整流电路总结表
(完整word版)整流电路总结表(word文档良心出品)
=2.34
=2.34
同单相桥式全控
α的可控范围
同单相桥式全控
VT
导通角
θ=π-α
θ=π
θ=π-α
θ=2
θ=π
θ=π
同单相桥式全控
θ≤
θ=
θ≤
耐压
正向 ;反向
正向 ;反向
正向 ;反向
正向 ;反向
正向 ;反向
正向 ;反向
正向 ;反向
正向和反向均反向反向电流 Nhomakorabea;
;
同单相桥式全控
脉波数
单脉波
单脉波
单脉波
单相可控整流电路
单相桥式全控整流电路
单相全波可控整流电路
三相半波可控整流电路
三相桥式全控整流电路
电阻负载
阻感负载
带续流二极管阻感负载
电阻负载
阻感负载
带反电动势的阻感负载
各种负载
电阻负载
阻感负载
电阻负载
阻感负载
输出
=0.45
=0.45
=0.45
=0.9
=0.9
=0.9
同单相桥式全控
=1.17
=0.675
二脉波
二脉波
二脉波
二脉波
三脉波
三脉波
六脉波
六脉波
变压器
同单相桥式全控
=0.816
=0.816
有直流磁化
有直流磁化
有直流磁化
无直流磁化
无直流磁化
无直流磁化
无直流磁化
有直流磁化
有直流磁化
无直流磁化
无直流磁化
整流电路
整流电路总结表
二脉波
二脉波
二脉波
三脉波
三脉波
六脉波
六脉波
变压器
同单相桥式全控
=0.816
=0.816
有直流磁化
有直流磁化
有直流磁化
无直流磁化
无直流磁化
无直流磁化
无直流磁化
有直流磁化
有直流磁化
无直流磁化
无直流磁化
整流电路
单相可控整流电路
单相桥式全控整流电路
单相全波可控整流电路
三相半波可控整流电路
三相桥式全控整流电路
电阻负载
阻感负载
带续流二极管阻感负载
电阻负载
阻感负载
带反电动势的阻感负载
各种负载
输出
=0.45
=0.45
=0.45
=0.9
=0.9
=0.9
同单相桥式全控
=1.17
=0.675
=1.17
=2.34
=2.34
同单相桥式全控
α的可控范围
同单相桥式全控
VT
导通角
θ=π-α
θ=π
θ=π-α
θ=2
θ=π
θ=π
同单相桥式全控
θ≤
θ=
θ≤
耐压
正向 ;反向
正向 ;反向
正向 ;反向
正向 ;反向
正向 ;反向
正向 ;反向
正向 ;反向
正向和反向均
反向
反向
电流
;
;
同单相桥式全控
脉波数
单脉波
单脉波
单脉波
三相桥式全控整流电路仿真实验实训小结
三相桥式全控整流电路仿真实验实训小结
在电子技术实验中,我们学习了很多不同的电路原理,并通过实际操作来巩固所学知识。
在本次实验中,我们学习了三相桥式全控整流电路的仿真实验,通过这一次的实训,我对这一电路有了更加深入的理解。
首先,我们要了解三相桥式全控整流电路的工作原理。
这种电路由四个可控硅组成,可以实现对交流电的整流控制。
在实验中,我们将交流电源接入电路,通过可控硅的控制,将三个正弦波形的交流电转化为可控硅控制的直流电。
这一过程中,我们需要特别注意可控硅的触发方式,要控制好脉冲的宽度和脉冲的长度,以保证可控硅能正常工作。
在实验过程中,我们通过调节可控硅的触发脉冲宽度,可以控制整流电路的输出功率和整流后的电压波形。
通过对可控硅触发脉冲宽度的调节,我们可以改变电路中的电流分布,从而改变整流后的电压波形。
这一点对我们了解整流电路的特性非常有帮助。
另外,在实验中我们还需要注意一些细节问题。
例如,我们需要保证电路中的元器件都能够正常工作,如可控硅、电感、电容等。
同时,我们也需要保证实验环境的稳定,避免其他干扰因素对电路的影响。
在实验过程中,我们还需要特别注意安全问题,例如触电等危险情况,以保证实验的安全进行。
总结来说,通过这次三相桥式全控整流电路仿真实验实训,我对这一电路的原理和特性有了更加深入的理解。
在实验过程中,我也学会了如何调节可控硅的触发方式,掌握了整流电路的特性,以及对实验环境的安全控制。
这对于我进一步学习电子技术以及进行实际项目开发都具有很大的帮助。
整流电路计算公式汇总
整流滤波电路计算公式汇总
名 称
单相半波整流电路 单相半波整流滤波电路
电路图
负载上的 电压电流
245.0U U L = L
L L L R U
R U I 245.0==
2U U L =
L
L L L R U
R U I 2==
二极管上的最大整流电路 L D FM I I I ==
L D FM I I I ==
二极管上的最高反向工作电压
22U U RM =
222U U RM =
整流二极管 的选择
最大整流电流 L D FM I I I =≥
最高反向工作电压
22U U RM ≥ 最大整流电路
L D FM I I I =≥
最高反向工作电压
222U U RM ≥
名 称
单相桥式整流电路 单相桥式整流滤波电路
电路图
负载上的 电压电流
29.0U U L = L
L L L R U
R U I 29.0==
22.1U U L =
L
L L L R U
R U I 22.1==
二极管上的最大整流电路 2
L
D
FM I I I ==
2
L D
FM I I I ==
二极管上的最高反向工作电
压 22U U RM =
22U U RM =
整流二极管 的选择
最大整流电流 2
L
D FM I I I =
≥ 最高反向工作电压 22U U RM ≥
最大整流电路
2
L
D FM I I I =
≥ 最高反向工作电压
22U U RM ≥。
4种整流5种滤波电路总结
4种整流5种滤波电路总结写在前⾯: 本⽂包含内容: 1、变压电路 2、整流电路 2-1:半波整流电路 2-2:全波整流电路 2-3:桥式整流电路 2-4:倍压整流电路 3、滤波电路 3-1:电容滤波电路 3-2:电感滤波电路 3-3:RC滤波电路 3-4:LC滤波电路 3-5:有源滤波电路 4、整流滤波电路总结 4-1:常⽤整流电路性能对照 4-2:常⽤⽆源滤波电路性能对照 4-3:电容滤波电路输出电流⼤⼩与滤波电容量的关系 4-4:常⽤整流滤波电路计算表基本电路: ⼀般直流稳压电源都使⽤220伏市电作为电源,经过变压、整流、滤波后输送给稳压电路进⾏稳压,最终成为稳定的直流电源。
这个过程中的变压、整流、滤波等电路可以看作直流稳压电源的基础电路,没有这些电路对市电的前期处理,稳压电路将⽆法正常⼯作。
1、变压电路 通常直流稳压电源使⽤电源变压器来改变输⼊到后级电路的电压。
电源变压器由初级绕组、次级绕组和铁芯组成。
初级绕组⽤来输⼊电源交流电压,次级绕组输出所需要的交流电压。
通俗的说,电源变压器是⼀种电→磁→电转换器件。
即初级的交流电转化成铁芯的闭合交变磁场,磁场的磁⼒线切割次级线圈产⽣交变电动势。
次级接上负载时,电路闭合,次级电路有交变电流通过。
变压器的电路图符号见图2-3-1。
2、整流电路 经过变压器变压后的仍然是交流电,需要转换为直流电才能提供给后级电路,这个转换电路就是整流电路。
在直流稳压电源中利⽤⼆极管的单项导电特性,将⽅向变化的交流电整流为直流电。
(1)半波整流电路 半波整流电路见图2-3-2。
其中B1是电源变压器,D1是整流⼆极管,R1是负载。
B1次级是⼀个⽅向和⼤⼩随时间变化的正弦波电压,波形如图 2-3-3(a)所⽰。
0~π期间是这个电压的正半周,这时B1次级上端为正下端为负,⼆极管D1正向导通,电源电压加到负载R1上,负载R1中有电流通过; π~2π期间是这个电压的负半周,这时B1次级上端为负下端为正,⼆极管D1反向截⽌,没有电压加到负载R1上,负载R1中没有电流通过。
电力电子技术整流电路总结
电力电子技术整流电路总结篇一:电力电子技术常见的整流电路特点总结电力电子技术常见的整流电路特点总结篇二:电力电子技术重要公式总结单相半波可控整流带电阻负载的工作情况:au1iRdbcde电阻负载的特点:电压与电流成正比,两者波形相同。
触发延迟角:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用a表示,也称触发角或控制角。
导通角:晶闸管在一个电源周期中处于通态的电角度,用θ表示。
直流输出电压平均值:1Ud????2U21?cos?2U2sin?td(?t)?(1?cos?)?0.45U22?2(3-1)VT的a移相范围为180?通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式简称相控方式。
带阻感负载的工作情况:bcdef阻感负载的特点:电感对电流变化有抗拒作用,使得流过电感的电流不发生突变。
续流二极管数量关系:idVT????id2?(3-5)(3-6)(3-7)iVT?idVdR?????id(?t)?2?id?2d????id2?12?iVdR???2??????id(?t)?id(3-8)2?2dabcdifgV单相半波可控整流电路的特点:1.VT的a移相范围为180?。
2.简单,但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化。
3.实际上很少应用此种电路。
4.分析该电路的主要目的建立起整流电路的基本概念。
单相桥式全控整流电路带电阻负载的工作情况:bucdV图3-5单相全控桥式带电阻负载时的电路及波形数量关系:1?22U21?cos?1?cos?Ud??2U(:电力电子技术整流电路总结)2sin?td(?t)??0.9U2???22a角的移相范围为180?。
向负载输出的平均电流值为:(3-9)Ud22U21?cos?U21?cos?id???0.9R?R2R2流过晶闸管的电流平均值只有输出直流平均值的一半,即:(3-11)idVT1U21?cos??id?0.452R2(3-10)流过晶闸管的电流有效值:iVT1?2???1?(2U2U1???sin?t)2d(?t)?2sin2??R?2R2?(3-12)变压器二次测电流有效值i2与输出直流电流i有效值相等:2U2U22?1???。
各种整流电路图解分析
整流电路电力网供给用户的是交流电,而各种无线电装置需要用直流电。
整流,就是把交流电变为直流电的过程。
利用具有单向导电特性的器件,可以把方向和大小交变的电流变换为直流电。
下面介绍利用晶体二极管组成的各种整流电路。
一、半波整流电路图5-1、是一种最简单的整流电路。
它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。
变压器把市电电压(多为220伏)变换为所需要的交变电压e2 ,D 再把交流电变换为脉动直流电。
下面从图5-2的波形图上看着二极管是怎样整流的。
变压器砍级电压e2 ,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。
在0~K时间内,e2 为正半周即变压器上端为正下端为负。
此时二极管承受正向电压面导通,e2 通过它加在负载电阻Rfz上,在π~2π时间内,e2 为负半周,变压器次级下端为正,上端为负。
这时D 承受反向电压,不导通,Rfz,上无电压。
在π~2π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc 。
以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。
这种除去半周、图下半周的整流方法,叫半波整流。
不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。
二、全波整流电路如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。
图5-3 是全波整流电路的电原理图。
全波整流电路,可以看作是由两个半波整流电路组合成的。
变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a 、e2b ,构成e2a 、D1、Rfz与e2b 、D2 、Rfz ,两个通电回路。
各种整流电路详解(推荐)
各种整流电路桥式整流电路图及工作原理介绍桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。
由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。
四只整流二极管接成电桥形式,故称桥式整流。
图1 桥式整流电路图桥式整流电路的工作原理如图2所示。
图2 桥式整流电路原理图在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压;在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。
这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即UL = 0.9U2;IL = 0.9U2/RL流过每个二极管的平均电流为:ID = IL/2 = 0.45 U2/RL什么叫硅桥,什么叫桥堆目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图1(c)的形式。
桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。
在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。
电设计网()二极管整流电路原理与分析半波整流二极管半波整流电路实际上利用了二极管的单向导电特性。
当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。
当输入电压处于交流电压的负半周时,二极管截止,输出电压v o=0。
半波整流电路输入和输出电压的波形如图所示。
电设计网()图3二极管半波整流电路对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。
但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。
整流电路波形总结
1、单相半波可控整流电路——阻性负载,触发角α2、单相半波可控整流电路——阻感负载,触发角α3、单相半波可控整流电路——阻感负载有续流二极管,触发角α4、单相桥式全控整流电路——纯阻性负载,触发角α5、单相桥式全控整流电路——带反电动势负载,触发角α6、单相桥式全控整流电路——阻感性负载,触发角α7、单相全波可控整流电路(单相双半波可控整流电路)——阻性负载,触发角α8、单相桥式半控整流电路——阻性负载,触发角α9、单相桥式半控整流电路——阻感负载,有续流二极管,触发角α10、单相桥式半控整流电路另一种接法1、三相半波可控整流电路——纯阻性负载R 1)纯电阻负载,触发角为0度2)纯阻性负载,触发角30度3)纯阻性负载,触发角大于30度电流断续,以60度为例2、三相半波可控整流电路——阻感负载1)阻感负载,触发角60度(当触发角α≤30° 时,整流电压波形与纯阻性负载时相同,因为两种负载情况下,负载电流均连续)。
3、三相桥式全控整流电路1)纯电阻负载,触发角0度纯阻性负载,0度触发角时晶闸管工作情况2)纯阻性负载,触发角30度3)纯阻性负载,触发角60度4)纯阻性负载,触发角90度5)阻感负载,触发角0度6)阻感负载,触发角30度7)阻感负载,触发角90度4、考虑变压器漏感时的三相半波可控整流电路及波形各种整流电路换相压降和换相重叠角的计算5、电容滤波的不可控整流电路(单相桥式整流电路)6、感容滤波的二极管整流电路7、带平衡电抗器的双反星型可控整流电路触发角为0度时,两组整流电压电流波形平衡电抗器作用下输出电压的波形和电抗器上的电压波形平衡电抗器作用下,两个晶闸管同时导通的情况当触发角为30度、60度、90度时,双反星形电路的输出电压波形8、多重化整流电路(并联多重联结的12脉波整流电路)9、移相30度串联2重联结电路移相30度串联2重联结电路电流波形三相桥式整流电路工作于有源逆变状态时的电压波形。
整流桥电路大全
整流电路大全9.3.7 正、负极性全波整流电路及故障处理如图9-24所示是能够输出正、负极性单向脉动直流电压的全波整流电路。
电路中的T1是电源变压器,它的次级线圈有一个中心抽头,抽头接地。
电路由两组全波整流电路构成,VD2和VD4构成一组正极性全波整流电路,VD1和VD3构成另一组负极性全波整流电路,两组全波整流电路共用次级线圈。
图9-24 输出正、负极性直流电压的全波整流电路1.电路分析方法关于正、负极性全波整流电路分析方法说明下列2点:(1)在确定了电路结构之后,电路分析方法和普通的全波整流电路一样,只是需要分别分析两组不同极性全波整流电路,如果已经掌握了全波整流电路的工作原理,则只需要确定两组全波整流电路的组成,而不必具体分析电路。
(2)确定整流电路输出电压极性的方法是:两二极管负极相连的是正极性输出端(VD2和VD4连接端),两二极管正极相连的是负极性输出端(VD1和VD3连接端)。
2.电路工作原理分析如表9-28所示是这一正、负极性全波整流电路的工作原理解说。
表9-28 正、负极性全波整流电路的工作原理解说关键词说明正极性正极性整流电路由电源变压器T1和整流二极管VD2、VD4构成。
整流电路分析在电源变压器次级线圈上端输出正半周电压期间,VD2导通,VD2导通时的电流回路是:T1次级线圈上端→VD2正极→VD2负极→负载电阻R2→地线→T1的次级线圈抽头→次级抽头以上线圈,构成回路。
流过负载电阻R2的电流方向是从上而下,输出正极性单向脉动直流电压。
在交流电压变化到另一个半周后,电源变压器次级线圈上端输出负半周电压,使VD2截止。
这时,次级线圈下端输出正半周电压使VD4导通,其电流回路是:T1次级线圈下端→VD4正极→VD4负极→负载电阻R2→地线→T1次级线圈抽头→次级抽头以下线圈,构成回路。
流过负载电阻R2的电流方向是从上而下,输出正极性单向脉动直流电压。
负极性整流电路分析负极性整流电路由电源变压器T1和整流二极管VD1、VD3构成。
整流电路总结
整流电路总结整流电路是将沟通电能变为直流电能供应直流用电设备。
它可以从各个角度进行分类,主要的分类方法有:按组成的器件可分为不行控、半控、全控三种;按电路结构可以分为桥式电路和零式电路;按沟通输入相数可分为单相电路和多相电路,其中多相电路在实际应用中乂以三相电路居多。
1单相整流与三相整流区分及其应用单相整流与三相整流区分如下表lo由上表可知,单相整流沟通输入相数为,三相整流沟通输入相数为3;单相整流输出电压波形幅度大,三相整流输出电压波形幅度小。
单相整流主要应用于小功率场合,三相整流应用于大功率场合。
例如某用电设备一相电流为60A,电线要用10平方(皇米)以上,分开三相则每相为20A, 电线用4平方就可以了。
2半波、全波和桥式整流各自的特点和区分以单相整流电路为例。
单相半波整流电路有如下特点:①电路简洁,使用器件少;②无滤波电路时,整流电压的直流重量较小,最大为0.45"2;③整流电压脉动大;④变压器利用率低。
单相全波整流电路有如下特点:①使用的整流器件比半波整流时多一倍,变压器带中心抽头;②无滤波电路时,整流电压的直流重量较小,最大为0.9,2;③整流电压脉动较小,比半波整流小一倍;④变压器利用率比半波整流高;⑤整流器件所受的反向电压较高。
三相桥式整流电路又如下特点:①使用的整流器件比全波多一倍②无滤波电路时,整流电压的直流重量较小,最大为2.34“2;③整流电压脉动与全波整流相同;④每个整流器件所受到的反向电压为电源电压峰值;⑤变压器利用率较全波整流高。
上述三种电路中,由于单相半波整流电路中变压器二次侧存在直流重量,会造成变压器贴心直流磁化,影响变压器的正常工作。
在其余两种整流电路上不存在直流磁化现象。
从图1典型的磁化曲线上可以看出:当磁场的强度增加时,磁芯被磁化的程度是随着增加的,但当接着减小磁场强度时,磁化的程度并不从上升时的曲线关系返回,而是当磁场强度降到。
时还有剩磁。
这叫磁滞现象,必需用反向施加磁图1基本磁化曲线当磁场强度很大时磁化的程度不再随着磁场强度的增高而增高可,这叫做磁饱和现象。
第2章总结及练习题
单相可控整流——习题
11.在单相半波可控整流大电感负载有续流二极管 的电路中,晶闸管的控制角α的最大移相范围是 多少?晶闸管的导通角、续流二极管的导通与α 关系如何? 12. 单相全控桥式整流电路接大电感负载。已知 R=10Ω,α=45°,U2=100V,试计算:
计算输出整流电压Ud,输出电流平均值Id; 计算晶闸管电流的有效值IV1; 按裕量系数2确定晶闸管的额定电流。
单相可控整流——习题
13.现有单相半波、单相桥式、三相半波三种整流 电路带电阻性负载,负载电流Id都是40A,问流 过与晶闸管串联的熔断器的平均电流、有效电流 各为多大? 14. 单相全控桥式有源逆变电路,变压器二次电 压交有效值U2=200V,回路总电阻R=1.2Ω平波 电抗器L足够大,可使负载电流连续,当β=450, Ed=-188V时,按要求完成下列各项: 画出输出电压Ud的波形; 画出晶闸管V11的电流波形iv11; 计算晶闸管电流的平均值IvIAR0
单相全波可控整流——总结
工作原理 SCR承受电压分析 与桥式全控的异同点
单相桥式半控整流——总结
大电感负载,工作原理 二极管的作用 输出电压波形的特点
单相可控整流——习题
1. 单相全控桥式反电动势负载电路中,当控制角 α大于停止导通角δ时,晶闸管的导通角θ= 。 2.单相全波可控整流电路中,晶闸管承受的最大 反向电压为 。三相半波可控整流电路中, 晶闸管承受的最大反向电压为 。(电源 相电压为U2) 3.单相全控桥可控整流电路中功率因数cos比单相 半波可控整流电路的功率因数提高了________ 倍。各管上承受的最大反向电压为________。
整流电路的有源逆变工作状态——习 题
整流电路移相范围总结
整流电路移相范围总结整流电路移相范围是指整流电路中的移相元件所能实现的相移范围。
相移是指电压或电流波形的相对时间延迟或提前的量,它可以用角度或时间来表示。
整流电路的移相范围的大小直接影响着电路的性能和适用范围。
下面将对整流电路移相范围进行详细的总结。
在整流电路中,常见的移相元件包括电容、电感和变压器等。
这些元件可以通过改变电路中电压或电流波形的振荡频率、相对时间延迟或提前来实现对电路的移相操作。
1.电容移相:电容是一种存储电荷的元件,它可以通过储存和释放电荷来实现电压相位的移动。
当电容器充电时,电流经过变化很慢,电压波形明显滞后于电流波形。
而当电容器释放电荷时,电流经过变化很快,电压波形则明显超前于电流波形。
因此,电容可以在整流电路中实现从几度到几十度的相移范围。
2.电感移相:电感是一种存储磁场能量的元件,它可以通过储存和释放磁场能量来实现电压相位的移动。
当电感感受到外部电流变化时,它会产生电动势抵消外部电流的变化,从而使电压波形滞后于电流波形。
而当电感断开电路时,储存的磁场能量会继续为电路提供电流,使电压波形超前于电流波形。
因此,电感可以在整流电路中实现从几度到几十度的相移范围。
3.变压器移相:变压器是一种能够传输电能并改变电压和电流比率的元件,它可以通过变换主、副绕组的相对位置来实现电压相位的移动。
当主绕组的输入电压波形超前于副绕组的输入电压波形时,副绕组的输出电压波形会滞后于主绕组的输出电压波形。
反之,当主绕组的输入电压波形滞后于副绕组的输入电压波形时,副绕组的输出电压波形会超前于主绕组的输出电压波形。
因此,变压器可以在整流电路中实现从几度到几十度的相移范围。
总结起来,整流电路的移相范围受到所使用的移相元件的特性和工作条件的限制。
一般情况下,电容移相的相移范围较大,可达几十度;而电感和变压器移相的相移范围较小,一般在几度到几十度之间。
根据实际应用需求,可以选择合适的移相元件来实现所需的相移效果。
三相半坡单项整流电路实训总结
三相半坡单项整流电路实训总结历经了一周的实训,而在今天做了一个完结。
在这一周里虽然有一些学习实训上的小困难,但是,许多的知识还是让我高兴异常。
以前我是学文科的,说实话队以一些理科上的东西还是很不明白的,学习起来也有一些困难,但这并不能成为我学习电子的阻碍。
对于电子我还是怀有很大的热情。
这周我们做了对晶体二极管电路,单极放大电路,求和电路,积分、微分电路,振荡电路,电源电路的实训。
第一天,我们做的是单级电路的实训,首先,我们要找到电路图,然后在计算他们的静态工作点,在用数字万用表测量静态工作点时,先要观察电路图上的数据,以谨慎的及电路图的分布,在数值上也是非常重要的,数据的错误会导致测量工作的出现误差,所以是非常谨慎的.第二天,说实话对于晶体二极管,我的了解不是很多。
但是,我了解到晶体二极管有许多的特性。
像正向特性反向特性击穿特性频率特性等等,我们要做晶体二极管的实验,首先就要了解晶体二极管的这些特性,才能准确的作出判断正向电流IF在额定功率下,允许通过二极管的电流值。
正向电压降VF二极管通过额定正向电流时,在两极间所产生的电压降。
最大整流电流(平均值)IOM在半波整流连续工作的情况下,允许的最大半波电流的平均值。
反向击穿电压VB二极管反向电流急剧增大到出现击穿现象时的反向电压值。
正向反向峰值电压VRM二极管正常工作时所允许的反向电压峰值,通常VRM为VP的三分之二或略小一些。
反向电流IR。
在规定的反向电压条件下流过二极管的反向电流值结电容C结电容包括电容和扩散电容,在高频场合下使用时,要求结电容小于某一规定数值。
最高工作频率二极管具有单向导电性的最高交流信号的频率。
第三天,我们测试了求和电路。
求和电路的实质是利用“虚地”和“虚断”的特点,通过各路输入电流相加的方法来实现输入电压的相加。
这种反相输入电路的优点是,当改变某一输入回路的电阻时,仅仅改变输出电压与该路输入电压之间的比例关系,对其他各路没有影响,因此调节比较灵活方便。
整流电路知识点总结
整流电路知识点总结一、整流电路的概念。
1. 定义。
- 整流电路是将交流电转换为直流电的电路。
其基本原理是利用二极管等具有单向导电性的电子元件,使交流电的正半周或负半周通过,从而在负载上得到单方向的脉动直流电。
2. 作用。
- 在电子设备中,许多电路需要直流电源供电,如电子计算机、通信设备、各种电子仪器等。
而市电提供的是交流电,整流电路就是将交流市电转换为适合这些设备使用的直流电的关键电路部分。
二、常见的整流电路类型。
(一)半波整流电路。
1. 电路结构。
- 由一个二极管和负载电阻组成。
交流电源的一端连接二极管的阳极,另一端连接负载电阻的一端,负载电阻的另一端与二极管的阴极相连。
2. 工作原理。
- 在交流电源的正半周时,二极管处于正向偏置状态,电流可以通过二极管流经负载电阻,在负载电阻上产生电压降。
而在交流电源的负半周时,二极管处于反向偏置状态,电流不能通过二极管,负载电阻上没有电流通过。
这样,在负载电阻上就得到了单向的脉动直流电压,其输出电压的波形是输入交流电压正半周的一部分,负半周被削去,所以称为半波整流。
3. 输出电压计算。
- 设输入交流电压的有效值为U_2,则半波整流电路输出电压的平均值U_O 为U_O=0.45U_2。
4. 优缺点。
- 优点:电路简单,使用的元件少,成本低。
- 缺点:输出电压脉动大,直流成分低,电源利用率低,只利用了交流电源的半个周期。
(二)全波整流电路。
1. 电路结构。
- 有两种常见结构,一种是使用两个二极管和一个中心抽头的变压器;另一种是使用四个二极管组成的桥式整流电路。
- 在中心抽头变压器全波整流电路中,变压器的次级绕组有中心抽头,将次级绕组分为两个相等的部分。
两个二极管分别连接在次级绕组的两端与负载电阻之间,且二极管的阴极连接在一起作为输出的正极,变压器中心抽头作为输出的负极。
- 桥式整流电路由四个二极管D1 - D4组成。
交流电源的两端分别连接到桥式电路的一对对角线上,负载电阻连接在另外一对对角线上。
电力电子技术整流电路总结与电力电子技术课程设计总结汇编
电力电子技术整流电路总结与电力电子技术课程设计总结汇编电力电子技术整流电路总结电力电子技术常见的整流电路特点总结篇二:电力电子技术重要公式总结。
单相半波可控整流带电阻负载的工作情况:au1iRdbcde电阻负载的特点:电压与电流成正比,两者波形相同。
触发延迟角:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用a表示,也称触发角或控制角。
导通角:晶闸管在一个电源周期中处于通态的电角度,用θ表示。
直流输出电压平均值:1Ud22U21cos2U2sintd(t)(1cos)0.45U222(3-1)VT的a移相范围为180通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式简称相控方式。
带阻感负载的工作情况:bcdef阻感负载的特点:电感对电流变化有抗拒作用,使得流过电感的电流不发生突变。
续流二极管数量关系:IdVTId212(3-5)(3-6)(3-7)IVTIdVDRId(t)2Id2dId212IVDR2Id(t)Id(3-8)22dabcdeifgV单相半波可控整流电路的特点:1.VT的a移相范围为180。
2.简单,但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化。
3.实际上很少应用此种电路。
4.分析该电路的主要目的建立起整流电路的基本概念。
单相桥式全控整流电路带电阻负载的工作情况:bucdV图3-5单相全控桥式带电阻负载时的电路及波形数量关系:122U21cos1cosUd2U2sintd(t)0.9U222a角的移相范围为180。
向负载输出的平均电流值为:(3-9)Ud22U21cosU21cosId0.9RR2R2流过晶闸管的电流平均值只有输出直流平均值的一半,即:(3-11)IdVT1U21cosId0.452R2(3-10)流过晶闸管的电流有效值:IVT121(2U2U1sint)2d(t)2sin2R2R2(3-12)变压器二次测电流有效值I2与输出直流电流I有效值相等:2U2U221II2(Rsint)d(t)R2sin2IVT12I(3-14)不考虑变压器的损耗时,要求变压器的容量S=U2I2。
详解4种整流、5种滤波电路
详解4种整流、5种滤波电路1、变压电路通常直流稳压电源使用电源变压器来改变输入到后级电路的电压。
电源变压器由初级绕组、次级绕组和铁芯组成。
初级绕组用来输入电源交流电压,次级绕组输出所需要的交流电压。
通俗的说,电源变压器是一种电→磁→电转换器件。
即初级的交流电转化成铁芯的闭合交变磁场,磁场的磁力线切割次级线圈产生交变电动势。
次级接上负载时,电路闭合,次级电路有交变电流通过。
变压器的电路图符号见图2-3-1。
2、整流电路经过变压器变压后的仍然是交流电,需要转换为直流电才能提供给后级电路,这个转换电路就是整流电路。
在直流稳压电源中利用二极管的单项导电特性,将方向变化的交流电整流为直流电。
(1)半波整流电路半波整流电路见图2-3-2。
其中B1是电源变压器,D1是整流二极管,R1是负载。
B1次级是一个方向和大小随时间变化的正弦波电压,波形如图 2-3-3(a)所示。
0~π期间是这个电压的正半周,这时B1次级上端为正下端为负,二极管D1正向导通,电源电压加到负载R1上,负载R1中有电流通过;π~2π期间是这个电压的负半周,这时B1次级上端为负下端为正,二极管D1反向截止,没有电压加到负载R1上,负载R1中没有电流通过。
在2π~3π、3π~4π等后续周期中重复上述过程,这样电源负半周的波形被“削”掉,得到一个单一方向的电压,波形如图2-3-3(b)所示。
由于这样得到的电压波形大小还是随时间变化,我们称其为脉动直流。
设B1次级电压为E,理想状态下负载R1两端的电压可用下面的公式求出:整流二极管D1承受的反向峰值电压为:由于半波整流电路只利用电源的正半周,电源的利用效率非常低,所以半波整流电路仅在高电压、小电流等少数情况下使用,一般电源电路中很少使用。
(2)全波整流电路由于半波整流电路的效率较低,于是人们很自然的想到将电源的负半周也利用起来,这样就有了全波整流电路。
全波整流电路图见图2-3-6。
相对半波整流电路,全波整流电路多用了一个整流二极管D2,变压器B1的次级也增加了一个中心抽头。
整流电路参数总结
电路图
VT1
U1 V1 W1 U V W
VT3
VT5
VT1 VT3 VT5 Rd
Rd U1
V1 W1
U V W
VT4
VT6
VT2
VD4 VD6 VD2
移相范围 连续和断续波 形的临界角
0 0 ~ 1500
I dT
I dT
T
360
0
Id
1 Id 3
Id
T
360
0
Id
Id
1200 Id 3600
T
360
0
Id
1800 Id 3600
续流管平均电 流 续流管电流有 效值
I dT
D
3600
Id
300
1200
D
3600
600
600
Id
D
T 1200 D 1200
U TM 6U 2
Ud
U TM 6U 2
Ud
U TM 6U 2
Ud
Id
Rd
Id
Rd
Id
Rd
( 00 900 )
I dT 1 Id 3
( 00 900 )
I dT 1 Id 3
( 0 0 1800 )
0 0 ~ 1200
0 0 ~ 1800
300
600
600
当 00 300 时
U d 1.17U 2 cos
当 00 600 时
二极管整流电路详尽分析
图5-1、是一种最简单的整流电路。
它由电源变压器B、整流二极管D和负载电阻R fz,组成。
变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D再把交流电变换为脉动直流电。
下面从图5-2的波形图上看着二极管是怎样整流的。
变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。
在0~π时间内,e2为正半周即变压器上端为正下端为负。
此时二极管承受正向电压面导通,e2通过它加在负载电阻R fz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。
这时D承受反向电压,3π~4π时间不导通,R fz,上无电压。
在π~2π时间内,重复0~π时间的过程,而在内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过R fz,在R fz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压U sc。
以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。
这种除去半周、图下半周的整流方法,叫半波整流。
不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压U sc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。
二、全波整流电路如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。
图5-3 是全波整流电路的电原理图。
全波整流电路,可以看作是由两个半波整流电路组合成的。
变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a、e2a,构成e2a、D1、R fz与e2b、D2、R fz,两个通电回路。
全波整流电路的工作原理,可用图5-4 所示的波形图说明。
在0~π间内,e2a对D1为正向电压,D1导通,在R fz上得到上正下负的电压;e2b对D2为反向电压,D2不导通(见图5-4(b)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单相可控整流电路单相桥式全控整流电路单相全
波可控
整流电
路
三相半波可控整流电路三相桥式全控整流电路
电阻负载阻感负载带续流二极管阻
感负载
电阻负载阻感负载
带反电动势的
阻感负载
各种负
载
电阻负载阻感负载电阻负载阻感负载
输出=0.45=0.45=0.45=0.9=0.9=0.9
同单相
桥式全
控
=1.17
=0.675
=1.17
=2.34
=2.34
同单相
桥式全
控
α的可控
范围同单相桥式全
控
VT 导
通
角
θ=π-αθ=πθ=π-αθ=2θ=πθ=π
同单相
桥式全
控
θ≤θ=θ≤
耐
压
正向;反向正向;反向正向;反向正向;反向正向;反
向
正向;反
向
正向;反向正向和反向均
反向反向
电
流
;
; 同单相
桥式全
控
脉波数单脉波单脉波单脉波二脉波二脉波二脉波二脉波三脉波三脉波六脉波六脉波
变压器
同单相
桥式全
控=0.816=0.816有直流磁化有直流磁化有直流磁化无直流磁化无直流磁化无直流磁化
无直流
磁化
有直流磁化有直流磁化无直流磁化无直流磁化
整流电路。