下发生轴向拉伸 (压缩 )变形,则此两外力应满足的条件是A .等值B .反向C .同向D .作用线与杆轴线重合E .作用线与轴线垂直10.轴向受拉杆的变形特征是( )。
A .轴向伸长横向缩短B .横向伸长轴向缩短C .轴向伸长横向伸长D .横向线应变与轴向线应变正负号相反E .横向线应变 与轴向线应变 的关系是11.低碳钢 (等塑性金属材料 )在拉伸与压缩时力学性能指标相同的是()。
A .比例极限B .弹性极限C .屈服极限D .强度极限E .弹性模量12.材料安全正常地工作时容许承受的最大应力值是( )。
A . pB .C . bD . [ ]13.拉杆的危险截面一定是全杆中( )的横截面。
[ ] =100 MPa ,杆两端的轴向拉力N =2. 5kN ,根据强度条件,拉杆横截面的边长至少为A . 100 mB . 2.5 m 2500 100 15.长度、横截面和轴向拉力相同的钢杆与铝杆的关系是两者的( )。
A .内力相同B .应力相同 C. 容许荷载相同D .轴向线应变相同E .轴向伸长量相同16.长度和轴向拉力相同的钢拉杆①和木拉杆②,如果产生相同的伸长量,那么两者 之间的关系是( )。
A .轴力最大B .面积最小C .应力 最大D .位移最大E .应变 最大 14.若正方形横截面的轴向拉杆容许应力 D . 5mmA . 1B . 1> 2C . 1 = 2D . A 1> A 2E . A 1< A 2(其中1、1、A1为钢杆的应变、应力和横截面面积,2、2、A2为木杆的应变、应力和横截面面积。
)17.图 l-22 所示拉杆 B 截面的轴力 F N ( )。
A .-6 kNB .-9 kNC .3 kND .不确定二、判断题 (正确的打“√” ,错的打“×” )1.应力分为两种,即正应力和剪应力。
并且同一截面上的正应力和剪应力必须互相垂 直。
( )2.正应力的“正”字指的是正负的意思,所以正应力恒大于零。
( )3.杆件的某个横截面上,各点正应力均为零,则轴力必为零。
( )4.轴力是拉压杆横截面上唯一的内力。
( )5.图 l-24 所示等直杆在自重作用下,横截面上的轴力与截面的位置有关而与横截面积 无关。
( )6.图 l-24 所示等直杆在自重作用下,横截面上的应力与横截面的位置有关而与横截面 的形状无关。
( )7.杆件受拉如图 1-25 所示,由于横截面 l-l 、 2-2 的面积为 A 1=2A 2,所以正应力 σ1= σ2。
( )8.公式 N A, E, l Nl EA 仅当p 时才能用。
( ) 9.已知某试件的 p 200 MPa, E 200 103 MPa, 测得 0.02, 故E 400 MPa 。
( )10.因 E ,故 E 随应力的增大而提高。
( )11.若构件沿某方向的应力为零,则该方向的应变也必为零。
( )12.在轴向拉伸时,轴向应力与轴向应变的比始终保持为常数,直到破坏。
( )13.仅由平衡条件求不出超静定问题的全部未知力。
( )14.设计构件时,须在节省材料的前提下尽量满足安全工作的要求。
( )15.应力集中现象对脆性材料的危害要比塑性材料严重。
( )1.现有铸铁和钢两种材料, 在图 1-26 所示结构中①杆选 (),②杆选 ()比较合理。
5.构件安全工作的基本要求是构件要具有足够的 ( ),( ), ( )。
6.在等值、反向、与杆轴线重合的两外力作用下的杆件将产生 ( )变形。
7.横截面为边长是 b 的正方形,长度为 l 的拉杆,在弹性范围内其伸长量为 l , 其横向变形 b ( ))有关。
10.拉压杆横截面产生 ( ) 应力,斜截面产生 ( )应力。
11.材料破坏之前所能承受的最大应力是( )。
12.塑性材料的延伸率 ( ),脆性材料的延伸率 ( )。
2.在图 1-27 所示的应力 -应变曲线上, 力称为 ( ),对应 c 点的应力称为 ( 3.拉压杆中某点的最大正应力发生在 面上。
对应 a 点的应力称为 ( ),对应 b 点的应),对应 d 点的应力称为 ( )。
( )面上,最大剪应力发生在 ( ) 4.写出虎克定律的两种表达式: ( ), ( ),它们的适用条 ( )。
8.应力单位为 MPa ,1 MPa = ( ) N m 2 ( )N mm 2 。
9.材料的弹性模量 E 反映了材料的()能力,它与构件的尺寸及构件所受外力( 13 .极限应力 0 是材料( )时对应的应力。
塑性材料的极限应力是),脆性材料的极限应力是( )。
14.强度计算的三种问题: ( ),(15.比例极限 p 是()最高应力;弹性极限 e 是( 力。
16.脆性材料的压缩破坏主要是因 ( 角度。
17.名义屈服极限 σ0.2 是对( )作用而破坏, 破裂面大约与轴线成 )材料规定的。
最高应 )1.在图示结构中, 若钢拉杆 BC 的横截面直径为 10 mm 2,试求拉杆内的应力。
设由 BC 连接的 1 和 2 两部分均为刚体。
2.汽车离合器踏板如图所示。
已知踏板收到压力 F 1= 400 N 作用,拉杆 1的直径 D =9 mm ,杠杆臂长 L = 330 mm ,l = 56 mm ,拉杆的许用应力 [σ ] = 50 MPa ,校核拉杆 1 的强度。
3.在图示简易吊车中, BC 为钢杆, AB 为木杆。
木杆 AB 的横截面面积 A 1 = 100 cm 2,许用应力 [σ ]1= 7 MPa ; 钢杆 BC 的横截面面积 MPa 。
试求许可吊重 F 。
4. 在图示杆系中, BC 和 BD 两杆的材料相同, 且抗拉和拉压许用应力相等, 同为 [σ]。
为使杆系使用的材料最省,试求夹角 θ的值。
5. 变截面直杆如图所示。
已知: A 1 = 8 cm 2,A 2 = 4 cm 2,E = 200 GPa 。
求杆的总 伸长 Δ l 。
题5图 题 6图6. 两根材料不同但截面尺寸相同的杆件, 同时固定连接于两端的刚性板上, 且 E 1> E 2。
若使两杆都为均匀拉伸,试求拉力 F 的偏心距 e 。
A 2 = 6 cm 2, 许用拉应力 [σ ]2 = 160题3图题4图7. 设 CG 为刚体(即 CG 的弯曲变形可以省略) ,BC 为铜杆, DG 为钢杆,两杆的横截 面面积分别为 A 1 和 A 2,弹性模量分别为 E 1和 E 2。
如要求 CG 始终保持水平位置,试求 x 。
求三杆的轴力。
始终保持水平,试问温度是升高还是降低?并求温度的改变量 Δ T。
8. 在图示结构中,假设 AC 梁为刚杆,杆 1,2,3 的横截面面积相等,材料相同。
试 9. 在图示结构中, 1、2 两杆的抗拉压刚度同为 其中 δ为加工误差。
试求将 3 杆装入 E 1A 1,3 杆为 E 3A 3。
3 杆的长度为 l+δ,10. 杆 1 为钢杆, E 1 = 210 GPa , -6 -1 E 2 = 105 GPa ,α2 = 19×10-6 ℃-1 α1 ,A 2-6 12.5× 10 30 cm 2。
载荷 F = 50 kN 。
若 AB 为刚杆,且℃ -1, A 1 = 30 cm 2。
杆 2 为铜杆, 题7图 题8图AC 位置后,1、题9图3 杆的内材料的力学性能1.工程上通常以伸长率区分材料,对于脆性材料有四种结论,哪一个是正确?(A)d< 5% ; (B) d< 0.5 % ; (C) d< 2% ; (D) d< 0.2 % 。
2.对于没有明显屈服阶段的塑性材料,通常以 s0.2 表示屈服极限。
其定义有以下四个结论,正确的是哪一个?(A)产生 2% 的塑性应变所对应的应力值作为屈服极限;(B)产生 0.02%的塑性应变所对应的应力值作为屈服极限;(C)产生 0.2%的塑性应变所对应的应力值作为屈服极限;(D)产生 0.2%的应变所对应的应力值作为屈服极限。
3.关于材料的冷作硬化现象有以下四种结论,正确的是哪一个?(A) 由于温度降低,其比例极限提高,塑性降低;(B)由于温度降低,其弹性模量提高,泊松比减小;(C)经过塑性变形,其比例极限提高,塑性降低;(D)经过塑性变形,其弹性模量提高,泊松比减小。
4.关于材料的塑性指标有以下结论,哪个是正确的?(A) s s和d; (B) s s和ψ; (C) d和ψ; (D) s s、d和ψ。
5.用标距 50 mm 和 100 mm 的两种拉伸试样,测得低碳钢的屈服极限分别为s s1、s s2,伸长率分别为 d5和 d10 。
比较两试样的结果,则有以下结论,其中正确的是哪一个?(A)s s1< s s2,d5> d10;(B)s s1< s s2,d5 = d10;(C)s s1= s s2,d5> d10;(D)s s1 = s s2,d5= d10。