逻辑函数的卡诺图化简法介绍

合集下载

3.卡诺图化简法(一)

3.卡诺图化简法(一)
卡诺图化简法是逻辑函数化简的一种直观方法。首先,需要掌握最小项的概念,即包含全部变量且每个变量只出现一次的乘积项。卡诺图则是最小项按一定规则排列的方格图,具有循环相邻性,保证了相邻最小项在几何位置上也相邻。通过识别相邻最小项,即只有一个变量互为反变量、其余变量均相同的两个最小项,可以将其合并为一项,从而简化逻辑函数。文档详细介绍了卡诺图的构成原则,如何通过卡诺图表示最小项,并给出了二变量、三变量和四变量的卡诺图示例。此外,还解释了如何根据卡诺图方格对。通过卡诺图化简法,可以更加直观地判断化简结果是否最简,并有效简化逻辑函数的表达。

知识点3.卡诺图化简法

知识点3.卡诺图化简法

相邻项相加能消去一个因子,合并为一项,如:

卡诺图化简就是建立在相邻项的基础上的,消去多余的因子,使函
数得到简化。
逻辑函数的化简——卡诺图化简法
利用卡诺图化简时,首先要把函数表示成最小项之 和的形式,称为标准与或式(或最小项表达式),求函 数标准与或式有两种方法:
①从真值表中求标准与或式 ②从一般表达式利用展开法求标准与或式
逻辑函数的化简——卡诺图化简法
【例1】化简逻辑函数
化简得:
最小项合并结果有时不是唯一的,但合并后的项数和每一 项的因子数是相同的!
逻辑函数的化简——卡诺图化简法
【例2】 用卡诺图法化简逻辑函数Z(A,B,C,D)
=∑m(0,1,2,3,4,5,6,7,10,11)。
化简得:
逻辑函数的化简——卡诺图化简法
逻辑函数的化简——卡诺图化简法
利用前面介绍的公式法化简逻辑函数,要熟练掌 握逻辑代数的基本公式、常用公式和一些定律,并 且需要有一定的技巧,这对许多人来说有困难。借 助卡诺图化简逻辑函数比较方便,容易掌握。卡诺 图是美国工程师karnaugh在20世纪50年代提出的, 它建立在最小项的基础上,所以首先要了解有关最 小项的内容。
b.四个小方格组成一个大方格、或组成一行(列)、或 处于相邻两行(列)的两端、或处于四角时,所代表的最小 项可以合并,合并后可消去两个变量。
逻辑函数的化简——卡诺图化简法
c.八个小方格组成一个大方格、或组成相邻的两行 (列)、或处于两个边行(列)时,所代表的最小项可以合 并,合并后可消去三个变量。
逻辑函数的化简——卡诺图化简法
仔细分析上表,可以总结出最小项的性质: ①对任何一个最小项,只有一组变量的取值组合,使 它的值为1。反之,对于输入变量任何一组取值,有且 只有一个最小项的值为1。 ②任意两个最小项的乘积恒等于0 。 ③所有最小项之和为1。 ④具有相邻性的两个最小项之和能合并成一项且消去 一个因子。

逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法

[例]已知:真值表如下,写出 已知:真值表如下, 该逻辑函数和其反函数的标 准与或式 解:由题可知: 由题可知:
F = XY Z + XY Z + XY Z + XYZ
= m0 + m2 + m5 + m7
= ∑ ( 0 ,2 ,5 ,7 ) m
∴ F =
QF + F = 1
∑ m (1, 3 , 4 , 6 )
例如 CD AB 00 01 11 10 00 1 1 1 1 01 1 1 11 1 1 10 1 1 1 1 8 个相邻项合并消去 3 个变量 A ABCD+ABCD=ABD ABCD+ABCD=ABD ABCD+ABCD +ABCD+ABCD =ACD +ACD =AD
2 个相邻项合并消去 4 个变量, 个相邻项合并消去 个变量, 1 个变量,化简结果 2 个变量, 化简结果为相同变量相与。 化简结果为相同变量相与。 为相同变量相与。 为相同变量相与。
3. 已知一般表达式画函数卡诺图 的卡诺图。 [例] 已知 Y = AD + AB ( C + BD ) ,试画出 Y 的卡诺图。 解:(1) 将逻辑式转化为与或式 ) (2) 作变量卡诺图 ) Y = AD + AB + (C + BD ) (3) 根据与或式填图 ) = AD + AB + CBD CD 00 01 11 10 AB 1 1 00 01 11 10 1 1 1 1 1 1
[例 ]
Y = ABC + ABC + ABC + ABC
合并最小项 三个圈最小项分别为: 三个圈最小项分别为:

卡诺图化简法一全文

卡诺图化简法一全文

m0
0
m1如何根据输入1变量组 m2合写出相应最2小项?
m3
3
m4
4
m5
5
m6
6
m7
7
例如 ABC 101 5 m5
m4 4 100 ABC
2. 最小项的基本性质
(1) 对任意一最小项,只有一组变量取值使它的值为1,而
其余各种变量取值均使其值为0。 (2) 不同的最小项,使它的值为1的那组变量取值也不同。 (3) 对于变量的任一组取值,任意两个最小项的乘积为0。 (4) 对于变量的任一组取值,全体最小项的和为1。
每一个与项都是最小项的与或逻辑式称为标 准与或式,又称最小项表达式。
任何形式的逻辑式都可以转化为标准与或式, 而且逻辑函数的标准与或式是唯一的。
[例] 将逻辑式 Y ABC AB C D 化为标准与或式。
解:(1) 利用摩根定律和分配律把逻辑函数式展开为与或式。
Y ABC AB C D ABC AB (C D) ABC ABC ABD 普通与或式,非标准与或式
CD
AB
C D CD CD C D
同一行最 左与最右 AB ABC D ABCD ABCD ABC D
方格相邻
AB ABC D ABCD ABCD ABC D 卡诺图特点: 循环相邻性 AB ABC D ABCD ABCD ABC D
同一列最 上与最下 ቤተ መጻሕፍቲ ባይዱ格相邻
AB ABC D ABCD ABCD ABC D
(2) 找出真值表中Y=1 对应的最小项,在 卡诺图相应方格中 填1,其余不填。
BC A 00 01 11 10
0 10 1 3 12
1 14 5 7 16
已 [例] 已知 Y AD AB(C BD),试画出Y的卡诺图。 知 解:(1) 将逻辑式转化为与或式

用卡诺图化简逻辑函数

用卡诺图化简逻辑函数

1.4 用卡诺图化简逻辑函数本次重点内容1、卡诺图的画法与性质2、用卡诺图化简函数 教学过程 应用卡诺图化简 一、卡诺图逻辑函数可以用卡诺图表示。

所谓卡诺图,就是逻辑函数的一种图形表示。

对n 个变量的卡诺图来说,有2n 个小方格组成,每一小方格代表一个最小项。

在卡诺图中,几何位置相邻(包括边缘、四角)的小方格在逻辑上也是相邻的。

二、最小项的定义及基本性质: 1、最小项的定义在n 个变量的逻辑函数中,如乘积项中包含了全部变量,并且每个变量在该乘积项中或以原变量或以反变量的形式但只出现一次,则该乘积项就定义为该逻辑函数的最小项。

通常用m 表示最小项,其下标为最小项的编号。

编号的方法是:最小项的原变量取1,反变量取0,则最小项取值为一组二进制数,其对应的十进制数便为该最小项的编号。

如最小项C B A 对应的变量取值为000,它对应十进制数为0。

因此,最小项C B A 的编号为m 0,如最小项C B A 的编号为m 4,其余最小项的编号以此类推。

2、最小项的基本性质:(1)对于任意一个最小项,只有一组变量取值使它的值为1,而其余各种变量取值均使它的值为0。

(2)不同的最小项,使它的值为1的那组变量取值也不同。

(3)对于变量的任一组取值,全体最小项的和为1。

图1.4.1分别为二变量、三变量和四变量卡诺图。

在卡诺图的行和列分别标出变量及其状态。

变量状态的次序是00,01,11,10,而不是二进制递增的次序00,01,10,11。

这样排列是为了使任意两个相邻最小项之间只有一个变量改变(即满足相邻性)。

小方格也可用二进制数对应于十进制数编号,如图中的四变量卡诺图,也就是变量的最小项可用m0, m1,m2,……来编号。

01 0100011110 01ABCABCDBA0001111000011110m m m mm m m mm mm m01230112233mmmmmmmmmmmmmmmm456789101112131415图1.4.1 卡诺图二、应用卡诺图表示逻辑函数应用卡诺图化简逻辑函数时,先将逻辑式中的最小项(或逻辑状态表中取值为1的最小项)分别用1填入相应的小方格内,其它的则填0或空着不填。

逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法逻辑函数的卡诺图化简法由前面的学习得知,利用代数法可以使逻辑函数变成较简单的形式。

但要求熟练掌握逻辑代数的基本定律,而且需要一些技巧,特别是经化简后得到的逻辑表达式是否是最简式较难确定。

运用卡诺图法可以较简便的方法得到最简表达式。

但首先需要了解最小项的概念。

一、最小项的定义及其性质1.最小项的基本概念由A、B、C三个逻辑变量构成的许多乘积项中有八个被称为A、B、C的最小项的乘积项,它们的特点是1. 每项都只有三个因子2. 每个变量都是它的一个因子3. 每一变量或以原变量(A、B、C)的形式出现,或以反(非)变量(A、B、C)的形式出现,各出现一次一般情况下,对n个变量来说,最小项共有2n个,如n =3时,最小项有23=8个2.最小项的性质为了分析最小项的性质,以下列出3个变量的所有最小项的真值表。

由此可见,最小项具有下列性质:(1)对于任意一个最小项,只有一组变量取值使得它的值为1,而在变量取其他各组值时,这个最小项的值都是0。

(2)不同的最小项,使它的值为1的那一组变量取值也不同。

(3)对于变量的任一组取值,任意两个最小项的乘积为0。

(4)对于变量的任一组取值,全体最小项之和为1。

3.最小项的编号最小项通常用mi表示,下标i即最小项编号,用十进制数表示。

以ABC为例,因为它和011相对应,所以就称ABC是和变量取值011相对应的最小项,而011相当于十进制中的3,所以把ABC记为m3按此原则,3个变量的最小项二、逻辑函数的最小项表达式利用逻辑代数的基本公式,可以把任一个逻辑函数化成一种典型的表达式,这种典型的表达式是一组最小项之和,称为最小项表达式。

下面举例说明把逻辑表达式展开为最小项表达式的方法。

例如,要将化成最小项表达式,这时可利用的基本运算关系,将逻辑函数中的每一项都化成包含所有变量A、B、C的项,然后再用最小项下标编号来代表最小项,即又如,要将化成最小项表达式,可经下列几步:(1)多次利用摩根定律去掉非号,直至最后得到一个只在单个变量上有非号的表达式;(2)利用分配律除去括号,直至得到一个与或表达式;(3)在以上第5个等式中,有一项AB不是最小项(缺少变量C),可用乘此项,正如第6个等式所示。

(完整版)逻辑函数的卡诺图化简法

(完整版)逻辑函数的卡诺图化简法

第十章 数字逻辑基础补充:逻辑函数的卡诺图化简法1.图形图象法:用卡诺图化简逻辑函数,求最简与或表达式的方法。

卡诺图是按一定规则画出来的方框图。

优点:有比较明确的步骤可以遵循,结果是否最简,判断起来比较容易。

缺点:当变量超过六个以上,就没有什么实用价值了。

公式化简法优点:变量个数不受限制缺点:结果是否最简有时不易判断。

2.最小项(1)定义:是一个包括所有变量的乘积项,每个变量均以原变量或反变量的形式出现一次。

注意:每项都有包括所有变量,每个乘积它中每个变量出现且仅出项1次。

如:Y=F (A ,B ) (2个变量共有4个最小项B A B A B A AB )Y=F (A ,B ,C ) (3个变量共有8个最小项C B A C B A C B A BC A C B AC B A C AB ABC )结论: n 变量共有2n 个最小项。

三变量最小项真值表(2)最小项的性质①任一最小项,只有一组对应变量取值使其值为1: ②任意两个最小项的乘种为零; ③全体最小项之和为1。

(3)最小项的编号:把与最小项对应的变量取值当成二进制数,与之相应的十进制数,就是该最小项的编号,用m i 表示。

3.最小项表达式——标准与或式任何逻辑函数都可以表示为最小项之和的形式——标准与或式。

而且这种形式是惟一的,即一个逻辑函数只有一种最小项表达式。

例1.写出下列函数的标准与或式:Y=F(A,B,C)=AB+BC+CA 解:Y=AB(C +C)+BC(A +A)+CA(B +B)=ABC C B A ABC BC A ABC C AB +++++ =ABC C B A BC A C AB +++ =3567m m m m +++例2.写出下列函数的标准与或式:C B AD AB Y ++=解:))()(C B D A B A Y +++=( ))((C B D B A ++= D C B C A B A B A +++=D C B A D C B A C B A C B A BC A ++++=D C B A D C B A D C B A D C B A D C B A D BC A BCD A ++++++=_ 8014567m m m m m m m ++++++= =)8,7,6,5,4,1,0(m ∑ 列真值表写最小项表达式。

卡诺图化简逻辑表达式

卡诺图化简逻辑表达式
对于包含多个非门或多个连续的与或 非门的逻辑表达式,卡诺图化简可能 无法得到最简结果。
卡诺图对于大规模逻辑电路的优化效果有限
随着逻辑电路规模的增大,卡诺图的化简过程变得复杂且耗时,难以在实际工程 中应用。
对于大规模逻辑电路,可能需要采用其他优化方法,如布尔代数、门级优化等, 以获得更好的优化效果。
THANKS
感谢观看
卡诺图化简逻辑表达式
• 卡诺图简介 • 卡诺图化简逻辑表达式的方法 • 卡诺图化简逻辑表达式的实例 • 卡诺图与其他化简方法的比较 • 卡诺图的局限性
01
卡诺图简介
卡诺图的定义
• 定义:卡诺图是一种用于表示二进制逻辑函数关系的图形表示 法,通过将逻辑函数输入变量的所有可能取值组合在网格中表 示出来,可以直观地观察到函数的最简形式。
卡诺图与布尔代数化简的比较
布尔代数化简
通过使用逻辑运算(与、或、非)的代数性质,如吸收律、分配律等,对逻辑表达式进 行简化。这种方法需要一定的数学基础,但在处理复杂逻辑表达式时可能较为繁琐。
卡诺图化简
利用图形直观地表示输入变量的所有可能组合,通过排除法简化逻辑表达式。卡诺图化 简简单易懂,不需要复杂的数学运算,特别适合初学者和解决多变量逻辑表达式的化简
问题。
卡诺图与公式化简的比较
公式化简
通过逻辑运算的公式和定理,对逻辑表达式 进行简化。这种方法需要熟练掌握各种逻辑 公式和定理,对于初学者有一定的难度。
卡诺图化简
利用图形化的方式表示输入变量的所有可能 组合,通过排除法简化逻辑表达式。卡诺图 化简直观、易于操作,不需要复杂的公式和 定理,特别适合初学者和解决多变量逻辑表 达式的化简问题。
05
卡诺图的局限性
卡诺图适用范围有限

逻辑函数的卡诺图化简法(可编辑修改word版)

逻辑函数的卡诺图化简法(可编辑修改word版)

第十章数字逻辑基础补充:逻辑函数的卡诺图化简法1.图形图象法:用卡诺图化简逻辑函数,求最简与或表达式的方法。

卡诺图是按一定规则画出来的方框图。

优点:有比较明确的步骤可以遵循,结果是否最简,判断起来比较容易。

缺点:当变量超过六个以上,就没有什么实用价值了。

公式化简法优点:变量个数不受限制缺点:结果是否最简有时不易判断。

2.最小项(1)定义:是一个包括所有变量的乘积项,每个变量均以原变量或反变量的形式出现一次。

注意:每项都有包括所有变量,每个乘积它中每个变量出现且仅出项 1 次。

如:Y=F(A,B)(2 个变量共有4 个最小项AB AB AB AB )Y=F(A,B,C)(3 个变量共有 8 个最小项ABC ABC ABC ABC ABC ABC ABC ABC )结论: n 变量共有 2n个最小项。

三变量最小项真值表(2)最小项的性质①任一最小项,只有一组对应变量取值使其值为 1:②任意两个最小项的乘种为零;③全体最小项之和为 1。

(3)最小项的编号:把与最小项对应的变量取值当成二进制数,与之相应的十进制数,就是该最小项的编号,用 mi表示。

3.最小项表达式——标准与或式任何逻辑函数都可以表示为最小项之和的形式——标准与或式。

而且这种形式是惟一的,即一个逻辑函数只有一种最小项表达式。

例 1.写出下列函数的标准与或式:Y=F(A,B,C)=AB+BC+CA解:Y=AB( C +C)+BC( A +A)+CA( B +B)= ABC +ABC +ABC +ABC +ABC +ABC= ABC +ABC +ABC +ABC= m7 +m6+m5+m3例 2.写出下列函数的标准与或式:Y =AB +AD +BC解:Y =(A +B)( A +D)(B +C)= ( A +BD)(B +C)=AB +AB +AC +BCD=ABC +ABC +ABC +ABCD +ABCD=ABCD + _ ABCD +ABCD +ABCD +ABCD +ABCD +ABCD=m7 +m6+m5+m4+m1+m+m8=∑m(0,1,4,5,6,7,8)列真值表写最小项表达式。

卡诺图化简方法

卡诺图化简方法

卡诺图化简方法学生姓名:陈曦指导教师:杜启高将输出与输入之间的逻辑关系写成与、或、非等运算的组合式,就是逻辑函数式。

一、逻辑函数的卡诺图表示法将n变量的全部最小项各用一个小方块表示,并使具有逻辑相邻性的最小项在几何位置上也相邻地排列起来,所得到的图形称为n变量最小项的卡诺图。

为了保证图中几何位置相邻地最小项在逻辑上也具有相邻性,这些数码不能按自然二进制数从小到大地顺序排列,而必须按图中的方式排列,以确保相邻的两个最小项仅有一个变量是不同的。

从卡诺图上可以看到,处在任何一行或一列两端的最小项也仅有一个变量不同,所以它们也具有逻辑相邻性。

因此,从几何位置上应当将卡诺图看成是上下、左右闭合的图形。

任何一个逻辑函数都能表示为若干最小项之和的形式,自然也可以用卡诺图来表示任意一个逻辑函数。

具体做法是:首先将逻辑函数化为最小项之和的形式,然后在卡诺图上标出与之相对应的最小项,在其余位置上标入0,就得到了表示该逻辑函数的卡诺图。

也就是说,任何一个逻辑函数都等于卡诺图中填入1的那些最小项之和。

二、用卡诺图化解逻辑函数化简时依据的基本原理就是具有相邻性的最小项可以合并,并消去不同的因子。

由于在卡诺图上几何位置相邻与逻辑上的相邻性是一致的,因而从卡诺图上能直观的找出那些具有相邻性的最小项并将其合并化简。

合并最小项的原则:若两个最小项相邻,则可以合并为一项并消去一对因子。

若四个最小项相邻并排列成一个矩形组,则可合并为一项并消去两队因子。

若八个最小项相邻并且排列成一个矩形组,则可以合并成一项并消去三对因子。

合并后的结果中只剩下公共因子。

卡诺图化简法步骤:(一)将函数式化为最小项之和的形式;(二)画出表示该逻辑函数的卡诺图;(三)找出可以合并的最小项;(四)画出包围圈并选取化简后的乘积项。

在画包围圈时要注意:(一)包围圈越大越好;(二)包围圈的个数越少越好;(三)同一个“1”方块可以被圈多次;(四)画包围圈时,可先圈大,再圈小;(五)每个圈要有新的成分,如果某一圈中所有的“1”方块均被别的包围圈包围,就可以舍掉这个包围圈;(六)不要遗漏任何方块。

3-3 逻辑函数的卡诺图化简法

3-3 逻辑函数的卡诺图化简法
例3.5.1:用卡诺图表示逻辑函数 F A, B, C BC 解:
F A, B, C BC A A BC ABC ABC m2 m6
A BC 0 1 00 0 0 01 0 0 11 0 0 10 1 1


方法二:将逻辑式表示成与或式,与项代表的最小项 在卡诺图中出现在行变量与列变量的交叉位置。在与项中 未出现的变量既以原变量形式出现,也以反变量形式出现。
2345任何n个变量的卡诺图是一块矩形区域该区域被划分为2个小方格每个小方格代表一个最小项所有最小项按一定顺序排列使几何相邻的最小项在逻辑上也相邻
3.5 逻辑函数的卡诺图化简法
3.5.1 最小项与最大项
1. 最小项与最大项的定义 最小项:n个变量的最小项是这n个变量的逻辑乘,每 个变量以原变量或反变量的形式出现且只出现一次。


ABC ABC ABC m7 m6 m0 m 0,6,7
或与标准型:任何一个逻辑式都可以表示成若干个最大项 积的形式。 F A, B, C m 0,6,7
m1 m2 m3 m4 m5 m1 m2 m3 m4 m5 M1M 2 M3M 4 M5 M 1,2,3,4,5
最大项:n个变量的最大项是这n个变量的逻辑和,每 个变量以原变量或反变量的形式出现且只出现一次。
三变量最小项和最大项的表示方法
2. 最小项和最大项的性质 (1) 给定n个变量的一组取值,这n个变量的2n个最小项中只 有一个等于1,2n个最大项中只有一个等于0。
(2) 全部最小项之和恒等于1;全部最大项之积恒等于0。 (4) 若干个最小项的和等于其余最小项和的反。
m2 m6
m18

《卡诺图化简法》课件

《卡诺图化简法》课件
总结词
卡诺图化简的基本步骤
详细描述
详细阐述卡诺图化简的基本步骤, 包括如何根据逻辑函数绘制卡诺图 、如何根据卡诺图进行化简等。
实例二:复杂的逻辑函数化简
总结词
通过卡诺图化简复杂逻辑函数
01
02
详细描述
选取具有代表性的复杂逻辑函数,如含有多 个变量和复合逻辑运算的函数,利用卡诺图 进行化简,展示化简过程和结果。
优化最小项的排列方式
优化最小项的排列方式,可以减少重复计算和提高化简效率。
THANKS
感谢观看
杂。
约束条件
卡诺图化简法要求逻辑函数在最小 项上的取值必须明确(0或1),对 于含有未知取值的逻辑函数不适用 。
非二进制系统
卡诺图仅适用于二进制逻辑系统, 对于非二进制系统(如三进制、四 进制等)需要其他化简方法。
03
卡诺图化简法的步骤
构造卡诺图
01
02
03
确定变量
首先确定待化简的逻辑函 数的变量,即确定卡诺图 的行数和列数。
注意约束条件
在使用卡诺图化简法时,应考虑约束条件,如输 入变量的取值范围和输出变量的取值范围。
避免重复计算
在化简过程中,应避免重复计算最小项,以提高 化简效率。
如何提高卡诺图化简法的效率
熟悉卡诺图化简法的步骤
熟练掌握卡诺图化简法的步骤,可以更快地完成化简过程。
选择合适的软件工具
使用合适的软件工具,如逻辑模拟软件等,可以提高卡诺图化简法 的效率。
《卡诺图化简法》 PPT课件
目录
• 卡诺图化简法简介 • 卡诺图的构成与特性 • 卡诺图化简法的步骤 • 卡诺图化简法的实例分析 • 卡诺图与其他化简方法的比较 • 卡诺图化简法的实际应用与注意事项

用卡诺图化简逻辑函数

用卡诺图化简逻辑函数

L BD B D
L
C
1 0 0 1 BD
0110 B
0110 A 1 0 0 1 BD
D
例: 用卡诺图化简
圈1 圈0
L CD
AB
00
00 1 01 0
11 0
01 11 10
11 1 1 11 1 11
10 1 1 1 1
L CD
AB
00 01 11 10
00 1 01 0
11 0
11 1 1 11 1 11
画包围圈时应遵循的原则:
(1)包围圈内的方格数一定是2n个,且包围圈必须呈矩形。 (2)循环相邻特性包括上下底相邻,左右边相邻和四角相邻。
(3)同一方格可以被不同的包围圈重复包围多次,但新增 的包围圈中一定要有原有包围圈未曾包围的方格。
(4) 一个包围圈的方格数要尽可能多,包围圈的数目要可能少。
CD
AB
00 01 11 10
00 m0 m1 m3 m2
01 m4 m5 m7 m6
11 m12 m13 m15 m14
10 m8 m9 m11 m10
例 :用卡诺图法化简下列逻辑函数
L( A, B,C , D ) m(0,2,5,7,8,10,13,15)
解:(1) 由L 画出卡诺图
(2)画包围圈合并最小项,得最简与-或表达式
例: 要求设计一个逻辑电路,能够判断一位十
进制数是奇数还是偶数,当十进制数为奇数
时,电路输出为1,当十进制数为偶数时,电
路输出为0。
L
C
解: (1)列出真值表
(2)画出卡诺图
(3) 卡诺图化简
L D
0110
0110 ×××× B A 0 1 ××

逻辑函数的卡诺图化简

逻辑函数的卡诺图化简
逻辑函数的卡诺图化简
■最简标准(与或式)
① 乘积项的数目最少,意味着卡诺图中圈数最 少
② 每个乘积项中的变量个数最少,意味着卡诺 图中
的圈尽可能大
逻辑函数的卡诺图化简
例 将F (A, B, C) = Em (3, 4, 5, 6, 7)
化为最简与或式。
F=A+BC (最简) F=AB+BC+ABC (非最简)
若某个圈中的标1方格,已经完全被其它圈所覆盖,
则该圈为多余的。
逻辑函数的卡诺图化简
00 01 11 10
1
1 1 lr
<1
1
1
蓝色的圈为多余的.
F=ABC+ACD+ACD+ABC + (BD)
逻辑函数的卡诺图化简
■用卡诺图求反函数的最简与或式
方法:在卡诺图中合并标0方格,可得到反函数的最简
与或式。
逻辑函数的卡诺图化简
■化简步骤(结合举例说明)
(1) 由表达式填卡诺图; (2) 圈出孤立的标1方格; (3) 找出只被一个最大的圈所覆盖的标1方格,并 圈出覆盖该标1方格的最大圈; ⑷将剩余的相邻标1方格圈成尽可能少,而且
尽可能大的圈;
(5)将各个对应的乘积项相加,写出最简与或
式。
逻辑函数的卡诺图化简 例 将F ( A,B,C,D) = Lm (0,1,3,7,8,10,13)化为最简与
或式。
F=ABCD+ACD+ABD+ABC
逻辑函数的卡诺图化简
00 01 11 10
00 1 1
1
01 1 1
1Leabharlann 厂1、11
1
丿
10

卡诺图化简法

卡诺图化简法
如果两个相邻最小项出现在同一个逻辑函数中,可以合并 为一项,同时消去互为反变量的那个量。如
ABC ABC AC(B B) AC 卡诺图是用小方格图表示最小项,一个小方格代表一个最小项, 然后将这些最小项按照相邻性排列起来。
即用小方格几何位置上的相邻性来表示最小项逻辑上的相邻性。
2.2 逻辑函数的卡诺图化简法
(1)二变量卡诺图 L(A,B)
(2)三变量卡诺图 L(A,B,C)
B
m0 m1 m3 m2 ABC ABC ABC ABC
BC 00 01 11 10
A
00
1
32
A
m4
m5
m7
m6
ABC ABC ABC ABC
14 5
76
C (a)
(b)
2.2 逻辑函数的卡诺图化简法
(3)四变量卡诺图 L(A,B,C,D)
总之,2n个相邻的最小项结合,可以消去n个取值不同的变量 而合并为l项。
2.2 逻辑函数的卡诺图化简法
2.用卡诺图化简逻辑函数的步骤:
(1)画出逻辑函数的卡诺图。 (2)合并相邻的最小项,即根据前述原则画圈。 (3)写出最简与或表达式。规则是,每一个圈写一个最简与
项,等于圈中各最小项的公因子,然后将所有与项进行逻 辑加,即得最简与—或式。
例:将逻辑函 AC
解: L(A, B,C) AB AC AB(C C) AC(B B)
ABC ABC ABC ABC
= m7+m6+m3+m1
2.2 逻辑函数的卡诺图化简法
例: 将逻辑函数转换成最小项表达式:FABC AB AB AB C
11 12
13

2.2_逻辑函数的卡诺图化简法

2.2_逻辑函数的卡诺图化简法

CD AB
00
01 11 10
数简。最函数适单学宜击习返主使回页用返,回单卡卡击变允诺继诺量许图续图法,的有化继进代一简续行码个逻向辑下只不化 以学习四。变量(AB同CD。)的卡诺
00
00 00 00 01 00 11 00 10
AB0CD AB1CD AB3CD AB2CD
01
01 00 01 01 01 11 01 10
单击返回返回2逻卡.诺对辑图各法函化最简数小逻辑的项按卡十诺进图制化进简行法编号并列表
函数学习主页 ,单击继续,继续向
下2学.习最。 小项的各种表示方式(以三变量为例)
变量组返回合 十进制继续 最小项 ABC
000
0
ABC
001
1
ABC
010
2
ABC
011
3
ABC
100
4
ABC
ห้องสมุดไป่ตู้
101
5
ABC
110
=(A0+A)C 1
=C 0
1
四 C以相只项10同剩中,下只所11C有 11
“或同”1理后,只橙0剩框下四B项0。相 11
1 0 11
绿框1 四项1相“或0”后 1
只剩下1 A。 1 1 1
三变量卡诺图
C AB
0
1
00 ABC 0 ABC 1
01 ABC 1 ABC 1
11 ABC 1 ABC 1
10 ABC 1 ABC 1
项发现,任意相邻两个最 小项之间只有一个变量不
10
10 00 10 01 10 11 10 10 ABCD ABCD ABCD ABCD
同。
把最小项的具体形式代入。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如:逻辑函数 F ( A, B, C) m3,5,6,7, 可在3变量卡
对应的m3,m5,m6,m7方格内填1,其余方格填0。
AB 00 C
00
10
01 11 10
0
1
0
1
1
1
11
用卡诺图表示逻辑函数的方法:
1. 将逻辑函数化为最小项表达式;
2. 填写卡诺图。
例1 用卡诺图表示逻辑函数 L AB A BC AC 。
对于变量的任一组取值,全体最小项之和为1。
5
2.2.2 逻辑函数的最小项表达式
逻辑函数的最小项表达式:L(ABC) ABC ABC ABC ABC 为“与或”逻辑表达式; 在“与或”式中的每个乘积项都是最小项。
例1 将 L(A, B,C) AB AC 化成最小项表达式
解 1. 将逻辑函数化为最小项表达式;
L AB A BC AC AB(C C) ABC AC(B B)
ABC ABC ABC ABC ABC
m(0, 2, 3, 4, 6)
L
BC A 00
0 m1
0
1 m1
4
01 11 10
m0 m1 m1
1
m4 1 0 0 1
m5 1 0 1 1 m6 1 1 0 0 m7 1 1 1 1
L ABC ABC ABC ABC ABC
逻辑函数式最小项表达式
L ABC ABC ABC ABC ABC
m1 m3 m4 m5 m7
逻辑函数的卡诺图
AABBCC 00
如三变量逻辑函数 f (A B C)
ABC ABC ABC A B C ------最小项
ABCA AB A(B + C ) -----不是最小项
3
2、最小项的性质
三个变量的所有最小项的真值表
m0
m1
m2
m3
m4
m5
m6
m7
A B C ABC ABC ABC ABC ABC ABC ABC ABC
1、卡诺图:将n变量的全部最小项都用小方块表示,并使 具有逻辑相邻的最小项在几何位置上也相邻地排列起来, 这样,所得到的图形叫n变量的卡诺图。
逻辑相邻的最小项:如果两个最小项只有一个变量互为反变 量,那么,就称这两个最小项在逻辑上相邻。
如最小项 m6=ABC、与 m7 =ABC 在逻辑上相邻
m6 m7
000 1
0
0
0
0
0
0
0
001 0
1
0
0
0
0
0
0
010 0
0
1
0
0
0
0
0
011 0
0
0
1
0
0
0
0
100 0
0
0
0
1
0
0
0
101 0
0
0
0
0
1
0
0
110 0
0
0
0
0
0
1
0
111 0
0
0
0
0
0
0
1
对于任意一个最小项,只有一组变量取值使得它的值为1;
不同的最小项,使它的值为1的那一组变量取值也不同;
对于变量的任一组取值,任意两个最小项的乘积为0;
2.2 逻辑函数的卡诺图化简法
2.2.1最小项的定义及性质 2.2.2逻辑函数的最小项表达式 2.2.3用卡诺图表示逻辑函数 2.2.4用卡诺图化简逻辑函数

2.2 逻辑函数的卡诺图化简法
代数法化简在使用中遇到的困难: 1.逻辑代数与普通代数的公式易混淆,化简过程要求对所
有公式熟练掌握; 2.代数法化简无一套完善的方法可循,它依赖于人的经验
000 1
0
0
0
0
0
0
0
001 0
1
0
0
0
0
0
0
010 0
0
1
0
0
0
0
0
011 0
0
0
1
0
0
0
0
100 0
0
0
0
1
0
0
0
101 0
0
0
0
0
1
0
0
110 0
0
0
0
0
0
1
0
111 0
0
0
0
0
0
0
1
最小项的表示:通常用mi表示最小项,m 表示最小项,下标i为
最小项号。
4
A B C ABC ABC ABC ABC ABC ABC ABC ABC
(AB AB C) AB (A B)(A B)C AB
b.去括号
ABC ABC AB
ABC ABC AB(C C)
ABC ABC ABC ABC
m3 m5 m7 m6 m(3,5,6,7)
7
2.2.3 用卡诺图表示逻辑函数
L(A, B,C) AB(C C) A(B B)C ABC ABC ABC ABC
= m7+m6+m3+m5
m (7, 6,3,5)
6
例2 将 L( A, B,C) (AB AB C)AB 化成最小项表达式
a.去掉非号 L (A, B,C) (AB AB C) AB
四变量卡诺图
CD
C
AB 00 01 11 10
00 m0 m1 m3 m2
01 m4 m5 m7 m6 B
A 11 m12 m13 m15 m14
10 m8 m9 m11 m10
9
D
逻辑函数的几种表示方式
逻辑函数真值表
ABC L
m0 0 0 0
0
m1 0 0 1
1
m2 0 1 0 0
m3 0 1 1 1
0000 AAmBB0CC0
0011 AAmBB1CC1
1111 AAmBB1CC3
1100 AAmBB0CC2
11 AAmBB1CC4 AAmBB1CC5 AAmBB1CC7 AAmBB0CC6
10
根据最小项逻辑表达式画卡诺图
方法:逻辑函数包含有哪几个最小项,就在卡诺图相对应 的方格内填1,其余各方格填0。
3
2
m0 m0 m1
5
7
6
2. 填写卡诺图。
12
例2 画出下式的卡诺图
L (A, B, C, D) (A B C D)(A B C D)(A B C D) (A B C D)(A B C D)
和灵活性; 3.用这种化简方法技巧强,较难掌握。特别是对代数化简
后得到的逻辑表达式是否是最简式判断有一定困难。 卡诺图法可以比较简便地得到最简的逻辑表达式。
2
2.2.1 最小项的定义及其性质
1、最小项的定义: n个变量(X1, X2, …, Xn)的最小项就是n个因子的乘积,在该 乘积中每个变量都以它的原变量或非变量的形式出现一次, 且仅出现一次。
8
2. 用卡诺图表示逻辑函数
两变量最小项真值表
三变量卡诺图
A B mi
0 0 m0
N
0 1 m1
变 量
1 0 m2 1 1 m3
卡 两变量卡诺图


AB 0 1
0 AmB0 AmB1
1 mAB2 AmB3
BC A
00
01
11
10
0 AmBC0 AmBC1 AmBC3 AmBC2
1 AmBC4 AmBC5 AmBC7 AmBC6
相关文档
最新文档