必修四4.平面向量的数量积(教案)

合集下载

北师大高中数学必修平面向量数量积的坐标表示教案

北师大高中数学必修平面向量数量积的坐标表示教案

北师大高中数学必修平面向量数量积的坐标表示教案第一章:向量的概念1.1 向量的定义引导学生复习初中所学向量的概念,即向量是有大小和方向的量。

解释向量在坐标系中的表示方法,例如在二维坐标系中,向量可以表示为由原点出发的箭头,其长度表示向量的大小,箭头方向表示向量的方向。

1.2 向量的表示介绍向量的表示方法,即用粗体字母或箭头表示向量,例如\( \vec{a} \) 或\( \overrightarrow{a} \)。

强调向量是有方向的量,与标量(只有大小没有方向的量)的区别。

第二章:向量的坐标表示2.1 二维向量的坐标表示引导学生复习初中所学二维向量的坐标表示方法,即用(x, y) 表示一个二维向量,其中x 表示向量在x 轴上的分量,y 表示向量在y 轴上的分量。

举例说明如何求解一个二维向量的坐标表示,例如给定向量\( \vec{a} \) 在x 轴上的分量为2,在y 轴上的分量为3,可以表示为\( \vec{a} = (2, 3) \)。

2.2 三维向量的坐标表示介绍三维向量的坐标表示方法,即用(x, y, z) 表示一个三维向量,其中x 表示向量在x 轴上的分量,y 表示向量在y 轴上的分量,z 表示向量在z 轴上的分量。

举例说明如何求解一个三维向量的坐标表示,例如给定向量\( \vec{b} \) 在x 轴上的分量为4,在y 轴上的分量为5,在z 轴上的分量为6,可以表示为\( \vec{b} = (4, 5, 6) \)。

第三章:向量的数量积3.1 向量的数量积定义解释向量的数量积(点积)的定义,即两个向量\( \vec{a} \) 和\( \vec{b} \) 的数量积等于它们对应分量的乘积之和。

给出数量积的数学表达式,对于二维向量\( \vec{a} = (a_x, a_y) \) 和\( \vec{b} = (b_x, b_y) \),它们的数量积为\( \vec{a} \cdot \vec{b} = a_x b_x + a_y b_y \)。

平面向量数量积(优质课)教案

平面向量数量积(优质课)教案

θab1.8平面向量的基本概念与线性运算(优质课)教案教学目标:1掌握平面向量数量积的概念、几何意义、性质、运算律及坐标表示. 2平面向量数量积的应用.教学过程:一、平面向量数量积的物理背景及定义:以物理学中的做功为背景引入问题:观察讨论做功的公式中左右两端的量分别是什么量?什么影响了功的大小?如何精确的给出数学中的定义?力做的功:W = |F |⋅|s |cos θ,θ是F 与s 的夹角1、两个非零向量夹角的概念:已知非零向量a 与b ,作OA =a ,OB =b ,则∠AOB=θ(0≤θ≤π)叫a 与b 的夹角说明:(1)当θ=0时,a 与b 同向; (2)当θ=π时,a 与b 反向; (3)当θ=2π时,a 与b 垂直,记a ⊥b ; (4)注意在两向量的夹角定义,两向量必须是同起点的范围0︒≤θ≤180︒2、平面向量数量积(内积)的定义:已知两个非零向量a 与b ,它们的夹角是θ,则数量|a ||b |cos θ叫a 与b 的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π)并规定0与任何向量的数量积为03、两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量C①e⋅a = a⋅e =|a|cosθ②a⊥b⇔a⋅b = 0③a⋅a = |a|2或||aa a=④cosθ =||||a ba b⑤|a⋅b| ≤ |a||b|4、向量数量积满足的运算率:①a b b a=;②()a b c a c b c+=+;③()()()a b a b a bλλλ==二、向量数量积的坐标运算1、已知两个向量),(11yxa=,),(22yxb=,则ba⋅2121yyxx+=.2、设),(yxa=,则=||a.3、平面内两点间的距离公式如果表示向量a的有向线段的起点和终点的坐标分别为),(11yx、),(22yx,那么=||a.4、向量垂直的判定两个非零向量),(11yxa=,),(22yxb=,则ba⊥⇔02121=+yyxx.5、两向量夹角的余弦co sθ ==⋅⋅||||baba222221212121yxyxyyxx+++=(πθ≤≤0).6、向量在轴上的正射影:作图定义:|b|cosθ叫做向量b在a所在轴上的正射影正射影也是一个数量,不是向量;当θ为锐角时正射影为正值;当θ为钝角时正射影为负值;当θ为直角时正射影为0;当θ = 0︒时正射影为|b|;当θ = 180︒时正射影为-|b|类型一、平面向量数量积的运算: 例题1 已知下列命题:①()0a a +-=; ②()()a b c a b c ++=++; ③()()a b c a b c =; ④()a b c a c b c +=+ 其中正确命题序号是 ②、④ .点评: 掌握平面向量数量积的含义,平面数量积的运算律不同于实数的运算律.例题2 已知2,5,(1)||a b a b ==若; (2) a b ⊥;(3) a b 与的夹角为030,分别求a b .解(1)当 ||a b 时, a b =0cos025110a b =⨯⨯=或a b =0cos18025(1)10a b =⨯⨯-=-. (2)当a b ⊥时, a b =0cos902500a b =⨯⨯=.(3)当a b 与的夹角为030时, ab =0cos3025a b =⨯= 练习:已知0000(cos 23,cos 67),(cos 68,cos 22)a b ==,求a b解:0000cos 23cos68cos67cos 22a b =+= 00000cos 23sin 22sin 23cos 22sin 45+==点评: 熟练应用平面向量数量积的定义式求值,注意两个向量夹角的确定及分类完整. 类型二、夹角问题:例题3 (2005年北京)若1,2,a b c a b ===+,且c a ⊥,则向量a 与向量b 的夹角为 ( ) A. 030 B. 060 C. 0120 D. 0150 解:依题意2()0cos 0a a b a a b θ⋅+=⇒+= 1cos 2θ⇒=- 0120θ∴= 故选C 练习:① 已知2,3,7a b a b ==-=,求向量a 与向量b 的夹角.② 已知(1,2),(4,2)a b =-=,)a a b -与(夹角为θ,则cos θ= . 解: ① 7a b -=⇒ 2227a a b b -+= 31cos ,232a b a b a b⇒〈〉===⨯,故夹角为060. ②依题意得)(3,4)a b -=--(()cos 5a a b a a bθ-⇒===⨯-. 练习:已知,a b 是两个非零向量,同时满足a b a b ==-,求a a b +与的夹角.法一 解:将a b a b ==-两边平方得 221122a b a b ==, 2223a b a a b b a ∴+=++=则222221()32cos 23a aa ab a a b a a b a a b a aθ+++====++, 故a a b +与的夹角.为030.法二: 数形结合点评:注意两个向量夹角共起点,灵活应用两个向量夹角的两种求法. 类型三、向量模的问题例题4 已知向量,a b 满足6,4a b ==,且a b 与的夹角为060,求3a b a b +-和. 解:6,4a b ==,且a b 与的夹角为060 12a b ∴=22276a b a a b b ∴+=++==; 22369108a b a a b b -=-+==练习 :①(2005年湖北)已知向量(2,2),(5,)a b k =-=,若a b +不超过5,则k 的取值范围 ( ) A. [4,6]- B. [6,4]- C. [6,2]- D. [2,6]-②(2006年福建) 已知a b 与的夹角为0120,3a =,13a b += ,则b 等于( ) A 5 B. 4 C. 3 D. 1解: ①(3,2)5a b k +=+=≤,62k ⇒-≤≤ 故选C②2222a b a a b b +=++, 222cos12013a a b b ∴++=,解得4b =,故选B点评:涉及向量模的问题一般利用22a a a a ==,注意两边平方是常用的方法. 类型四、平面向量数量积的综合应用例题5 (2006年全国卷)已知向量(sin ,1),(1,cos ),22a b ππθθθ==-<<.(1) 若,a b θ⊥求 ; (2)求a b +的最大值 . 解:(1)若a b ⊥,则sin cos 0θθ+=,tan 1,()224πππθθθ⇒=--<<∴=-.(2) a b +==3,,22444πππππθθ-<<∴-<+<sin()(4πθ∴+∈4πθ∴=当时,a b +的最大值为1==.例题6已知向量(cos ,sin ),(cos ,sin )a b ααββ==,且,a b 满足3ka b a kb +=-,k R +∈ (1) 求证()()a b a b +⊥- ; (2)将a 与b 的数量积表示为关于k 的函数()f k ; (3)求函数()f k 的最小值及取得最小值时向量a 与向量b 的夹角θ. 解:(1)(cos ,sin ),(cos ,sin )a b ααββ==2222()()||||110a b a b a b a b ∴+-=-=-=-=, 故 ()()a b a b +⊥-(2)3ka b a kb +=-,2222223,121363,ka b a kb a b k ka b ka b k ∴+=-∴==∴++=-+又21,(0)4k a b k k +∴=> 故21(),(0)4k f k k k+=>.(3) 21111()2444442k k k f k k k k +==+≥=,此时当1,()k f k =最小值为12. 1cos 2a b a bθ∴==,量a 与向量b 的夹角θ 3π=一、选择题1.若a ·c =b ·c (c ≠0),则( ) A .a =b B .a ≠b C .|a |=|b |D .a 在c 方向上的正射影的数量与b 在c 方向上的正射影的数量必相等 [答案] D[解析] ∵a ·c =b ·c ,∴|a |·|c |cos<a ,c >=|b |·|c |cos<b ,c >, 即|a |cos<a ,c >=|b |cos<b ,c >,故选D.2.若|a |=4,|b |=3,a ·b =-6,则a 与b 的夹角等于( ) A .150° B .120° C .60° D .30°[答案] B[解析] cos θ=a ·b |a ||b |=-64×3=-12.∴θ=120°.3.若|a|=4,|b|=2,a 和b 的夹角为30°,则a 在b 方向上的投影为( ) A .2 B . 3 C .2 3 D .4 [答案] C[解析] a 在b 方向上的投影为|a |cos<a ,b >=4×cos30°=2 3. 4.|m |=2,m·n =8,<m ,n >=60°,则|n |=( )A .5B .6C .7D .8[答案] D[解析] ∵m·n|m|·|n|=cos<m ,n >,∴82|n |=12,∴|n |=8. 5.向量a 的模为10,它与x 轴的夹角为150°,则它在x 轴上的投影为( ) A .-5 3 B .5 C .-5 D .5 3[答案] A[解析] a 在x 轴上的投影为|a |·cos150°=-5 3.6.若向量a 、b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则b·b +a·b 等于( ) A .3 B .4 C .5 D .6 [答案] C[解析] b·b +a·b =|b|2+|a|·|b |cos<a ,b >=4+1=5. 二、填空题7.已知向量a 和向量b 的夹角为30°,|a |=2,|b |=3,则向量a 和向量b 的数量积a ·b =____. [答案] 3[解析] a ·b =|a ||b |cos 〈a ,b 〉=2×3×cos30° =2×3×32=3. 8.若|a |=6,|b |=4,a 与b 的夹角为135°,则a 在b 方向上的投影为________. [答案] -3 2[解析] ∵|a|=6,|b|=4,a 与b 的夹角为135°, ∴a 在b 方向上的投影为|a|cos135°=6×(-22)=-3 2. 三、解答题9.已知正六边形P 1P 2P 3P 4P 5P 6的边长为2,求下列向量的数量积. (1)P 1P 2→·P 1P 3→; (2)P 1P 2→·P 1P 4→; (3)P 1P 2→·P 1P 5→; (4)P 1P 2→·P 1P 6→.[解析] (1)∵<P 1P 2→,P 1P 3>=π6,|P 1P 3→|=2 3.∴P 1P 2→·P 1P 3→=|P 1P 2→|·|P 1P 3→|cos π6=2×23×32=6. (2)∵<P 1P 2→,P 1P 4→>=π3,|P 1P 4→|=4,∴P 1P 2→·P 1P 4→=2×4×cos π4=4 2.(3)∵<P 1P 2→,P 1P 5→>=π2,∴P 1P 2→·P 1P 5→=0.(4)∵<P 1P 2→,P 1P 6→>=2π3,∴P 1P 2→·P 1P 6→=2×2×cos 2π3=-2._________________________________________________________________________________ _________________________________________________________________________________基础巩固一、选择题1.已知a =(2,1)、b =(1,-2),则向量a 与b 的夹角为( ) A .π6B .π4C .π3D .π2[答案] D[解析] 由a ·b =2×1+1×(-2)=0,∴a ⊥b .2.已知点A (1,2)、B (2,3)、C (-2,5),则AB →·AC →等于( ) A .-1 B .0 C .1 D .2 [答案] B[解析] AB →=(1,1),AC →=(-3,3),AB →·AC →=1×(-3)+1×3=0.3.已知A 、B 、C 是坐标平面上的三点,其坐标分别为A (1,2)、B (4,1)、C (0,-1),则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均不正确[答案] C[解析] AB →=(3,-1),AC →=(-1,-3), AB →·AC →=3×(-1)+(-1)×(-3)=0,且|AB →|=|AC →|=10.∴△ABC 为等腰直角三角形.4.已知a =(-3,2),b =(-1,0),向量λa +b 与a -2b 垂直,则实数λ的值为( ) A .-17B .17C .-16D .16[答案] A[解析] ∵a =(-3,2),b =(-1,0), ∴λa +b =(-3λ-1,2λ)a -2b =(-3,2)-2(-1,0)=(-1,2), 由(λa +b )⊥(a -2b ), 得4λ+3λ+1=0,∴λ=-17.5.已知向量a =(2,1),a ·b =10,|a +b |=52,则|b |=( ) A . 5 B .10 C .5 D .25 [答案] C[解析] ∵|a +b|2=a 2+2a·b +b 2 =5+20+b 2=50,∴b 2=25,∴|b |=5.6.(2014·重庆理,4)已知向量a =(k,3)、b =(1,4)、c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92B .0C .3D .152[答案] C[解析] 本题考查了平面向量的坐标运算与向量的垂直,因为2a -3b =(2k -3,-6),又因为(2a -3b )⊥c ,所以,(2a -3b )·c =0,即(2k -3,-6)·(2,1)=0,∴4k -6-6=0,解得k =3,本题根据条件也可以转化为2a ·c -3b ·c =0化简求解.二、填空题7.(2014·安徽宿州市朱仙庄煤矿中学高一月考)已知向量a =(-4,3)、b =(-3,4),b 在a 方向上的投影是________.[答案]245[解析] b 在a 方向上的投影为|b |cos 〈b ,a 〉=a ·b |a |=(-4)×(-3)+3×45=245.8.设向量a =(1,2m ),b =(m +1,1),c =(2,m ),若(a +c )⊥b ,则|a |=________. [答案]2[解析] a +c =(3,3m ),∵(a +c )⊥b , ∴(a +c )·b =0,即(3,3m )·(m +1,1)=0, ∴3(m +1)+3m =0,6m +3=0,∴m =-12,∴a =(1,-1),∴|a |= 2. 三、解答题9.已知A (2,3)、B (5,1)、C (9,7)、D (6,9)四点,试判断四边形ABCD 的形状. [解析] ∵AB →=(3,-2),DC →=(3,-2),∴AB →=DC →. 又BC →=(4,6),∴AB →·BC →=3×4-2×6=0,∴AB →⊥BC →.∵|AB →|=9+4=13,|BC →|=16+36=213,∴|AB →|≠|BC →|, 故四边形ABCD 是矩形.能力提升一、选择题1.(2014·山东文,7)已知向量a =(1,3)、b =(3,m ),若向量a 、b 的夹角为π6,则实数m =( )A .2 3B . 3C .0D .- 3[答案] B[解析] 本题考查向量的坐标运算及数量积. a ·b =3+3m =|a |·|b |·cos π6=2×9+m 2×32.解得,m = 3. 2.已知m =(1,0)、n =(1,1),且m +k n 恰好与m 垂直,则实数k 的值为( ) A .1 B .-1 C .1或-1 D .以上都不对[答案] B[解析] m +k n =(1,0)+k (1,1)=(1+k ,k ), ∵m +k n 与m 垂直,∴(1+k )×1+k ×0=0,得k =-1.3.若向量a =(1,2)、b =(1,-1),则2a +b 与a -b 的夹角等于( )A .-π4B .π6C .π4D .3π4[答案] C[解析] 本题考查了向量的坐标运算.∵a =(1,2),b =(1,-1),则2a +b =(3,3),a -b =(0,3),则cos<2a +b ,a -b >=3×0+932·3=22,∴2a +b ,a -b =π4.4.已知a =(2,4),则与a 垂直的单位向量的坐标是( ) A .⎝⎛⎭⎫55,-255或⎝⎛⎭⎫-55,-255 B .⎝⎛⎭⎫55,-255或⎝⎛⎭⎫-55,255 C .⎝⎛⎭⎫255,-55或⎝⎛⎭⎫-255,-55 D .⎝⎛⎭⎫-255,55或⎝⎛⎭⎫255,-55 [答案] D[解析] 设与a 垂直的单位向量的坐标是(x ,y ),则⎩⎪⎨⎪⎧x 2+y 2=12x +4y =0,解得⎩⎨⎧x =-255y =55,或⎩⎨⎧x =255y =-55.二、填空题5.(2014·湖北理,11)设向量a =(3,3)、b =(1,-1),若(a +λb )⊥(a -λb ),则实数λ=________. [答案] ±3[解析] 因为a +λb =(3+λ,3-λ),a -λb =(3-λ,3+λ),又(a +λb )⊥(a -λb ),所以(a +λb )·(a -λb )=(3+λ)(3-λ)+(3-λ)(3+λ)=0,解得λ=±3.6.(2014·四川文,14)平面向量a =(1,2)、b =(4,2)、c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.[答案] 2[解析] 本题考查了平面向量的坐标运算、数量积等基础知识c =m a +b =(m +4,2m +2),由题意有:a·c |a||c |=b·c|b||c|即:a·c |a|=b·c|b|,代入得:m +4+4m +45=4m +16+4m +420,解得m =2.三、解答题7.设a =(4,-3)、b =(2,1),若a +t b 与b 的夹角为45°,求实数t 的值.[解析] a +t b =(4,-3)+t (2,1)=(4+2t ,t -3),(a +t b )·b =(4+2t ,t -3)·(2,1)=5t +5,|a +t b |=(4+2t )2+(t -3)2=5(t +1)2+20,由(a +t b )·b =|a +t b ||b |cos45°,得5t +5=522(t +1)2+4, 即t 2+2t -3=0,解得t =-3或t =1.经检验知t =-3不符合题意,舍去.所以t =1.8.已知a =(1,2),b =(1,λ)分别确定λ的取值范围,使得:(1)a 与b 夹角为90°;(2)a 与b 夹角为钝角;(3)a 与b 夹角为锐角.[解析] 设<a ,b >=θ,(1)由a ⊥b 得λ=-12. (2)cos θ=1+2λ5(1+λ2),由cos θ<0且 cos θ≠-1得λ<-12. (3)由cos θ>0且cos θ≠1,得λ>-12,且λ≠2. 9.已知a =(3,4)、b =(4,3),求x 、y 的值使(x a +y b )⊥a ,且|x a +y b |=1.[解析] ∵a =(3,4),b =(4,3),∴x a +y b =(3x +4y,4x +3y ).又(x a +y b )⊥a ,∴(x a +y b )·a =0,∴3(3x +4y )+4(4x +3y )=0,即25x +24y =0,①又|x a +y b |=1,∴|x a +y b |2=1,∴(3x +4y )2+(4x +3y )2=1.整理得25x 2+48xy +25y 2=1,即x (25x +24y )+24xy +25y 2=1.② 由①②有24xy +25y 2=1,③ 将①变形代入③可得y =±57. 当y =57时,x =-2435, 当y =-57时,x =2435.所以⎩⎨⎧ x =2435y =-57或⎩⎨⎧ x =-2435y =57.。

平面向量数量积的坐标表示教案

平面向量数量积的坐标表示教案

平面向量数量积的坐标表示教案
教学目标:
1. 理解平面向量数量积的定义和性质。

2. 掌握平面向量数量积的坐标表示方法。

3. 能够通过坐标表示计算平面向量数量积。

教学步骤:
一、引入
1. 提问:你们知道什么是平面向量数量积吗?它有什么作用?
2. 引导学生回忆和复习向量的定义和性质。

二、概念讲解
1. 给出平面向量数量积的定义:设有向量a(x₁, y₁)和向量b(x₂, y₂),则它们的数量积(a·b) = x₁x₂ + y₁y₂。

2. 解释数量积的几何意义:数量积的结果是一个实数,它等于向量a在向量b上的投影的长度乘以向量b的模长。

三、坐标表示及计算方法
1. 说明如何利用向量的坐标表示来计算数量积,即将向量的坐标代入数量积定义的公式进行计算。

2. 给出一个例子,让学生分组演示如何通过坐标表示计算向量数量积。

引导学生思考其中的计算思想和规律。

四、数量积的性质
1. 介绍数量积的一些重要性质,如交换律、分配律、零向量的数量积等。

2. 提出相关练习题,让学生进行思考和讨论。

五、练习与巩固
1. 提供一些练习题,让学生通过坐标表示计算数量积。

2. 布置课后作业,要求学生完成更多的相关练习题,以巩固所学知识。

教学资源与评价方式:
1. 教师提供教学引导和示范。

2. 学生课堂参与和讨论。

3. 学生课后完成的作业和练习题。

教学延伸:
1. 引导学生思考平面向量数量积与向量夹角的关系,并介绍夹角余弦公式。

2. 提供更多复杂的计算题目,让学生进一步巩固和应用所学知识。

2.4《平面向量的数量积》教案(新人教必修4)

2.4《平面向量的数量积》教案(新人教必修4)

§2.4平面向量的数量积第7课时一、 平面向量的数量积的物理背景及其含义教学目的:1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4.掌握向量垂直的条件. 教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用 授课类型:新授课教 具:多媒体、实物投影仪 内容分析:本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的运算律. 教学过程: 一、复习引入:1. 向量共线定理 向量b 与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b =λa .2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e 3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a 4.平面向量的坐标运算若),(11y x a ,),(22y x b ,则b a ),(2121y y x x ,b a ),(2121y y x x ,),(y x a .若),(11y x A ,),(22y x B ,则 1212,y y x x AB5.a ∥b (b0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(1,12121y y x x ),我们称λ为点P 分21P P 所成的比.8. 点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点. ②当λ<0(1 )时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点. 9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b, 可得OP =b a b a1111.10.力做的功:W = |F | |s |cos ,是F 与s 的夹角.二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向; (3)当θ=2时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的.范围0 ≤ ≤1802.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 探究:两个向量的数量积与向量同实数积有很大区别 (1)两个向量的数量积是一个实数,不是向量,符号由cos的符号所决定.(2)两个向量的数量积称为内积,写成a b ;今后要学到两个向量的外积a ×b ,而a b 是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替. (3)在实数中,若a 0,且a b =0,则b =0;但是在数量积中,若a 0,且a b =0,不能推出b =0.因为其中cos有可能为0.(4)已知实数a 、b 、c (b 0),则ab=bc a=c .但是a b = b c a = c如右图:a b = |a ||b |cos= |b ||OA|,b c = |b ||c |cos = |b ||OA|a b = b c 但ac(5)在实数中,有(a b )c = a (b c ),但是(a b )ca (bc )显然,这是因为左端是与c共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当C为直角时投影为0;当 = 0时投影为 |b |;当 = 180时投影为 |b |.4.向量的数量积的几何意义:数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos2 aba b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ||4 cos =||||b a ba5|a b | ≤ |a ||b |三、讲解范例:例1 已知|a |=5, |b |=4, a 与b 的夹角θ=120o ,求a ·b . 例2 已知|a |=6, |b |=4, a 与b 的夹角为60o 求(a+2b)·(a-3b).例3 已知|a |=3, |b |=4, 且a 与b 不共线,k 为何值时,向量a+kb 与a-kb 互相垂直. 例4 判断正误,并简要说明理由.①a·0=0;②0·a=0;③0-AB =BA ;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a与b是两个单位向量,则a2=b2. 解:上述8个命题中只有③⑧正确;对于①:两个向量的数量积是一个实数,应有0·a=0;对于②:应有0·a=0; 对于④:由数量积定义有|a·b|=|a|·|b|·|cos θ|≤|a||b|,这里θ是a与b的夹角,只有θ=0或θ=π时,才有|a·b|=|a|·|b|;对于⑤:若非零向量a、b垂直,有a·b=0; 对于⑥:由a·b=0可知a⊥b可以都非零; 对于⑦:若a与с共线,记a=λс.则a·b=(λс)·b=λ(с·b)=λ(b·с), ∴(a·b)·с=λ(b·с)с=(b·с)λс=(b·с)a 若a与с不共线,则(a·b)с≠(b·с)a.评述:这一类型题,要求学生确实把握好数量积的定义、性质、运算律.例6 已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b.解:①当a∥b时,若a与b同向,则它们的夹角θ=0°,∴a·b=|a|·|b|cos0°=3×6×1=18; 若a与b反向,则它们的夹角θ=180°,∴a·b=|a||b|cos180°=3×6×(-1)=-18; ②当a⊥b时,它们的夹角θ=90°, ∴a·b=0;③当a与b的夹角是60°时,有a·b=|a||b|cos60°=3×6×21=9评述:两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当a∥b时,有0°或180°两种可能. 四、课堂练习:1.已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( ) A.60° B .30° C.135° D.45°2.已知|a |=2,|b |=1,a 与b 之间的夹角为3,那么向量m =a -4b 的模为( ) A.2 B .23 C.6 D.12 3.已知a 、b 是非零向量,则|a |=|b |是(a +b )与(a -b )垂直的( ) A.充分但不必要条件 B .必要但不充分条件 C.充要条件 D.既不充分也不必要条件 4.已知向量a 、b 的夹角为3,|a |=2,|b |=1,则|a +b |·|a -b |= . 5.已知a +b =2i -8j ,a -b =-8i +16j ,其中i 、j 是直角坐标系中x 轴、y 轴正方向上的单位向量,那么a ·b = . 6.已知a ⊥b 、c 与a 、b 的夹角均为60°,且|a |=1,|b |=2,|c |=3,则(a +2b -c )2=______. 7.已知|a |=1,|b |=2,(1)若a ∥b ,求a ·b ;(2)若a 、b 的夹角为60°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角.8.设m 、n 是两个单位向量,其夹角为60°,求向量a =2m +n 与b =2n -3m 的夹角. 9.对于两个非零向量a 、b ,求使|a +tb |最小时的t 值,并求此时b 与a +tb 的夹角. 五、小结(略) 六、课后作业(略) 七、教学后记:第8课时二、平面向量数量积的运算律教学目的:1.掌握平面向量数量积运算规律;2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题. 教学重点:平面向量数量积及运算规律.教学难点:平面向量数量积的应用授课类型:新授课教具:多媒体、实物投影仪内容分析:启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质.教学过程:一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA=a,OB=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b |cos叫a与b的数量积,记作a b ,即有a b = |a||b|cos,(0≤θ≤π).并规定0与任何向量的数量积为0.3.“投影”的概念:作图C定义:|b|cos叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当= 0时投影为|b|;当= 180时投影为|b|.4.向量的数量积的几何意义:数量积a b等于a的长度与b在a方向上投影|b|cos的乘积.5.两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量.1 e a = a e =|a |cos ;2 a b a b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b =|a ||b |. 特别的a a = |a |2或a a a ||4cos =||||b a ba ;5|a b | ≤ |a ||b |二、讲解新课: 平面向量数量积的运算律 1.交换律:a b = b a证:设a ,b 夹角为,则a b = |a ||b |cos ,b a = |b ||a |cos∴a b = b a2.数乘结合律:( a ) b = (a b ) = a ( b ) 证:若 > 0,( a ) b = |a ||b |cos , (a b ) = |a ||b |cos,a ( b ) = |a ||b |cos , 若 < 0,( a ) b =| a ||b |cos() =|a ||b |(cos) = |a ||b |cos, (a b )= |a ||b |cos ,a (b ) =|a || b |cos() =|a ||b |(cos) = |a ||b |cos.3.分配律:(a + b ) c = a c + b c在平面内取一点O ,作OA = a , AB = b ,OC = c , ∵a + b (即OB )在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos = |a | cos 1 + |b | cos 2∴| c | |a + b | cos =|c | |a | cos1 + |c | |b | cos2,∴c (a + b ) = c a + c b 即:(a + b ) c= a c + b c说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d (a+b)2=a2+2a·b+b2三、讲解范例:例1 已知a 、b 都是非零向量,且a + 3b 与7a 5b 垂直,a 4b 与7a2b 垂直,求a 与b 的夹角. 解:由(a + 3b )(7a 5b ) = 0 7a 2 + 16a b 15b 2 = 0 ①(a4b )(7a2b ) = 0 7a 230a b + 8b 2 = 0 ②两式相减:2a b = b 2 代入①或②得:a 2 = b 2设a 、b 的夹角为,则cos=21222 ||||||b b b a b a ∴ = 60例2 求证:平行四边形两条对角线平方和等于四条边的平方和.解:如图:平行四边形ABCD 中,DC AB ,BC AD ,AC =AD AB ∴|AC|2=AD AB AD AB AD AB 2||222而BD =AD AB , ∴|BD|2=AD AB AD AB AD AB 2||222∴|AC |2 + |BD |2 = 2222AD AB = 2222||||||||AD DC BC AB例3 四边形ABCD 中,AB =a,BC =b,CD =с,DA =d,且a·b=b·с=с·d=d·a,试问四边形ABCD 是什么图形?分析:四边形的形状由边角关系确定,关键是由题设条件演变、推算该四边形的边角量. 解:四边形ABCD 是矩形,这是因为:一方面:∵a+b+с+d=0,∴a+b=-(с+d),∴(a+b)2=(с+d)2即|a|2+2a·b+|b|2=|с|2+2с·d+|d|2由于a·b=с·d,∴|a|2+|b|2=|с|2+|d|2① 同理有|a|2+|d|2=|с|2+|b|2②由①②可得|a|=|с|,且|b|=|d|即四边形ABCD 两组对边分别相等. ∴四边形ABCD 是平行四边形另一方面,由a·b=b·с,有b(a-с)=0,而由平行四边形ABCD 可得a=-с,代入上式得b·(2a)=0,即a·b=0,∴a⊥b也即AB ⊥BC .综上所述,四边形ABCD 是矩形.评述:(1)在四边形中,AB ,BC ,CD ,DA 是顺次首尾相接向量,则其和向量是零向量,即a+b+с+d=0,应注意这一隐含条件应用;(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系. 四、课堂练习:1.下列叙述不正确的是( )A.向量的数量积满足交换律 B .向量的数量积满足分配律 C.向量的数量积满足结合律 D.a ·b 是一个实数2.已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( ) A.72 B .-72 C.36 D.-363.|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A.平行 B .垂直 C.夹角为3D.不平行也不垂直 4.已知|a |=3,|b |=4,且a 与b 的夹角为150°,则(a +b )2= . 5.已知|a |=2,|b |=5,a ·b =-3,则|a +b |=______,|a -b |= . 6.设|a |=3,|b |=5,且a +λb 与a -λb 垂直,则λ= . 五、小结(略) 六、课后作业(略) 七、板书设计(略) 八、课后记:第9课时三、平面向量数量积的坐标表示、模、夹角教学目的:⑴要求学生掌握平面向量数量积的坐标表示⑵掌握向量垂直的坐标表示的充要条件,及平面内两点间的距离公式. ⑶能用所学知识解决有关综合问题. 教学重点:平面向量数量积的坐标表示教学难点:平面向量数量积的坐标表示的综合运用 授课类型:新授课教 具:多媒体、实物投影仪 教学过程: 一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 3.向量的数量积的几何意义:C数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积.4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos; 2aba b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ||4 cos =||||b a ba ;5|a b | ≤ |a ||b |5.平面向量数量积的运算律 交换律:a b = b a数乘结合律:( a ) b = (a b ) = a ( b ) 分配律:(a + b ) c = a c + b c 二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a ,),(22y x b ,试用a 和b 的坐标表示b a .设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11 ,j y i x b 22 所以))((2211j y i x j y i x b a 2211221221j y y j i y x j i y x i x x 又1 i i ,1 j j ,0 i j j i ,所以b a 2121y y x x这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a 2121y y x x 2. 平面内两点间的距离公式一、 设),(y x a ,则222||y x a 或22||y x a.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a (平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a ,),(22y x b ,则b a 02121 y y x x 三、 两向量夹角的余弦( 0)co s =||||b a ba 222221212121y x y x y y x x四、 讲解范例:五、 设a = (5, 7),b = ( 6, 4),求a ·b 及a 、b 间的夹角θ(精确到1o ) 例2 已知A (1, 2),B (2, 3),C ( 2, 5),试判断△ABC 的形状,并给出证明. 例3 已知a = (3, 1),b = (1, 2),求满足x a = 9与x b = 4的向量x . 解:设x = (t , s ), 由429349s t s t b x a x32s t ∴x = (2, 3) 例4 已知a =(1,3),b =(3+1,3-1),则a 与b 的夹角是多少? 分析:为求a 与b 夹角,需先求a ·b 及|a |·|b |,再结合夹角θ的范围确定其值. 解:由a =(1,3),b =(3+1,3-1)有a ·b =3+1+3(3-1)=4,|a |=2,|b |=22.记a 与b 的夹角为θ,则cosθ=22b a b a 又∵0≤θ≤π,∴θ=4评述:已知三角形函数值求角时,应注重角的范围的确定.例5 如图,以原点和A (5, 2)为顶点作等腰直角△OAB ,使 B = 90 ,求点B 和向量AB 的坐标.解:设B 点坐标(x , y ),则OB = (x , y ),AB = (x 5, y 2) ∵OB AB ∴x (x 5) + y (y 2) = 0即:x 2 + y 2 5x 2y = 0 又∵|OB | = |AB | ∴x 2 + y 2 = (x 5)2 + (y 2)2即:10x + 4y = 29由2723232729410025221122y x y x y x y x y x 或∴B 点坐标)23,27( 或)27,23(;AB =)27,23( 或)23,27(例6 在△ABC 中,AB =(2, 3),AC =(1, k ),且△ABC 的一个内角为直角,求k 值.解:当A = 90 时,AB AC = 0,∴2×1 +3×k = 0 ∴k =23当B = 90 时,AB BC = 0,BC =AC AB = (1 2, k 3) = ( 1, k 3) ∴2×( 1) +3×(k 3) = 0 ∴k =311 当C = 90 时,AC BC = 0,∴ 1 + k (k 3) = 0 ∴k =2133 六、 课堂练习:1.若a =(-4,3),b =(5,6),则3|a |2-4a ·b =( ) A.23 B .57 C.63 D.83 2.已知A (1,2),B (2,3),C (-2,5),则△ABC 为( )A.直角三角形 B .锐角三角形 C.钝角三角形 D.不等边三角形 3.已知a =(4,3),向量b 是垂直a 的单位向量,则b 等于( ) A.)54,53(或)53,54( B .)54,53(或)54,53( C.)54,53( 或)53,54(D.)54,53( 或)54,53(4.a =(2,3),b =(-2,4),则(a +b )·(a -b )= .5.已知A (3,2),B (-1,-1),若点P (x ,-21)在线段AB 的中垂线上,则x = . 6.已知A (1,0),B (3,1),C (2,0),且a =,b =,则a 与b 的夹角为 . 七、 小结(略) 八、 课后作业(略) 九、 板书设计(略) 十、 课后记:。

平面向量的数量积及运算律(一)教案

平面向量的数量积及运算律(一)教案

●(一)、新课引入——为什么定义平面向量数量积 在物理学中学过功的概念,一个物体在力F 的作用下产生位移S ,那么力F 所作的功W=FScos θ。

思考:W 是什么量?F 和S 是什么量?和向量有什么关系?W 是标量(实数),F 和S 是矢量(向量)这个式子建立了实数和向量之间的关系,是实数和向量互相转化的桥梁。

我们学过的向量运算a b,a b,a +-λ结果都是向量。

因此定义一个新的运算,不仅是物理学的需要,也是数学建立起实数和向量两个不同领域关系的需要。

●(二)、新课学习★新课学习阶梯一 ——怎么定义平面向量数量积 思考:模仿物理学功的定义:a b a b cos ⋅=θ思考:由数学中对称的思想,有余弦出没的地方就少不了正弦的陪伴,可否定义 a *b a b sin =θ,有什么几何意义?引导学生阅读课本P118,找出数学定义的特点:针对两个非零向量定义,规定零向量与任意向量的数量积为0。

1.两个非零向量夹角的概念 已知非零向量a 与b ,作OA =a ,OB =b ,则∠AOB=θ(0≤θ≤π)叫a 与b 的夹角(右图的夹角分别是什么) 2.平面向量数量积(内积)的定义:已知两个非零向量a 与b ,它们的夹角是θ,则数量|a ||b |cos θ 叫a 与b 的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π)并规定0与任何向量的数量积为0 思考:功怎么用数量积表示:F S ⋅数学的定义从实践中来,又回到实践指导实践。

★新课学习阶梯二 ——怎么全方位认识这个定义学习数学两手都要硬,一手抓代数、一手抓几何,渗透数形结合的思想方法,而向量恰好是用量化的方法研究几何问题的最佳工具。

1几何意义:“投影”的概念:作图A BO ab θ AB O a b θ定义:|b |cos θ 叫做向量b 在a 方向上的投影思考:投影是否是长度?投影是否是向量?投影是否是实数?投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积2.代数性质(两个向量的数量积的性质):(1)两个非零向量a 与b ,a ⊥b ⇔ a ⋅b= 0(此性质可以解决几何中的垂直问题);(2)两个非零向量a 与b ,当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |(此性质可以解决直线的平行、点共线、向量的共线问题);(3)cos θ =||||a b a b ⋅(此性质可以解决向量的夹角问题); (4)a ⋅a = |a |2,||a a a =⋅,a ba b cos ⋅=θ(此性质可以解决长度问题即向量的模的问题);(5)|a ⋅b | ≤ |a ||b |(此性质要注意和绝对值的性质区别,可以解决不等式的有关问题);3.任何一种运算都满足一定的运算律,以方便运算,数量积满足哪些算律? 实数的运算律向量数量积运算律 (交换律) ab=baa b?b a ⋅⋅ √ (结合律)(ab)c=a(bc)(a b)c?a (b c)⋅⋅⋅⋅ × (分配律)a(b+c)=ab+aca (b c)?a b ac ⋅+⋅+⋅ √ (a)b?(a b)?a (b)λ⋅λ⋅⋅λ √思考:运用对比联想的思想方法猜测向量数量积保留了实数哪些运算律,变异了哪些运算律?课下对成立的运算律给出证明,对不成立的运算律举出反例。

平面向量数量积说课稿

平面向量数量积说课稿

平面向量数量积说课稿平面向量数量积说课稿1一、教材分析1.本课的地位及作用:平面向量数量积的坐标表示,就是运用坐标这一量化工具表达向量的数量积运算,为研究平面中的距离、垂直、角度等问题提供了全新的手段。

它把向量的数量积与坐标运算两个知识点紧密联系起来,是全章重点之一。

2学生情况分析:在此之前学生已学习了平面向量的坐标表示和平面向量数量积概念及运算,但数量积是用长度和夹角这两个概念来表示的,应用起来不太方便,如何用坐标这一最基本、最常用的工具来表示数量积,使之应用更方便,就是摆在学生面前的一个亟待解决的问题。

因此,本节内容的学习是学生认知发展和知识构建的一个合情、合理的“生长点”。

所以,本节课采取以学生自主完成为主,教师查漏补缺的教学方法。

因此结合中学生的认知结构特点和学生实际。

我将本节教学目标确定为:1、理解掌握平面向量数量积的坐标表达式,会进行数量积的运算。

理解掌握向量的模、夹角等公式。

能根据公式解决两个向量的夹角、垂直等问题2、经历根据平面向量数量积的意义探究其坐标表示的过程,体验在此基础上探究发现向量的模、夹角等重要的度量公式的成功乐趣,培养学生的探究能力、创新精神。

教学重点平面向量数量积的坐标表示及应用教学难点探究发现公式二、教学方法和手段1教学方法:结合本节教材浅显易懂,又有前面平面向量的数量积和向量的坐标表示等知识作铺垫的内容特点,兼顾高一学生已具备一定的数学思维能力和处理向量问题的方法的现状,我主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线的原则,为此,我通过精心设置的一个个问题,激发学生的求知欲,积极的鼓励学生的参与,给学生独立思考的空间,鼓励学生自主探索,最终在教师的指导下去探索发现问题,解决问题。

在教学中,我适时的对学生学习过程给予评价,适当的评价,可以培养学生的自信心,合作交流的意识,更进一步地激发了学生的学习兴趣,让他们体验成功的喜悦。

高一数学必修四教案(6篇)

高一数学必修四教案(6篇)

高一数学必修四教案(6篇)高一数学必修四教案(6篇)高一数学必修四教案1 教学准备教学目的1·掌握平面向量的数量积及其几何意义;2·掌握平面向量数量积的重要性质及运算律;3·理解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4·掌握向量垂直的条件·教学重难点教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用教学工具投影仪教学过程一、复习引入:1·向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ五,课堂小结〔1〕请学生回忆本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?〔2〕在本节课的学习过程中,还有那些不太明白的地方,请向教师提出。

〔3〕你在这节课中的表现怎样?你的体会是什么?六、课后作业P107习题2·4 A组2、7题课后小结〔1〕请学生回忆本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?〔2〕在本节课的学习过程中,还有那些不太明白的地方,请向教师提出。

〔3〕你在这节课中的表现怎样?你的体会是什么?课后习题作业P107习题2·4 A组2、7题板书高一数学必修四教案2 教学准备教学目的o理解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量·o通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别·o通过学生对向量与数量的识别才能的训练,培养学生认识客观事物的数学本质的才能·教学重难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量·教学难点:平行向量、相等向量和共线向量的区别和联络·教学过程〔一〕向量的概念:我们把既有大小又有方向的量叫向量。

高中数学必修4教案6篇

高中数学必修4教案6篇

高中数学必修4教案6篇教学目标1、把握平面对量的数量积及其几何意义;2、把握平面对量数量积的重要性质及运算律;3、了解用平面对量的数量积可以处理有关长度、角度和垂直的问题;4、把握向量垂直的条件。

教学重难点教学重点:平面对量的数量积定义教学难点:平面对量数量积的定义及运算律的理解和平面对量数量积的应用教学工具投影仪教学过程一、复习引入:1、向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ五,课堂小结(1)请学生回忆本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向教师提出。

(3)你在这节课中的表现怎样?你的体会是什么?六、课后作业P107习题2.4A组2、7题课后小结(1)请学生回忆本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向教师提出。

(3)你在这节课中的表现怎样?你的体会是什么?课后习题作业P107习题2.4A组2、7题高中数学必修4优秀教案篇二教学预备教学目标一、学问与技能(1)理解并把握弧度制的定义;(2)领悟弧度制定义的合理性;(3)把握并运用弧度制表示的弧长公式、扇形面积公式;(4)娴熟地进展角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系。

(6) 使学生通过弧度制的学习,理解并熟悉到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。

二、过程与方法创设情境,引入弧度制度量角的大小,通过探究理解并把握弧度制的定义,领悟定义的合理性。

依据弧度制的定义推导并运用弧长公式和扇形面积公式。

以详细的实例学习角度制与弧度制的互化,能正确使用计算器。

三、情态与价值通过本节的学习,使同学们把握另一种度量角的单位制---弧度制,理解并熟悉到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。

北师大高中数学必修平面向量数量积的坐标表示教案

北师大高中数学必修平面向量数量积的坐标表示教案

北师大高中数学必修平面向量数量积的坐标表示教案第一章:向量概念回顾1.1 向量的定义向量是有大小和方向的量,通常用箭头表示。

向量的表示方法:用字母表示向量的名称,后面跟上箭头和坐标表示其大小和方向。

1.2 向量的坐标表示二维空间中的向量可以用两个坐标表示,通常用(x, y) 表示。

向量的长度(模):表示向量的大小,计算公式为√(x^2 + y^2)。

第二章:向量的数量积2.1 向量数量积的定义两个向量的数量积(点积)是指它们之间的乘积再进行加法运算。

向量a 和向量b 的数量积表示为a ·b,计算公式为a ·b = |ab| cosθ,其中|a| 和|b| 分别表示向量a 和b 的长度,θ表示它们之间的夹角。

2.2 向量数量积的坐标表示两个二维向量a = (x1, y1) 和b = (x2, y2) 的数量积表示为a ·b = x1x2 + y1y2。

数量积的性质:交换律、分配律、共线向量的数量积为零。

第三章:向量的投影3.1 向量的投影概念向量的投影是指向量在某个方向上的位移,可以是正方向或负方向。

向量a 在向量b 方向上的投影表示为proj_b a,计算公式为proj_b a =(a ·b / |b|^2)b。

3.2 向量的投影坐标表示向量a = (x1, y1) 在向量b = (x2, y2) 方向上的投影表示为proj_b a = ((x1x2 + y1y2) / (x2^2 + y2^2))(x2, y2)。

投影的性质:投影是标量倍数不变、共线向量的投影相等。

第四章:数量积的应用4.1 向量的垂直判断两个向量垂直的条件是它们的数量积为零。

即a ·b = 0,表示向量a 和向量b 垂直。

4.2 向量的模长计算已知向量的数量积和其中一个分量,可以求解另一个分量。

例如,已知a ·b 和x1,可以求解y1 = (a ·b x1^2) / y2。

平面向量的数量积(教案)

平面向量的数量积(教案)

§5.3 平面向量的数量积(教案)2014高考会这样考1.考查两个向量的数量积的求法;2.利用两个向量的数量积求向量的夹角、向量的模;3.利用两个向量的数量积证明两个向量垂直.复习备考要这样做1.理解数量积的意义,掌握求数量积的各种方法;2.理解数量积的运算性质;3.利用数量积解决向量的几何问题.1.平面向量的数量积已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cos θ叫做a和b的数量积(或内积),记作a·b=|a||b|cos θ.规定:零向量与任一向量的数量积为__0__.两个非零向量a与b垂直的充要条件是a·b=0,两个非零向量a与b平行的充要条件是a·b=±|a||b|.2.平面向量数量积的几何意义数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积.3.平面向量数量积的重要性质(1)e·a=a·e=|a|cos θ;(2)非零向量a,b,a⊥b⇔a·b=0;(3)当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|,a·a=a2,|a|=a·a;(4)cos θ=a·b |a||b|;(5)|a·b|__≤__|a||b|.4.平面向量数量积满足的运算律(1)a·b=b·a(交换律);(2)(λa)·b=λ(a·b)=a·(λb)(λ为实数);(3)(a+b)·c=a·c+b·c.5.平面向量数量积有关性质的坐标表示设向量a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2,由此得到(1)若a=(x,y),则|a|2=x2+y2或|a|=x2+y2.(2)设A(x1,y1),B(x2,y2),则A、B两点间的距离|AB|=|AB→|=x1-x22+y1-y22.(3)设两个非零向量a,b,a=(x1,y1),b=(x2,y2),则a⊥b⇔x1x2+y1y2=0. [难点正本疑点清源]1.向量的数量积是一个实数两个向量的数量积是一个数量,这个数量的大小与两个向量的长度及其夹角的余弦值有关,在运用向量的数量积解题时,一定要注意两向量夹角的范围.2.a·b>0是两个向量a·b夹角为锐角的必要不充分条件.因为若〈a,b〉=0,则a·b>0,而a,b夹角不是锐角;另外还要注意区分△ABC中,AB→、BC→的夹角与角B的关系.3.计算数量积时利用数量积的几何意义是一种重要方法.1. 已知向量a 和向量b 的夹角为135°,|a |=2,|b |=3,则向量a 和向量b 的数量积a ·b =___.答案 -32解析 a ·b =|a||b |cos 135°=2×3×⎝ ⎛⎭⎪⎪⎫-22=-3 2. 2. 已知a ⊥b ,|a |=2,|b |=3,且3a +2b 与λa -b 垂直,则实数λ的值为________.答案32解析 由a ⊥b 知a ·b =0.又3a +2b 与λa -b 垂直,∴(3a +2b )·(λa -b )=3λa 2-2b 2 =3λ×22-2×32=0.∴λ=32.3. 已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为______.答案655解析 设a 和b 的夹角为θ,|a |cos θ=|a |a ·b|a||b |=2×-4+3×7-42+72=1365=655.4. (2011·辽宁)已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k 等于( )A .-12B .-6C .6D .12答案 D解析 由已知得a ·(2a -b )=2a 2-a ·b =2(4+1)-(-2+k )=0,∴k =12.5.(2012·陕西)设向量a =(1,cos θ)与b =(-1,2cos θ)垂直,则cos 2θ等于( )A.22B.12C.0 D.-1答案 C解析利用向量垂直及倍角公式求解.a=(1,cos θ),b=(-1,2cos θ).∵a⊥b,∴a·b=-1+2cos2θ=0,∴cos2θ=12,∴cos 2θ=2cos2θ-1=1-1=0.题型一平面向量的数量积的运算例1(1)在Rt△ABC中,∠C=90°,AC=4,则AB→·AC→等于( )A.-16 B.-8 C.8 D.16(2)若向量a=(1,1),b=(2,5),c=(3,x),满足条件(8a-b)·c=30,则x等于( )A.6 B.5 C.4 D.3思维启迪:(1)由于∠C=90°,因此选向量CA→,CB→为基底.(2)先算出8a-b,再由向量的数量积列出方程,从而求出x.答案(1)D (2)C→=16.解析(1)AB→·AC→=(CB→-CA→)·(-CA→)=-CB→·CA→+CA2(2)∵a=(1,1),b=(2,5),∴8a-b=(8,8)-(2,5)=(6,3).又∵(8a-b)·c=30,∴(6,3)·(3,x)=18+3x=30.∴x=4.探究提高求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.本题从不同角度创造性地解题,充分利用了已知条件.(2012·北京)已知正方形ABCD的边长为1,点E是AB边上的动点,则DE→·CB→的值为________;DE→·DC→的最大值为________.答案 1 1解析方法一以射线AB,AD为x轴,y轴的正方向建立平面直角坐标系,则A(0,0),B(1,0),C(1,1),D(0,1),则E(t,0),t∈[0,1],则DE→=(t,-1),CB→=(0,-1),所以DE→·CB→=(t,-1)·(0,-1)=1.因为DC→=(1,0),所以DE→·DC→=(t,-1)·(1,0)=t≤1,故DE→·DC→的最大值为1.方法二由图知,无论E点在哪个位置,DE→在CB→方向上的投影都是CB=1,∴DE→·CB→=|CB→|·1=1,当E运动到B点时,DE→在DC→方向上的投影最大即为DC=1,∴(DE→·DC→)max=|DC→|·1=1.题型二向量的夹角与向量的模例2已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,(1)求a 与b 的夹角θ; (2)求|a +b |;(3)若AB→=a ,BC →=b ,求△ABC 的面积. 思维启迪:运用数量积的定义和|a |=a ·a .解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a ·b -3|b |2=61. 又|a |=4,|b |=3,∴64-4a ·b -27=61,∴a ·b =-6. ∴cos θ=a ·b |a||b |=-64×3=-12.又0≤θ≤π,∴θ=2π3.(2)可先平方转化为向量的数量积.|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13, ∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB→|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=33.探究提高 (1)在数量积的基本运算中,经常用到数量积的定义、模、夹角等公式,尤其对|a |=a ·a 要引起足够重视,它是求距离常用的公式.(2)要注意向量运算律与实数运算律的区别和联系.在向量的运算中,灵活运用运算律,达到简化运算的目的.(1)已知向量a 、b 满足|a |=1,|b |=4,且a ·b =2,则a 与b 的夹角为( )A.π6B.π4C.π3D.π2(2)已知向量a =(1,3),b =(-1,0),则|a +2b |等于( )A .1B.2C .2D .4 答案 (1)C (2)C解析 (1)∵cos 〈a ,b 〉=a ·b|a||b |=12,∴〈a ,b 〉=π3.(2)|a +2b |2=a 2+4a ·b +4b 2=4-4×1+4=4,∴|a +2b |=2. 题型三 向量数量积的综合应用例3已知a =(cos α,sin α),b =(cos β,sin β)(0<α<β<π).(1)求证:a +b 与a -b 互相垂直;(2)若k a +b 与a -k b 的模相等,求β-α.(其中k 为非零实数)思维启迪:(1)证明两向量互相垂直,转化为计算这两个向量的数量积问题,数量积为零即得证.(2)由模相等,列等式、化简.(1)证明 ∵(a +b )·(a -b )=a 2-b 2=|a |2-|b |2 =(cos 2α+sin 2α)-(cos 2β+sin 2β)=0, ∴a +b 与a -b 互相垂直.(2)解 k a +b =(k cos α+cos β,k sin α+sin β),a -kb =(cos α-k cos β,sin α-k sin β), |k a +b |=k 2+2k cos β-α+1, |a -k b |=1-2k cosβ-α+k 2.∵|k a +b |=|a -k b |,∴2k cos(β-α)=-2k cos(β-α). 又k ≠0,∴cos(β-α)=0.∵0<α<β<π,∴0<β-α<π,∴β-α=π2.探究提高 (1)当向量a 与b 是坐标形式给出时,若证明a ⊥b ,则只需证明a ·b =0⇔x 1x 2+y 1y 2=0.(2)当向量a ,b 是非坐标形式时,要把a ,b 用已知的不共线向量作为基底来表示且不共线的向量要知道其模与夹角,从而进行运算证明a ·b =0.(3)数量积的运算中,a ·b =0⇔a ⊥b 中,是对非零向量而言的,若a =0,虽然有a ·b =0,但不能说a ⊥b .已知平面向量a =(3,-1),b =⎝ ⎛⎭⎪⎪⎫12,32. (1)证明:a ⊥b ;(2)若存在不同时为零的实数k 和t ,使c =a +(t 2-3)b ,d =-k a +t b ,且c ⊥d ,试求函数关系式k =f (t ). (1)证明 ∵a ·b =3×12-1×32=0,∴a ⊥b .(2)解∵c=a+(t2-3)b,d=-k a+t b,且c⊥d,∴c·d=[a+(t2-3)b]·(-k a+t b)=-k a2+t(t2-3)b2+[t-k(t2-3)]a·b=0,又a2=|a|2=4,b2=|b|2=1,a·b=0,∴c·d=-4k+t3-3t=0,∴k=f(t)=t3-3t4(t≠0).三审图形抓特点典例:(5分)如图所示,把两块斜边长相等的直角三角板拼在一起,若AD→=xAB→+yAC→,则x=________,y=________.审题路线图图形有一副三角板构成↓(注意一副三角板的特点)令|AB|=1,|AC|=1↓(一副三角板的两斜边等长)|DE|=|BC|= 2↓(非等腰三角板的特点)|BD|=|DE|sin 60°=2×32=62↓(注意∠ABD=45°+90°=135°) AD→在AB→上的投影即为x↓x=|AB|+|BD|cos 45°=1+62×22=1+32↓AD→在AC→上的投影即为y↓y=|BD|·sin 45°=62×22=32.解析方法一结合图形特点,设向量AB→,AC→为单位向量,由AD→=xAB→+yAC→知,x,y分别为AD→在AB→,AC→上的投影.又|BC|=|DE|=2,∴|BD→|=|DE→|·sin 60°=62.∴AD→在AB→上的投影x=1+62cos 45°=1+62×22=1+32,AD→在AC→上的投影y=62sin 45°=32.方法二∵AD→=xAB→+yAC→,又AD→=AB→+BD→,∴AB→+BD→=xAB→+yAC→,∴BD→=(x-1)AB→+yAC→.又AC→⊥AB→,∴BD→·AB→=(x-1)AB→2. 设|AB→|=1,则由题意|DE→|=|BC→|= 2.又∠BED=60°,∴|BD→|=62.显然BD→与AB→的夹角为45°.∴由BD→·AB→=(x-1)AB→2,得62×1×cos 45°=(x-1)×12.∴x=32+1.同理,在BD→=(x-1)AB→+yAC→两边取数量积可得y=3 2 .答案1+3232温馨提醒突破本题的关键是,要抓住图形的特点(图形由一副三角板构成).根据图形的特点,利用向量分解的几何意义,求解方便快捷.方法二是原试题所给答案,较方法一略显繁杂.方法与技巧1.计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,和图形有关的不要忽略数量积几何意义的应用.2.求向量模的常用方法:利用公式|a|2=a2,将模的运算转化为向量的数量积的运算.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧.失误与防范1. (1)0与实数0的区别:0a =0≠0,a +(-a )=0≠0,a ·0=0≠0;(2)0的方向是任意的,并非没有方向,0与任何向量平行,我们只定义了非零向量的垂直关系. 2. a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b . 3. a ·b =a ·c (a ≠0)不能推出b =c ,即消去律不成立.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·辽宁)已知向量a =(1,-1),b =(2,x ),若a ·b =1,则x 等于( ) A .-1B .-12C.12D .1答案 D解析 a ·b =(1,-1)·(2,x )=2-x =1⇒x =1.2. (2012·重庆)设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |等于( )A.5 B.10 C .25 D .10答案 B 解析 ∵a =(x,1),b =(1,y ),c =(2,-4),由a ⊥c 得a ·c =0,即2x -4=0,∴x =2.由b ∥c ,得1×(-4)-2y =0,∴y =-2.∴a =(2,1),b =(1,-2).∴a +b =(3,-1),∴|a +b |=32+-12=10.3. 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( )A.⎝ ⎛⎭⎪⎪⎫79,73B.⎝ ⎛⎭⎪⎪⎫-73,-79C.⎝ ⎛⎭⎪⎪⎫73,79D.⎝ ⎛⎭⎪⎪⎫-79,-73答案 D解析 设c =(x ,y ),则c +a =(x +1,y +2), 又(c +a )∥b ,∴2(y +2)+3(x +1)=0.① 又c ⊥(a +b ),∴(x ,y )·(3,-1)=3x -y =0.② 联立①②解得x =-79,y =-73.4. 在△ABC 中,AB =3,AC =2,BC =10,则AB→·AC →等于( )A .-32B .-23C.23D.32答案 D解析 由于AB→·AC →=|AB →|·|AC →|·cos ∠BAC=12(|AB →|2+|AC →|2-|BC →|2)=12×(9+4-10)=32. 二、填空题(每小题5分,共15分)5. (2012·课标全国)已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________.答案 32解析 ∵a ,b 的夹角为45°,|a |=1, ∴a ·b =|a |·|b |cos 45°=22|b |,|2a -b |2=4-4×22|b |+|b |2=10,∴|b |=32.6. (2012·浙江)在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB→·AC →=________.答案 -16 解析 如图所示, AB→=AM →+MB →, AC →=AM →+MC → =AM→-MB →, ∴AB→·AC →=(AM →+MB →)·(AM →-MB →) =AM→2-MB →2=|AM →|2-|MB →|2=9-25=-16. 7. 已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是__________.答案 (-∞,-6)∪⎝⎛⎭⎪⎪⎫-6,32解析 由a ·b <0,即2λ-3<0,解得λ<32,由a ∥b 得:6=-λ,即λ=-6.因此λ<32,且λ≠-6.三、解答题(共22分)8. (10分)已知a =(1,2),b =(-2,n ) (n >1),a 与b 的夹角是45°.(1)求b ;(2)若c 与b 同向,且a 与c -a 垂直,求c . 解 (1)a ·b =2n -2,|a |=5,|b |=n 2+4,∴cos 45°=2n -25·n 2+4=22,∴3n 2-16n -12=0,∴n =6或n =-23(舍),∴b =(-2,6).(2)由(1)知,a ·b =10,|a |2=5.又c 与b 同向,故可设c =λb (λ>0),(c -a )·a =0, ∴λb ·a -|a |2=0,∴λ=|a |2b ·a =510=12,∴c =12b =(-1,3).9. (12分)设两个向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围. 解 ∵e 1·e 2=|e 1|·|e 2|·cos 60°=2×1×12=1,∴(2t e 1+7e 2)·(e 1+t e 2)=2t e 21+7t e 22+(2t 2+7)e 1·e 2=8t +7t +2t 2+7=2t 2+15t +7. 由已知得2t 2+15t +7<0,解得-7<t <-12.当向量2t e 1+7e 2与向量e 1+t e 2反向时, 设2t e 1+7e 2=λ(e 1+t e 2),λ<0, 则⎩⎪⎨⎪⎧2t =λ,λt =7⇒2t 2=7⇒t =-142或t =142(舍). 故t 的取值范围为(-7,-142)∪(-142,-12).B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·湖南)在△ABC 中,AB =2,AC =3,AB→·BC →=1,则BC 等于( )A.3B.7C .22D.23答案 A解析 ∵AB→·BC →=1,且AB =2,∴1=|AB→||BC →|cos(π-B ),∴|AB →||BC →|cos B =-1. 在△ABC 中,|AC |2=|AB |2+|BC |2-2|AB ||BC |cos B , 即9=4+|BC |2-2×(-1). ∴|BC |=3.2. 已知|a |=6,|b |=3,a ·b =-12,则向量a 在向量b 方向上的投影是( )A .-4B .4C .-2D .2 答案 A解析 a ·b 为向量b 的模与向量a 在向量b 方向上的投影的乘积,得a ·b =|b ||a |·cos 〈a ,b 〉,即-12=3|a |·cos 〈a ,b 〉, ∴|a |·cos 〈a ,b 〉=-4.3. (2012·江西)在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则|PA |2+|PB |2|PC |2等于( ) A .2B .4C .5D .10答案 D解析 ∵PA→=CA →-CP →,∴|PA →|2=CA →2-2CP →·CA →+CP →2. ∵PB→=CB →-CP →,∴|PB →|2=CB →2-2CP →·CB →+CP →2. ∴|PA→|2+|PB →|2=(CA →2+CB →2)-2CP →·(CA →+CB →)+2CP →2=AB →2-2CP →·2CD →+2CP →2. 又AB→2=16CP →2,CD →=2CP →, 代入上式整理得|PA→|2+|PB →|2=10|CP →|2,故所求值为10.二、填空题(每小题5分,共15分)4. (2012·安徽)设向量a =(1,2m ),b =(m +1,1),c =(2,m ).若(a +c )⊥b ,则|a |=________.答案2解析 利用向量数量积的坐标运算求解.a +c =(1,2m )+(2,m )=(3,3m ).∵(a +c )⊥b ,∴(a +c )·b =(3,3m )·(m +1,1)=6m +3=0, ∴m =-12.∴a =(1,-1),∴|a |=2.5. (2012·江苏)如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC的中点,点F 在边CD 上,若AB →·AF →=2,则AE →·BF →的值是________.答案2解析 方法一 坐标法.以A 为坐标原点,AB ,AD 所在直线为x 轴,y 轴建立平面直角坐标系,则A (0,0),B (2,0),E (2,1),F (x,2). 故AB→=(2,0),AF →=(x,2),AE →=(2,1),BF→=(x -2,2),∴AB →·AF →=(2,0)·(x,2)=2x .又AB →·AF →=2,∴x =1.∴BF →=(1-2,2). ∴AE→·BF →=(2,1)·(1-2,2)=2-2+2=2.方法二 用AB→,BC →表示AE →,BF →是关键.设DF→=xAB →,则CF →=(x -1)AB →. AB→·AF →=AB →·(AD →+DF →) =AB →·(AD →+xAB →)=xAB →2=2x , 又∵AB→·AF →=2,∴2x =2,∴x =22.∴BF →=BC →+CF →=BC →+⎝ ⎛⎭⎪⎪⎫22-1AB →.∴AE →·BF →=(AB →+BE →)·⎣⎢⎢⎡⎦⎥⎥⎤BC →+⎝⎛⎭⎪⎪⎫22-1AB →=⎝ ⎛⎭⎪⎪⎫AB →+12BC →⎣⎢⎢⎡⎦⎥⎥⎤BC →+⎝ ⎛⎭⎪⎪⎫22-1AB →=⎝ ⎛⎭⎪⎪⎫22-1AB →2+12BC →2=⎝ ⎛⎭⎪⎪⎫22-1×2+12×4= 2.6. (2012·上海)在矩形ABCD 中,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足|BM →||BC→|=|CN →||CD→|,则AM→·AN →的取值范围是________. 答案 [1,4]解析 利用基向量法,把AM →,AN →都用AB →,AD →表示,再求数量积.如图所示,设|BM →||BC →|=|CN →||CD →|=λ(0≤λ≤1),则BM →=λBC →, CN→=λCD →,DN →=CN →-CD → =(λ-1)CD→,∴AM→·AN →=(AB →+BM →)·(AD →+DN →)=(AB →+λBC →)·[AD →+(λ-1)CD →] =(λ-1)AB→·CD →+λBC →·AD →=4(1-λ)+λ=4-3λ,∴当λ=0时,AM→·AN →取得最大值4;当λ=1时,AM →·AN →取得最小值1.∴AM →·AN →∈[1,4]. 三、解答题7. (13分)设平面上有两个向量a =(cos α,sin α) (0°≤α<360°),b =⎝ ⎛⎭⎪⎪⎫-12,32. (1)求证:向量a +b 与a -b 垂直;(2)当向量3a +b 与a -3b 的模相等时,求α的大小.(1)证明 ∵(a +b )·(a -b )=a 2-b 2=|a |2-|b |2=(cos 2α+sin 2α)-⎝ ⎛⎭⎪⎪⎫14+34=0,故向量a +b 与a -b 垂直. (2)解 由|3a +b |=|a -3b |,两边平方得3|a |2+23a ·b +|b |2=|a |2-23a ·b +3|b |2,所以2(|a |2-|b |2)+43a ·b =0,而|a |=|b |,所以a ·b =0,即⎝ ⎛⎭⎪⎪⎫-12·cos α+32·sin α=0,即cos(α+60°)=0,∴α+60°=k ·180°+90°, k ∈Z , 即α=k ·180°+30°,k ∈Z ,又0°≤α<360°,则α=30°或α=210°.。

平面向量的数量积教案

平面向量的数量积教案

平面向量的数量积教案一、教学目标:1. 理解平面向量的数量积的定义及其几何意义。

2. 掌握平面向量的数量积的计算公式及运算性质。

3. 学会运用平面向量的数量积解决实际问题。

二、教学内容:1. 平面向量的数量积的定义向量的数量积又称点积,是指两个向量在数量上的乘积。

对于平面向量a和b,它们的数量积定义为:a·b = |a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长,θ表示向量a和b之间的夹角。

2. 平面向量的数量积的几何意义(1)向量a和b的夹角为θ时,它们的数量积|a||b|cosθ表示在平行四边形法则下,向量a和b共同作用于某一点产生的合力的大小。

(2)向量a和b的夹角为90°时,它们的数量积为0,表示向量a和b垂直。

3. 平面向量的数量积的计算公式及运算性质(1)计算公式:a·b = |a||b|cosθ(2)运算性质:①交换律:a·b = b·a②分配律:a·(b+c) = a·b + a·c③数乘律:λa·b = (λa)·b = λ(a·b)三、教学重点与难点:1. 教学重点:平面向量的数量积的定义、几何意义、计算公式及运算性质。

2. 教学难点:平面向量的数量积的几何意义的理解及应用。

四、教学方法:1. 采用讲授法,讲解平面向量的数量积的定义、几何意义、计算公式及运算性质。

2. 利用多媒体课件,展示平面向量的数量积的图形演示,增强学生的直观感受。

3. 结合例题,引导学生运用平面向量的数量积解决实际问题。

五、课后作业:1. 理解并掌握平面向量的数量积的定义、几何意义、计算公式及运算性质。

2. 完成课后练习题,巩固所学知识。

3. 思考如何运用平面向量的数量积解决实际问题。

六、教学案例与分析:1. 案例一:在平面直角坐标系中,有两个向量a = (3, 2)和b = (4, -1),求向量a和b的数量积。

高三数学一轮复习平面向量的数量积及应用教案

高三数学一轮复习平面向量的数量积及应用教案
命题走向
本讲以选择题、填空题考察本章的基本概念和性质,重点考察平面向量的数量积的概念及应用。重点体会向量为代数几何的结合体,此类题难度不大,分值5~9分。
平面向量的综合问题是“新热点”题型,其形式为与直线、圆锥曲线、三角函数等联系,解决角度、垂直、共线等问题,以解答题为主。
预测2017年高考:
(1)一道选择题和填空题,重点考察平行、垂直关系的判定或夹角、长度问题;属于中档题目。
法二: · = ·( + )
= ·( + + )
=2 · + ·
=2| |·| |·cos ,
=2×| |·| |·
=2×| |2=2×32=18.
(1)C (2) 18
由题悟法
平面向量数量积问题的类型及求法
(1)已知向量a,b的模及夹角θ,利用公式a·b=|a||b|·cosθ求解;
(2)已知向量a,b的坐标,利用数量积的坐标形式求解.
以题试法
2.(1)设向量a=(x-1,1),b=(-x+1,3),则a⊥(a-b)的一个充分不必要条件是( )
A.x=0或2 B.x=2
C.x=1 D.x=±2
(2)已知向量a=(1,0),b=(0,1),c=a+λb(λ∈R),向量d如图所示,则( )
A.存在λ>0,使得向量c与向量d垂直
B.存在λ>0,使得向量c与向量d夹角为60°
2.向量的应用
(1)向量在几何中的应用;
(2)向量在物理中的应用。
二.典例分析
(1)若向量a=(1, 1),b=(2,5),c=(3,x)满足条件(8a-b)·c=30,则x=( )
A.6B.5
C.4D.3
(2) (2012·湖南高考)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则 · =________.

平面向量的数量积说课稿

平面向量的数量积说课稿

平面向量的数量积说课稿说课内容:普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“平面向量的数量积”的第一课时---平面向量数量积的物理背景及其含义。

下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学媒体设计及教学评价设计六个方面对本节课的思考进行说明。

一、背景分析1、学习任务分析平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。

本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。

本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。

其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。

同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。

2、学生情况分析学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。

这为学生学习数量积做了很好的铺垫,使学生倍感亲切。

但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。

因而本节课教学的难点数量积的概念。

二、教学目标设计《普通高中数学课程标准(实验)》对本节课的要求有以下三条:(1)通过物理中“功”等事例,理解平面向量数量积的含义及其物理意义。

高中数学平面向量教案(精选6篇)

高中数学平面向量教案(精选6篇)

高中数学平面向量教案(精选6篇)为大家收集的高中数学平面向量教案,欢迎阅读,希望大家能够喜欢。

高中数学平面向量教案精选篇1教学目标1、了解基底的含义,理解并掌握平面向量基本定理。

会用基底表示平面内任一向量。

2、掌握向量夹角的定义以及两向量垂直的定义。

学情分析前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的了解。

如:力的合成与分解、位移、速度的合成与分解等,都为学习这节课作了充分准备重点难点重点:对平面向量基本定理的探究难点:对平面向量基本定理的理解及其应用教学过程4.1第一学时教学活动活动1【导入】情景设置火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度v=vx+vy=6i+4j。

活动2【活动】探究已知平面中两个不共线向量e1,e2,c是平面内任意向量,求向量c=___e1+___e2(课堂上准备好几张带格子的纸张,上面有三个向量,e1,e2,c)做法:作OA=e1,OB=e2,OC=c,过点C作平行于OB的直线,交直线OA于M;过点C作平行于OA的直线,交OB于N,则有且只有一对实数l1,l2,使得OM=l1e1,ON=l2e2。

因为OC=OM+ON,所以c=6 e1+6e2。

向量c=__6__e1+___6__e2活动3【练习】动手做一做请同学们自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____(做完后,思考一下,这样的一组实数是否是唯一的呢?)(是唯一的)由刚才的几个实例,可以得出结论:如果给定向量e1,e2,平面内的任一向量a,都可以表示成a=入1e1+入2e2。

活动4【活动】思考问题2:如果e1,e2是平面内任意两向量,那么平面内的任一向量a还可以表示成a=入1e1+入2e2的形式吗?生:不行,e1,e2必须是平面内两不共线向量活动5【讲授】平面向量基本定理平面向量基本定理:如果e1,e2是平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数l1,l2,使a=l1e1+l2e2。

有关高三数学平面向量的数量积教学设计大全

有关高三数学平面向量的数量积教学设计大全

有关高三数学平面向量的数量积教学设计大全教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。

接下来是小编为大家整理的有关高三数学平面向量的数量积教学设计大全,希望大家喜欢!有关高三数学平面向量的数量积教学设计大全一教学目标:(i)知识目标:(1)掌握平面向量数量积的概念、几何意义、性质、运算律及坐标表示.(2) 平面向量数量积的应用.(ii)能力目标:(1) 培养学生应用平面向量积解决相关问题的能力.(2) 正确运用向量运算律进行推理、运算.教学重点: 1. 掌握平面向量的数量积及其几何意义.2. 用数量积求夹角、距离及平面向量数量积的坐标运算.教学难点:平面向量数量积的综合应用.教学过程:一、知识梳理1.平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是θ,则数量| || |cos(叫与的数量积,记作 ( ,即 ( = | || |cos(,并规定与任何向量的数量积为02.平面向量的数量积的几何意义:数量积 ( 等于的长度与在方向上投影| |cos(的乘积.3.两个向量的数量积的性质设、为两个非零向量,是与同向的单位向量1( ( = ( =| |cos(; 2( ( ( ( = 03(当与同向时, ( = | || |;当与反向时, ( = (| || | ,特别地 ( = ||24(cos( = ; 5(| ( | ≤ | || |4.平面向量数量积的运算律① 交换律:( = ( ② 数乘结合律:( )( = ( ( ) = (( )③ 分配律:( + )( = ( + (5.平面向量数量积的坐标表示①已知两个向量,,则 .②设,则 .③平面内两点间的距离公式如果表示向量的有向线段的起点和终点的坐标分别为、,那么 .④向量垂直的判定两个非零向量,,则 .⑤两向量夹角的余弦 cos( = ( ).二、典型例题1. 平面向量数量积的运算例题1 已知下列命题:① ; ② ; ③ ; ④其中正确命题序号是②、④ .点评:掌握平面向量数量积的含义,平面数量积的运算律不同于实数的运算律.例题2 已知 ; (2) ;(3) 的夹角为,分别求 .解(1)当时, = 或 = .(2)当时, = .(3)当的夹角为时, = .变式训练:已知,求解: =点评:熟练应用平面向量数量积的定义式求值,注意两个向量夹角的确定及分类完整.2.夹角问题例题3 若,且,则向量与向量的夹角为 ( )A. B. C. D.解:依题意故选C变式训练1:① 已知,求向量与向量的夹角.② 已知,夹角为,则 .解:① ,故夹角为 .②依题意得 .变式训练2:已知是两个非零向量,同时满足,求的夹角.法一解:将两边平方得,则,故的夹角.为 .法二:数形结合点评:注意两个向量夹角共起点,灵活应用两个向量夹角的两种求法.3.向量模的问题例题4 已知向量满足,且的夹角为,求 .解:,且的夹角为;变式训练:①(2005年湖北)已知向量,若不超过5,则的取值范围 ( )A. B. C. D.②(2006年福建) 已知的夹角为,,,则等于( )A 5 B. 4 C. 3 D. 1解:① ,故选C② ,,解得,故选B点评:涉及向量模的问题一般利用,注意两边平方是常用的方法.4.平面向量数量积的综合应用例题5 已知向量 .若 ; (2)求的最大值 .解:(1)若,则, .(2) = =,的最大值为 .例题6已知向量,且满足,求证 ; (2)将与的数量积表示为关于的函数 ;(3)求函数的最小值及取得最小值时向量与向量的夹角 .解:(1),故(2) ,故 .有关高三数学平面向量的数量积教学设计大全二2.3.1向量数量积的物理背景与定义教材说明平面向量数量积具有代数与几何的双重性质,因此所涉及的内容较为广泛,如方程、不等式等代数问题;夹角、距离、面积、平行、垂直等几何问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、4 平面向量得数量积教案A第1课时教学目标一、知识与技能1.掌握平面向量得数量积及其几何意义;2.掌握平面向量数量积得重要性质及运算律;3.了解用平面向量得数量积可以处理有关长度、角度与垂直得问题;二、过程与方法本节学习得关键就是启发学生理解平面向量数量积得定义,理解定义之后便可引导学生推导数量积得运算律,然后通过概念辨析题加深学生对于平面向量数量积得认识.三、情感、态度与价值观通过问题得解决,培养学生观察问题、分析问题与解决问题得实际操作能力;培养学生得交流意识、合作精神;培养学生叙述表达自己解题思路与探索问题得能力.教学重点、难点教学重点:平面向量数量积得定义.教学难点:平面向量数量积得定义及运算律得理解与平面向量数量积得应用、教学关键:平面向量数量积得定义得理解.教学方法本节学习得关键就是启发学生理解平面向量数量积得定义,理解定义之后便可引导学生推导数量积得运算律,然后通过概念辨析题加深学生对于平面向量数量积得认识.学习方法通过类比物理中功得定义,来推导数量积得运算.教学准备教师准备: 多媒体、尺规、学生准备:练习本、尺规、教学过程一、创设情境,导入新课在物理课中,我们学过功得概念,即如果一个物体在力F得作用下产生位移s,那么力F所做得功W可由下式计算:W=|F | | s|cosθ,其中θ就是F与s得夹角.我们知道力与位移都就是向量,而功就是一个标量(数量).故从力所做得功出发,我们就顺其自然地引入向量数量积得概念.二、主题探究,合作交流提出问题①a·b得运算结果就是向量还就是数量?它得名称就是什么?②由所学知识可以知道,任何一种运算都有其相应得运算律,数量积就是一种向量得乘法运算,它就是否满足实数得乘法运算律?师生活动:已知两个非零向量a与b,我们把数量|a||b|cosθ叫做a与b得数量积(或内积),记作a·b,即a·b=|a||b|cosθ(0≤θ≤π).其中θ就是a与b得夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)得投影.在教师与学生一起探究得活动中,应特别点拨引导学生注意:(1)两个非零向量得数量积就是个数量,而不就是向量,它得值为两向量得模与两向量夹角得余弦得乘积;(2)零向量与任一向量得数量积为0,即a·0=0;(3)符号“·”在向量运算中不就是乘号,既不能省略,也不能用“×”代替;(4)当0≤θ<时cosθ>0,从而a·b>0;当<θ≤π时,cosθ<0,从而a·b<0.与学生共同探究并证明数量积得运算律.已知a、b、c与实数λ,则向量得数量积满足下列运算律:①a·b=b·a(交换律);②(λa)·b=λ(a·b)=a·(λb)(数乘结合律);③(a+b)·c=a·c+b·c(分配律).特别就是:(1)当a≠0时,由a·b=0不能推出b一定就是零向量.这就是因为任一与a垂直得非零向量b,都有a·b=0.注意:已知实数a、b、c(b≠0),则ab=bca=c.但对向量得数量积,该推理不正确,即a·b=b·c不能推出a=c.由上图很容易瞧出,虽然a·b=b·c,但a≠c.对于实数a、b、c有(a·b)c=a(b·c);但对于向量a、b、c,(a·b)c=a(b·c)不成立.这就是因为(a·b)c表示一个与c共线得向量,而a(b·c)表示一个与a共线得向量,而c与a不一定共线,所以(a·b)c=a(b·c)不成立.提出问题①如何理解向量得投影与数量积?它们与向量之间有什么关系?②能用“投影”来解释数量积得几何意义吗?师生活动:教师引导学生来总结投影得概念,可以结合“探究”,让学生用平面向量得数量积得定义,从数与形两个角度进行探索研究.教师给出图形并作结论性得总结,提出注意点“投影”得概念,如下图.定义:|b|cosθ叫做向量b在a方向上得投影.并引导学生思考、A、投影也就是一个数量,不就是向量;B、当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ=0°时投影为|b|;当θ=180°时投影为-|b|.教师结合学生对“投影”得理解,让学生总结出向量得数量积得几何意义:数量积a·b等于a得长度与b在a方向上投影|b|cosθ得乘积.让学生思考:这个投影值可正、可负,也可为零,所以我们说向量得数量积得结果就是一个实数.教师与学生共同总结两个向量得数量积得性质:设a、b为两个非零向量,θ为两向量得夹角,e就是与b同向得单位向量.A、e·a=a·e=|a|cosθ.B、a⊥ba·b=0.C、当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|.特别地a·a=|a|2或|a|=.D、cosθ=.E、|a·b|≤|a||b|.上述性质要求学生结合数量积得定义自己尝试推证,教师给予必要得补充与提示,在推导过程中理解并记忆这些性质.讨论结果:①略.②向量得数量积得几何意义为数量积a·b等于a得长度与b在a方向上投影|b|co sθ得乘积.三、拓展创新,应用提高例1 已知|a|=5,|b|=4,a与b得夹角为120°,求a·b活动:教师引导学生利用向量得数量积并结合两向量得夹角来求解.解:a·b=|a||b|cosθ=5×4×cos120°=5×4×()=-10.点评: 确定两个向量得夹角,利用数量积得定义求解.例 2 我们知道,对任意a,b∈R,恒有(a+b)2=a2+2ab+b2,(a+b)(a-b)=a2-b2.对任意向量a、b,就是否也有下面类似得结论?(1)(a+b)2=a2+2a·b+b2;(2)(a+b)·(a-b)=a2-b2.解:(1)(a+b)2=(a+b)·(a+b)=a·b+a·b+b·a+b·b=a2+2a·b+b2;(2)(a+b)·(a-b)=a·a-a·b+b·a-b·b=a2-b2.例3已知|a|=6,|b|=4,a与b得夹角为60°,求(a+2b)·(a-3b).解:(a+2b)·(a-3b)=a·a-a·b-6b·b=|a|2-a·b-6|b|2=|a|2-|a||b|cosθ-6|b|2=62-6×4×cos60°-6×42=-72.例4已知|a|=3,|b|=4,且a与b不共线,当k为何值时,向量a+k b与a-kb互相垂直?解:a+kb与a-k b互相垂直得条件就是(a+kb)·(a-k b)=0,即a2-k2b2=0.∵a2=32=9,b2=42=16,∴9-16k2=0.∴k=±.也就就是说,当k=±时,a+kb与a-k b互相垂直.点评:本题主要考查向量得数量积性质中垂直得充要条件.四、小结1.先由学生回顾本节学习得数学知识,数量积得定义、几何意义,数量积得重要性质,数量积得运算律.2.教师与学生总结本节学习得数学方法,归纳类比、定义法、数形结合等.在领悟数学思想方法得同时,鼓励学生多角度、发散性地思考问题,并鼓励学生进行一题多解.课堂作业1.已知a,b,c就是非零向量,则下列四个命题中正确得个数为( )①|a·b|=|a||b|a∥b②a与b反向a·b=-|a||b|③a⊥b|a+b|=|a-b| ④|a|=|b||a·c|=|b·c|A.1 B.2 C.3 D.42.有下列四个命题:①在△ABC中,若·>0,则△ABC就是锐角三角形;②在△ABC中,若·>0,则△ABC为钝角三角形;③△ABC为直角三角形得充要条件就是·=0;④△ABC为斜三角形得充要条件就是·≠0.其中为真命题得就是()A.①ﻩB.②ﻩC.③ D.④3.设|a|=8,e为单位向量,a与e得夹角为60°,则a在e方向上得投影为()A.4ﻩB.4C.42D.8+4.设a、b、c就是任意得非零平面向量,且它们相互不共线,有下列四个命题:①(a·b)c-(c·a)b=0; ②|a|-|b|<|a-b|;③(b·c)a-(c·a)b不与c垂直; ④(3a+2b)·(3a-2b)=9|a|2-4|b|2.其中正确得就是( )A.①②B.②③ C.③④D.②④5.在△ABC中,设=b,=c,则等于( )A.0B.S△ABCC.S△ABCD.2S△ABC6.设i,j就是平面直角坐标系中x轴、y轴方向上得单位向量,且a=(m+1)i-3j,b=i+(m-1)j,如果(a+b)⊥(a-b),则实数m=_____________.7.若向量a、b、c满足a+b+c=0,且|a|=3,|b|=1,|c|=4,则a·b+b·c+c·a=_________.参考答案:1.C 2.B 3.B 4.D 5.D 6.-2 7.-13第2课时教学目标一、知识与技能1.掌握平面向量数量积运算规律、2.能利用数量积得性质及数量积运算规律解决有关问题、3.掌握两个向量共线、垂直得几何判断,会证明两向量垂直,以及能解决一些简单问题.二、过程与方法教师应在坐标基底向量得数量积得基础上,推导向量数量积得坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量得坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其她因素基本题型得求解方法.平面向量数量积得坐标表示就是在学生学习了平面向量得坐标表示与平面向量数量积得基础上进一步学习得,这都为数量积得坐标表示奠定了知识与方法基础.三、情感、态度与价值观通过平面向量数量积得坐标表示,进一步加深学生对平面向量数量积得认识,提高学生得运算速度,培养学生得运算能力,培养学生得创新能力,提高学生得数学素质.教学重点、难点教学重点:平面向量数量积得坐标表示.教学难点:向量数量积得坐标表示得应用.教学关键:平面向量数量积得坐标表示得理解.教学突破方法:教师应在坐标基底向量得数量积得基础上,推导向量数量积得坐标表示.并通过练习,使学生掌握数量积得应用.教法与学法导航教学方法:启发诱导,讲练结合、学习方法:主动探究,练习巩固.教学准备教师准备:多媒体、尺规、学生准备:练习本、尺规、教学过程一、创设情境,导入新课前面我们学习了平面向量得坐标表示与坐标运算,以及平面向量得数量积,那么,能否用坐标表示平面向量得数量积呢?若能,如何表示呢?由此又能产生什么结论呢?本节课我们就来研究这个问题.(板书课题)二、主题探究,合作交流提出问题:①已知两个非零向量a=(x1,y1),b=(x2,y2),怎样用a与b得坐标表示a·b呢?②怎样用向量得坐标表示两个平面向量垂直得条件?③您能否根据所学知识推导出向量得长度、距离与夹角公式?师生活动:教师引导学生利用前面所学知识对问题进行推导与探究.提示学生在向量坐标表示得基础上结合向量得坐标运算进行推导数量积得坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要得提示与补充.推导过程如下:∵a=x1i+y1j,b=x2i+y2j,∴a·b=(x1i+y1j)·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2.又∵i·i=1,j·j=1,i·j=j·i=0,∴a·b=x1x2+y1y2.教师给出结论性得总结,由此可归纳如下:A、平面向量数量积得坐标表示两个向量得数量积等于它们对应坐标得乘积得与,即a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.B、向量模得坐标表示若a=(x,y),则|a|2=x2+y2,或|a|=.如果表示向量a得有向线段得起点与终点得坐标分别为(x1,y1)、(x2,y2),那么a=(x2-x1,y2-y1),|a|=C、两向量垂直得坐标表示设a=(x1,y1),b=(x2,y2),则a⊥b x1x2+y1y2=0.D、两向量夹角得坐标表示设a、b都就是非零向量,a=(x1,y1),b=(x2,y2),θ就是a与b得夹角,根据向量数量积得定义及坐标表示,可得cosθ=三、拓展创新,应用提高例1已知A(1,2),B(2,3),C(-2,5),试判断△ABC得形状,并给出证明.活动:教师引导学生利用向量数量积得坐标运算来解决平面图形得形状问题.判断平面图形得形状,特别就是三角形得形状时主要瞧边长就是否相等,角就是否为直角.可先作出草图,进行直观判定,再去证明.在证明中若平面图形中有两个边所在得向量共线或者模相等,则此平面图形与平行四边形有关;若三角形得两条边所在得向量模相等或者由两边所在向量得数量积为零,则此三角形为等腰三角形或者为直角三角形.教师可以让学生多总结几种判断平面图形形状得方法.解:在平面直角坐标系中标出A(1,2),B(2,3),C(-2,5)三点,我们发现△ABC就是直角三角形.下面给出证明.∵=(2-1,3-2)=(1,1),=(-2-1,5-2)=(-3,3),∴·=1×(-3)+1×3=0.∴⊥.∴△ABC就是直角三角形.点评:本题考查得就是向量数量积得应用,利用向量垂直得条件与模长公式来判断三角形得形状.当给出要判定得三角形得顶点坐标时,首先要作出草图,得到直观判定,然后对您得结论给出充分得证明.例2设a=(5,-7),b=(-6,-4),求a·b及a、b间得夹角θ(精确到1°).解:a·b=5×(-6)+(-7)×(-4)=-30+28=-2.|a|=,|b|=由计算器得cosθ=≈-0.03.利用计算器得θ≈1.6rad=92°.四、小结1.在知识层面上,先引导学生归纳平面向量数量积得坐标表示,向量得模,两向量得夹角,向量垂直得条件.其次引导学生总结数量积得坐标运算规律,夹角与距离公式、两向量垂直得坐标表示.2.在思想方法上,教师与学生一起回顾探索过程中用到得思维方法与数学思想方法,定义法,待定系数法等.课堂作业1.若a=(2,-3),b=(x,2x),且a·b=,则x等于()A.3B.C.ﻩD.-32.设a=(1,2),b=(1,m),若a与b得夹角为钝角,则m得取值范围就是( )A.m>B.m< C.m> D.m<3.若a=(cosα,sinα),b=(cosβ,sinβ),则( )A.a⊥bB.a∥bC.(a+b)⊥(a-b)D.(a+b)∥(a-b)4.与a=(u,v)垂直得单位向量就是( )A.()B.()C.()D.()或()5.已知向量a=(cos23°,cos67°),b=(cos68°,cos22°),u=a+t b(t∈R),求u得模得最小值.6.已知a,b都就是非零向量,且a+3b与7a-5b垂直,a-4b与7a-2b垂直,求a与b得夹角.7.已知△ABC得三个顶点为A(1,1),B(3,1),C(4,5),求△ABC得面积.参考答案:1.C2.D 3.C 4.D5.|a|==1,同理有|b|=1.又a·b=cos23°cos68°+cos67°cos22°=cos23°cos68°+sin23°sin68°=cos45°=,∴|u|2=(a+t b)2=a2+2t a·b+t2b2=t2+t+1=(t+)2+≥.当t=时,|u|min=.6.由已知(a+3b)⊥(7a-5b)(a+3b)·(7a-5b)=07a2+16a·b-15b2=0.①又(a-4b)⊥(7a-2b)(a-4b)·(7a-2b)=07a2-30a·b+8b2=0. ②①-②得46a·b=23b2,即a·b=③将③代入①,可得7|a|2+8|b|2-15|b|2=0,即|a|2=|b|2,有|a|=|b|,∴若记a与b得夹角为θ,则cosθ=.又θ∈[0°,180°],∴θ=60°,即a与b得夹角为60°.7.分析:S△ABC=||||sin∠BAC,而||,||易求,要求sin∠BAC可先求出cos∠BA C.解:∵=(2,0),=(3,4),||=2,||=5,∴cos∠BAC=.∴sin∠BAC=.∴S△ABC=||||sin∠BAC=×2×5×=4.教案 B第一课时教学目标一、知识与技能1、了解平面向量数量积得物理背景,理解数量积得含义及其物理意义;2、体会平面向量得数量积与向量投影得关系,理解掌握数量积得性质与运算律,并能运用性质与运算律进行相关得判断与运算.二、过程与方法体会类比得数学思想与方法,进一步培养学生抽象概括、推理论证得能力.三、情感、态度与价值观通过自主学习、主动参与、积极探究,学生能感受数学问题探究得乐趣与成功得喜悦,增加学习数学得自信心与积极性,并养成良好得思维习惯.教学重点平面向量数量积得定义,用平面向量得数量积表示向量得模、夹角.教学难点平面向量数量积得定义及运算律得理解,平面向量数量积得应用.教具多媒体、实物投影仪.内容分析本节学习得关键就是启发学生理解平面向量数量积得定义,理解定义之后便可引导学生推导数量积得运算律,然后通过概念辨析题加深学生对于平面向量数量积得认识.主要知识点:平面向量数量积得定义及几何意义;平面向量数量积得3个重要性质;平面向量数量积得运算律.教学流程概念引入→概念获得→简单运用→运算律探究→理解掌握→反思提高教学设想:一、情境设置:问题1:回忆一下物理中“功”得计算,功得大小与哪些量有关?结合向量得学习您有什么想法?力做得功:W= ||⋅||cosθ,θ就是与得夹角.(引导学生认识功这个物理量所涉及得物理量,从“向量相乘”得角度进行分析)二、新课讲解1.平面向量数量积(内积)得定义:已知两个非零向量a与b,它们得夹角就是θ,则数量|a||b|cosθ叫a与b得数量积,记作a⋅b,即有a⋅b= |a||b|cosθ,(0≤θ≤π).并规定:0与任何向量得数量积为0.问题2:定义中涉及哪些量?它们有怎样得关系?运算结果还就是向量吗?(引导学生认清向量数量积运算定义中既涉及向量模得大小,又涉及向量得交角,运算结果就是数量)注意:两个向量得数量积与向量同实数积有很大区别.(1)两个向量得数量积就是一个实数,不就是向量,符号由cosθ得符号所决定.(2)两个向量得数量积称为内积,写成a⋅b;今后要学到两个向量得外积a×b,而a⋅b就是两个向量得数量得积,书写时要严格区分.符号“·”在向量运算中不就是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a≠0,且a⋅b=0,则b=0;但就是在数量积中,若a≠0,且a⋅b=0,不能推出b=0.因为其中cosθ有可能为0.(4)已知实数a、b、c(b≠0),则ab=bc ⇒a=c.但就是在向量得数量积中,a⋅b= b⋅c 推导不出a= c、如下图:a⋅b= |a||b|cosβ = |b||OA|,b⋅c= |b||c|cosα = |b||OA|⇒a⋅b=b⋅c,但a≠c、(5)在实数中,有(a⋅b)c = a(b⋅c),但就是在向量中,(a⋅b)c≠a(b⋅c)显然,这就是因为左端就是与c共线得向量,而右端就是与a共线得向量,而一般a 与c不共线.( “投影”得概念):作图2.定义:|b|cosθ叫做向量b在a方向上得投影.投影也就是一个数量,不就是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ=0︒时投影为|b|;当θ =180︒时投影为-|b|.3.向量得数量积得几何意义:数量积a⋅b等于a得长度与b在a方向上投影|b|cosθ得乘积.例1已知平面上三点A、B、C满足||=2,||=1,||=,求·+·+.得值、解:由已知,||2+||2=||2,所以△ABC就是直角三角形、而且∠ACB=90°,从而sin∠ABC=,sin∠BAC=、∴∠ABC=60°,∠BAC=30°、∴与得夹角为120°,与得夹角为90°,与得夹角为150°、故·+·+·=2×1×cos120°+1×cos90°+×2cos150°=-4、点评:确定两个向量得夹角,应先平移向量,使它们得起点相同,再考察其角得大小,而不就是简单地瞧成两条线段得夹角,如例题中与得夹角就是120°,而不就是60°、探究1:非零向量得数量积就是一个数量,那么它何时为正,何时为0,何时为负?当0°≤θ<90°时a·b为正;当θ =90°时a·b为零;90°<θ ≤180°时a·b为负、探究2:两个向量得夹角决定了它们数量积得符号,那么它们共线或垂直时,数量积有什么特殊性呢?4.两个向量得数量积得性质:设a、b为两个非零向量.(1)a⊥b⇔a⋅b=0.(2)当a与b同向时,a⋅b= |a||b|;当a与b反向时,a⋅b= -|a||b|.特别得a⋅a=|a|2或.(3) |a⋅b|≤|a||b|.公式变形:cosθ =探究3:对一种运算自然会涉及运算律,回忆过去研究过得运算律,向量得数量积应有怎样得运算律?(引导学生类比得出运算律,老师作补充说明)向量a、b、c与实数λ,有(1) a⋅b= b⋅a(2)(λa)⋅b= λ(a⋅ b )=a⋅(λb)(3)(a +b)⋅ c= a·c+b⋅ c(进一步)您能证明向量数量积得运算律吗?(引导学生证明(1)、(2))例2 判断正误:①a·0=0;②0·a=0;③0-=;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a 与b就是两个单位向量,则a2=b2.上述8个命题中只有②③⑧正确;例3已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b得夹角就是60°时,分别求a·b.解:①当a∥b时,若a与b同向,则它们得夹角θ=0°,∴a·b=|a|·|b|cos0°=3×6×1=18;若a与b反向,则它们得夹角θ=180°,∴a·b=|a||b|cos180°=3×6×(-1)=-18;②当a⊥b时,它们得夹角θ=90°,∴a·b=0;③当a与b得夹角就是60°时,有a·b=|a||b|cos60°=3×6×=9.评述:两个向量得数量积与它们得夹角有关,其范围就是[0°,180°],因此,当a∥b时,有0°或180°两种可能.评述:这一类型题,要求学生确实把握好数量积得定义、性质、运算律.三、课堂练习1.已知|a|=1,|b|=,且(a-b)与a垂直,则a与b得夹角就是()A.60° B.30°C.135° D.45°2.已知|a|=2,|b|=1,a与b之间得夹角为,那么向量m=a-4b得模为( )A.2 B.2 C.6D.123.已知a、b就是非零向量,若|a|=|b|则(a+b)与(a-b)、4.已知向量a、b得夹角为,|a|=2,|b|=1,则|a+b|·|a-b|=.5.已知a+b=2i-8j,a-b=-8i+16j,其中i、j就是直角坐标系中x轴、y轴正方向上得单位向量,那么a·b=.6.已知|a|=1,|b|=,(1)若a∥b,求a·b;(2)若a、b得夹角为45°,求|a+b|;(3)若a -b与a垂直,求a与b得夹角.参考答案:1.D2.B3.垂直 4. 5.-36、解:(1)若a、b方向相同,则a·b=;若a、b方向相反,则a·b=;(2)|a+b|=.(3)45°.四、知识小结(1)通过本节课得学习,您学到了哪些知识?(2)关于向量得数量积,您还有什么问题?五、课后作业教材第108页习题2.4A组1、2、3、6、7教学后记数学课堂教学应当就是数学知识得形成过程与方法得教学,数学活动就是以学生为主体得活动,没有学生积极参与得课堂教学就是失败得.本节课教学设计按照“问题——讨论——解决”得模式进行,并以学生为主体,教师以课堂教学得引导者、评价者、组织者与参与者同学生一起探索平面向量数量积定义、性质与运算律得形成与发展过程.始终做到以“学生为主体、教师为主导、思维为主攻、训练为主线”.第2课时教学目标一、知识与技能掌握平面向量得数量积坐标运算及应用.二、过程与方法1、通过平面向量数量积得坐标运算,体会向量得代数性与几何性、2、从具体应用体会向量数量积得作用.三、情感、态度与价值观学会对待不同问题用不同得方法分析得态度、教学重点、难点教学重点:平面向量数量积得坐标表示、教学难点:平面向量数量积得坐标表示得综合运用、教具多媒体、实物投影仪、教学设想一、复习引入向量得坐标表示,为我们解决有关向量得加、减、数乘运算带来了极大得方便.上一节,我们学习了平面向量得数量积,那么向量得坐标表示,对平面向量得数量积得表示方式又会带来哪些变化呢?由此直接进入主题.二、探究新知:⒈平面两向量数量积得坐标表示已知两个非零向量,,试用与得坐标表示.设就是轴上得单位向量,就是轴上得单位向量,那么,.所以.又,,,所以.这就就是说:两个向量得数量积等于它们对应坐标得乘积得与.即.2.平面内两点间得距离公式(1)设,则或.如果表示向量得有向线段得起点与终点得坐标分别为、,那么(平面内两点间得距离公式).(2)向量垂直得判定设,,则ﻩ.(3)两非零向量夹角得余弦()cosθ=.三、例题讲解例1已知a=(3,-1),b = (1, 2),求满足x⋅a = 9与x⋅b = -4得向量x.解:设x = (t,s),由、∴x= (2,-3)、例2 已知a=(1,),b=(+1,-1),则a与b得夹角就是多少?分析:为求a与b夹角,需先求a·b及|a|·|b|,再结合夹角θ得范围确定其值.解:由a=(1,),b=(+1,-1)、有a·b=+1+(-1)=4,|a|=2,|b|=2.记a与b得夹角为θ,则cosθ=、又∵0≤θ≤π,∴θ=、评述:已知三角形函数值求角时,应注重角得范围得确定.例3如图,以原点与A(5, 2)为顶点作等腰直角△OAB,使∠B=90︒,求点B 与向量得坐标.解:设B点坐标(x, y),则= (x, y),=(x-5, y-2)、∵⊥∴x(x-5)+ y(y-2) = 0即:x2 + y2-5x- 2y = 0、又∵||= || ∴x2 +y2= (x-5)2 + (y-2)2即:10x +4y= 29、由、∴B点坐标或;=或、例4在△ABC中,=(2, 3),=(1,k),且△ABC得一个内角为直角,求k值. 解:当∠A = 90︒时,⋅=0,∴2×1+3×k = 0,∴k =.当∠B = 90︒时,⋅=0,=-=(1-2, k-3)= (-1, k-3),∴2×(-1) +3×(k-3) =0 ∴k=.当∠C=90︒时,⋅= 0,∴-1+ k(k-3) =0,∴k =.四、小结1.本节课得内容:有关公式、结论(由学生归纳、总结)、2.本节课得思想方法:数形结合思想、分类讨论思想、方程(组)思想等、五、课外作业教材第107页练习.。

相关文档
最新文档