高代次发动机用高温合金及涂层的发展

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Practically used
25 ℃/ generation PWA-1480, CMSX-2
50℃
ReneN6, CMSX-10
1050
1000 Ist 0Re
ReneN5
2nd 3Re
PWA1484 CMSX-4
3rd 5-6Re
MX-4/PWA1497
4th 5-6Re 2-3Ru
TMS-138/138A
Oxidation Resistance
2 nd Gen. Alloys
TMS-19X Alloys
0
1000
Creep Strength
Kawagishi, et.al (NIMS), Mat.Sci.Tech(2009)
Development of new metallic coating: EQ-Coating Concept: A coating system in an EQuilibrium state between the substrate and coating materials, causing no interdiffusion and its resultant microstructure degradation.
Thermal 55%
Nuclear 35% Thermal 55%
Hydro 10%
Power Supply
CO2 Emission
Efficiency of Advanced Thermal Power Systems
1700℃GT
X 1/2 CO2 (Efficiency, fuel)
Coal firing Steam Turbine
5th 5-6Re 5-6Ru
6th ?
TMS-XXX?
HTM 21 Project (Phase 1)
100℃
Typical SC superalloy compositions (wt%)
Generation/Alloy/Developer PWA1480 1st Rene’ N4 CMSX-2 TMS-6 PWA1484 Rene’ N5 2nd CMSX-4 TMS-82+ Rene’ N6 3rd CMSX-10 TMS-75 PWA1497/ MX-4 4th TMS-138 TMS-138A 5th TMS-162 TMS-196 P&W GE C-M NIMS P&W GE C-M NIMS/ Toshiba GE C-M NIMS P&W,GE, NASA NIMS/IHI NIMS NIMS/IHI NIMS Co 5 8 4.6 10 8 9 7.8 12.5 3 12 16.5 5.8 5.8 5.8 5.6 Cr 10 9 8 9.2 5 7 6.5 4.9 4.2 2 3 2.0 3.2 3.2 3.0 4.6 Mo 2 0.6 2 2 0.6 1.9 1.4 0.4 2 2.0 2.9 2.9 3.9 2.4 W 4 6 8 8.7 6 5 6 8.7 6 5 6 6.0 5.9 5.6 5.8 5.0 Al 5 3.7 5.6 5.3 5.6 6.2 5.6 5.3 5.75 5.7 6 5.55 5.8 5.7 5.8 5.6 Ti 1.5 4.2 1 1 0.5 0.2 Ta 12 4 9 10.4 9 7 6.5 6.0 7.2 8 6 8.25 5.6 5.6 5.6 5.6 Re 3 3 3 2.4 5.4 6 5 5.95 5.0 5.8 4.9 6.4 Ru 3.0 2.0 3.6 6.0 5.0 Density 8.70 8.56 8.56 8.90 8.95 8.63 8.70 8.93 8.98 9.05 8.89 9.20 8.95 9.01 9.04 9.01
Yokokawa, et.al(NIMS)
1150
Temperature Capability of SC Superalloys
Temperature Capability (℃) (137MPa/1000h Creep Rupture)
(Phase 2:Target)
1100
TMS-162, TMS-196
Turbines for Cogeneration
(Kawasaki Heavy Industries)
1. Background 2. Alloy Development SC, EQ.coating, Cast-and -wrought 3. Applications 4. Conclusions
Present Status of “HTM 21” Project
Phase 1: F.Y.1999-2005, Phase 2: F.Y.2006-10, followed by NEDO budget and others Materials Developments (1) Single crystal superalloys with temperature capabilities as high as 1150 ℃. (2) Environmental coating and TBC systems for superalloys, e.g.,EQ coatings. (3) Next generation Ni-Co base turbine disc alloys with temperature capabilities as high as 750℃. (4) Ni-PGMs base superalloy with temperature capabilities beyond 1200℃ up to 1800 ℃. (5) Materials design and analysis. (6) Virtual gas turbine/aeroengine. Applications
Out-of-Phase, Strain: +/-0.64% Tension at 400℃, Compression with 1h hold time at 900℃
Further Improvement
第4世代 4 th gen. SC 第2世代 2 nd Gen. SC 実用合金 第5世代 5 th Gen. SC
(TMS: Tokyo Meguro or Tsukuba Material Single)
Sato, et. al (NIMS), Superalloys 2008
Creep vs TMF properties of 4 th and 5 th Generation SC alloys
TMF cycles to rupture (Cycle) 熱疲労破断サイクル数( Cycle )
Superalloys and Advanced Processing 2011
4-6 July, 2011 at IMR, Shenyang
Development of Superalloys and Coatings for Next Generation Gas Turbines
Hiroshi HARADA(原田広史) Senior Scientist -High Temperature Materials Yuefeng GU(谷 月峰), Kyoko KAWAGISHI(川岸京子) High Temperature Materials Unit National Institute for Materials Science (物質・材料研究機構) Japan
Oxidation resistance: 1100℃, 1h cyclic Creep strength: 1000℃/245MPa rapture life(h)
ist generation, commercial 2nd generation, commercial 3rd generation, commercial 1st generation, NIMS 2nd generation, NIMS 3rd generation, NIMS 4th and 5th generation, NIMS 4th generation, oxidation reisitant, NIMS 5th generation, oxidation resistant, NIMS
①1700 ℃ Gas Turbine for
High Performance Combined Cycle Turbine Components (METI/Mitsubishi Heavy Industries)
②Small Efficient Gas ③Aeroengine (Rolls-Royce)
Ni-base superalloy turbine blades
Pseudo-Binary Phase Diagram
L+γ
1300℃
L
L+γ '
β来自百度文库
Temperature
Ni+X
γ
900℃
A
● ● ●
γ'
C
● ● ● ●
B
Ni Al+Y
γ+γ'
γ’precipitation hardening Ni-base superalloy
Contents
1. Background 2. Alloy Development SC, EQ.coating, Cast-and -wrought 3. Applications 4. Conclusions
Power supply and CO2 Emission in Japan (normal situation)
Ni3(Al,Y)
(Ni,X)
(Al,Y)
Strengthening by the /’ interface in so-called “rafted” structure in SC alloys
Rafting by a stress aging effect
/’ Interface preventing dislocation climbing
100 nm
For creating larger negative lattice misfit, for finer dislocation networks to be accommodated.
Koizumi, et al(NIMS), Superalloys 2004
Finer dislocation network prevents dislocation passing through the rafted ’interface
Stress
Further strengthening by introducing finer interfacial dislocation network,during creep at 1100℃/137MPa 3rd Gen. 4th Gen. 5th Gen.
Higher Mo or Re (with Ru for phase stability),
1000℃,245MPa クリープ破断寿命 (h) Creep rupture life (h)
Sato, et. al (NIMS), Superalloys 2008
Creep and Oxidation properties of 4 th and 5 th Generation SC alloys
(3rd gen.)
(4th gen.)
(5th gen.)
Zhang, et.al (NIMS), Scripta Mat (2003) Koizumi, et al (NIMS), Superalloys 2004
NIMS Alloy Design Program
A mathematical model composed of experimental equations derived from the NIMS superalloy database.
Yokokawa,et.al., Superalloys2004
Prediction of creep rupture life
Creep condition: 1100deg.C-137MPa
' log D0 Di ai(T ) E1T E 2 log( ) E 3V '(T ) E 4 (T ) i
相关文档
最新文档