小学数学六级奥数专项训练题《割草》

合集下载

小学六年级奥数牛吃草问题公式及练习题

小学六年级奥数牛吃草问题公式及练习题

【导语】奥数是奥林匹克数学竞赛的简称。

1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第xx届国际数学奥林匹克竞赛。

以下是⽆忧考整理的《⼩学六年级奥数⽜吃草问题公式及练习题》相关资料,希望帮助到您。

1.⼩学六年级奥数⽜吃草问题公式 (1)草的⽣长速度=(对应的⽜头数×吃的较多天数-相应的⽜头数×吃的较少天数)÷(吃的较多天数-吃的较少天数) (2)原有草量=⽜头数×吃的天数-草的⽣长速度×吃的天数 (3)吃的天数=原有草量÷(⽜头数-草的⽣长速度) (4)⽜头数=原有草量÷吃的天数+草的⽣长速度 2.⼩学六年级奥数⽜吃草问题练习题 天⽓渐渐变冷,牧场上的草不仅不增长反⽽以固定的速度减少。

已知牧场上有⼀⽚草地,草地上的草可供给20头⽜吃5天,15头⽜吃6天,照这样计算可供给多少头⽜吃10天? 分析:设⼀头⽜⼀天吃的草为1份。

原有草量是固定的。

在⽜吃草的过程中,由于天⽓变冷,草每天都均匀的减少。

草每天减少的量是固定的。

那么原有草量-5天草的减少的量=20头⽜吃5天的草量=20×5=100份。

原有草量-6天草的减少量=15头⽜吃6天的草量=15×6=90份。

那么(100-90)÷(6天草的减少量-5天草的减少的量)就是草每天的减少量。

每天草的减少量:(100-90)÷(6-5)=10份。

原有草量:20×5+10×5=150(份)或者15×6+10×6=150(份) 牧场10天实际消耗的原有草量:10×10=100(份) 10天可供多少头⽜吃:(150-100)÷10=5(头)3.⼩学六年级奥数⽜吃草问题练习题 有⼀个蓄⽔池装有9根⽔管,其中⼀根为进⽔管,其余8根为相同的出⽔管。

小学六年级奥数 第一章 方程解应用题

小学六年级奥数 第一章 方程解应用题

第一章列方程解应用题知识要点列方程解应用题时,就是用字母代替未知数,字母和已知量处于同等的地位,然后根据存在于应用题中的等量关系,把已知量、未知量的关系用等式表示出来,即得方程,求出方程的解,使应用题得以解答。

列方程解应用题的一般步骤是:审题→选元→列代数式→列方程→解方程→检验→做结论。

审题:审题就是要弄清题目中事物的已知量和未知量间的基本数量关系。

选元:合理选择未知数是解题的关键步骤之一。

一般设直接未知数,即把题目所求量设为x。

特殊情况下也可设间接未知数,即把与所求量相关的某个量设为x。

列代数式:把题目中用语言叙述的数量关系用代数式表示出来。

列代数式时应特别注意实际问题中各量间所具有的基本关系。

列方程:根据题目所设的条件,利用等量关系列含有未知数的等式——方程。

解方程:求未知数x。

检验:检查验证方程的解是否合乎题意。

做结论:写出正确的答语。

典例巧解例 1 (第三届“希望杯”邀请赛试题)过年时,某种商品打八折销售,过完年,此商品提价 %可恢复到原来的价格。

点拨此商品的原来价格不知道,我们可引入一个辅助未知数以元表示,则打八折后的价格是0.8a元,再设提价x%后可恢复到原价列方程求解。

解设此种商品原来的价格是a元,则打八折后价格是0.8a元,提价x%后可恢复到原价,由题意可列方程:0.8a(1+x%)=a解得 x=25答:提价25%后可恢复到原价。

例2 甲、乙两人共携带90千克行李乘火车,甲超重部分交款5.6元,乙超重部分交款4.4元。

如果甲、乙两人带的行李归一人携带,超重部分应交款14元。

乘火车时每人免费携带行李的重量是多少千克?点拨题目中是甲、乙两人携带行李超重交款的事,但出现了归一人携带应交超重款不等于甲、乙两人分别携带应交超重款之和。

我们应该找出题目中的日常语言,用译式法翻译成代数语言。

把甲、乙两人乘火车时每人可免费携带行李的重量设为x千克。

日常语言代数语言每人可免费携带行李的重量是多少千克x(千克)如果一人携带行李超重多少千克 (90-x)(千克) 如果两人分别携带行李共超重多少千克 (90-2x)(千克)超重部分每千克应交款多少元素 1490x -(元)或5.6 4.4902x+-(元)或14(5.6 4.4)x--(元)解 设两人乘火车每人可免费携带行李的重量是x 千克。

六年级下册奥数试题——牛吃草问题(含答案)人教版.

六年级下册奥数试题——牛吃草问题(含答案)人教版.

11. 理解牛吃草这类题目的解题步骤,掌握牛吃草问题的解题思路.2. 初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:① 草的每天生长量不变;② 每头牛每天的食草量不变;③ 草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值④ 新生的草量=每天生长量⨯天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数); ⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.板块一、一块地的“牛吃草问题”【例 1】 青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。

改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同。

“廿”即二十之意。

)【解说】题目翻译过来是:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完。

若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)【解析】 设1头牛1天的吃草量为“1”,27头牛吃6周共吃了276162⨯=份;23头牛吃9周共吃了239207⨯=份.第二种吃法比第一种吃法多吃了20716245-=份草,这45份草是牧场的草963-=周生长出来的,所以每周生长的草量为45315÷=,那么原有草量为:16261572-⨯=.供21头牛吃,若有15头牛去吃每周生长的草,剩下6头牛需要72612÷=(周)可将原有牧草吃完,即它可供21头牛吃12周.例题精讲 知识精讲 教学目标牛吃草【巩固】 牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?【解析】 设1头牛1天的吃草量为“1”,10头牛吃20天共吃了1020200⨯=份;15头牛吃10天共吃了1510150⨯=份.第一种吃法比第二种吃法多吃了20015050-=份草,这50份草是牧场的草201010-=天生长出来的,所以每天生长的草量为50105÷=,那么原有草量为:200520100-⨯=.供25头牛吃,若有5头牛去吃每天生长的草,剩下20头牛需要100205÷=(天)可将原有牧草吃完,即它可供25头牛吃5天.【巩固】 仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多。

六年级奥数牛吃草问题应用题专项练习

六年级奥数牛吃草问题应用题专项练习

牛吃草问题专项练习(1)11头牛10天可吃完5公顷草,12头牛14天可吃完6公顷全部牧草,问8公顷草地可供19头牛吃多少天?(假设每块草地每公顷每天牧草长得一样快)(2)12头牛28天可吃完10公亩牧场上全部牧草,21头牛63天可吃完30公亩牧场上全部牧草.多少头牛126天可吃完72公亩牧场上全部牧草?(每公亩牧场上原有的草量相等,且每公亩牧场上每天草的生长量相同)(3)22头牛,吃33公亩牧场的草54夭可吃尽,17头牛吃同样牧场28公亩的草,‘84天可吃尽.请问几头牛吃同样牧场40公亩的草,24天可吃尽?(4)仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多。

用同样的汽车运货出仓,如果每天用4辆汽车,则9天恰好运完;如果每天用5辆汽车,则6天恰好运完。

仓库里原有的存货若用1辆汽车运则需要多少天运完?(5)超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款。

某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了?(6)春节期间,某火车站已有不少的旅客在候车室等候验票,并且前来验票上车的旅客按照一定的速度在增加,如果只开放一个窗口验票,需要半小时全部旅客才能进站上车;如果开放两个窗口,则需要10分钟全部旅客就可进站上车了。

然而,现在等候上车的时一列加班车,必须在5分钟内全部上车,准点上车。

那么这个火车站至少要同时开放多少个窗口?(7)村民组织抗旱,从一个地下泉水挑水浇地。

如果50人挑,20小时就把水挑完;如果70人挑水,10小时也可挑完。

现在有130人挑,几小时可把水挑完?(8)哥哥沿着向上移动的自动扶梯从顶向下走到底,共走了100级。

在相同的时间内,妹妹沿着自动扶梯从底向上走到顶,共走了50级。

如果哥哥单位时间内走的级数是妹妹的2倍,那么当自动扶梯静止时,自动扶梯能看到的部分有多少级?(9)画展9点开门,但早就有人排队等候入场了。

牛吃草问题奥数思维拓展 小学数学六年级上册人教版(含答案)

牛吃草问题奥数思维拓展 小学数学六年级上册人教版(含答案)

牛吃草问题奥数思维拓展-小学数学六年级上册人教版一.选择题(共2小题)1.自动扶梯以自下而上匀速行驶着,两位孩子上楼、男孩子每分钟走40级,女孩子每分钟走20级,结果男孩子2分钟到达楼上、女孩子3分钟到达楼上,问该自动扶梯有多少级?()A.108级B.120级C.126级D.128级2.某水库建有10个泄洪闸,现有水库的水位已经超过安全线,上游河水还在按一定的速度流入水库.为了防洪,需调节泄水速度.假设每个闸门泄洪的速度相同,经测算,若打开1个泄洪闸,经30个小时水位降至安全线;若同时打开2个泄洪闸,10个小时水位降至安全线.现在抗洪指挥部要求用2.5小时使水位降至安全线下,问至少要同时打开()个闸门.A.7B.8C.9D.10二.填空题(共8小题)3.奶奶家有10个鸡蛋,还养了一只一天能下一个鸡蛋的老母鸡,如果她家一天吃2个鸡蛋,奶奶家的鸡蛋能连续吃天.4.火车站的检票处检票前已有一些人等待检票进站,假如每分钟前来检票处排队检票的人数一定,那么当开一个检票口时,27分钟后就无人排队;当开两个检票口时,12分钟后就无人排队,如果要在6分钟后就无人排队,那么至少需要开个检票口.5.现欲将一池塘水全部抽干,但同时有水匀速流入池塘.若用8台抽水机10天可以抽干;用6台抽水机20天能抽干。

问:若要5天抽干水,需台同样的抽水机来抽水.6.某剧场8:30开始检票,但早就有人排队等候.从第一名旅客来到时起,每分钟来的旅客人数一样多.如果开3个检票口,则8:39就不再有人排队;如果开5个检票口,则8:35就没有人排队.那么第一个旅客到达的时间是点分.7.牧场上长满青草,青草每天都在匀速生长.如果这片牧场可供10头牛吃20天,可供15头牛吃10天,那么这片牧场可供25头牛吃天.8.今年平阳山区发洪水,当时测得一河床中的水从洪水暴发开始每小时上涨1倍,10h涨满河床.为了人民群众的生命安全,所有人员在河水涨到河床的时,必须撤离.从洪水暴发到所有人员撤离,有h.9.有一口不断流出泉水的井,每小时流出泉水量相同,这口井的水如果用8台抽水机,12分钟可以抽完;如果用3台抽水机,36分钟可以抽完;问限定在20分钟抽完,需要台抽水机.10.有三块草地,面积分别为5公顷、6公顷和8公顷.草地上的草一样厚,而且长得一样快.5公顷的草地可供11头牛吃10天,6公顷的草地可供12头牛吃14天.那么,8公顷的草地可供19头牛吃天.三.应用题(共10小题)11.4头牛28天可以吃完10公顷牧场上全部牧草,7头牛63天可以吃完30公顷牧场上全部牧草,那么60头牛多少天可以吃完40公顷牧场上全部牧草?(每公顷牧场上原有草量相等,且每公顷牧场上每天生长草量相等)12.牧场上长满草,每天牧草都匀速生长,这片牧场的草可供10头牛吃20天,可供15头牛吃10天,问可供25头牛吃几天?13.一个水池一边进水一边放水,且每分钟的进水量相同.如果开3个同样大的水管放水,40分钟可以放完,开6个同样大的水管放水,16分钟可以放完.求放完后,只开进水管,多少分钟后又有了与原来同样多的一池水?14.某火车站在检票前若干分钟就有人排队,假设每分钟新增的旅客一样多,若同时开放4个检票口,则30分钟检票完毕,若同时开放5个检票口,则20分钟可检票完毕,若同时开放7个检票口,需要检票多少分钟?15.某生态农场,每天都生长出等量的草.为了使每天草场原有的草不会减少.最多能放牧80只羊.寒潮来袭,草场每天新产的草量减少了,20天后草场的草就被吃完了,为了保护草场.农场主决定卖掉30只羊.那么几天后草场就能恢复到原来样子?16.假设地球上新生成的资源的增长速度是一定的,按照这样计算,地球上的资源可供110亿人生活90年,或可供90亿人生活210年.为使人类不断繁衍,那么地球最多能养活多少亿人?17.两位顽皮的孩子逆着自动扶梯的方向行走,在20秒里,男孩可走27级梯级,女孩可走24级梯级,结果男孩走了2分钟到达另一端,女孩走了3分钟到达另一端,问:该扶梯共多少级?18.春运高峰,售票窗口早早地排好了队,陆续还有人均匀的来购票,假如开设5个售票窗口,30分钟可缓解排队现象,如果开设6个售票窗口,那么20分钟才能缓解排队现象。

六年级奥数-牛吃草问题-教师讲义

六年级奥数-牛吃草问题-教师讲义

第八讲牛吃草问题牛吃草问题概念及公式牛吃草问题又称为消长问题或牛顿牧场,牛吃草问题的历史起源是17世纪英国伟大的科学家牛顿1642—1727)提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

解决牛吃草问题常用到四个基本公式,分别是︰五大基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=草量差÷时间差;3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。

这五个公式是解决牛吃草问题的基础。

首先一般假设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

牛吃草问题是经典的奥数题型之一,这里我先介绍一些比较浅显的牛吃草问题,后面给大家开拓一下思维,首先,先介绍一下这类问题的背景,大家看知识要点求天数例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?解:假设1头牛1天吃的草的数量是1份草每天的生长量:(200-150)÷(20-10)=5份10×20=200份=原草量+20天的生长量原草量:200-20×5=100份或15×10=150份=原草量+10天的生长量原草量:150-10×5=100份100÷(25-5)=5天答:这片牧草可供25头牛吃5天?练习1(求时间)1.1.一块牧场长满了草,每天均匀生长。

这块牧场的草可供10头牛吃40天,供15头牛吃20天。

六年级下册数学试题-奥数专题:牛吃草问题(1)常规解法(含答案)全国通用

六年级下册数学试题-奥数专题:牛吃草问题(1)常规解法(含答案)全国通用

专题简析:牛吃草问题(一)常规解法牛吃草问题是牛顿问题,因牛顿提出而得名的。

“一堆草可供 10 头牛吃 3 天,供 6 头牛吃几天?”这题很简单,用 3×10÷6=5(天),如果把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了。

因为草每天走在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是“牛吃草”问题。

解答这类题的关键是要想办法从变化中找到不变的量。

牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以每天新长出的草是不变的。

正确计算草地上原有的草及每天长出的草,问题就容易解决了。

★房间广播★【例1】一片青草地,每天都匀速长出青草,这片青草可供10头牛吃20 天,可供15头牛吃10天,那么这片草地可供25头牛吃几天?【解答】5天头数时间总草量10头20天原有草+20天生长草15头10天原有草+10天生长草25头?天原有草+?天生长草【讲解】怎样解答这类问题呢?关键是要抓住牧场青草总量的变化。

设1头牛1天吃的草为1份,由条件可知,前后两次青草的总量相差为10×20-15×10=50份为什么会多出这45份呢?这是第二次比第一次少的那20-10=10天生长出来的,所以每天生长的青草为50÷10=5份从另一个角度去理解,这个牧场每天生长的青草正好可以满足5头牛吃。

由此,我们可以把每次来吃草的牛分为两组,一组是抽出的5头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(10-5)×20=100份把25头牛分两组,5头去吃生长的草,其余的20头去吃原有的草,那么可吃100÷20=5天★房间广播★【练习1】一片草地,每天都匀速长出青草,如果可供24头牛吃6 天,20头牛吃10天,那么可供19头牛吃几天?【解答】12天头数24头时间6天总草量原有草+6天生长草20头10天原有草+10天生长草19头?天原有草+?天生长草【讲解】设1头牛1天吃的草为1份,由条件可知,前后两次青草的总量相差为10×20-24×6=56份,这是第二次比第一次多的那10-6=4天生长出来的,所以每天生长的青草为56÷4=14份。

小学六年级奥数牛吃草问题专项强化训练题(高难度)

小学六年级奥数牛吃草问题专项强化训练题(高难度)

小学六年级奥数牛吃草问题专项强化训练题(高难度)例题1:有一块长为60米、宽为40米的牛圈,牛吃草的速度是每分钟2平方米。

牛从圈内某一点开始吃,它可以吃够一周需要多少时间?解析:首先计算一周需要的草地面积,即周长乘以宽度:周长 = 2 × (长 + 宽) = 2 × (60 + 40) = 200米草地面积 = 周长×宽度 = 200 × 40 = 8000平方米牛吃草的速度是每分钟2平方米,假设吃够一周需要x分钟,则有等式:2x = 8000x = 4000所以,牛吃够一周需要4000分钟。

专项练习题:1:有一块长为80米、宽为50米的牛圈,牛吃草的速度是每分钟3平方米。

牛从圈内某一点开始吃,它可以吃够一周需要多少时间?2:有一块长为100米、宽为60米的牛圈,牛吃草的速度是每分钟4平方米。

牛从圈内某一点开始吃,它可以吃够一周需要多少时间?3:有一块长为120米、宽为70米的牛圈,牛吃草的速度是每分钟5平方米。

牛从圈内某一点开始吃,它可以吃够一周需要多少时间?4:有一块长为140米、宽为80米的牛圈,牛吃草的速度是每分钟6平方米。

牛从圈内某一点开始吃,它可以吃够一周需要多少时间?始吃,它可以吃够一周需要多少时间?6:有一块长为180米、宽为100米的牛圈,牛吃草的速度是每分钟8平方米。

牛从圈内某一点开始吃,它可以吃够一周需要多少时间?7:有一块长为200米、宽为110米的牛圈,牛吃草的速度是每分钟9平方米。

牛从圈内某一点开始吃,它可以吃够一周需要多少时间?8:有一块长为220米、宽为120米的牛圈,牛吃草的速度是每分钟10平方米。

牛从圈内某一点开始吃,它可以吃够一周需要多少时间?9:有一块长为240米、宽为130米的牛圈,牛吃草的速度是每分钟11平方米。

牛从圈内某一点开始吃,它可以吃够一周需要多少时间?10:有一块长为260米、宽为140米的牛圈,牛吃草的速度是每分钟12平方米。

2019年六年级奥数专题:图解法学生版

2019年六年级奥数专题:图解法学生版

有许多应用题,其中的数量关系比较复杂,而通过画图可以把数量之间的关系变得直观明了,从而达到解题目的。

这种通过画图帮助解题的方法就是图解法。

我们通过下面几道例题来讲解在各种类型的应用题中如何使用图解法解题。

例1 甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘。

到现在为止,甲已经赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1 盘。

问:小强已经赛了几盘?分别与谁赛过?例2 一群人在两片草地上割草,大的一片草地比小的正好大1倍。

他们先全体在大的一片草地干了半天,下午留下一半人在大草地上继续干,收工时正好把草割完;另一半人到小草地上干,收工时还余下一块,这块再用1人经1天也可割完。

问:这群干活的人共有多少位?例3 A,B两地间有条公路,甲从A地出发步行到B地,乙骑摩托车从B地同时出发,不停顿地往返于A,B两地之间。

80分钟后他们第一次相遇,又过了20分钟乙第一次超越甲。

求甲、乙速度之比。

例4 两名运动员在长为50米的游泳池里来回游泳。

甲运动员的速度是1米/秒,乙运动员的速度是0.5米/秒,他们同时分别在游泳池的两端出发,来回共游了5分钟,如果不计转向时间,那么在这段时间里共相遇了几次?例5 容器中有某种酒精含量的酒精溶液,加入一杯水后酒精含量降为25%;再加入一杯纯酒精后酒精含量升为40%。

那么原来容器中酒精溶液的酒精含量是多少?例6 有三堆围棋子,每堆棋子数相等。

第一堆中的黑子与第二堆中的白子部棋子的几分之几?2019年六年级奥数专题:图解法学生版1.A,B两地相距1000米,甲、乙二人分别从A,B两地同时出发,在A,B两地间往返散步。

如果两人第一次相遇时距A,B两地的中点100米,那么,两人第二次相遇地点距第一次相遇地点多远?2.小马虎上学忘了带书包,爸爸发现后立即骑车去追,把书包交给他后立即返回家。

小马虎接到书包后又走了10分钟到达学校,这时爸爸也正好到家。

如果爸爸的速度是小马虎速度的4倍,那么小马虎从家到学校共用多少时间?3.某人沿公路前进,迎面来了一辆汽车,他问司机:“后面有骑自行车的人吗?”司机回答:“10分钟前我超过一个骑自行车的人。

小学奥数牛吃草问题及其拓展变形题专项练习含有详细答案解析(50题)

小学奥数牛吃草问题及其拓展变形题专项练习含有详细答案解析(50题)

小学奥数牛吃草问题及其拓展变形题专项练习含有详细答案解析(50题)20级台阶后到达地面需要多少时间?12、某地区有三座桥,分别连接A、B、C三个地方。

现在有一只羊要从A地到C地,但是羊只能在桥上行走,不能在水中游泳。

已知羊走过桥A需要1分钟,走过桥B需要3分钟,走过桥C需要5分钟。

现在有一个人要带着羊从A地到C地,但是这个人只能在桥上走一次,且必须带着羊。

问这个人最少需要多长时间才能带着羊从A地到C地?13、某地区有三座桥,分别连接A、B、C三个地方。

现在有一只狼要从A地到C地,但是狼只能在桥上行走,不能在水中游泳。

已知狼走过桥A需要2分钟,走过桥B需要4分钟,走过桥C需要8分钟。

现在有一个人要带着狼从A地到C地,但是这个人只能在桥上走一次,且必须带着狼。

问这个人最少需要多长时间才能带着狼从A地到C地?14、某地区有三座桥,分别连接A、B、C三个地方。

现在有一只羊和一只狼要从A地到C地,但是羊和狼不能在没有人的情况下单独相处,否则狼会吃掉羊。

已知羊走过桥A 需要1分钟,走过桥B需要3分钟,走过桥C需要5分钟;狼走过桥A需要2分钟,走过桥B需要4分钟,走过桥C需要8分钟。

现在有一个人要带着羊和狼从A地到C地,但是这个人只能在桥上走一次,且必须带着羊或狼。

问这个人最少需要多长时间才能带着羊和狼从A地到C地?供12头牛吃20天,问这片草地可供几头牛吃30天?20、甲、乙两人共同做一件事,如果两人一起工作,3天可以完成任务;如果甲单独工作,需6天才能完成任务,问乙单独工作需要多少天才能完成任务?21、某工程需要两台机器同时工作,才能在30天内完成,如果其中一台机器坏了,那么需要多少天才能完成工程?22、甲、乙两人同时从A地出发,相向而行,甲每小时走10公里,乙每小时走15公里,问他们相遇时,甲离A地的距离是乙离A地的距离的几倍?23、有一条长为120千米的公路,甲、乙两人同时从两端出发,相向而行,甲每小时走20千米,乙每小时走30千米,问他们相遇需要多长时间?24、甲、乙两人同时从A地出发,相向而行,甲每小时走10公里,乙每小时走15公里,问他们相遇后,甲离B地的距离是乙离B地的距离的几倍?25、有两个水池,一个水池的容积是另一个水池的2倍,现在将容积大的水池注满水,再将其中1/3的水倒入容积小的水池,此时两个水池的水量相同,问容积大的水池中原来有多少水?1.供100只羊吃6天,其中4只羊的吃草量相当于1头牛的吃草量。

小学数学六年级奥数专项训练题《割草》_题型归纳

小学数学六年级奥数专项训练题《割草》_题型归纳

小学数学六年级奥数专项训练题《割草》_题型归纳
1、《割草》难度:★★★★
六年级几个同学去割两块草地的草,甲地面积是乙地面积的4倍,开始他们一起在甲地割了半天,后来留下12人割甲地的草,其余人去割乙地的草,这样又割了半天,甲、乙两地的草同时割完了,问:共有多少名学生?
答:共有名学生。

解析:【】
2、《距离问题》难度:★★★★★
甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?
:经过分钟,甲第一次与乙、丙的距离相等。

解析:【】
3、《漂流》难度:★★★★★
有一艘轮船,从A城到B城需行3天,而从B城到A城需行4天。

如果从A城放一个无动力的木筏,它漂到B城需多少天?
答:需天。

解析:【】
4、《火车隧道》难度:★★★
某列火车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米。

时速为72千米的列车相遇,错车而过需要几秒钟?
:错车而过需要秒钟。

解析:【】
5、《军训》难度:★★★★
阳光小学有100名少先队员在岸边准备坐船去湖中离岸边600米的甲岛游玩,等最后一人到达甲岛15分钟后,再去离甲岛900米的乙岛,现有机船和木船各1条,机船和木船每分钟各行300米和150米,而机船和木船可各坐10人和25人,问最后一批少先队员到达乙岛,最短需要多长时间?(按小时计算)
点拨:根据题意,先求出最后一批学生到达甲岛的时间,再求出最后一批学生到达乙岛所需要的时间,再由在甲岛休息15分钟,即可求出要求的。

答:最短需要。

解析:【】。

小学数学六年级奥数专项训练题《割草》

小学数学六年级奥数专项训练题《割草》

小学数学六年级奥数专项训练题《割草》
小学数学六年级奥数专项训练题《割草》
1、《割草》难度:★★★★
六年级几个同学去割两块草地的草,甲地面积是乙地面积的4倍,开始他们一起在甲地割了半天,后来留下12人割甲地的草,其余人去割乙地的草,这样又割了半天,甲、乙两地的草同时割完了,问:共有多少名学生?
答:共有名学生。

解析:【】
2、《距离问题》难度:★★★★★
甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?
:经过分钟,甲第一次与乙、丙的距离相等。

解析:【】
3、《漂流》难度:★★★★★
有一艘轮船,从A城到B城需行3天,而从B城到A城需行4天。

如果从A城放一个无动力的木筏,它漂到B城需多少天?
答:需天。

解析:【】
4、《火车隧道》难度:★★★
某列火车通过250米长的隧道用25秒,通过210米长的隧。

小学奥数牛吃草问题应用题练习50题附详解

小学奥数牛吃草问题应用题练习50题附详解

小学奥数牛吃草问题专项练习50题附详解(1)120头牛28天吃完10公顷牧场上的全部牧草,210头牛63天吃完30公顷牧场上的全部牧草,如果每公顷牧场上原有的牧草相等,且每公顷每天新生长的草量相同,那么多少头牛126天可以吃完72公顷牧场上的全部牧草?(2)12头牛28天可以吃完10公亩牧场上全部牧草,21头牛63天可以吃完30公亩牧场上全部牧草.多少头牛126天可以吃完72公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场上每天生长草量相等)?(3)牧场南面一块2000平方米的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者供27头牛吃8天.在牧场的西侧有一块6000平方米的牧场,可供多少头牛吃6天?(4)画展9点开门,但早就有人排队等候入场了.从第一个观众来到时起,每分钟来的观众人数一样多.如果开3个入场口,则9点9分就不再有人排队了,如果开5个入场口,则9点5分就没有人排队了.那么第一个观众到达的时间是8点几分?(5)甲,乙,丙三个仓库,各存放着数量相同的面粉,甲仓库用一台皮带输送机和12个工人,5小时可将甲仓库内面粉搬完;乙仓库用一台皮带输送机和28个工人,3小时可将仓库内面粉搬完;丙仓库现有2台皮带输送机,如果要用2小时把丙仓库内面粉搬完,同时还要多少个工人?(每个工人每小时工效相同,每台皮带输送机每小时工效也相同,另外皮带输送机与工人一起往外搬运面粉)(6)甲,乙,丙三人同时从同一地点出发,沿同一路线追赶前面的小明,他们三人分别用9分钟,15分钟,20分钟追上小明,已知甲每小时行24千米,乙每小时行20千米,求丙每小时行多少千米?(7)假设地球上新生成的资源的增长速度是一定的,照此测算,地球上资源可供137.5亿人生活112.5年,或可供112.5亿人生活262.5年,为使人类能不断繁衍,那么地球上最多能养活多少亿人?(8)快、中、慢三车同时从A地出发,追赶一辆正在行驶的自行车,三车的速度分别是每小时24千米,20千米,19千米.快车追上自行车用了6小时,中车追上自行车用了10小时,慢车追上自行车用多少小时?(9)两位孩子逆着自动扶梯的方向行走.在20秒钟里,男孩可走27级梯级,女孩可走24级梯级,结果男孩走了2分钟到达另一端,女孩走了3分钟到达另一端.问:该扶梯共多少级?(10)两只蜗牛由于耐不住阳光的照射,从井顶逃向井底.白天往下爬,两只蜗牛白天爬行的速度是不同的,一只每个白天爬20分米,另一只爬15分米.黑夜里往下滑,两只蜗牛滑行的速度却是相同的.结果一只蜗牛恰好用5个昼夜到达井底,另一只蜗牛恰好用6个昼夜到达井底.那么,井深多少米?(11)某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时打开7个检票口,那么需多少分钟?(12)某建筑工地开工前运进一批砖,开工后每天运进相同数量的砖,如果派15个工人砌砖墙14天可以把砖运完,如果派20个工人,9天可以把砖用完,现在派若干名工人砌了6天后,调走6名工人,其余工人又工作4天才砌完,问原来有多少工人来砌墙?(13)某商场八时三十分开门,但早有人来等候.从第一个顾客来到时起,每分钟来的顾客数一样多.如果开三个入口,八时三十九分就不再有人排队:如果开五个入口,八时三十五分就不再有人排队.那么,第一个顾客到达时是几点几分?(14)某游乐场在开门前有400人排队等待,开门后每分钟来的人数是固定的.一个入场口每分钟可以进来10个游客,如果开放4个入场口.20分钟就没有人排队,现在开放6个入口,那么开门后多少分钟后就没有人排队?(15)牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:这片牧草可供25头牛吃几天?(16)牧场上有一片牧草,可以供27头牛吃6天,供23头牛吃9天,如果每天牧草生长的速度相同,那么这片牧草可以供21头牛吃几天?(17)入冬及其它原因,某片草地的草每天自然减少且减少的速度相同.这片草地可供8头牛吃10天,或供26头牛吃4天.供16头牛吃,能吃几天?(18)天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么可供11头牛吃几天?(19)现欲将一池塘水全部抽干,但同时有水匀速流入池塘.若用8台抽水机10天可以抽干;用6台抽水机20天能抽干.问:若要5天抽干水,需多少台同样的抽水机来抽水?(20)沿着匀速成上升的自动扶梯,甲从上朝下走到底走了150级,乙从下朝上走到顶走了75级.如果甲每分钟走的扶梯级数是乙的3倍,那么这部自动扶梯有多少级?(21)羊村有一批青草,若8只大羊和10只小羊一起吃,则可以吃12天,已知两只小羊每天吃的草量与一只大羊吃的草量相等.那么,这批青草可供多少只小羊和5只大羊吃8天?(22)一个农夫有2公顷,4公顷和6公顷三块牧场,三场牧场上的草长得一样密,而且长得一样快,农夫将8头牛赶到2公顷的牧场,5天吃完了,农夫又将这8头牛赶到4公顷的牧场,15天又吃完了;最后,这8头牛又被赶到6公顷的牧场,这块牧场够吃多少天?(23)一个水库水量一定,河水匀速流入水库.5台抽水机连续20天可抽干,6台同样的抽水机15天可抽干.若要求6天抽干,需要多少台同样的抽水机?(24)一块草地,每天生长的速度相同.现在这片牧草可供16头牛吃20天,或者供80只羊吃12天.如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?(25)一牧场上的青草每天都匀速生长.这片青草可供10头牛吃20周,或供15头牛吃10周.那么可供25头牛吃几周?(26)一牧场上的青草每天都匀速生长.这片青草可供27头牛吃6周或供23头牛吃9周.那么可供21头牛吃几周?(27)一片草地,每天都匀速长出青草,这片草地可供8头牛吃20天或15头牛吃15天,那么这片草地可供16头牛吃几天?(28)一片草地,每天都匀速长出青草.如果可供24头牛吃6天,或20头牛吃10天吃完.那么可供19头牛吃几天?(29)一片草地每天长的草一样多,现有牛、羊、鹅各一只,且羊和鹅吃草的总量正好是牛吃草的总量.如果草地放牧牛和羊,可以吃45天;如果放牧牛和鹅,可吃60天:如果放牧羊和鹅,可吃90天.这片草地放牧牛、羊、鹅,可以供它们吃多少天?(30)一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马,牛,羊一起去吃草,几天可以将这片牧草吃尽?(31)一艘轮船发生漏水事故,船长立即安排两部抽水机同时向外抽水,当时已经漏了500桶水,一部抽水机每分钟抽水18桶,另一部每分钟抽水12桶,经过25分钟把水抽完,问每分钟漏进水多少桶?(32)一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时船内已经进入一些水,如果以8个人淘水,5小时可以淘完;如果以5个人淘水,10小时才能淘完.现在要想在2小时内淘完,需要多少人?(33)因为天气日渐寒冷,牧场上的草不但不生长,反而以固定的速度每天在减少.如果20头牛去吃20天可以吃完;如果30头牛去吃15天可以吃完.那么,如果10头牛去吃多少天可以吃完?(34)由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?(35)由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天?(36)有甲、乙两块匀速生长的草地,甲草地的面积是乙草地面积的三倍.30头牛12天能吃完甲草地上的草,20头牛4天能吃完乙草地的草.问几头牛10天能同时吃完两块草地上的草?(37)有快、中、慢三辆车同时从同一地点出发,沿同一条公路追赶前面的一个骑车人,这三辆车分别用6分钟,10分钟,12分钟追上骑车人.现在知道快车每小时行24千米,中车每小时行20千米,那么慢车每小时行多少千米?(38)有三块草地,面积分别是4公顷,8公顷和10公顷,草地上的草一样厚,而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?(39)有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?(40)有三块草地,面积分别是5,15,25亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,则第三块草地可供多少头牛吃60天?(41)有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天?(42)有一个水池,池底有一个打开的出水口,用5台抽水机20小时可将水抽完,用8台抽水机15小时可将水抽完.如果仅靠出水口出水,那么多长时间能把水漏完?(43)有一个蓄水池,池中已经有一些水,一个进水管不断向池内匀速进水.如果打开10个相同的出水管放水,3小时放完;如果打开5个相同的出水管放水,8小时放完.如果要求在2小时放完,要安排多少个相同的出水管?(44)有一个长方形的水箱,上面有一个注水孔,底面有个出水孔,两孔同时打开后,如果每小时注水30立方米,7小时可以注满水箱;如果每小时注水45立方米,注满水箱可少用2.5小时.那么每小时由底面小孔排水多少立方米?(每小时排水量相同)(45)有一口井,用四部抽水机40分钟可以抽干,若用同样的抽水机6部,24分钟可以抽干,那么同样用抽水机5部,多少时间可以抽干?(46)有一口水井,连续不断涌出泉水,每分钟涌出的水量相等.如果使用3台抽水机来抽水,36分钟可以抽完;如果使用5台抽水机来抽水,20分钟可抽完.现在12分钟内要抽完井水,需要抽水机多少台?(47)有一牧场,17头牛30天可将草吃完,19头牛则24天可将草吃完.现有牛若干头,吃6天后卖了4头,余下的牛再吃2天便将草吃完,问有牛多少头(草每日匀速生长)?(48)有一牧场,已知养牛27头,6天把草吃尽,养牛23头,9天把草吃尽.如果养牛21头,那么几天能把草吃尽呢?(49)有一桶酒,每天都因桶有裂缝而要漏掉等量的酒,现在这桶酒如果给6人喝,4天可喝完;如果由4人喝,5天可喝完.这桶酒每天漏掉的酒可供几人喝一天?如果桶没有裂缝由4个人来喝需要几天喝完?(50)有一眼泉井,用功率一样的3台抽水机去抽井水,同时开机,40分钟可以抽干;用同样的6台抽水机去抽,则只需要16分钟就可以抽干,那么用同样的抽水机9台,几分钟可以抽干?小学奥数牛吃草问题专项练习50题详解(1)解:设1头牛1天吃1份牧草.120头牛28天吃掉120×28=3360份,说明每公顷牧场28天提供3360÷10=336份牧草;210头牛63天吃掉210×63=13230份,说明每公顷牧场63天提供13230÷30=441份牧草;每公顷牧场63-28=35天多提供441-336=105份牧草,说明每公顷牧场每天的牧草生长量为105÷35=3份,原有草量为336-28×3=252份.如果是72公顷的牧场,原有草量为252×72=18144份,每天新长出3×72=216份,126天共计提供牧草18144+126×216=45360份,可供45360÷126=360头牛吃126天.(2)解:设1头牛1天吃1份牧草,则每公亩牧场上的牧草每天的生长量:(21×63÷30-12×28÷10)÷(63-28)=0.3(份)每公亩牧场上的原有草量:21×63÷30-0.3×63=25.2(份)则72公亩的牧场126天可提供牧草:(25.2+0.3×126)×72=4536(份)可供养4536÷126=36头牛.(3)解:设1头牛1天的吃草量为"1"将它们转化为如下形式方便分析:18头牛16天共18×16=288份相当于原有草量+16天自然增加的草量27头牛8天供27×8=216 份相当于原有草量+8天自然增加的草量从上看出:2000平方米的牧场上16-8=8天生长草量=288-216=72即1天生长草量=72÷8=9那么2000平方米的牧场上原有草量:288-16×9=144或216-8×9=144则6000平方米的牧场1天生长草量=9×(6000÷2000)=27原有草量:144×(6000÷2000)=4326天里,西侧草场共提供草432+27×6=594可以让594÷6=99(头)牛吃6天.(4)解:设一个入口1分钟入场的人数为1份,3个入场口9分钟进入了27份观众,5个入场口5分钟进入了25份观众,说明4分钟来的观众人数是27-25=2份,即每分钟来0.5份.因为9点5分时共来了25份,来25份需要25÷0.5=50分钟,所以第一个观众到达的时间是8点15分.(5)解: 设1个工人1小时搬1份面粉.甲仓库中12个工人5小时搬了12×5=60份,乙仓库中28个工人3小时搬了28×3=84份,说明甲仓库的传送机5-3=2小时多输送了84-60=24份面粉,即每小时输送24÷2=12份,仓库中共有面粉(12+12)×5=120份.丙仓库中120份面粉需在2小时内搬完,每小时需搬120÷2=60份,因此需要工人60-12×2=36名.(6)解:(15×20-24×9)÷(15-9)=14(千米)15×20-14×15=90(千米)90÷20+14=18.5(千米).(7)解:设一亿人一年消耗的能源是1份.那么一年新生的能源是:(262.5×112.5-137.5×112.5)÷(262.5-112.5)=112.5×(262.5-137.5)÷(262.5-112.5)=14062.5÷150=93.75(份)要想使得人类不断生存下去,则每年消耗的能源最多就是每年新生的能源,那么最多的人口是:93.75÷1=93.75(亿人).答:地球上最多能养活93.75亿人.(8)解:6小时时自行车共走了:6×24=144(千米),10小时时自行车共走了:20×10=200(千米),自行车的速度为:(200-144)÷(10-6)=14(千米),三车出发时自行车已经走了:144-14÷6=60(千米),慢车追上的时间为:60÷(19-14)=12(小时).(9)解:2分钟=120秒,3分钟=180秒. 电动扶梯每分钟走:[(180÷20)×24-(120÷20)×27]÷(3-2)=216-162=54(级)电动扶梯共有:(120÷20)×27-54×2=54(级)答:该扶梯共54级.(10)解:(20×5-15×6+20)×5=30×5=150(分米)150分米=15米答:井深15米.(11)解:设1个检票口1分钟检票的人数为1份.因为4个检票口30分钟通过(4×30)份,5个检票口20分钟通过(5×20)份,说明在(30-20)分钟内新来旅客(4×30-5×20)份,所以每分钟新来旅客(4×30-5×20)÷(30-20)=2(份).假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为(4-2)×30=60(份)或(5-2)×20=60(份).同时打开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要60÷(7-2)=12(分).(12)解:依题意知开工前运进的砖相当于"原有草"开工后每天运进相同的砖相当于"草的生长速度"工人砌砖相当于"牛在吃草".所以设1名工人1天砌砖数量为"1",列表分析得:15人14天共15×14=210份:原有砖的数量+14天运来砖的数量20人9天共20×9 =180份:原有砖的数量+9天运来砖的数量从上面的表中可以看出(14-9)=5天运来的砖为(210-180)=30即1天运来的砖为30÷5=6原有砖的数量为:180-6×9=126假设6名工人不走,则能多砌6×4=24份砖则砖的总数为126+24+6×(6+4)=210因为是10天工作完,所以有210÷10=21名工人.(13)解:设每个入口每分钟来商场的人数为一份从八时三十分到八时三十九分经过了:9分钟从八时三十分到八时三十五分经过了:5分钟每个入口每分钟增加的人数:(9×3-5×5)÷(5-3)=2÷2=1(份)每个入口原有等候的人数:9×3-1×9=27-9=18(份)从第一个顾客来到时起,到八时三十分开门经过的时间是:18÷1=18(分钟)所以第一个顾客到达时是8点12分.答:第一个顾客到达时是8点12分.(14)解:4个入场口20分钟进入的人数是:10×4×20=800(人),开门后20分钟来的人数是:800-400=400(人),开门后每分钟来的人数是:400÷20=20(人),设开6个入场口x分钟后没有人排队,由题意列方程得10×6×x=400+20x, 40x=400,x=10.答:开放6个入场口10分钟后就没有人排队.(15)解:设1头牛1天吃的草为1份,由条件可知,前后两次青草的问题相差为10×20-15×10=50.为什么会多出这50呢?这是第二次比第一次多的那(20-10)=10(天)生长出来的,所以每天生长的青草为50÷10=5.现从另一个角度去理解,这个牧场每天生长的青草正好可以满足5头牛吃.由此,我们可以把每次来吃草的牛分为两组,一组是抽出的5头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(10-5)×20=100.那么:第一次吃草量20×10=200,第二次吃草量,15×10=150;每天生长草量50÷10=5.原有草量(10-5)×20=100或200-5×20=100.25头牛分两组,5头去吃生长的草,其余20头去吃原有的草那么100÷20=5(天).答:可供25头牛吃5天.(16)解:设每头牛每天吃"1"份草.每天新生草量为:(23×9-27×6)÷(9-6)=(207-162)÷3=45÷3=15(份)原有草量为:27×6-15×6=72(份)21头牛吃的天数:72÷(21-15)=72÷6=12(天)答:这片牧草可供21头牛吃12天.(17)解:设每头牛每天吃草1份则草每天减少:(26÷4-8×10)÷(10-4)=(104-80)÷6=24÷6=4(份)由于草每天减少4份,就相当于每天增加了4头牛吃草,那么草地原有的草的份数:(8+4)×10=12×10=120(份)16头牛吃:120÷(16+4)=120÷20=6(天)答:供16头牛吃,能吃6天.(18)解:5天时共有草:20×5=1006天时共有草:16×6=96草减少的速度为:(100-96)÷(6-5)=4原有的草量为:100+4×5=120可供11头牛吃:120÷(11+4)=8(天).(19)解:设1台抽水机1天的抽水量为1单位,则池塘每天的进水速度为:(6×20-8×10)÷(20-10)=4单位池塘中原有水量:6×20-4×20=40单位若要5天内抽干水,需要抽水机40÷5+4=12台.(20)解:(150×3+75×2)÷(3+2)=(450+150)÷5=120(级)答:这部自动扶梯有120级.(21)解:假设一只小羊每天吃1份草;这批青草共有:(8×2+10)×12=312(份)5只大羊8天吃青草:5×2×8=80(份)可供小羊的只数是:(312-80)÷8=29(只)答:可供29只小羊和5只大羊吃8天.(22)解:5×8÷2=20,15×8÷4=30(30-20)÷(15-5)=11×6=620-5×1=1515×6=9090÷(8-6)=45(天).(23)解:20天共抽水:20×5=10015天共抽水:15×6=90进水的速度为:(100-90)÷(20-15)=2原有水为:100-2×20=6060÷6=10(台)10+2=12(台).(24)解:设1头牛1天吃1份牧草那么16头牛20天一共吃了16×20=320份草20头牛12天吃了240份草每天长草量为(320-240)÷(20-12)=10份草原有的草量为320-10×20=120份草现在有10+15=25头牛,其中吃原有草的牛有25-10=15头那么可以吃120÷15=8天.(25)解:把一头牛一周所吃的牧草看作1,那么就有:10头牛20周所吃的牧草为:10×20=200 (这200包括牧场原有的草和20周新长的草)15头牛10周所吃的牧草为:15×10=150(这150包括牧场原有的草和10周新长的草)1周新长的草为:(200-150)÷(20-10)=5牧场上原有的草为:10×20-5×20=100每周新长的草不够250头牛吃,25头牛减去20头,剩下5头吃原牧场的草:100÷(25-5)=100÷20=5(周)答:可供25头牛吃5周.(26) 解:设1头牛1周吃的草为1份牧场每周新长草(23×9-27×6)÷(9-6)=15(份)草地原有草(27-15)×6=72(份)可供21头牛吃72÷(21-15)=12(周)(27) 解:假设每头牛每天吃青草1份青草的生长速度:(15×15-20×8)÷(20-15)=65÷5=13(份)草地原有的草的份数:15×15-13×15=225-195=30(份)每天生长的13份草可供13头牛去吃,那么剩下的16-13=3头牛吃30份草: 30÷(16-13)=30÷3=10(天)答:这片草地可供16头牛吃10天.(28) 解:6天时共有草:24×6=14410天时共有草:20×10=200草每天生长的速度为:(200-144)÷(10-6)=14原有草量:144-6×14=60可供19头牛: 60÷(19-14)=12(天).(29) 解:设1头牛1天吃草量为"1",将它们转化为如下形式方便分析.45天牛和羊吃草量=原有草量+45天新长草量 ①60天牛和鹅吃草量=原有草量+60天新长草量 ②90天牛(鹅和羊)吃草量=原有草量+90天新长草量 ③由①×②-③可得: 90天羊吃草量=原有草量,羊每天吃草量=原有草量÷90 由(3)分析知道:90天鹅吃草量=90天新长草量,鹅每天吃草量=每天新长草量;将分析的结果带入②得:原有草量=60,带入③得90天羊吃草量=60,羊每天吃草量=32 这样如果牛,羊和鹅一起吃,可以让鹅去吃新生草,牛和羊吃原有草可以吃:60÷(1+32)=36(天). (30) 解:设1匹马1天吃草量为"1",将它们转化为如下形式方便分析:15天马和牛吃草量=原有草量+15天新长草量 ①20天马和羊吃草量=原有草量+20天新长草量 ②30马(牛和羊)吃=原有草量+30天新长草量 ③由①×②-③可得: 30天牛吃草量=原有草量,牛每天吃草量=原有草量÷30;由③分析知道:30天羊吃草量=30天新长草量,羊每天吃草量=每天新长草量;将分析的结果带入②得:原有草量=20,带入③30天牛吃草量=20,得牛每天吃草量=32,这样如果马,牛和羊一起吃,可以让羊去吃新生草,马和牛吃原有草可以吃:20÷(1+32)=12(天). (31) 解:25分钟共抽水:(18+12)×25=750(桶)25分钟共漏水:750-500=250(桶)每分钟漏水:250÷25=10(桶).(32) 解:设每人每小时淘水1份.(1×10-5×8)÷(10-5)=10÷5=2(份)(30+2×2)÷2=34÷2=17(人)答:现在要想在2小时内淘完,需要17人.(33) 解:(30×15-20×20)÷(20-15)=1020×20+10×20=600600÷(10+10)=30(天)答:10头牛去吃30天可吃完.(34) 解:设1头牛1天吃1份牧草,则20头牛5天吃掉20×5=100份牧草,16头牛6天吃掉16×6=96份牧草,说明6-5=1天牧场上的牧草减少100-96=4份,我们可以假设有4头牛来帮忙把这部分草给吃了.牧场上的原有草量是:100+4×5=120份.原来有11头牛,现在又有4头牛来帮忙吃,所以可维持120÷(11+4)=8天.(35) 解:设1头牛1天吃的草为1份.20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草.由"草地上的草可供20头牛吃5天",再加上"寒冷"代表的10头牛同时在吃草,所以牧场原有草(20+10)×5=150(份).由 150÷10=15知,牧场原有草可供15头牛吃 10天,寒冷占去10头牛,所以,可供5头牛吃10天.(36) 解:设1头牛1天的吃草量为"1",将它们转化为如下形式方便分析,根据甲的面积是乙的3倍可以将关系(将乙看成1份,则甲就是3份)进行转化.甲: 30头牛12天30×12=360:甲原有草量+12天甲地自然增加的草量,甲转化为:10 头牛 12天10×12=120:乙原有草量+12天乙地自然增加的草量乙转化为: 20头牛4天20×4 = 80乙原有草量+ 4天乙地自然增加的草量.由此可以看出(12-4)=8天乙地长草量为(120-80)=40,即1天乙地长草量为40÷8=5;乙地的原有草量为:120-5×12=60;则甲,乙两地1天的新生草为:5×(3+1)=20,原有草量为:60×(3+1)=240;10天甲,乙两地共提供青草为:240+20×10=440,需要:440÷10=44(头)牛.(37)解:24×6=144(千米)10×20=200(千米)(200-144)÷(10-6)=14(千米)200-10×14=60(千米)60÷12+14=19(千米).(38)解:设1头牛1周吃1份牧草.24头牛6周吃掉24×6=144份,说明每公顷草地6周提供144÷4=36份牧草;36头牛12周吃掉36×12=432份,说明每公顷草地12周提供432÷8=54份牧草.每公顷草地12-6=6周多提供54-36=18份牧草,说明每公顷草地每周的牧草生长量是18÷6=3份,原有草量是36-3×6=18份.10公顷草地原有18×10=180份牧草,每周新增3×10=30份,可供50头牛吃180÷(50-30)=9周.(39)解:设每头牛每天的吃草量为1则每亩30天的总草量为:10×30÷5=60每亩45天的总草量为:28×45÷15=84那么每亩每天的新生长草量为(84-60)÷(45-30)=1.6每亩原有草量为:60-1.6×30=12那么24亩原有草量为:12×24=28824亩80天新长草量为24×1.6×80=307224亩80天共有草量3072+288=3360所以有3360÷80=42(头)答:第三块地可供42头牛吃80天.(40)解:30×10÷5=6028×45÷15=84(84-60)÷(45-30)=1.61.6×25=4060-1.6×30=1212×25=300300÷60=5(头)40+5=45(头).(41)解:因为5公顷草地可供11头牛吃10天, 120÷5=24,所以120公顷草地可供11×24=264(头)牛吃10天.因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12×20=240(头)牛吃14天.120÷8=15,问题变为: 120公顷草地可供19×15=285(头)牛吃几天?因为草地面积相同,可忽略具体公顷数,所以原题可变为:"一块匀速生长的草地,可供264头牛吃10天,或供240头牛吃14天,那么可供285头牛吃几天?"设1头牛1天吃的草为1份.每天新长出的草有(240×14-264×10)÷(14-10)=180(份).草地原有草(264—180)×10=840(份).可供285头牛吃840÷(285—180)=8(天).所以,第三块草地可供19头牛吃8天.(42)解:设1台抽水机1小时抽出1单位的水,那么5台抽水机20小时抽出5×20=100单位的水,8台抽水机15小时抽出8×15=120单位的水,说明池底的出水口20-15=5小时漏出120-100=20单位的水,则出水口的出水速度是每小时20÷5=4单位,水池中原有100+4×20=180单位的水,如果仅靠出水口出水,需要180÷4=45小时.(43)解:每小时新注入的水量是:(5×8-10×3)÷(10-5)=(40-30)÷5=10÷5=2(个)排水前原有的水量是:10×3-2×3=30-6=24(个)蓄水池2小时的总水量是:24+2×2=28(个)2小时把池内的水排完需要安排同样的出水管数是:28÷2=14(个)答:要想2小时内把池内的水排完需要安排同样的14个出水管.(44)解:7小时共注水:7×30=210(立方米)4.5小时共注水:(7-2.5)×45=202.5(立方米)排水速度为:(210-202.5)÷(7-4.5)=3(立方米).(45)解:设每台抽水机每分钟的抽水量为1份.井每分钟涌出的水量为:(4×40-6×24)÷(40-24)=16÷16=1(份)井里原有水量为:4×40-40×1=120(份)或6×24-24×1=120(份);井每分钟涌出的水即1份,要用1台抽水机去抽,剩下5-1=4(台)抽水机就要去抽原有的水:120÷(5-1)=120÷4=30(分钟)答:同样用抽水机5部,30分钟可以抽干.(46)解:36分钟时的总水量为:3×36=10820分钟时的总水量为:5×20=100涌水的速度为:(108-100)÷(36-20)=0.5原水量为:100-20×0.5=9090÷12=7.5 (台)7.5+0.5=8(台).(47)解:设1头牛1天吃1份草则牧草每天的生长量:(17×30-19×24)÷(30-24)=9份原有草量:17×30-9×30=240份假设牛的数量保持不变,连续吃6+2=8天共需要牧草240+9×8+4×2=320份因此有牛320÷8=40头.(48)解:设1头牛1天吃1份的草,求两个总量,27×6=162,23×9=207,总量的差÷时间差=每天长草量=安排去吃新草的牛数(207-162)÷(9-6)=15.每天长草量×天数=总共长出来的草15×6=90,草的总量-总共长出来的草=原有。

小学数学割补法练习题

小学数学割补法练习题

小学数学割补法练习题在小学数学学习中,割补法是一种常见的解题方法。

它能够帮助我们解决一些较为复杂的数学问题,提高我们的计算能力和逻辑思维能力。

下面我将为大家提供一些小学数学割补法练习题,希望能够帮助大家更好地掌握这一方法。

练习题一:小明一共有15个苹果,他先吃掉了其中的⅗,然后又吃掉了剩下的苹果中的2/3。

请问,小明最开始有多少个苹果?解题思路:首先,我们可以将问题中的信息进行整理。

小明先吃掉了15个苹果中的⅗,那么吃掉的苹果数量为15 * ⅗ = 9个。

剩下的苹果数量为15 - 9 = 6个。

小明接着吃掉了剩下的苹果中的2/3,也就是6 * 2/3 = 4个。

所以,小明最开始有的苹果数量为9个 + 4个 = 13个。

练习题二:某商店举行促销活动,其中一种商品原价120元,现打6折出售。

在促销活动期间,小明购买了3件该商品。

请问,小明共花费了多少钱?解题思路:我们可以利用割补法解答这个问题。

该商品原价为120元,现打6折出售,即打折后的价格为120 * 0.6 = 72元。

所以,小明购买一件该商品实际上花费了72元。

小明购买了3件商品,总花费为72 * 3 = 216元。

练习题三:某快餐店推出了折后套餐,原价为50元,促销价格为原价的4折。

小红购买了该套餐,她花了15元,还剩下多少钱?解题思路:我们可以通过割补法解答这个问题。

原价为50元的套餐,促销价格为50 * 0.4 = 20元。

小红购买了该套餐,花费了15元,所以她还剩下20 - 15 = 5元。

练习题四:某超市的水果价格表如下:水果单价(元/kg)苹果 5橙子 3香蕉 4小华想购买2kg苹果、3kg橙子和1kg香蕉,他需要支付多少钱?解题思路:我们可以通过割补法解答这个问题。

苹果的单价为5元/kg,小华购买了2kg苹果,所以需要支付的金额为5 * 2 = 10元。

同样地,橙子的单价为3元/kg,小华购买了3kg橙子,所以需要支付的金额为3 * 3 = 9元。

小学五六年级奥数牛吃草问题超详细解答

小学五六年级奥数牛吃草问题超详细解答

牛吃草问题超详细解答小结提要:牛吃草问题的关键在于:草每天都会生长。

草吃完的意思是草地原有的草和新长的草在哪一天被全部吃完。

本份资料选择整理了最经典的牛吃草问题以及牛吃草问题的各种变型题,并且给出了特别详细的解答,一般小学奥数中会涉及到的牛吃草问题都在这几类题型中。

牛吃草问题的基本解题步骤1.将每头牛每天的吃草量设为“1”份;2.根据已知条件中不同情况下的牛的吃草总量,计算草每天生长份数;计算草地原有草的总量;3.根据所求问题求解。

经典例题1.一块草地有草240份,每天长6份,如果每头牛每天吃1份草,那么:(1)要使得草永远吃不完,最多放养多少头牛;(2)10头牛,吃多少天恰好把草吃完;(3)多少头牛,吃20天恰好把草吃完。

答案:(1)6;(2)60;(3)18.解答:首先代入基本解题步骤1.每头牛每天的吃草量设为“1”份。

2.已知草每天生长份数为6份;已知草地原有草的总量为240份。

3.根据所求问题求解:问题(1):6。

如果希望牛吃的是每天新长出来的草,那么草永远也不会变少,所以:最多放养的牛的数量=草每天生长份数=6份。

问题(2):列式计算:240÷(10-6)=60(天)。

10头牛去吃草,将草吃完的意思就是将草地原有草量240份和新长的草量吃完。

那么,每天新长6份草,我们可以将牛分为两部分,假定令6头牛每天吃新长的6份草,4头牛吃草地上原有的草,那么问题可以变成4头牛吃草地原来的240份草,几天吃完,即得到答案240÷4=60天。

问题(3):列式计算:240÷20+6=18(头)。

方法一:已知草20天被吃完,那么:这20天被牛吃掉的总草量=草地原有草量+20天新长草量=240+6×20=360份。

那么问题可以变成多少头牛20天可以吃完360份草,即得到答案360÷20=18头牛。

方法二:已知草20天被吃完,说明草地原有的240份草平均每天被吃240÷20=12份,那么首先需要12头牛来每天吃这12份草;其次草每天会新长6份,又需要6头牛来吃掉这每天新长的草,以此来保证草的总量不会变多。

2021年六年级奥数:牛吃草问题(附答案解析)

2021年六年级奥数:牛吃草问题(附答案解析)

2021年六年级奥数:牛吃草问题牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

牛吃草问题是经典的奥数题型之一,这里我只介绍一些比较浅显的牛吃草问题,给大家开拓一下思维,首先,先介绍一下这类问题的背景,大家看知识要点特点:在“牛吃草”问题中,因为草每天都在生长,草的数量在不断变化,也就是说这类问题的工作总量是不固定的,一直在均匀变化。

典例评析例1、有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天,那么它可供几头牛吃20天?例2、由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少,如果某块草地上的草可供25头年吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?例3、一片匀速生长的草地,可以供18投牛吃40天,或者供12头牛与36只羊吃25天,如果1头牛每天的吃草两相当于3只羊每天的吃草量。

请问:这片草地让17头牛与多少只羊一起吃,刚好16天吃完?牧场上长满牧草,每天都匀速生长。

这片牧场可供27头牛吃6天或23头牛吃9天。

问可供21头牛吃几天?【分析】这片牧场上的牧草的数量每天在变化。

解题的关键应找到不变量——即原来的牧草数量。

因为总草量可以分成两部分:原有的草与新长出的草。

新长出的草虽然在变,但应注意到它是匀速生长的,因而这片牧场每天新长出飞草的数量也是不变的。

巧用因式分解揭秘“托尔斯泰割草问题”

巧用因式分解揭秘“托尔斯泰割草问题”

巧用因式分解揭秘“托尔斯泰割草问题”托尔斯泰不仅是一位伟大的文学家,还是一个有名的“数学迷”,每当创作余暇,只要见到有趣的数学题目,他总会丢下其他事情,沉迷于数学演算之中.他还动手编了许多数学题,这些题目都很有趣而且都不太难,富于思考性,因而在俄罗斯少年中广泛流传.著名的“割草问题”就是托尔斯泰最为欣赏的一道数学题:割草队要割两块草地,其中一块比另一块大一倍.全队在大块草地上割了半天后,分为两半,一半继续留在大块草地上,另一半转移到小块草地上.留下的人到晚上就把大块草地全割完了,而小块草地上还剩一小块未割.第二天,这剩下的一小块,一个人花了一整天时间才割完.问割草队共有多少人?“割草问题”的解法较多,既可以用小学所学的算术方法解,也可以用中学所学的方程(组)解,下面提供一种列方程组的解法:设割草队共有x人,每人每天割草的面积为1,小块草地的面积为k,则大块草地的面积为2k,根据题意列方程组,得.解得.所以割草队共有8人.在“割草问题”的众多解法中,值得一提的是下面的构图法:因为大块草地面积是小块草地面积的2倍,全队人在大块草地上割半天所割下草的面积也是一半人在小块草地上割半天所割下草的面积的2倍(图中的两个阴影部分).由于大块草地上的阴影部分由一半人半天割完,所以小块草地上的阴影部分需总人数的用半天割完,相当于总人数的用一天割完,而实际上,小草地上的阴影部分由1 人割1 天割完,所以总人数为8.这种构图法构思巧妙,解法简捷,是“割草问题”最为简捷的解法,几乎不用动笔,可以心算.在这种构图法的背后,实际上用到了一个推理,即由“大块草地面积是小块草地面积的2倍”得到“全队人在大块草地上割半天所剩下草的面积是一半人在小块草地上割半天所剩下草的面积的2倍”,这是为什么呢?在这里因式分解可以派上用场.根据“大块草地面积是小块草地面积的2倍”可设小块草地的面积为a,则大块草地的面积为2a.再设一半人在小块草地上工作半天的割草面积为b,则全队人在大块草地上工作半天的割草面积为2b,因此全队人在大块草地上割半天所剩下草的面积是2a-2b,一半人在小块草地上割半天所剩下草的面积是a-b,显然2a-2b=2(a-b).以上事实充分说明运用因式分解不仅可以用来分解因式,而且在解决实际问题时如果能够巧妙运用因式分解,可使一些看似复杂的问题得到简化.。

分组法:割草人共有多少人(六年级数学奥数)

分组法:割草人共有多少人(六年级数学奥数)
一组割草人去割两块草地,他们的工作效率都相等,大块草地是小块草地的两倍; 上午全组人都在大块草地上割草,下午分成两组,一半人继续在大块草地上割草, 到傍晚时恰好割完。另一半人到小块草地上割草,到傍晚时还剩下一小块 这小块若由一个人去割,正好一天可以割完。这组割草人共有多少人?
思路:全部人当成一组,求一组人完成的工作;一个人完成的工作和一组相比,就知道总人数了
84 8
一组人一天工作量为1,一个人一天工作量八分之一:所以这组人数: 1
ቤተ መጻሕፍቲ ባይዱ
1
( 8 人)
8
设全部人为一组,一组人一天工作量为单位1,半天工作量就是二分之一
大草地的工作量:上午全部人数,下午一半人数
总工作量:1 1 1 3 2 22 4
大草地是小块草地的两倍 所以小块草地工作量:3 2 3
4
8
小草地在傍晚之前完成的工作量,半组人干了半天: 就是:1 1 1
22 4
小草地剩余需要一个人工作的工作量: 3 - 1 1

小学奥数6-3-1 牛吃草问题(一).专项练习及答案解析

小学奥数6-3-1 牛吃草问题(一).专项练习及答案解析

1. 理解牛吃草这类题目的解题步骤,掌握牛吃草问题的解题思路.2. 初步了解牛吃草的变式题,会将一些变式题与牛吃草问题进行区别与联系英国科学家牛顿在他的《普通算术》一书中,有一道关于牛在牧场上吃草的问题,即牛在牧场上吃草,牧场上的草在不断的、均匀的生长.后人把这类问题称为牛吃草问题或叫做“牛顿问题”.“牛吃草”问题主要涉及三个量:草的数量、牛的头数、时间.难点在于随着时间的增长,草也在按不变的速度均匀生长,所以草的总量不定.“牛吃草”问题是小学应用题中的难点.解“牛吃草”问题的主要依据:①草的每天生长量不变; ②每头牛每天的食草量不变; ③草的总量=草场原有的草量+新生的草量,其中草场原有的草量是一个固定值 ④ 新生的草量=每天生长量⨯天数.同一片牧场中的“牛吃草”问题,一般的解法可总结为:⑴设定1头牛1天吃草量为“1”;⑵草的生长速度=(对应牛的头数⨯较多天数-对应牛的头数⨯较少天数)÷(较多天数-较少天数);⑶原来的草量=对应牛的头数⨯吃的天数-草的生长速度⨯吃的天数;⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);⑸牛的头数=原来的草量÷吃的天数+草的生长速度.“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等,只有理解了“牛吃草”问题的本质和解题思路,才能以不变应万变,轻松解决此类问题.知识精讲教学目标6-1-10.牛吃草问题(一)模块一、一块地的“牛吃草问题”【例 1】 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?【考点】牛吃草问题 【难度】3星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1周的吃草量为“1”,草的生长速度为(239276)(96)15⨯-⨯÷-=,原有草量为(2715)672-⨯=,可供72181519÷+=(头)牛吃18周【答案】19头牛【巩固】 有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?【考点】牛吃草问题 【难度】3星 【题型】解答【关键词】对比思想方法【解析】 设1头牛1天的吃草量为“1”,那么251015-=天生长的草量为1225241060⨯-⨯=,所以每天生长的草量为60154÷=;原有草量为:()24410200-⨯=.20天里,草场共提供草200420280+⨯=,可以让2802014÷=头牛吃20天.【答案】14头牛【巩固】 牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则 头牛96天可以把草吃完.【考点】牛吃草问题 【难度】3星 【题型】填空【关键词】湖北省,创新杯,对比思想方法【解析】 设1头牛1天的吃草量为“1”,那么每天新生长的草量为()()103060702460243⨯-⨯÷-=,牧场原有草量为10306016003⎛⎫-⨯= ⎪⎝⎭,要吃96天,需要10160096203÷+=(头)牛. 【答案】20头牛【巩固】 一牧场放牛58头,7天把草吃完;若放牛50头,则9天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相同,那么放多少头牛6天可以把草吃完?例题精讲【考点】牛吃草问题【难度】3星【题型】解答【关键词】对比思想方法【解析】设1头牛1天的吃草量为1个单位,则每天生长的草量为:⨯-⨯=,(509587)(97)22⨯-⨯÷-=,原有草量为:509229252+⨯÷=(头)(252226)664【答案】64头牛【例2】青青一牧场,牧草喂牛羊;放牛二十七,六周全吃光。

小学六年级奥数第二十六讲:赏中外名题

小学六年级奥数第二十六讲:赏中外名题

第二十六讲:赏中外名题例1.“远望巍巍塔七层,红红点点倍加增,共灯三百八十一,请问尖头几盏灯”这是明代员敬的《九章算术比类大全》中的一题。

意思是:在一座七层的宝塔上共装灯381盏,从塔顶向下,每下一层灯的盏数都是上一层的2倍,问塔的顶层装几盏灯例2.毕达哥拉斯是古代希腊着名的数学家。

传说当人们问起他有多少辫弟子时,毕达哥拉斯回答道:“我的弟子的一半在研究美妙的数学,四分之一探索大自然的奥秘,七分之一终日沉默寡言深入沉思,再加上三个女孩子。

这就是我全部弟子。

”例3.古希腊数学家丢番图墓志铭的大意是:丢番图的一生,幼年占61,青少年占121,又过了一生的71才结婚,5年之后生子,子比他早去世4年,寿命是他父亲的一半。

请问丢番图活了多少年例4.我国古代数学名着《九章算术》书中有这样一道十分有趣的题目,叫“两鼠对穿”。

大意是:有一堵墙厚5尺,两只老鼠同时从墙的两侧相对穿过来,大老鼠第一天穿1尺,小老鼠第一天也穿1尺,以后大老鼠逐日加倍,小老鼠逐日减半。

几天后两只老鼠可以相逢例5.牧人赶着一群羊放牧,有一位过路人牵着一只羊从后面跟上,他对牧羊人说:“这群羊真不少,大概有一百只吧”牧羊人答道:“这群羊加上一倍,再加上原来这群羊的一半,又加上原来这群羊的四分之一,连你手中牵着的这只羊,才刚好一百只。

”问这群羊有几只(中国百羊问题)例6.有一群蜜蜂,其中51落在杜鹃花上,31落在栀子花上,飞向月季花的是这两者差的3倍,最后剩下一只在芬芳的茉莉花与玉兰花之间飞来飞去,试问这群蜜蜂共有几只(印度古代趣题)例7.一群鸽子飞向一棵高大的树木。

一部分停息在树枝上,而另一些分散在树下觅食,树上的鸽子对树下的鸽子说:“如果你们中间有1只飞上为,那么你们就是总数的31;如果我们中间有1只飞下去,那么你们和我们正好相等。

”你能算出大树上、下有几只鸽子吗例8.拜斯迦罗是古代印度杰出的数学家。

相传,他唯一的爱女出嫁时,只给了女儿一本书---《算术》。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学六年级奥数专项训练题《割草》
1、《割草》难度:★★★★
六年级几个同学去割两块草地的草,甲地面积是乙地面积的4倍,开始他们一起在甲地割了半天,后来留下12人割甲地的草,其余人去割乙地的草,这样又割了半天,甲、乙两地的草同时割完了,问:共有多少名学生?
答:共有名学生。

解析:【】
2、《距离问题》难度:★★★★★
甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?
:经过分钟,甲第一次与乙、丙的距离相等。

解析:【】
3、《漂流》难度:★★★★★
有一艘轮船,从A城到B城需行3天,而从B城到A城需行4天。

如果从A城放一个无动力的木筏,它漂到B城需多少天?
答:需天。

解析:【】
4、《火车隧道》难度:★★★
某列火车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米。

时速为72千米的列车相遇,
错车而过需要几秒钟?
:错车而过需要秒钟。

解析:【】
5、《军训》难度:★★★★
阳光小学有100名少先队员在岸边准备坐船去湖中离岸边600米的甲岛游玩,等最后一人到达甲岛15分钟后,再去离甲岛900米的乙岛,现有机船和木船各1条,机船和木船每分钟各行300米和150米,而机船和木船可各坐10人和25人,问最后一批少先队员到达乙岛,最短需要多长时间?(按小时计算)
点拨:根据题意,先求出最后一批学生到达甲岛的时间,再求出最后一批学生到达乙岛所需要的时间,再由在甲岛休息15分钟,即可求出要求的。

答:最短需要。

解析:【】
精心整理,仅供学习参考。

相关文档
最新文档