毕业设计(论文)汽车驱动桥壳UG建模及有限元分析

合集下载

汽车驱动桥壳的有限元分析和优化

汽车驱动桥壳的有限元分析和优化

分 析和试验验证结果表 明, 优化后桥壳轻量化效果 明显 , 应力与变形符合要求 。
关 键 词 : 动桥 壳 ; 力分析 ; 态分 析 ; 劳 寿命 ; 驱 静 模 疲 优化 F An l ss a d Op i z t n o h c e Drv l u i g E a y i n tmia i f Ve il i e Ax e Ho sn o
d srb i n fsr s n ip a e n r b a n d b ttc a ay i n e he ma i m e tc l la i g c n i iti ut s o te s a d d s lc me ta e o t i e y sai n l ss u d r t x mu v ria o d n o d — o
to in. 1 tt t t r lfe u n i s ae d t r i e h o g d la ay i. Th aiue lf n aey fc o ft e o 5 h nau a r q e ce r ee m n d t r u h mo a n l ss s e ftg i a d s f t a tr o h e
d i e a l o sn r lo o t i e i aiu i n l s . F n l n o t z t n i c n u td Ola l o sn r xe h u i g a e as b an d v a ft e l e a ay i v g f s i al a p i ai s o d c e i x e h u i g y mi o
Li W e ,Xu m i ,LiPi ,Du u i e Ke n ng Cha c n & Ta y ng hu ng Zi u

驱动桥壳毕业设计

驱动桥壳毕业设计

驱动桥壳毕业设计【篇一:驱动桥毕业设计111】某型重卡驱动桥设计摘要驱动桥是构成汽车的四大总成之一,一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成,它位于传动系末端,其基本作用是增矩、降速,承受作用于路面和车架或车身之间的力。

它的性能好坏直接影响整车性能,而对于载重汽车显得尤为重要,采用传动效率高的单级减速驱动桥已经成为未来载重汽车的发展方向。

本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计本次设计首先对驱动桥的特点进行了说明,根据给定的数据确定汽车总体参数,再确定主减速器、差速器、半轴和桥壳的结构类型及参数,并对其强度进行校核。

数据确定后,利用autocad建立二维图,再用catia软件建立三维模型,最后用caita中的分析模块对驱动桥壳进行有限元分析。

关键词:驱动桥;cad;catia;有限元分析abstractdrivie axle is one of the four parts of a car, it is generally constituted by the main gear box, the differential device, the wheel transmission device and the driving axle shell and so on it is at the end of the powertrain.its basic function is increasing the torque and reducing speed and bearing the force between the road and the frame or body.its performance will have adirect impact on automobile performance,and it is particularly important for the truck. using single stage and high transmission efficiency of the drive axle has become the development direction of the future trucks.this article referred to the traditional driving axles design method to carry on the truck driving axles design.in this design,first part is the introduction of the characteristics of the drive axle,according to the given date to calculate the parameters of the automobile,then confirm the structure types and parameters of the main reducer, differentialmechanism,half shaft and axle housing,then check thestrength and life of them.after confirming theparameters, using autocad to establish 2 dimensionalmodel,then using catia establish 3 dimensional model. finally using the analysis module in catia to finite element analysis for the axle housing.key words: drive axle;cad;catia;finite element analysis目录1 绪论 (1)1.1 驱动桥简介 (1)1.2 国内外研究现状 (1)1.3 驱动桥设计要求 (1)2 驱动桥设计 (3)2.1 主减速器设计 (3)2.1.1 主减速器的结构形式 (3)2.1.2 主减速器的减速形式 (4)2.1.3 主减速器主,从动锥齿轮的支撑方案 (4)2.1.4 主减速器基本参数选择与计算载荷的确定 (6)2.2 差速器设计 (17)2.2.1 对称锥齿轮式差速器工作原理 (17)2.2.2 对称式圆锥行星齿轮差速器的结构 (17)2.2.3 对称式圆锥行星齿轮差速器的设计 (18)2.3 驱动半轴的设计 (23)2.3.1 结构形式分析 (23)2.3.2全浮式半轴的结构设计 (24)2.3.3 全浮式半轴的强度计算 (24)2.3.4 半轴的结构设计及材料与热处理 (25)2.3.5 半轴花键的强度计算 (25)2.4 驱动桥壳的设计 (26)2.4.1整体式桥壳的结构 (27)2.4.2 桥壳的受力分析与强度计算 ......................................... 27 3 catia三维建模 ........................................ 错误!未定义书签。

基于UG的玩具汽车外壳三维设计毕业设计论文

基于UG的玩具汽车外壳三维设计毕业设计论文

成都工业学院毕业设计(论文)设计(论文)题目:基于UG的玩具汽车外壳的三维设计与数控加工系部名称:机电工程系专业:数控技术班级:11422***名:***学号:07***师:***二O一四年五月摘要本课题是基于UG的玩具汽车的三维设计与数控加工。

本文首先解释了为什么会选用UG来进行零件的造型设计,在众多三维设计软件中,UG软件有什么优势。

然后对玩具汽车进行三维造型设计,列出设计过程中的注意事项和遇到的问题。

由于本模型是塑料模型,设计模具时选用注塑模具。

模具设计的基本步骤为加载部件、初始设置、分型前的准备、创建分型线、创建分型面、抽取型芯型腔区域、创建型芯和型腔。

整个过程有两种方法。

一种是手动分型,利用建模环境自带的命令完成分型。

另一种是自动分型,用开始命令里的注塑模向导来按照提供的步骤来分型。

随后是对型芯和型腔的加工。

利用UG软件对零件的加工,生成刀轨,并导出程序在宇龙数控仿真上模仿真实加工。

加工工艺编制需要对零件的材料,加工内容等特性进行分析。

对在数铣加工的部分编写加工工艺卡片,和工序卡片。

对不能数铣加工的部分,设计电极,采用电火花成型加工。

关键词:UG、三维建模、分型、工艺、电极设计、刀路设计、宇龙仿真AbstractThis topic is the 3D design and NC machining of the toy car based on UG. Design this paper explains why UG was selected in many parts, 3D design software, UG software has what advantage. Then the three-dimensional modeling design for toy cars, and the problem encountered in the design process of the considerations listed.Because the model is a plastic model selection of injection mold, mold design. The basic process of die design for load components, initial setting, type of preparation, create parting line, create parting surfaces, extraction of core and cavity area, to create the core and cavity. The whole process has two kinds of methods. A manual type, using the modeling environment with the command finished typing. Another is the automatic classification, with start wizard injection command to follow the instructions provided to typing. Then is the processing of the core and cavity. The parts of the processing using UG software, tool path generation, and export procedures in the Yulong NC simulation imitating the real machining. The preparation processing of parts of the material, carries on the analysis processing characteristics. The number of milling part of the preparation of machining process card, and process card. The number of not milling machining parts, design of electrode, using edm.Keywords: UG, 3D modeling, classification, process, electrode design, tool path design, Yulong simulation目录摘要 (2)第一章概论 (5)1.1 简介 (5)1.2对汽车加工的基本要素 (5)1.3 汽车材料及性能 (6)1.4课题的任务及技术 (8)1.5课题的目的及意义 (9)第二章玩具汽车外壳的三维设计 (10)2.1 UG软件的介绍 (10)2.2 零件的测绘 (10)2.4 完成主要零件的公母模设计 (15)第三章玩具汽车主要零件的制造工艺设计 (19)3.1、型芯的数控加工工艺设计 (19)3.2、型腔的数控加工工艺设计 (26)3.3、主要零件的公母模零件的电极设计 (28)第四章主要零件的铣加工仿真 (29)4.1 仿真加工的目的和分类 (30)4.2加工程序 (30)4.3宇龙仿真软件 (31)第五章绘制产品与相应的工程图 (35)5.1、绘制工程图的主要步骤 (35)第六章结论与探究 (38)主要参考文献 (39)第一章概论1.1 简介中国的电动玩具车在经过多年的市场培育和宣传后,同时现在随着技术的不断的发展,新产品的不断出现,电动玩具车已成为男孩子们玩具中最主力的玩具。

汽车桥壳的有限元分析毕业设计

汽车桥壳的有限元分析毕业设计

汽车桥壳的有限元分析毕业设计洛阳理工学院毕业设计(论文)汽车桥壳的有限元分析摘要随着汽车工业的高速发展,对汽车性能的要求越来越高,这使得传统的驱动桥桥壳的设计计算方法已经无法满足现代汽车设计的需要。

电子计算机的出现以及有限元的飞速发展为驱动桥壳的结构性能的计算分析带来了新的革命。

由于驱动桥桥壳是汽车重要的承载件和传力件,桥壳的性能和疲劳寿命直接影响着汽车的有效使用寿命。

因此,驱动桥壳应有足够的强度、刚度和良好的疲劳耐久特性。

合理设计驱动桥壳也是提高汽车安全性和舒适性的重要措施。

论文利用Pro/E建模软件建立高顶单胎14A-B型汽车驱动桥壳的3D模型,采用最新的ANSYS协同仿真有限元平台,按国家驱动桥壳台架试验的标准,在计算机中对5.0mm、6.0mm、6.5mm三种厚度驱动桥壳进行有限元分析,其中包括垂直弯曲刚度和静强度的分析。

有限元分析结果表明,5.0mm厚桥壳的垂直静强度不符合规范要求,6.0mm、6.5mm厚的两种桥壳满足规范要求。

最后,结合工程实例做了桥壳的失效分析,找出桥壳失效的原因是垂直静强度不够、某些装配部位应力过大。

并提出相应的改进意见,以供参考。

关键词:驱动桥桥壳,ANSYS,垂直弯曲刚度,静强度,失效分析I洛阳理工学院毕业设计(论文)AUTOMOBILE BRIDGE SHELL FINITE ELEMENTANALYSISABSTRACTWith the auto industry high speed development, the function to the automobiledemands more and more highly, the feasible tradition designs of the auto mobile drive axle housing already haven’t satisfy the request that modemdesigns. The calculation analysis that the electronic computer appearing develops at full speed for the structure designs as well as finite element method after has brought about new revolution.Since the axle housing is mainly carrying and passing components of thevehicle, the axle housing function and fatigue life have direct impact to effective automobile useful time, the axle housing should have sufficient intensity, stiffness and well durable fatigue property. Therefore, the axle housing designs are also to improve automobile safety and the comfortableness importance rationally methods.The thesis makes use of Pro/E software building the 3D models of 14A-Btype’s axle housing. Using ANSYS workbench FEA simulated platform, according to the national standard of drive axle housing tests, three types thickness drive axle housing has simulated by FEA on 5.0mm, 6.0mm, 6.5mm inthe computer has included vertical curves just degree and start intensity analysis. Static analysis of result indicates that the perpendicularityintensity and fatigue strength of the 5.0mm axle housing is unqualified, 6.0mm, 6.5mm two types’ axle housing come up to the national standard. End, wedge bonding engineering solid instance the lapse that made bridge housing analysis, finding out the reason of bridge housing lapse is perpendicular stat intensity not enough and some assembly part stress over big. And the submissions correspond of betterment opinion to provide a reference.KEY WORDS: Drive axle housing, ANSYS Workbench, The vertical curves just a degree, Quiet intensity, Failure analysisII洛阳理工学院毕业设计(论文)目录前言 ........................................................................... ....................... 1 第1章绪 (2)1.1汽车桥壳的分类和机构特征概述 (2)1.2.1 国外CAE的发展和现状论述 ..................................... 3 1.2.2国内CAE分析的发展和现状 ..................................... 4 1.3 本课题的工程背景和研究意义 ............................................. 4 1.4 本文的主要研究内容和技术路线 (5)1.4.1 本文的主要研究内容...................................................5 1.4.2 技术路线流程图........................................................... 5 1.5 小结 ........................................................................... ............. 6 第2章有限元基本方法和桥壳有限元模型. (7)2.1 有限元基本方法及其计算工具简介 (7)2.1.1 有限元方法及其理论...................................................7 2.1.2 ANSYS系列通用有限元软件 ...................................... 8 2.2 14A-B型汽车桥壳的实体模型和有限元模型 .. (10)2.2.1 桥壳实体模型 ............................................................ 10 2.2.2 有限元模型、网络划分和单元介绍 ......................... 11 2.2.3 驱动桥桥壳模型材料介绍......................................... 12 2.3 小结 ........................................................................... ........... 12 第3章驱动桥的受力特征及结构静力分析.. (14)3.1 汽车驱动桥桥台试验 (14)3.1.1 驱动桥桥壳垂直弯曲刚度和静强度试验简介 ......... 14 3.1.2 垂直弯曲刚度和静强度试验评估指标 ..................... 14 3.2 桥壳受力特征.. (15)3.2.1 约束情况 (15)3.2.2 载荷施加方式 ............................................................16 3.3 有限元分16III1.2 汽车桥壳CAE分析的研究和发展 (3)洛阳理工学院毕业设计(论文)3.4 小结 ........................................................................... ........... 18 第4章静力分析结果 (19)4.1 垂直弯曲刚度分析结果对比...............................................19 4.2 垂直弯曲静强度分析结果对比 ........................................... 22 4.3 小结 ........................................................................... ........... 25 第5章桥壳失效原因及改进意见 (27)5.1 分析失效原因的目的........................................................... 27 5.2 分析的一般步骤 (27)5.3 失效原因及改进意见........................................................... 27 5.4 小结 ........................................................................... ........... 28 结论 ........................................................................... ..................... 29 谢辞 ........................................................................... ....................... 30 参考文献 ........................................................................... ................. 31 附录 ........................................................................... (32)IV洛阳理工学院毕业设计(论文)前言汽车驱动桥是汽车主要的传力件和承载件,它不仅要把发动机输出的扭矩传递到车轮以驱动汽车行驶,还要承受汽车以及路面的各种力和扭矩,因此要有足够的强度、刚度和疲劳强度。

UG四驱车模型_毕业设计论文正稿

UG四驱车模型_毕业设计论文正稿

毕业设计说明书题目:四轮驱动赛车目录一概述 (6)1—1玩具的市场调查 (6)1—2四驱车简介 (6)1—3开展玩具四驱车科普活动的社会意义 (7)1—4玩具四驱车开发的前景 (7)1—5毕业设计题目的确定 (8)二玩具四驱车的UG实体建模 (8)2— 1 电动机. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82— 2 开关. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .132— 3 电机套. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .143— 1 电池. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183— 2 车身的基本套装. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .20 3— 3 车壳的实体形成. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .214—1玩具四驱车零部件的UG实体图 (25)4—2玩具四驱车的装配图 (33)4—3玩具四驱车的爆炸图 (34)三、结论 (36)四、参考文献 (37)摘要本毕业设计的主要目的是为了开拓广大的玩具市场和满足爱车一族的珍藏喜好。

本毕业设计主要内容是设计按真四驱车缩小32倍对四驱车进行仿真设计造型.因考虑成本且实现运动和仿真.本设计简化了其结构而设计的四轮驱动模型车。

驱动桥壳有限元结构分析

驱动桥壳有限元结构分析

第1章绪论驱动桥壳是汽车的主要零件之一,作为主减速器、差速器和半轴的装配基体,它是汽车的主要承载件和传力件,支撑着汽车的荷重,并将载荷传给车轮。

在实际行使中,作用在驱动车轮上的牵引力、制动力、横向力,也是经过桥壳传到悬挂及车架或者车厢上的。

同时,驱动桥壳的使用寿命直接影响汽车的有效使用寿命。

因此,合理地设计驱动桥壳,使其具有足够的强度、刚度和良好的动态特性,减少桥壳的质量,有利于降低动载荷,提高汽车行驶平顺性和舒适性。

1.1国内外研究现状过去工程师在对简单机械结构进行分析时,都要进行一系列的简化与假设,再采用材料力学、弹性力学或塑性力学的理论进行分析。

随着工业技术的迅速发展,有越来越多的复杂结构,包括复杂的几何形状、复杂的受力状态等问题需要去分析研究,而在工程实际中,这些复杂的问题往往不能求出它们的解析解。

[1]要解决这些问题通常有两种途径:一是试验法,通过提出一定假设,回避一些难点,对复杂问题进行简化,使之成为能够处理的问题[2]。

然而,由于太多的简化和假设,通常会导致极不准确甚至错误的解答。

因此,另一种行之有效的途径就是尽可能保留问题的实际状况,寻求近似的数值解。

而在众多的数值方法中,有限元分析法因其突出的优点而被广泛地应用。

经过半个多世纪的实践,有限元法已从弹性力学平面问题扩展到空间问题、板壳问题;从静力问题扩展到动力问题、稳定问题和波动问题;从线性问题扩展到非线性问题;从固体力学领域扩展到流体力学、传热学、电磁学等其他连续介质领域;从单一物理场计算扩展到多物理场的耦合计算[4]。

它经历了从低级到高级、从简单到复杂的发展过程,目前已成为工程计算最有效的方法之一。

2001年,重庆大学的褚志刚等学者对某后桥壳进行了静强度分析计算,结果表明该后桥壳静态分析的应力分布合理,在实际破坏区域内的静态应力很小,但分析结果与该车在实际道路试验中的破坏不相吻合。

通过模态分析发现,其前九阶频率与路面谱频率范围重合,模态振型尤以后背盖与上下壳体的焊接处、半轴套管内端直径渐变处、上壳体倒圆处的变形较大;当桥壳和弹簧系统在垂直激励作用下时,即通过动态响应分析法,找出桥壳上的动应力集中区,确认破坏的确切位置,与实际情况相吻合。

基于有限元方法的载货汽车驱动桥壳分析(毕业设计用)

基于有限元方法的载货汽车驱动桥壳分析(毕业设计用)

$&$0#** %
桥壳的位移变形符合 *汽车驱动桥台架实验评 价指标 +(1234’()/$+++ $ 要求的每米轮距最大变形 小于 $&’** " (! $ 应力分析 在汽车侧翻的临界状况时 ! 轮毂内轴承内侧位 置存在着最大应力 ! 其值为 ’%(,-.! 小于轮毂轴管
图 ! 冲击荷载作用下桥壳应力图 (-.$
!"# 桥壳承受最大铅垂力工况分析
对桥壳承受最大铅垂力 # 即冲击载荷 ! 按 !&’ 倍 满载轴荷 $ 工况下 ! 对该桥壳作变形和应力分析 % 图
( &图 ) 分别为冲击载荷作用下的桥壳应力和整体变
$&#!+** ) 桥壳纵向最大位移发生在汽车以最大牵
引力行驶时 ! 两端与中央沿纵向的最大相对位移为
材料的屈服强度 50’,6.) 在冲击载荷作用下 ! 最大 应力发生在桥壳钢板弹簧座附近 ! 其值为 7+),6. ! 小于桥壳材料的屈服强度 ()’,6." 桥壳的强度符合 要求 " 根据以上结论可知 ! 该桥壳的强度和变形均符 合要求 "
% 结束语
通过有限元模拟方法 ! 分析了汽车驱动桥壳在 不同工况下对应的应力和变形 ! 为汽车驱动桥的强 度评价及疲劳寿命估算提供了所需数据 ! 也为汽车 安全运行提供了必须的依据 " 同时 ! 有限元方法的利
’-F,F "对某整体式桥壳进行应力场和位移场分析 "
并验证其设计的合理性 ’
图 " 驱动桥壳静力简图
" 驱动桥壳受力分析及强度计算
桥壳可被简化为一空心横梁 " 两端经轮毂轴承 支承于车轮上 ’ 在静力状态下 % 钢板弹簧座处桥壳 承受汽车的簧上载荷 7 ) 而沿左右轮胎的中心线 " 由

毕业设计(论文)汽车驱动桥壳UG建模及有限元分析

毕业设计(论文)汽车驱动桥壳UG建模及有限元分析

毕业设计(论文)汽车驱动桥壳UG建模及有限元分析毕业设计(论文)汽车驱动桥壳UG建模及有限元分析JIU JIANG UNIVERSITY毕业论文题目汽车驱动桥壳UG建模及有限元分析英文题目 Modeling by UG and Finite Element Analyzing of Automobile Drive Axle Housing 院系机械与材料工程学院专业车辆工程姓名班级指导教师摘要本篇毕业设计(论文)题目是《汽车驱动桥壳建模UG及有限元分析》。

作为汽车的主要承载件和传力件,驱动桥壳承受了载货汽车满载时的大部分载荷,而且还承受由驱动车轮传递过来的驱动力、制动力、侧向力等,并经过悬架系统传递给车架和车身。

因此,驱动桥壳的研究对于整车性能的控制是很重要的。

本课题以重型货车驱动桥壳为对象,详细论述了从UG软件中的参数化建模,到ANSYS中有限元模型的建立、边界条件的施加等研究。

并且通过对桥壳在不同工况下的静力分析和模态分析,直观地得到了驱动桥壳在各对应工况的应力分布及变形情况。

从而在保证驱动桥壳强度、刚度与动态性能要求的前提下,为桥壳设计提出可行的措施和建议。

【关键词】有限元法,UG,ANSYS ,驱动桥壳,静力分析,模态分析AbstractThis graduation project entitled “Modeling and Finite Element Analyzing of Automobile Drive Axle Housing”. As the mainly carrying and passing components of the vehicle, the automobile drive axle housing supports the weight of vehicle, and transfer the weight to the wheel. Through the drive axle housing, the driving force, braking force and lateral force act on the wheel transfer to the suspension system, frame and carriage.The article studies based on heavy truck driver axle ,discusses in detail from the UG software parametric modeling, establish of ANSYS FEM model, and the boundary conditions imposed, etc. And through drive axle housing of the different main conditions of static analysis and modal analysis, it can access the stress distribution and deformation in the corresponding status of drive axle directly. Thus, under the premise of ensuring the strength of drive axle housing, stiffness and dynamic performance requirements, the analysis can raise feasible measures and recommendations in drive axle housing design.Plans to establish thet hree---dimensional model by UG, to make all kinds of emulation analysis by Ansys.【Key words】 Finite element method,UG,ANSYS,Drive axlehousing,Static analysis,Modal analysis目录前言 1第一章绪论 21.1 汽车桥壳的分类 21.2 国内外研究现状 31.3 有限元法及其理论 51.4 ansys软件介绍 71.5 研究意义及主要内容 91.6 本章小结 10第二章驱动桥壳几何模型的建立 11 2.1 UG软件介绍 112.2 桥壳几何建模时的简化处理 11 2.3 桥壳几何建模过程 122.4 本章小结 24第三章驱动桥壳静力分析 25 3.1 静力分析概述 253.2 静力分析典型工况 253.3 驱动桥壳有限元模型的建立 27 3.3.1 几何模型导入 273.3.2 材料属性及网格划分 283.4 驱动桥壳各工况静力分析 293.4.1 冲击载荷工况 293.4.2 最大驱动力工况 323.4.3 最大侧向力工况 343.5 本章小结 37第四章驱动桥壳模态分析 384.1 模态分析概述 384.2 模态分析理论 384.3 驱动桥壳模态分析有限元模型的建立 40 4.4 驱动桥壳模态分析求解及结果 41 4.5 驱动桥壳模态分析总结 474.6 本章小结 47结论 48参考文献 50致谢 52前言在桥壳的传统设计中,往往采用类比方法,对已有产品加以改进,然后进行试验、试生产。

汽车驱动桥壳的有限元建模与分析_第五章全文总结_81_83

汽车驱动桥壳的有限元建模与分析_第五章全文总结_81_83

汽车驱动桥壳的有限元建模与分析_第五章全文总结_81_83第五章全文总结第五章全文总结本论文利用Pro/E建立了驱动桥壳的有限元模型,并结合MSC.PATRAN 和MSC.NASTRAN对驱动桥壳进行了静力和模态有限元分析,得到了有益的结论。

论文的主要研究内容和结论主要有以下几个方面:(1)总结了应用Pro/E建立几何模型的注意事项和几何模型简化的方法,以某中型载货汽车的驱动桥壳为实例,提出了简化驱动桥壳几何建模的思路,详细地给出了应用Pro/E Wildfire版软件建立驱动桥壳几何模型的规范化建模步骤。

(2)按照在有限元前后处理软件MSC.PATRAN中建立有限元模型的流程,介绍了MSC.PATRAN的简单几何和复杂几何概念及相互转化的操作技巧;提出了在MSC.PATRAN中出现几何不协调的几种情况,并针对每种情况,给出了相应的消除几何不协调的办法;总结了群组(Group)的功能和在建模时的重要应用;研究了MSC.PATRAN自动网格生成器的分类和用途,网格疏密的控制方法和单元检验的相关理论,为使用MSC.PATRAN建立有限元模型打下了基础。

(3)根据在MSC.PATRAN中建立有限元模型的相关步骤,详细介绍了在其中建立驱动桥壳有限元模型过程,为使用板壳单元建立驱动桥壳有限元模型提供了规范化的操作步骤。

(4)针对驱动桥壳静力分析中的四种工况:垂直载荷工况、牵引力最大工况、制动力最大工况和最大侧向力工况,总结了四种工况下载荷、约束的处理办法,并在MSC.PATRAN中建立了相应的工况提交文件。

利用MSC.NASTRAN做求解器,得出了四种工况下驱动桥壳的受力和变形结果。

经分析可知,桥壳应力分布合理,在静力载荷工况下,桥壳最大应力位置出现在月牙形开口和螺栓孔相邻位置处,而最大变形位置出现在中央法兰盘根部。

(5)研究了在MSC.PATRAN中实现驱动桥壳模态分析的关键问题,并生成了相应的工况分析文件,提交给MSC.NASTRAN计算后得到桥壳的前20个固有频率和振型,桥壳的固有频率远离路面激励频率,即路面激励频率不会引起桥壳共振。

汽车驱动桥壳的有限元建模与分析_第二章驱动桥壳几何模型的建模_14_36

汽车驱动桥壳的有限元建模与分析_第二章驱动桥壳几何模型的建模_14_36

第二章 驱动桥壳几何模型的建模 建立几何模型是进行有限元分析工作的第一步,几何模型既可以由CAD 软件建立,也可以由有限元前后处理软件直接建立。

考虑到驱动桥壳一般是由不规则曲面组成的复杂结构,本章应用CAD软件Pro/Engineer建立某驱动桥壳的几何模型,并对几何模型做适当的简化。

2.1 Pro/Engineer简介 2.1.1 Pro/E发展历程概述 Pro/Engineer,简称Pro/E,是由美国PTC公司开发的大型三维CAD/CAE/CAM一体化产品造型系统[13]。

1985年,PTC公司成立于美国波士顿,开始参数化建模软件的研究。

1988年,PTC公司推出Pro/Engineer1.0,标志着Pro/E的诞生。

1995年,PTC公司推出Pro/Engineer2000i。

该版本基于参数化、特征驱动、数据全相关和单一集成数据库,同时还支持并行工程。

2001年,PTC公司推出Pro/Engineer2001。

与Pro/E2000i相比,该版本改进了软件界面,更符合设计人员的操作习惯;具有智能化的绘图环境,提高了工作效率;增加了图纸和模型之间的关联功能;模型打开可以使用预览功能,提高了操作前的针对性。

2003年,PTC公司推出Pro/Engineer Wildfire。

与以前版本相比,野火版特别强调了设计过程的易用性及设计人员之间的互联性。

2.1.2 Pro/E的基本功能 Pro/E能够完成特征建模、参数化设计、零件实体造型及装配造型、完整工程图产生等工作。

通过标准数据交换格式,Pro/E可以输出三维或二维图形用于其它应用软件。

使用Pro/E配置的开发模块或利用C语言,用户也可以扩展与增强Pro/E的功能。

Pro/E的基本功能是:(1)特征建模在Pro/E中,特征是组成模型的基本单位,如:凸台、槽、倒角、腔、壳等特征。

模型创建过程就是按照一定顺序以“搭积木”的方式添加各类特征的过程,通过构建不同的特征建立几何模型。

基于有限元方法的汽车驱动桥壳分析

基于有限元方法的汽车驱动桥壳分析

基于有限元方法的汽车驱动桥壳分析简介汽车驱动桥壳是连接汽车发动机和驱动轮的重要组件,其中,壳体结构是至关重要的。

有限元方法是一种广泛应用于实际工程分析中的数值分析方法,可以模拟和优化设计。

本文将探讨如何使用有限元方法分析汽车驱动桥壳的结构。

建模几何模型汽车驱动桥壳一般采用加厚的柱壳结构,从而在较小的体积内承载高强度的扭转力。

为了对此结构进行有限元分析,需要先构建准确的几何模型。

可以使用计算机辅助设计软件建立三维模型,或者直接使用CAD工具绘制二维截面。

网格划分一旦有几何模型,就需要对其进行网格划分。

这是一项关键的步骤,因为它将直接影响最终分析的准确性和效率。

在划分网格时,需要注意以下几点:•网格大小应该能够适当地对结构进行描述,同时不会影响计算效率。

•网格应当满足光滑性要求,特别是在转角处。

•需要尽可能使用劣质网格,以确保准确性。

材料和边界条件分析所需的材料特性和边界条件有助于确定结构在应力下的响应。

材料的特性包括弹性模量、泊松比、屈服强度。

设置边界条件则包括固定点、负载、扭曲、压力等。

求解通过有限元分析软件可以进行模拟计算,并得出结构的应力状况和形变情况。

在此过程中,需要考虑以下因素:•材料的非线性特性•数值不稳定性问题•嵌套效应对模型的影响结果和分析有限元求解得出的结果需要进一步进行分析,以便深入理解结构的行为和性能。

通过对结果的分析,可以得到以下信息:•结构的应力、应变分布以及最大应力发生在哪里•结构的变形情况以及变形程度•破坏模式及其发生的位置和原因结论本文介绍了使用有限元分析方法分析汽车驱动桥壳的方法。

通过准确建立几何模型、网格划分、设置材料特性和边界条件并对结果进行分析,可以得到结论来评估设计的性能和研究规划的效果。

基于UG的车桥桥壳参数化设计毕业设计(论文)

基于UG的车桥桥壳参数化设计毕业设计(论文)

基于UG的车桥桥壳参数化设计摘要标准件库的建立对提高CAD系统的运行效率和质量,缩短产品开发周期起到重要的作用。

本文以某车桥桥壳为研究对象,基于UG NX4.0三维平台,综合运用UG二次开发模块UISTYLER、UG/OPEN API和Visual C++6.0软件,首先通过编辑MENU菜单和参数化零件,其次通过建立零件族和绘制自定义对话框,再次基于VC软件编制操作图形的动态链接库文件,从而完成整个零部件的参数化设计,最后开发了桥壳标准件库。

通过桥壳标准件库的建立大大缩短了桥壳零件的开发周期,降低了生产成本。

和传统的设计方法相比较,该方法提高了设计的效率。

关键词:车桥桥壳 UG 二次开发1 前言车辆驱动桥壳的功用是支承并保护主减速器、差速器和半轴等,使左右驱动车轮的轴向相对位置固定;同从动桥一起支承车架及其上的各总成重量;汽车行驶时,承受由车轮传来的路面反作用力和力矩,并经悬架传给车架。

驱动桥壳应有足够的强度和刚度,质量小,并便于主减速器的拆装和调整。

由于桥壳的尺寸和质量比较大,制造较困难,故其结构型式在满足使用要求的前提下,要尽可能便于制造。

驱动桥壳可分为整体式桥壳和分段式桥壳两类。

整体式桥壳具有较大的强度和刚度,且便于主减速器的装配、调整和维修,因此普遍应用于各类汽车上。

分段式桥壳比整体式桥壳易于铸造,加工简便,但维修保养不便。

当拆检主减速器时,必须把整个驱动桥从汽车上拆卸下来,故目前已很少采用。

2 参数化设计的概况及设计方案的确定2.1 零件的参数化设计2.1.1 零件的参数化设计概念零件的参数化设计是指零件在设计过程中,以零件的尺寸作为变量参数,用对应的关系来表示,通过调整尺寸参数就可以修改和控制零件的几何形状。

这样,需改变零件的大小和位置时,只要变动相关的尺寸数值,与之相关的尺寸将会自动随之改变。

利用UG进行零件参数化设计,可根据零件的特点,采用草图、表达式、截面之间的相关性等方法建立三维参数化模型来实现参数化设计。

汽车驱动桥桥壳的有限元分析(牟建宏)

汽车驱动桥桥壳的有限元分析(牟建宏)

汽车驱动桥桥壳的有限元分析牟建宏(西南大学工程技术学院,重庆北碚 400715)摘要:用任意三维软件建立了驱动桥壳的三维实体模型。

通过对驱动桥壳进行有限元分析(在此仅进行静力学分析)。

通过有限元进行应力计算,判断驱动桥壳每m轮距最大变形量和垂直弯曲后背系数是否符合要求。

为驱动桥壳的结构改进及优化设计提供了理论依据。

关键词:驱动桥壳;有限元分析;ANSYS0引言驱动桥壳是汽车上重要的承载件和传力件。

非断开式驱动桥壳支承汽车重量,并将载荷传给车轮。

作用在驱动车轮上的牵引力、制动力、侧向力、垂向力也是经过桥壳传到悬挂及车架或车厢上[1]。

因此,驱动桥壳的使用寿命直接影响汽车的有效使用寿命。

合理地设计驱动桥壳,使其具有足够的强度、刚度和良好的动态特性,减少桥壳的质量,有利于降低动载荷,提高汽车行驶的平顺性和舒适性。

而驱动桥壳形状复杂,应力计算比较困难,所以有限元法是理想的计算工具。

1有限元法的简介1.1有限元法的定义有限元法(finite element method)是一种高效能、常用的数值计算方法。

科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。

有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。

自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系[2]。

1.2有限元法的基本原理将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。

汽车驱动桥桥壳强度与模态的有限元分析

汽车驱动桥桥壳强度与模态的有限元分析

A S SWok ec ow ewseaoa d Tetredm ni ago er oe o tm bl dii N Y rbnh¥ t ̄ a l rt . he iesol em t m dl a o oi r n f b e h n y u f e vg
似f h ui a s A i e y ui h he i n i a A O oe U T e h t c r e os g w set lh d b n te tre dmes n lC D S / G,h n te s ut a n a s s g o  ̄W ' r ul s egha dtem d fnt ee n a s t n t n ai i l r h o l e m t l i e n a ys

【 要】 摘 介绍了汽车驱动桥桥壳结构强度和模 态有限元分析的研 究背景 , 论述了A S S r NY k Wo —
bnh ec 软件的有限元分析功能和优点。采用三维 C D软件 U A G建立了汽车驱动桥桥壳的三维几何模型, 然后将其导入 A S S rbnh软件 中进 行 了结构 强度和模 态有限元 分析 。 真结果表 明, N Y Wokec 仿 汽车驱动桥


cr e ni N Y rbn hs tae T es l一乞 ar do A S SWok ec o w . i a i n f r h mu

{ t nrsl idct ta tea t bl diiga l h uigsrnt ai e h 劬 rq et dhs i eut n ia ht h uo i r n e o s t ghst ste o s o m e v x n e s i f e us, a n a te odvba o - ro h o r inp o g it f

基于UG的“火轮”汽车轮毂三维建模及有限元应力分析毕业设计(论文)

基于UG的“火轮”汽车轮毂三维建模及有限元应力分析毕业设计(论文)

毕业设计(论文) 题目:基于UG的“火轮”汽车轮毂三维建模及有限元应力分析论文摘要:车轮是左右整车性能最重要的安全部件,不仅要承受静态时车辆本身垂直方向的自重载荷,更需要承受车辆行驶中来自各个方向因起动、制动、转弯、路面凹凸不平等各种动态载荷所产生的不规则应力之考验。

它的轴向跳动和径向跳动精度,又直接影响到整车行驶中的平稳性、抓地性、偏摆性、制动性等行驶性能。

随着汽车工业的迅猛的发展,铝合金轮毂的应用越来越普遍。

铝合金轮毂具有重量轻,降低油耗;散热性好,提高轮胎寿命;缓冲和吸震性好;造型美观,易加工,耐腐蚀等优点。

但中国铝合金车轮行业普遍存在设计周期长,制造成本高等问题。

在汽车设计制造中计算机辅助设计是必然趋势,因此采用先进的三维CAD软件和大型CAE软件对汽车铝合金轮毂进行结构设计,有利于缩短设计周期,提高产品质量。

目前,在中国用有限单元法对铝合金车轮进行研究还处在起步阶段。

只有少数的科研院所和高校对钢制车轮进行有限元分析研究。

因此,有必要把有限元技术应用到铝合金车轮上,以解决生产实际问题。

本课题:基于UG的“火轮”汽车轮毂三维建模及有限元应力分析,是从汽车轮毂基本特征入手并结合工业设计美学,打造出具有中国元素的车轮,应用UG软件三维建模并完成网格划分,用有限元分析模块做出强度分析。

通过此次设计学习并熟练掌握UG软件的建模与有限元分析功能,对车轮做强度分析,为车轮结构优化设计提供依据。

关键词:铝合金车轮 UG 有限元AbstractWheel is the most important safety component of the vehicle performance, Not only to bear the load of the vehicle itself static weight on vertically. And withstand the test of vehicles from all directions, starting、braking、cornering、uneven surface and other dynamic loads generated by the irregular stress. Its axial and radial runout accuracy has a direct impact to the vehicle traveling in the smooth, grip, swing, braking and driving performance. By the rapid development of automobile industry, the increasing application of aluminum alloy wheels. Aluminum alloy wheels with light weight, lower fuel consumption; good heat dissipation, improve tire life; buffering and shock absorption; attractive appearance, ease of processing, corrosion resistance, etc.But in China aluminum alloy wheel industry have prevalence of long design cycles, high manufacturing costs, and other puter-aided design is an inevitable trend in automotive design and manufacturing.Therefore the use of 3D CAD software and large CAE software for car aluminum wheel structure design, is benefit to shorten the design cycle and improve the quality of products.At present, in China adopt the finite element method on the aluminum alloy wheels research is still in its initial stage.Therefore, it is necessary to adopt the finite element technique on aluminum alloy wheel, to solve the practical problems of production.This project:Based on UG establish "steamer" alloy wheel 3D modeling and finite element stress analysis, Start from the basic characteristics of the car wheels and combine the aesthetics of industrial design,to create a wheel with Chinese ing UG software establish 3D modeling and complete the meshing finite element analysis model with a strength analysis.Through this design study and master UG software 3D modeling and finite element analysis function.Do strength analysis of the wheel.Provide the basis for the optimized design of the wheel structure.Key Words: alloy wheel Unigraphics NX Finite element目录第一章绪论 (1)1.1. 课题研究目的和意义 (1)1.2. 国内外研究动态及现状分析 (2)1.2.1. 车轮的发展趋势 (2)1.2.2. 车轮疲劳分析研究 (3)1.3. 论文研究目标 (4)第二章理论基础与模型建立 (5)2.1 有限元技术及UG软件 (5)2.1.1 有限元法基本原理 (5)2.1.2 有限元法分析过程 (5)2.1.3 UG软件介绍 (7)2.2 车轮模型建立 (8)2.2.1车轮的结构设计的基本步骤: (8)2.2.2 车轮参数确定及建立模型 (9)2.3 本章小结 (14)第三章车轮径向疲劳的有限元分析 (15)3.1 车轮径向疲劳试验原理 (15)3.2 车轮径向载荷疲劳有限元分析 (16)3.2.1 车轮有限元模型建立 (16)3.2.2 径向载荷疲劳有限元分析 (19)3.3本章小结 (22)第四章车轮弯曲疲劳的有限元分析 (23)4.1 车轮弯曲疲劳试验原理 (23)4.2 车轮弯曲疲劳有限元分析 (24)4.2.1 车轮有限元模型建立 (24)4.2.2 车轮弯曲疲劳有限元分析 (26)4.3 本章小结 (29)第五章总结与展望 (30)5.1 毕业设计总结 (30)5.2 未来工作展望 (31)参考文献 (33)致谢 (32)第一章绪论1.1.课题研究目的和意义本课题研究从汽车轮毂的基本特征入手,应用UG三维软件对从工业设计美学【1】角度设计出的具有中国元素的汽车车轮建立模型,并用有限元法完成强度分析。

汽车驱动桥壳的有限元建模与分析_第三章驱动桥壳有限元模型的建模_36_63

汽车驱动桥壳的有限元建模与分析_第三章驱动桥壳有限元模型的建模_36_63

29第三章 驱动桥壳有限元模型的建模 作为MSC.NASTRAN 的前后处理器,MSC.PATRAN 是工业领域最著名的并行框架式有限元前后处理和分析系统。

在驱动桥壳几何模型的基础上,本章将探讨应用MSC.PATRAN 建立驱动桥壳有限元模型的问题。

3.1 导入驱动桥壳几何模型到MSC.PATRAN中 3.1.1 驱动桥壳几何模型的存储 前一章已经采用CAD 软件Pro/E 建立了所研究驱动桥壳的几何模型,为将几何模型导入到MSC.PATRAN 中,需要将在Pro/E 中建立的几何模型存成一定格式的数据。

STEP 格式是国际标准化组织(ISO )于1984 年提出的关于产品数据的交换标准,全称是“产品模型数据交换标准(Standard for Exchange of Product Model Data )”。

与IGES 数据格式相比,STEP 数据格式模型的数据不易丢失,导入速度较快,因此,将在Pro/E 中建立的几何模型存成STEP 数据格式。

图3-1 New Database对话框 图3-2 New Model Preference菜单 3.1.2 MSC.PATRAN模型数据库文件的建立 (1)启动MSC.PATRAN ,选择“File ”菜单中的“New ”命令,或直接在工具栏上单击按钮 ,出现图3-1所示对话框;30(2)在文件名输入框中输入:CA141_Housing.db ,单击“OK ”按钮确认,即建立新的PATRAN 模型数据库文件,如图3-1所示;(3)建立新的数据库文件后,会出现New Model Preference 菜单,使菜单的内容与图3-2所示一致,单击“OK ”按钮确认。

3.1.3 驱动桥壳几何模型的导入 (1)由MSC.PATRAN 菜单File/Import 打开输入模型对话框,在“Object ”中选择“Model ”,在“Source”中选择“STEP”,即确定模型导入的数据格式是STEP 格式,如图3-3所示;(2)在“File Type ”中选择AP203类型;(3)选择要输入的文件,单击“Apply ”按钮,输入几何模型;(4)MSC.PATRAN 弹出一个模型输入统计报告,导入完成。

Get格雅UG四驱车模型毕业设计论文

Get格雅UG四驱车模型毕业设计论文

UG-四驱车模型-毕业设计论文毕业设计说明书题目:四轮驱动赛车目录一概述 (7)1—1玩具的市场调查71—2四驱车简介71—3开展玩具四驱车科普活动的社会意义81—4玩具四驱车开发的前景81—5毕业设计题目确实定9二玩具四驱车的UG实体建模 (8)2—1 电动机. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2—2 开关. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .13 2—3 电机套. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .14 3—1 电池. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3—2 车身的根本套装. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .20 3—3 车壳的实体形成. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .21 4—1玩具四驱车零部件的UG实体图254—2玩具四驱车的装配图334—3玩具四驱车的爆炸图34三、结论 (36)四、参考文献 (37)摘要本毕业设计的主要目的是为了开拓广阔的玩具市场和满足爱车一族的珍藏喜好。

本毕业设计主要内容是设计按真四驱车缩小32倍对四驱车进行仿真设计造型,因考虑本钱且实现运动和仿真,本设计简化了其结构而设计的四轮驱动模型车。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计(论文)汽车驱动桥壳UG建模及有限元分析毕业设计(论文)汽车驱动桥壳UG建模及有限元分析JIU JIANG UNIVERSITY毕业论文题目汽车驱动桥壳UG建模及有限元分析英文题目 Modeling by UG and Finite Element Analyzing of Automobile Drive Axle Housing 院系机械与材料工程学院专业车辆工程姓名班级指导教师摘要本篇毕业设计(论文)题目是《汽车驱动桥壳建模UG及有限元分析》。

作为汽车的主要承载件和传力件,驱动桥壳承受了载货汽车满载时的大部分载荷,而且还承受由驱动车轮传递过来的驱动力、制动力、侧向力等,并经过悬架系统传递给车架和车身。

因此,驱动桥壳的研究对于整车性能的控制是很重要的。

本课题以重型货车驱动桥壳为对象,详细论述了从UG软件中的参数化建模,到ANSYS中有限元模型的建立、边界条件的施加等研究。

并且通过对桥壳在不同工况下的静力分析和模态分析,直观地得到了驱动桥壳在各对应工况的应力分布及变形情况。

从而在保证驱动桥壳强度、刚度与动态性能要求的前提下,为桥壳设计提出可行的措施和建议。

【关键词】有限元法,UG,ANSYS ,驱动桥壳,静力分析,模态分析AbstractThis graduation project entitled “Modeling and Finite Element Analyzing of Automobile Drive Axle Housing”. As the mainly carrying and passing components of the vehicle, the automobile drive axle housing supports the weight of vehicle, and transfer the weight to the wheel. Through the drive axle housing, the driving force, braking force and lateral force act on the wheel transfer to the suspension system, frame and carriage.The article studies based on heavy truck driver axle ,discusses in detail from the UG software parametric modeling, establish of ANSYS FEM model, and the boundary conditions imposed, etc. And through drive axle housing of the different main conditions of static analysis and modal analysis, it can access the stress distribution and deformation in the corresponding status of drive axle directly. Thus, under the premise of ensuring the strength of drive axle housing, stiffness and dynamic performance requirements, the analysis can raise feasible measures and recommendations in drive axle housing design.Plans to establish thet hree---dimensional model by UG, to make all kinds of emulation analysis by Ansys.【Key words】 Finite element method,UG,ANSYS,Drive axlehousing,Static analysis,Modal analysis目录前言 1第一章绪论 21.1 汽车桥壳的分类 21.2 国内外研究现状 31.3 有限元法及其理论 51.4 ansys软件介绍 71.5 研究意义及主要内容 91.6 本章小结 10第二章驱动桥壳几何模型的建立 11 2.1 UG软件介绍 112.2 桥壳几何建模时的简化处理 11 2.3 桥壳几何建模过程 122.4 本章小结 24第三章驱动桥壳静力分析 25 3.1 静力分析概述 253.2 静力分析典型工况 253.3 驱动桥壳有限元模型的建立 27 3.3.1 几何模型导入 273.3.2 材料属性及网格划分 283.4 驱动桥壳各工况静力分析 293.4.1 冲击载荷工况 293.4.2 最大驱动力工况 323.4.3 最大侧向力工况 343.5 本章小结 37第四章驱动桥壳模态分析 384.1 模态分析概述 384.2 模态分析理论 384.3 驱动桥壳模态分析有限元模型的建立 40 4.4 驱动桥壳模态分析求解及结果 41 4.5 驱动桥壳模态分析总结 474.6 本章小结 47结论 48参考文献 50致谢 52前言在桥壳的传统设计中,往往采用类比方法,对已有产品加以改进,然后进行试验、试生产。

为安全起见,一般要加大安全系数,这使得生产周期延长设计成本增加,而且生产出来的产品往往质量过大。

本课题基于Ansys软件用有限元法分析驱动桥壳,为以后驱动桥壳减重、优化等奠定一定基础。

第一章绪论汽车桥壳的分类汽车通常由发动机、底盘、车身和电器设备四部分组成。

其中底盘由传动系、行驶系、转向系和制动系四个部分组成,而汽车驱动桥是传动系中不可缺少的组成部分。

汽车驱动桥壳是汽车上重要的承载构件之一,其主要作用有:支撑并保护主减速器、差速器和半轴等,使左右车轮的轴向间距相对固定;与从动桥一起支撑车架以及以上的部件总质量;汽车行驶时,承受由车轮传来的路面反作用力和力矩并经悬架传给车架,驱动桥应有足够的强度和刚度且质量小,并便于主减速器的拆装和调整。

由于桥壳的质量和尺寸比较大,制造较困难,故其结构形式在满足使用要求的前提下应尽可能便于制造。

驱动桥壳分为整体式桥壳,分段式桥壳两类。

整体式桥壳由于制造方法不同可分为几种:整体铸造、钢板冲压焊接、中段铸造两端压入钢管、钢管扩展成型等形式。

整体式桥壳的结构如图1-1所示,本课题分析的重型载货汽车驱动桥壳就属于此类。

图1-1 东风EQ109OE汽车驱动桥壳1-半轴套管;2-后桥壳;3-放油孔;4-后桥壳垫片;5-后盖6-油面孔;7-凸缘盘;8-通气塞2、分段式桥壳分段式桥壳一般由两段组成,也有三段甚至多段组成的,各段之间用螺栓连接。

它主要由铸造的主减速器、壳盖、两个钢制半轴套筒及凸缘组成。

有的分段式桥壳之间可以相对移动,采用独立悬架。

分段式桥壳比整体式桥壳易于铸造,加工简单,但维修不便。

当拆卸主减速器时,必须把整个驱动桥从汽车上拆下来。

分段式桥壳多用于中型汽车和轻型汽车上。

1.2 国内外研究现状驱动桥是工程机械底盘的重要部件,其性能直接影响着机械的整体性能。

大量实践表明,由于受力复杂,驱动桥壳是各种车辆上比较容易出现破坏的部件之一。

因此,国内外都对此进行了大量的研究,主要集中于以下几个方面。

1)有限元法有限元法由于能够解决结构形状和边界条件都非常任意的力学问题,因而在实际中得到广泛应用,成为一种可靠的新的数值计算方法,并取得许多实际效益。

在车辆设计中,有限元法也得到应用。

应用有限元法,对车辆的所有结构件、零部件,可以进行刚度、强度、稳定性分析,可以进行模态分析再现振动模态,进一步可以计算动态响应,较真实地描绘出动态过程。

设计驱动桥壳时,作为车辆的主要承载构件之一,驱动桥壳形状和受力都很复杂,因此,要精确计算出驱动桥壳各状态下各处的应力是很困难的。

过去,主要是通过对桥壳样品进行台架试验和整车行驶试验,考核桥壳强度和刚度。

有时还采用在桥壳上贴应变片的电测方法,让车辆在典型路段上满载行驶或典型工况下工作,以测定桥壳的应力。

这些方法只有在有桥壳样品的情况下才能使用,而且需要付出相当大的人力、物力和时间。

或者将桥壳看成是一简支梁,校核某些特定断面的最大应力值。

我国通常推荐将桥壳复杂的受力状况简化在典型工况下,只要桥壳的强度得到保证,就认为该桥壳在车辆的各种行驶条件下是可靠的。

传统的桥壳强度的计算方法,只能近似计算出桥壳某一断面的应力平均值,不能完全反映桥壳上应力及其分布的真实情况。

因此,这种方法仅用于对桥壳强度的验算,或用来与其它车型的桥壳强度进行比较,而不能用于计算桥壳上某点的真实应力值。

有限元法作为一种现代化的结构计算方法,在一定的前提条件下,可以计算出机械产品各处的位移、应力和应变。

在国外,二十世纪七十年代前后,有限元方法逐渐在车辆桥壳的强度分析中得到应用。

如美国的机械研究所、万国汽车公司等,都曾经使用有限元法计算过桥壳的强度。

使用有限元法对车辆驱动桥壳进行强度分析,只要计算模型简化得合理,受力与约束条件处理恰当,就可以得到比较理想的计算结果。

而且,可以得到比较详细的应力和变形的分布情况,以及应力集中区域和应力变化趋势,这些都是传统方法难以做到的。

因此,在驱动桥壳设计中,应用有限元法具有重要的意义。

通过对驱动桥壳进行有限元分析计算,既可以分析驱动桥壳的变形、应力、应变、强度与刚度等情况,也可以分析比较各种设计方案,在保证强度与刚度的前提下,为结构的减重、改进以及优化设计提出可行的措施和建议。

下面结合一些学者在驱动桥壳上做的有限元研究成果来具体介绍一下有限元法在驱动桥壳设计过程中进行分析、评估和校核中的应用:1 驱动桥壳垂直弯曲的静力分析主要是计算桥壳的垂直弯曲强度和刚度。

郑燕萍在有限元中将桥壳两端固定,在弹簧座处施加载荷,得出结论:当桥壳承受满载轴荷时,每米轮距最大变形量不超过1.5mm,强度足够;龙慧对装载机的前驱动桥壳进行了垂直弯曲的有限元强度分析,计算出桥壳应力、变形分布和应力集中,为提高驱动桥壳的承载能力和新产品的开发提供了较为可靠的依据。

2 驱动桥壳模态分析驱动桥壳模态分析主要通过计算,得到整个驱动桥壳在自由状态下的固有频率与固有振型,以分析驱动桥壳的动态特性。

陈朝阳介绍了多输入/多输出理论模态分析的基本方法,并用该方法对模型进行了计算,得到其理论解;同时又对该模型进行了实验模态分析,得到了实验解。

两种解的误差很小,说明该理论分析方法完全可以应用于驱动桥的模态分析中。

相关文档
最新文档