平行线的判定和性质

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

87

654

3

21

A

B

C

D

E

易达彼思教育学科教师辅导讲义

学员姓名: 年 级:七年级 课时数: 辅导科目:数学 授课时间: 学科教师:

学科组长签名 及日期

教务长签名及日期

课 题 平行线及其判定及性质

教学目标

1.理解平行线的意义,了解同一平面内两条直线的两种位置关系;

2.掌握平行公理及其推论,会按要求画平行线;

3.掌握平行线的判定方法,并会运用这些方法进行简单的推理证明;

教学内容

知识回顾

写出下图中所有的同位角、内错角、同旁内角

同位角:

内错角:

同旁内角:

新课知识

一、平行线的判定

知识点1:平行线的判定1

用该符号语言表示:如图,

∵∠1=∠2, ∴AB ∥CD (同位角相等,两直线平行)

两直线平行的判定方法1:

两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.

简单地说: 同位角相等 ,两直线平行.

例1.如图,直线a,b都与直线c相交,若∠1=120°,,2=60°,则a∥b.在下列括号中填写推理理由.

∵∠1=120°().

∴∠3=60°().

又∵∠2=60°().

∴∠2=∠3().

∴a∥b

知识点2:平行线的判定2

思考:下图中,如果∠1=∠7,能得出AB∥CD吗?写出你的推理过程.

解:∵∠1=∠7 ( )

∠1=∠3( )

∴∠7=∠3( )

∴ AB∥CD( )

用该符号语言表示:如图,

∵∠2=∠3(已知),∴AB∥CD(内错角相等,两直线平行)

两直线平行的判定方法2:

两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.

简单地说: 内错角相等 ,两直线平行.

知识点3:平行线的判定3

下图中,如果∠4+∠7=180°,能得出AB∥CD?

解: ∵∠4+∠7=180 °()

∠4+∠3=180°()

∴∠7=∠3()

∴ AB∥CD()

用该符号语言表示:如图,

∵∠2+∠4=180°(已知),∴AB∥CD(同旁内角互补,两直线平行)

两直线平行的判定方法3:

两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.

简单地说: 同旁内角互补 ,两直线平行.

例4. 如图所示,回答下列问题,并说明理由.

(1)由∠C=∠2,可判定哪两条直线平行?

(2)由∠2=∠3,可判定哪两条直线平行?

(3)由∠C+∠D=180°,可判定哪两条直线平行?

注:(1)要掌握直线平行的判定方法,首先要掌握同位角、内错角、同旁内角的定义;

(2)判定方法是从角的关系得到两直线平行的。

知识点4:平行线的判定方法的推论

(一)两条平行线间的距离

1、定义:同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离。

如图所示,a//b,A是直线上任意一点,,垂足为B,则线段AB的长即是两平行线、间的距离。若在直线上任找一点,过作,垂足为D,则线段CD的长也是两平行线、间的距离。由此可见:

2、平行线间的距离处处相等。

例4.如图,AB⊥EF于点B,CD⊥EF于点D,∠1=∠2.

(1)请说明AB∥CD的理由

(2)试问BM与DN是否平行?为什么?

二、平行线的性质

知识点1:平行线的性质1

两条平行线被第三条直线所截,同位角相等.

简单说成:两直线平行,同位角相等.

如图所示,AB∥CD,有∠1=∠2.

格式:∵AB∥CD(已知).∴∠1=∠2(两直线平行,同位角相等)

例1.如图,已知a∥b,∠1=65°,则∠2的度数为()

A.65°

B.125°

C.115°

D.25°

知识点2:平行线的性质2

两条平行线被第三条直线所截,内错角相等.

简单说成:两直线平行,内错角相等.

格式:如图所示,AB∥CD,有∠2=∠3(两直线平行,内错角相等).

说明:∵AB∥CD(已知).∴∠1=∠2(两直线平行,同位角相等)

∵∠1=∠3,∴∠2=∠3

例2.如图,点B是△ADC的边AD的延长线上一点,DE∥AC,若∠C=50°,

∠BDE=60°,则∠CDB的度数等于()

A.70°

B.100°

C.110°

D.120°

知识点3:平行线的性质3

两条平行线被第三条直线所截,同旁内角互补.

简单说成:两直线平行,同旁内角互补.

格式:如图所示,∵AB∥CD(已知).

∴∠1+∠2=180°(两直线平行,同旁内角互补)

例3.如图,若AB∥DE,BC∥FE,则∠E+∠B= .

注:同位角相等、同旁内角互补;内错角相等,都是平行线特有的性质,且不可忽略前提条件“两直线平行”,不要看到同位角或内错角,就认为是相等的。

三、平行线的性质和判定方法的综合应用

平行线的判定和性质的区别和联系:

平行线的性质描述的是“数量关系”,它的前提是两直线平行,然后得出角相等或互补的关系,是由“位置关系”到“数量关系”;

而平行线的判定,是以角的相等或互补为前提,推导出平行,是从“数量关系”到“位置关系”

判定

即:两角的数量关系两直线的位置关系

性质

由此可见,判定与性质之间的关系是一种互逆关系。

例4.潜望镜中的两个镜子MN和PQ是互相平行的,如图所示,光线AB经镜面反射后射出,由题意知∠2=∠1,∠4=∠3,则进入的光线AB与射出的光线CD平行吗?为什么?

随堂巩固

平行线的判定

一、填空题:

1.如图③∵∠1=∠2,∴_______∥________()

∵∠2=∠3,∴_______∥________()

2.如图④∵∠1=∠2,∴_______∥________()

∵∠3=∠4,∴_______∥________()

二、选择题:

1.如图⑦,∠D=∠EFC,那么()

A.AD∥BC B.AB∥CD C.EF∥BC D.AD∥EF

2.如图⑧,判定AB∥CE的理由是()

A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE

3.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6,

③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b的是()

A.①③B.②④C.①③④D.①②③④

三、完成推理,填写推理依据:

相关文档
最新文档