函数与方程思想
函数与方程的思想

函数与方程的思想函数与方程思想是最重要的一种数学思想,在高考中所占比重较大,综合知识多、题型多、应用技巧多。
函数思想是指用函数的概念、性质、图像去分析问题、转化问题和解决问题,具体体现在:①运用函数的性质解决数学问题;②用映射、函数的观点去观察、分析问题中的数量关系,通过函数的形式把这种数量关系表示出来并加以研究,从而解决问题;③对解不等式、讨论方程的解的个数或分布、某些参数范围的讨论问题等可通过构造函数,利用函数的性质解决。
方程思想是分析数学问题中变量间的相等关系,从而建立方程(组)将问题解决的一种思想方法,具体体现在:①解方程及含参数方程的讨论;②可转化为方程(组)求解的讨论问题及构造方程(组)。
下面通过几个具体例题说明它们的应用。
一、运用函数、方程思想转化解决函数、方程和不等式问题【例】若a,b是正数,且满足ab=a+b+3,求ab 的取值范围。
思维精析把方程转化成关于ab的不等式。
解法一:(看成函数的值域):∵ab=a+b+3∴b=而b>0∴>0 即∵a>0 ∴a>1∴ab=a•==(a-1)++5≥9当且仅当a-1=,即a=3时取等号。
又a>3时,a-1++5是关于a的单调增函数,∴ab的取值范围是[9,+∞)。
解法二:(看成不等式的解集):∵a,b为正数,∴a+b≥2又ab=a+b+3∴ab≥2+3即( )2-2-3≥0即≥3或≤-1∴ab≥9解法三:解若设ab=t,则a+b=t-3∴a,b可看成方程x2-(t-3)x+t=0的两个正根△=(t-3)2-4t≥0a+b=t-3>0ab=t=>t≤1,t≥9t>3t>0 得t≥9 ,即ab≥9。
点拨:从以上解法可以看出,对于同一个问题,用不同的观点去看,会产生不同的想法,从而有不同的处理方法,解法一用函数观点去分析,则应将已知条件变形后去消元;解法二,解法三则利用题中和、积特征构造不等式、方程来求解,它们分别体现了用函数、用不等式、用方程来解决问题的意识,因此,在解题过程中,应多方位、多角度去思考、去探索,选用合理简明的解题途径,以求取得事半功倍之效。
函数与方程思想简单应用

数学思想方法的简单应用(1)一、函数与方程思想函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。
方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。
有时,还需要函数与方程的互相转化、接轨,达到解决问题的目的。
函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。
它体现了“联系和变化”的辩证唯物主义观点。
一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:y=f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。
在解决问题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。
对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。
另外,方程问题、不等式问题、集合问题、数列问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
1.证明:若则为整数.解析:若x+y+z+t=0,则由题设条件可得,于是此时(1)式的值等于-4.若x+y+z+t≠0,则由此可得x=y=z=t.于是(1)式的值等于4.2.已知:函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=.(1)求a、b的值及函数f(x)的解析式;(2)若不等式f(2x)﹣k•2x≥0在x∈[﹣1,1]时恒成立,求实数k的取值范围;(3)如果关于x 的方程f (|2x ﹣1|)+t •(﹣3)=0有三个相异的实数根,求实数t 的取值范围.解:(1)g (x )=ax 2﹣2ax+1+b ,函数的对称轴为直线x=1,由题意得: ①得②得(舍去)∴a=1,b=0 ∴g (x )=x 2﹣2x+1,(2)不等式f (2x )﹣k •2x ≥0,即k设,∴,∴k ≤(t ﹣1)2 ∵(t ﹣1)2min =0,∴k ≤0 (3)f (|2x ﹣1|)+t •(﹣3)=0,即|2x ﹣1|++﹣3t ﹣2=0. 令u=|2x ﹣1|>0,则 u 2﹣(3t+2)u+(4t+1)=0记方程①的根为u 1,u 2,当0<u 1<1<u 2时,原方程有三个相异实根,记φ(u )=u 2﹣(3t+2)u+(4t+1),由题可知,或. ∴时满足题设. 3.已知函数()ln(1)(1)1f x x k x =---+. (1)若()0f x ≤ 恒成立,试确定实数k 的取值范围;(2)证明:ln 2ln 3ln 4ln (1)34514n n n n -++++<+(*n N ∈且1n >)解:(1)0k ≤当时()()1,f x +∞在上为增函数;0k >当时1()1,1f x k ⎛⎫+ ⎪⎝⎭在上为增函数;在11,k ⎛⎫++∞ ⎪⎝⎭上为减函数;易知k>0,则max 1()(1)0f x f k =+≤即1k ≥; (2)令1k =则ln(1)2x x -≤-对()1,x ∈+∞恒成立, 即:ln 1x x ≤-对()0,x ∈+∞恒成立。
数学四大思想

数学思想方法数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,实际上两者的本质是相同的,差别只是站在不同的角度看问题。
通常混称为“数学思想方法”。
数学四大思想:函数与方程、转化与化归、分类讨论、数形结合;函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。
方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。
有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。
笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。
宇宙世界,充斥着等式和不等式。
我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。
列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。
函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。
它体现了“联系和变化”的辩证唯物主义观点。
一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。
在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。
对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。
另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。
我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。
函数与方程思想

函数与方程的思想 函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其它内容时,起着重要作用;方程思想是解决各类计算问题的基本思想,是培养运算能力的基础,高考把函数与方程思想作为重要思想方法重点来考查.函数是高中数学的主线,它用联系和运动、变化的观点研究、描述客观世界中相互关联的量之间的依存关系,形成变量数学的一大重要基础和分支. 函数思想以函数知识做基石,用运动变化的观点分析、研究数学对象间的数量关系,使函数知识的应用得到极大的扩展,丰富并优化了数学解题活动,给数学解题带来很强的创新能力. 因此,函数思想是数学高考常考的热点. 函数思想在高考中的应用主要是函数的概念、性质及图像的应用.方程的思想,就是分析数学问题中各个量及其关系,运用数学语言建立方程或方程组、不等式或不等式组或构造方程或方程组、不等式或不等式组,通过求方程或方程组、不等式或不等式组的解的情况,使问题得以解决.函数思想与方程思想的联系十分密切,解方程()0f x =就是求函数()y f x =当函数值为零时自变量x 的值;求综合方程()()f x g x =的根或根的个数就是求函数()y f x =与()y g x =的图像的交点横坐标或交点个数,正是这些联系,促成了函数与方程思想在数学解题中的互化互换,丰富了数学解题的思想宝库.函数与方程的思想在解题应用中主要体现在两个方面:(1) 借助有关初等函数的图象性质,解有关求值、解(证)方程(等式)或不等式,讨论参数的取值范围等问题;(2) 通过建立函数式或构造中间函数把所要研究的问题转化为相应的函数模型,由所构造的函数的性质、结论得出问题的解.由于函数在高中数学中的举足轻重的地位,因而函数与方程的思想一直是高考考查的重点,对基本初等函数的图象及性质要牢固掌握,另外函数与方程的思想在解析几何、立体几何、数列等知识中的广泛应用也要重视.一、函数思想的应用1.显化函数关系在方程、不等式、数列、圆锥曲线等数学问题中,将原有隐含的函数关系凸显出来,从而利用函数知识或函数方法解决问题.【例1】已知,,若点在线段上,则的最大值为()(2,5)A (4,1)B (,)P x y AB 2x y -A.−1B.3C.7D.8【分析】本题是解析几何问题,由所在直线方程可得x 与y 的函数关系,转化为函数求值域的问题。
函数与方程思想、数形结合思想

较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A-B=
________.
思想概述· 应用点拨
热点聚焦· 题型突破
归纳总结· 思维升华
解析
f(x),f(x)≥g(x), H1(x)=max{f(x),g(x)}= g(x),f(x)<g(x).
f(x),f(x)≤g(x), H2(x)=min{f(x),g(x)}= g(x),f(x)>g(x).
思想概述· 应用点拨
热点聚焦· 题型突破
归纳总结· 思维升华
1 因为-1≤sin x≤1,所以当 sin x=2时, 1 函数有最大值 f(x)max=a+ , 4 当 sin x=-1 时,函数有最小值 f(x)min=a-2. 17 因为 1≤f(x)≤ 对一切 x∈R 恒成立, 4 17 所以 f(x)max≤ 且 f(x)min≥1, 4 1 17 a+ ≤ , 4 4 解得 3≤a≤4, 即 a-2≥1, 所以 a 的取值范围是[3,4].
的对称性:画出函数的图象,可从图象的分布情况看图象的对称
性.③比较函数值的大小:对于比较没有解析式的函数值大小,可 结合函数的性质,画出函数的草图,结合图象比较大小.
思想概述· 应用点拨 热点聚焦· 题型突破 归纳总结· 思维升华
[微题型2] 运用数形结合思想解决不等式中的问题
【例 2-2】 若不等式 9-x2≤k(x+2)- 2的解集为区间[a,b], 且 b-a=2,则 k=________.
2
(2)根据点到直线的距离公式和①式知,点 E,F 到 AB 的距离分别为 |x1+2kx1-2| 2(1+2k+ 1+4k2) h1= = , 2 5 5(1+4k ) |x2+2kx2-2| 2(1+2k- 1+4k2) h2= = . 2 5 5(1+4k )
函数与方程的思想

函数与方程的思想函数思想就是用运动、变化的观点分析和研究现实中的数量关系,通过问题所提供的数量特征及关系建立函数关系式,然后运用有关的函数知识解决问题。
如果问题中的变量关系可以用解析式表示出来,则可把关系式看作一个方程,通过对方程的分析使问题获解。
所谓方程的思想,就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略,它是解决各类计算问题的基本思想,是运算能力的基础。
函数与方程思想是中学数学中最常用、最重要的数学思想。
中考函数试题解法及新颖题目研究函数是初中代数的重点,也是难点,在中考的代数部分所占比重最大,综合题中离不开函数内容。
中考函数考察的重点是:函数自变量取值范围,正反比例函数、一次函数、二次函数的定义和性质,画函数图像,求函数表达式。
近年来中考比较侧重实际应用问题的考察。
中考的最后一道题,常常要用到多个数学思想方法,纵观近几年的中考题,基本上都是函数、方程、几何(主要是圆)的综合题。
1.初中函数知识网络2.命题思路与知识要点:2.1一般函数2.1.1考查要点:平面直角坐标系的有关概念;常量、变量、函数的意义;函数自变量的取值范围和函数值的意义及确定。
2.1.2考纲要求:理解平面直角坐标系的有关概念,掌握各象限及坐标轴上的点的坐标特征,会求对称点坐标,能确定函数自变量的取值范围。
2.1.3主要题型:填空题,选择题,阅读理解题。
2.1.4知识要点:(1)平面直角坐标系中,每一个点都与有序实数对一一对应;象限与坐标符号如图1。
(2)特殊位置上点的坐标特点:①点P(x ,y)在xy=0; 点P(x ,y)在y ; ②点P(x ,y)x=y ; 点P(x ,y)③点P(x ,y)关于x 轴对称的点的坐标是(x ,-y);点P(x ,y)关于y 轴对称的点的坐标是(-x ,y); 点P(x ,y)关于原点对称的点的坐标是(-x ,-y);确定函数自变量取值范围,就是要找出使函数有意义的自变量的全部取值。
方程和函数思想

方程和函数思想1.方程和函数思想的概念。
方程和函数是初等数学代数领域的主要内容,也是解决实际问题的重要工具,它们都能够用来描述现实世界的各种数量关系,而且它们之间有着密切的联系,所以,本文将二者放在一起实行讨论。
(1)方程思想。
含有未知数的等式叫方程。
判断一个式子是不是方程,只需要同时满足两个条件:一个是含有未知数,另一个是必须是等式。
如有些小学老师经常有疑问的判断题:χ=0 和χ=1是不是方程?根据方程的定义,他们满足方程的条件,都是方程。
方程按照未知数的个数和未知数的最高次数,能够分为一元一次方程、一元二次方程、二元一次方程、三元一次方程等等,这些都是初等数学代数领域中最基本的内容。
方程思想的核心是将问题中的未知量用数字以外的数学符号(常用χ、y等字母)表示,根据相关数量之间的相等关系构建方程模型。
方程思想体现了已知与未知的对立统一。
(2)函数思想。
设集合A、B是两个非空的数集,如果按照某种确定的对应关系ƒ,如果对于集合A中的任意一个数χ,在集合B中都有唯一确定的数y和它对应,那么就称y是χ的函数,记作y=ƒ(χ)。
其中χ叫做自变量,χ的取值范围A叫做函数的定义域;y叫做函数或因变量,与χ相对应的y的值叫做函数值,y的取值范围B叫做值域。
以上函数的定义是从初等数学的角度出发的,自变量只有一个,与之对应的函数值也是唯一的。
这样的函数研究的是两个变量之间的对应关系,一个变量的取值发生了变化,另一个变量的取值也相对应发生变化,中学里学习的正比例函数、一次函数、二次函数、幂函数、指数函数、对数函数和三角函数都是这类函数。
实际上现实生活中还有很多情况是一个变量会随着几个变量的变化而相对应地变化,这样的函数是多元函数。
虽然在中小学里不学习多元函数,但实际上它是存有的,如圆柱的体积与底面半径r和圆柱的高的关系:V=πr ²h。
半径和高有一对取值,体积就会相对应地有一个取值;也就是说,体积随着半径和高的变化而变化。
第7讲-方程与函数思想在初中数学中的应用

第7讲:函数与方程思想【写在前面】方程是研究数量关系的重要工具,在处理生活中实际问题时,根据已知与未知量之间的联系及相等关系建立方程或方程组,从而使问题获得解决的思想方法称为方程思想.而函数的思想是用运动、变化的观点,研究具体问题中的数量关系,再用函数的形式把变量之间的关系表示出来.函数与方程思想在中学数学中有着广泛的应用,也是中考必考的内容. 【典型例题】【例1】 如图:在△ABC 中,BA=BC=20 cm ,AC=30 cm ,点P 从点A 出发,沿AB 以每秒4 cm 的速度向点B 运动;同时Q 点从C 点出发,沿CA 以每秒3 cm 的速度向点A 运动.设运动的时间为x 秒.(1)当x 为何值时,PQ ∥BC? (2)△APQ 能否与△CQB 相似?(3)若能.求出AP 的长;若不能.请说明理由.【解】(1)根据题意AP=4xcm ,AQ=A C -QC=(30-30x)cm ,若PQ ∥BC ,则AP AQAB AC=. 则43032030x x -=,解得103x =.所以当103x =s 时,PQ ∥BC . (2)因为∠A=∠C ,所以当AP AQ CQ CB =或AP AQCB CQ=时,△APQ 能与△CQB 棚以. ①当AP AQCQ CB=时,4303320x x x -=,解得109x =. ②当AP AQCB CQ=时,4303203x x x -=,解得x 1=5,x 2=-10(舍去).所以AP=4x=20. 所以当409AP =cm 或20 cm 时,△APQ 与△CQB 相似. 【解题反思】由相似三角形的对应边成比例,可列出分式方程,从而求解;在已知一个角对应相等的前提下考虑两个三角形相似时,有两种情况,不可遗漏.【例2】某企业投资100万元引进一条农产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万元,该生产线投产后,从第1年到第x 年的维修、保养费用累计为y(万元),且y=a x 2+bx ,若第1年的维修、保养费为2万元,第2年的维修、保养费为4万元. (1)求y 的解析式; (2)投产后,这个企业在第几年就能收回投资? 【解】 (1)由题意,把x=1时,y=2和x=2时,y=2+4=6,代入y=a x 2+bx ,得2426a b a b +=⎧⎨+=⎩,解得11a b =⎧⎨=⎩,所以y=x 2+x (2)设y ′=33x -100-x 2-x ,则y ′=-x 2+32x -100=-(x -16) 2+156.由于当1≤x ≤16时,y ′随x 的增大而增大,且当x=1、2、3时,y ′的值均小于0,当x=4时,y ′=-12 2+156>0,已知投产后该企业在第4年就能收回成本. 【解题反思】用函数思想解决实际问题,要关注自变量与函数之间的关系,注意:本题中的y 是从第1年到第x 年的维修、保养费用总和.【例3】某村响应党中央“减轻农民负担,提高农民生活水平”的号召,该村实行合作医疗制度,村委会规定:(一)每位村民年初交纳合作医疗基金a 元;(二)村民个人当年治疗花费的医疗费(以医院的收据为准),年底按下列办法处理.设一位村民当年治疗花费的医疗费用为x 元,他个人实际承担的医疗费用(包括医疗费中个人承担的部分和缴纳的合作医疗基金)为y 元.(1)当0≤x ≤b 时,y=________;当b<x ≤5000时,y=_______(用含a 、b 、c 、x 的代数式表示) (2)下表是该村3位村民2008年治疗花费的医疗费和个人实际承担的费用,根据表格中的数据,求a 、b 、c 的值;写出y 与x 之间的函数关系式;并计算村民个人一年最多承担医疗费为多少元.(3)下表是小强同学一家2006年治疗花费的医疗费用:请你帮助小强计算参加合作医疗保险后村集体为他们家所承担的费用.【解】(1)a a+(x-b)c%(2)假设b≤40,则()()()4030(1)9050(2)15080(3) a b ca b ca b c+-=⎧⎪+-=⎨⎪+-=⎩②-①得,c=40,③-②得,c=50,结果矛盾,∴b>40,这样①不成立,应为a=30,代入②和③中,解得c=50,b=50.∴当0≤x≤50时,y=30;当50<x≤5000时,y=30+(x-50)50%=0.5x+5;当x>5000时,y=2505,∴村民个人一年最多承担医疗费为2505元;(3)全家医药费合计200+100+10+30+20=360,个人应该承担的药费之和(0.5×200+5)+(0.5×100+5)+30+30+30=250,集体为他们家承担的药费360-250=110(元).【解题反思】本题的关键是确定a的范围,这里采用了反证法来说明b>40.【综合训练】1.如果关于x的方程3211axx x=-+-无解,则a的值为__________.2.如图,已知矩形ABCD中,E是AD上一点,F是AB上一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32 cm,求AE的长.3.如图,△ABC中,AC=4,AB=5,D是线段AC上一点(点D不与点A重合,可与点C重合),E是线段AB上一点,且∠ADE=∠B.设AD=x,BE=y.(1)写出y与x之间的函数关系式;(2)写出y的取值范围.4.如图,某农场要用总长24 m的木栏建一个长方形的养鸡场,鸡场的一边靠墙(墙长12m),且中间隔有一道木栏,设鸡场的宽AB为xm,面积为S m2;(1)求S关于x的函数关系式;(2)若鸡场的面积为45 m2,试求出鸡场的宽AB的长;(3)鸡场的面积能否达到50 m2?若能,请给出设计方案;若不能,请说明理由.5.某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油油箱余油量为Q2吨,加油时间为t分钟,Q1、Q2与t之间的函数关系如图所示,结合图象回答下列问题:(1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需多少分钟?(2)求加油过程中,运输飞机的余油量Q1(吨)与时间t(分钟)的函数关系式;(3)运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?说明理由.6.近几年我省高速公路的建设有了较大的发展,有力的促进了我省的经济建设,正在修建中的某段高速公路要招标,现有甲、乙两个工程队,若甲、乙两队合作,24天可以完成,需费用120万元;若甲队单独做20天后,剩下的工程由乙队做,还需40天才能完成,这样需要费用110万元.问:(1)甲、乙两队单独完成此项工程,各需多少天?(2)甲、乙两队单独完成此项工程,各需要费用多少万元?7.已知,关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1、x2(其中x1<x2),若y是关于m的函数,且y=x2-2x1,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当m满足什么条件时,y≤-m+3?8.已知:△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,若关于x 的方程x 2-2(b+c)x+2bc+a 2=0有两个相等的实数根,且△ABC 的面积为8,a = (1)试判断△ABC 的形状并求b 、c 的长;(2)若点P 为线段AB 边上的一个动点,PQ ∥AC 交BC 于点Q ,以PQ 为一边作正方形PQMN ,使得点B 与线段MN 不在线段PQ 的同侧,设正方形PQMN 与△ABC 的公共部分的面积为S ,BP 的长为x .①试写出S 与x 之间的函数关系式; ②当P 点运动到何处时,S 的值为3.9.(02镇江)已知抛物线y=a x 2+bx+c 经过A(-1,0),B(3,0),C(0,3)三点. (1)求此抛物线的解析式和顶点M 的坐标,并在给定的直角坐标系中画出这条抛物线. (2)若点(x 0,y 0)在抛物线上,且0≤x 0≤4,试写出y 0的取值范围.(3)设平行于y 轴的直线x=t 交线段BM 于点P(点P 能与点M 重合,不能与点B 重合),交x 轴于点Q ,四边形AQPC 的面积为S .①求S 关于t 的函数关系式以及自变量t 的取值范围.②求S 取得最大值时,点P 的坐标.③设四边形OBMC 的面积为S ′,判断是否存在点P ,使得S=S ′. 若存在,求出点P 的坐标,若不存在,请说明理由.10.已知动点P(2m -1,-2m+3)和反比例函数ky x=(k<0). (1)若对一切实数m ,动点P 始终在一条直线l 上,试求l 的解析式.(2)设O 为坐标原点,直线l 与x 轴相交于点M ,与y 轴相交于点N ,与反比例函数的图象相交于A ,B 两点(点A 在第四象限).①证明:△OAM ≌△OBN ;②如果△AOB 的面积为6,求反比例函数解析式.【参考答案】1.2和3 2.6cm 3.(1)455y x =-+ (2)955y ≤< 4.(1)S=x(24-3x)=-3x 2+24x(x ≥4); (2)-3x 2+24x=45,解得:x 1=3(舍去),x 2=5,∴鸡场的宽AB 的长为5米.(3)-3x 2+24x=50,3x 2-24x+50=0,△=242-4×3×50<0∴此方程无实数解,∴鸡场的面积不能达到50米2.5.(1)由图象知,加油飞机的加油油箱中装载了30吨的油,全部加给运输飞机需10分钟. (2)设Q 1=kt+b ,则406910b k b =⎧⎨=+⎩, 2.940k b =⎧∴⎨=⎩,∴Q=2.9t+40(0≤t ≤10).(3)根据图象可知运输飞机的耗油量为每分钟0.1吨,∴10小时的耗油量为10×60×0.1=60(吨)<69(吨),∴油料够用.6.(1)30 120 (2)135 607.(1)△=(3m+2) 2-4×m ×(2m+2)=m 2+4m+4=(m+2) 2m>0,∴ (m+2) 2>0,即A>0,∴方程有两个不相等的实数根.(2)x 1=1,222x m =+,∴ 2122y x x m=-=. (3)在直角坐标系中的第一象限内分别画出2y m=和y=-m+3的图象,观察图象得: 当1≤m ≤2时,y ≤-m+3.8.(1)△ABC 是等腰直角三角形,b=c=4;(2)①当0<x ≤2时,S=x 2;当2<x ≤4时,S=-x 2+4x 3. 9.(1)y=-x 2+2x+3,M(1,4),图略. (2)-5≤y 0≤4 (3)①29322t S t =-++(1≤t<3) ②9342⎛⎫ ⎪⎝⎭, ③不存在.15'2S =,若S=S ′, 则29315222t t -++=,整理得29602t t -+=.812404∆=-<,∴此方程没有实数根,∴不存在点P ,使得S=S ′.10.(1)设l :y=k ′x+b ,当m=0时,P 1 (-1,3),当m=1时,P 2(1,1),带入l :y=k ′x+b 得,3'1'k b k b =-+⎧⎨=+⎩,解得'12k b =-⎧⎨=⎩,∴l :y=-x+2,经检验满足条件.(2)①解方程组2k y xy x ⎧=⎪⎨⎪=-+⎩,得x 2-2x+k=0,解得1A x =1B x =1A y =1B y =OA =OB =.∴OA=OB ,∴∠OAB=∠OBA ;M(2,0),N(0,2),∴OM=ON ,∴∠OMN=∠ONM=45°,∴∠ONB=∠OMA=135°,∴△OA M ≌△OBN . ②26AOBMONAPMSSS=+=,又12222MO NS=⨯⨯=,2AOMS∴=,代入得:(1122⨯-⨯3=,∴k=-8,∴反比例函数的解析式为8y x=-.。
函数与方程思想和数形结合思想

函数与方程思想和数形结合思想主干知识整合1.函数与方程思想(1)函数思想的实质是抛开所研究对象的非数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立各变量之间固有的函数关系,通过函数形式,利用函数的有关性质,使问题得到解决;(2)方程思想的实质就是将所求的量设成未知数,用它表示问题中的其他各量,根据题中隐含的等量关系,列方程(组),通过解方程(组)或对方程(组)进行研究,以求得问题的解决;(3)函数与方程思想在一定的条件下是可以相互转化的,是相辅相成的,函数思想重在对问题进行动态的研究,方程思想则是在动中求静,研究运动中的等量关系.2.数形结合思想(1)根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,包含“以形助数”和“以数辅形”两个方面;(2)数形结合是数学解题中常用的思想方法,运用数形结合思想,使某些抽象的数学问题直观化、形象化,能够变抽象思维为形象思维,有助于把握数学问题的本质,发现解题思路,而且能避免复杂的计算与推理,大大简化了解题过程;(3)数形结合的重点是研究“以形助数”,这在解选择题、填空题中更显其优越,要注意培养这种思想意识,做到心中有图,见数想图,以开拓自己的思维视野. 【百度百科】函数思想/view/2045453.htm 【百度百科】属性结合/view/134322.htm 要点热点探究► 探究点一 列方程(组)解题例1 (1)公差不为零的等差数列{a n }的前n 项和为S n .若a 4是a 3与a 7的等比中项,S 8=32,则S 10等于( )A .18B .24C .60D .90(2)过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,若线段AB 的长为8,则p =________.【分析】 (1)根据数列中的基本量方法,列方程组求数列的首项和公差;(2)根据弦长公式建立关于p 的方程.(1)C (2)2 【解析】 (1)由a 24=a 3a 7得(a 1+3d )2=(a 1+2d )(a 1+6d ),得2a 1+3d =0,再由S 8=8a 1+562d =32得2a 1+7d =8,则d =2,a 1=-3,所以S 10=10a 1+902d =60.故选C.(2)设A (x 1,y 1),B (x 2,y 2),由题意可知过焦点的直线方程为y =x -p2,联立有⎩⎪⎨⎪⎧y 2=2px ,y =x -p 2,消元后得x 2-3px +p 24=0.又|AB |=x 1+x 2+p =8,解得p =2.► 探究点二 使用函数方法解决非函数问题例2 (1)已知{a n }是一个等差数列,且a 2=1,a 5=-5,则数列{a n }前n 项和S n 的最大值是________.(2)长度都为2的向量OA →,OB →的夹角为60°,点C 在以O 为圆心的圆弧AB (劣弧)上,OC →=mOA →+nOB →,则m +n 的最大值是________.【分析】 (1)根据方程思想求出数列的首项和公差,建立S n 关于n 的函数;(2)将向量坐标化,建立m +n 关于动向量OC →的函数关系.(1)4 (2)233 【解析】 (1)设{a n }的公差为d ,由已知条件,⎩⎪⎨⎪⎧a 1+d =1,a 1+4d =-5,解出a 1=3,d =-2.S n =na 1+n (n -1)2d =-n 2+4n =4-(n -2)2.所以n =2时,S n 取到最大值4.(2)建立平面直角坐标系,设向量OA →=(2,0),向量OB →=(1,3).设向量OC →=(2cos α,2sin α),0≤α≤π3.由OC →=mOA →+nOB →,得(2cos α,2sin α)=(2m +n ,3n ),即2cos α=2m +n,2sin α=3n ,解得m =cos α-13sin α,n =23sin α.故m +n =cos α+13sin α=233sin ⎝⎛⎭⎫α+π3≤233. 变式题若a >1,则双曲线x 2a 2-y 2(a +1)2=1的离心率e 的取值范围是( )A .(1,2)B .(2,5)C .[2,5]D .(3,5)B 【解析】 e 2=⎝⎛⎭⎫c a 2=a 2+(a +1)2a 2=1+⎝⎛⎭⎫1+1a 2,因为1a 是减函数,所以当a >1时,0<1a<1,所以2<e 2<5,即2<e < 5.► 探究点三 联用函数与方程的思想例3 已知函数f (x )=x (x -a )2,g (x )=-x 2+(a -1)x +a (其中a 为常数).(1)设a >0,问是否存在x 0∈⎝⎛⎭⎫-1,a3,使得f (x 0)>g (x 0)?若存在,请求出实数a 的取值范围,若不存在,请说明理由;(2)记函数H (x )=[f (x )-1]·[g (x )-1],若函数y =H (x )有5个不同的零点,求实数a 的取值范围.【解答】 (1)假设存在,即存在x 0∈⎝⎛⎭⎫-1,a3,使得, f (x 0)-g (x 0)=x 0(x 0-a )2-[-x 20+(a -1)x 0+a ]=x 0(x 0-a )2+(x 0-a )(x 0+1)=(x 0-a )[x 20+(1-a )x 0+1]>0,当x 0∈⎝⎛⎭⎫-1,a3时,又a >0,故x 0-a <0, 则存在x 0∈⎝⎛⎫-1,a 3,使得x 20+(1-a )x 0+1<0, ①当a -12>a 3即a >3时,⎝⎛⎭⎫a 32+(1-a )⎝⎛⎭⎫a 3+1<0得a >3或a <-32,∴a >3; ②当-1≤a -12≤a 3即0<a ≤3时,4-(a -1)24<0得a <-1或a >3,∴a 无解.综上:a >3.(2)据题意有f (x )-1=0有3个不同的实根,g (x )-1=0有2个不同的实根,且这5个实根两两不相等.(i)g (x )-1=0有2个不同的实根,只需满足g ⎝⎛⎭⎫a -12>1⇒a >1或a <-3; (ii)f (x )-1=0有3个不同的实根,①当a3>a 即a <0时,f (x )在x =a 处取得极大值,而f (a )=0,不符合题意,舍;②当a3=a 即a =0时,不符合题意,舍;③当a 3<a 即a >0时,f (x )在x =a3处取得极大值,f ⎝⎛⎭⎫a 3>1⇒a >3322;所以a >3322; 因为(i)(ii)要同时满足,故a >3322.(注:a >334也对)下证:这5个实根两两不相等,即证:不存在x 0使得f (x 0)-1=0和g (x 0)-1=0同时成立; 若存在x 0使得f (x 0)=g (x 0)=1, 由f (x 0)=g (x 0),即x 0(x 0-a )2=-x 20+(a -1)x 0+a ,得(x 0-a )(x 20-ax 0+x 0+1)=0,当x 0=a 时,f (x 0)=g (x 0)=0,不符合,舍去; 当x 0≠a 时,即有x 20-ax 0+x 0+1=0 ①;又由g (x 0)=1,即-x 20+(a -1)x 0+a =1 ②; 联立①②式,可得a =0;而当a =0时,H (x )=[f (x )-1]·[g (x )-1]=(x 3-1)(-x 2-x -1)=0没有5个不同的零点,故舍去,所以这5个实根两两不相等.综上,当a >3322时,函数y =H (x )有5个不同的零点.变式题函数f (x )=(2x -1)2,g (x )=ax 2(a >0),满足f (x )<g (x )的整数x 恰有4个,则实数a 的取值范围是________.⎝⎛⎦⎤4916,8125 【解析】 在同一坐标系内分别作出满足条件的函数f (x )=(2x -1)2,g (x )=ax 2的图象,则由两个函数的图象可知,y =f (x ),y =g (x )的图象在区间(0,1)内总有一个交点,令:h (x )=f (x )-g (x )=(4-a )x 2-4(2x -1)2<ax 2的解集中的整数解恰有4个,则需⎩⎪⎨⎪⎧ h (4)<0,h (5)≥0⇒⎩⎪⎨⎪⎧49-16a <0,81-25a ≥0⇒4916<a ≤8125.► 探究点四 以形助数探索解题思路例4 (1)不等式|x +3|-|x -1|≤a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( )A .(-∞,-1]∪[4,+∞)B .(-∞,-2]∪[5,+∞)C .[1,2]D .(-∞,1]∪[2,+∞)(2)已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A .⎝⎛⎭⎫14,-1B .⎝⎛⎭⎫14,1 C .(1,2) D .(1,-2) 【分析】 (1)把不等式的左端看作一个函数,问题等价于这个函数的最大值不大于不等式右端的代数式的值,通过画出函数图象找到这个函数的最大值即可;(2)画出抛物线,根据抛物线上的点到焦点的距离等于其到准线的距离,把问题归结为两点之间的距离.(1)A (2)A 【解析】 (1)f (x )=|x +3|-|x -1|=⎩⎪⎨⎪⎧-4(x <-3),2x +2(-3≤x <1),4(x >1).画出函数f (x )的图象,如图,可以看出函数f (x )的最大值为4,故只要a 2-3a ≥4即可,解得a ≤-1或a ≥4.正确选项为A.(2)点P 到抛物线焦点距离等于点P 到抛物线准线距离,如图,PF +PQ =PS +PQ ,故最小值在S ,P ,Q 三点共线时取得,此时P ,Q 的纵坐标都是-1,代入y 2=4x 得x =14,故点P 坐标为⎝⎛⎭⎫14,-1,正确选项为A.► 探究点五 数量分析解决图形问题(以数助形)例5 (1)下列四个函数图象,只有一个是符合y =|k 1x +b 1|+|k 2x +b 2|-|k 3x +b 3|(其中k 1,k 2,k 3为正实数,b 1,b 2,b 3为非零实数)的图象,则根据你所判断的图象,k 1,k 2,k 3之间一定成立的关系是( )图22-1A.k1+k2=k3B.k1=k2=k3 C.k1+k2>k3D.k1+k2<k3(2)“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到达终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……,用S1,S2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是()图22-2【分析】(1)含有绝对值问题的函数,常去绝对值,转化为分段函数来解决;(2)乌龟的速度是恒定的,表现在时间和路程的图象上是直线上升的,这个过程没有变化;兔子的速度也是恒定的,表现在时间与路程的图象上也是直线上升的,并且比乌龟的时间和路程的图象上升的要快,但中间一段时间内,函数图象是水平的.(1)A(2)B【解析】(1)当x足够小时,y=-(k1+k2-k3)x-(b1+b2-b3),当x足够大时,y=(k1+k2-k3)x+(b1+b2-b3),可见,折线的两端的斜率必定为相反数,此时只有③符合条件.此时k1+k2-k3=0.(2)根据时间和路程的关系以及乌龟首先达到目的地,故选B.规律技巧提炼1.在高中数学的各个部分,都有一些公式和定理,这些公式和定理本身就是一个方程,如等差数列的通项公式、余弦定理、解析几何的弦长公式等,当试题与这些问题有关时,就需要根据这些公式或者定理列方程或方程组求解需要的量.2.当问题中涉及一些变化的量时,就需要建立这些变化的量之间的关系,通过变量之间的关系探究问题的答案,这就需要使用函数思想.3.在数学中函数的图象、方程的曲线、不等式所表示的平面区域、向量的几何意义、复数的几何意义等都实现以形助数的途径,当试题中涉及这些问题的数量关系时,我们可以通过形分析这些数量关系,达到解题的目的.4.有些图形问题,单纯从图形上无法看出问题的结论,这就要对图形进行数量上的分析,通过数的帮助达到解题的目的.。
高中数学基本数学思想:函数与方程思想在数列中的应用

高中数学基本数学思想:函数与方程思想在数列中的应用函数思想和方程思想是学习数列的两大精髓.“从基本量出发,知三求二.”这是方程思想的体现.而“将数列看成一种特殊的函数,等差、等比数列的通项公式和前n项和公式都是关于n的函数.”则蕴含了数列中的函数思想.借助有关函数、方程的性质来解决数列问题,常能起到化难为易的功效。
以下是小编给大家带来的方程思想在数列上的应用,仅供考生阅读。
函数与方程思想在数列中的应用(含具体案例)本文列举几例分类剖析:一、方程思想1.知三求二等差(或等比)数列{an}的通项公式,前n项和公式集中了等差(或等比)数列的五个基本元素a1、d(或q)、n、an、Sn.“知三求二”是等差(或等比)数列最基本的题型,通过解方程的方法达到解决问题的目的.例1等差数列{an}的前n项和为Sn,已知a10=30,a20=50,(1)求数列{an}的通项公式;(2)若Sn=242,求n的值.解(1)由a10=a1+9d=30,a20=a1+19d=50,解得a1=12,因为n∈N*,所以n=11.2.转化为基本量在等差(等比)数列中,如果求得a1和d(q),那么其它的量立即可得.例2在等比数列{an}中,已知a6―a4=24,a3a5=64,求{an}的前8项的和S8.解a6―a4=a1q3(q2―1)=24.(1)由a3a5=(a1q3)2=64,得a1q3=±8.将a1q3=―8代入(1),得q2=―2(舍去);将a1q3=8代入(1),得q=±2.当q=2时,a1=1,S8=255;当q=―2时,a1=―1,S8=85.3.加减消元法利用Sn求an利用Sn求an是求通项公式的一种重要方法,其实这种方法就是方程思想中加减消元法的运用.例3(2011年佛山二模)已知数列{an}、{bn}中,对任何正整数n都有:a1b1+a2b2+a3b3+…+an―1bn―1+anbn=(n―1)?2n+1.若数列{bn}是首项为1、公比为2的等比数列,求数列{an}的通项公式.解将等式左边看成Sn,令Sn=a1b1+a2b2+a3b3+…+an―1bn―1+anbn.依题意Sn=(n―1)?2n+1,(1)又构造Sn―1=a1b1+a2b2+a3b3+…+an―1bn―1=(n―2)?2n―1+1,(2)两式相减可得Sn―Sn―1=an?bn=n?2n―1(n≥2).又因为数列{bn}的通项公式为bn=2n―1,所以an=n (n≥2).当n=1,由题设式子可得a1=1,符合an=n.从而对一切n∈N*,都有an=n.所以数列{an}的通项公式是an=n.4.等差、等比的综合问题这一类的综合问题往往还是回归到数列的基本量去建立方程组.例4设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列,求数列{an}的通项公式.解根据求和定义和等差中项建立关于a1,a2,a3的方程组.由已知得a1+a2+a3=7,(a1+3)+(a3+4)2=3a2.解得a2=2.设数列{an}的公比为q,由a2=2,可得a1=2q,a3=2q.又S3=7,可知2q+2+2q=7,即2q2―5q+2=0,解得q1=2,q2=12.由题意得q>1,所以q=2.可得a1=1,从而数列{an}的通项为an=2n―1.二、函数思想数列是一类定义在正整数或它的有限子集上的特殊函数.可见,任何数列问题都蕴含着函数的本质及意义,具有函数的一些固有特征.如一次、二次函数的性质、函数的单调性、周期性等在数列中有广泛的应用.如等差数列{an}的通项公式an=a1+(n―1)d=dn+(a1―d),前n项和的公式Sn=na1+n(n―1)2d=d2n2+(a1―d2)n,当d≠0时,可以看作自变量n的一次和二次函数.因此我们在解决数列问题时,应充分利用函数有关知识,以它的概念、图象、性质为纽带,架起函数与数列间的桥梁,揭示了它们间的内在联系,从而有效地分解数列问题.1.运用函数解析式解数列问题在等差数列中,Sn是关于n的二次函数,故可用研究二次函数的方法进行解题.例5等差数列{an}的前n项的和为Sn,且S10=100,S100=10,求S110,并求出当n为何值时Sn有最大值.分析显然公差d≠0,所以Sn是n的二次函数且无常数项.解设Sn=an2+bn(a≠0),则a×102+b×10=100,a×1002+b×100=10.解得a=―11100,b=11110.所以Sn=―11100n2+11110n.从而S110=―11100×1102+11110×110=―110.函数Sn=―11100n2+11110n的对称轴为n=111102×11100=55211=50211.因为n∈N*,所以n=50时Sn有最大值.2.利用函数单调性解数列问题通过构造函数,求导判断函数的单调性,从而证明数列的单调性.例6已知数列{an}中an=ln(1+n)n (n≥2),求证an>an+1.解设f(x)=ln(1+x)x(x≥2),则f ′(x)=x1+x―ln(1+x)x2. 因为x≥2,所以x1+x<1,ln(1+x)>1,所以f ′(x)<0.即f(x)在[2,+∞)上是单调减函数.故当n≥2时,an>an+1.例7已知数列{an}是公差为1的等差数列,bn=1+anan.(1)若a1=―52,求数列{bn}中的最大项和最小项的值;(2)若对任意的n∈N*,都有bn≤b8成立,求a1的取值范围.(1)分析最大、最小是函数的一个特征,一般可以从研究函数的单调性入手,用来研究函数最大值或最小值的方法同样适用于研究数列的最大项或最小项.解由题设易得an=n―72,所以bn=2n―52n―7.由bn=2n―52n―7=1+22n―7,可考察函数f(x)=1+22x―7的单调性.当x<72时,f(x)为减函数,且f(x)<1;当x>72时,f(x)为减函数,且f(x)>1.所以数列{bn}的最大项为b4=3,最小项为b3=―1.(2)分析由于对任意的n∈N*,都有bn≤b8成立,本题实际上就是求数列{bn}中的最大项.由于bn=1+1n―1+a1,故可以考察函数f(x)=1+1x―1+a1的形态.解由题,得an=n―1+a1,所以bn=1+1n―1+a1.考察函数f(x)=1+1x―1+a1,当x<1―a1时,f(x)为减函数,且f(x)<1;当x>1―a1时,f(x)为减函数,且f(x)>1.所以要使b8是最大项,当且仅当7<1―a1<8,所以a1的取值范围是―73.利用函数周期性解数列问题例8数列{an}中a1=a2=1,a3=2,anan+1an+2an+3=an+an+1+an+2+an+3且anan+1an+2≠1成立.试求S100=a1+a2+…+a100的值.分析从递推式不易直接求通项,观察前几项a1=1,a2=1,a3=2,a4=4,a5=1,a6=1,a7=2,a8=4,a9=1,…可猜测该数列是以4为周期的周期数列.解由已知两式相减得通过上述实例的分析与说明,我们可以发现,在数列的教学中,应重视方程函数思想的渗透,应该把函数概念、图象、性质有机地融入到数列中,通过数列与函数知识的相互交汇,使学生的知识网络得以不断优化与完善,同时也使学生的思维能力得以不断发展与提高.高中数学思想方法介绍,高中数学解题思想方法与讲解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
数学四大思想:函数与方程、转化与化归、分类讨论、数形结合

数学四大思想:函数与方程、转化与化归、分类讨论、数形结合数学四大思想:函数与方程、转化与化归、分类讨论、数形结合;函数与方程函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。
方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。
有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。
笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。
宇宙世界,充斥着等式和不等式。
我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。
而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。
可以说,函数的研究离不开方程。
列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。
函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。
它体现了“联系和变化”的辩证唯物主义观点。
一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。
在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。
对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。
另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。
我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。
高中数学 函数与方程思想

g(1)=1,又
g(1e)=e13+3,g(e)=e3-3,
且 g(1)<g(e), e
故函数 g(x)=x3-3lnx 在 x∈[1,e]上的最大值为 g(e)=e3-3,故函数 g(x)=x3-3lnx 在 e
区间[1,e]上的值域为[1,e3-3]. e
则有 1≤a+1≤e3-3,则有 0≤a≤e3-4,
2
66
4
∵f(π)=π-cosπ=π, 2 4 24
∴在区间(-π,7π)上有且只有一个实数 x=π满足 f(x)=π.
66
2
4
当 x≤-π时,有 1x≤- π ,-cosx≤1,
6
2 12
∴x≤-π时,f(x)=1x-cosx≤- π +1<π,
6
2
12 4
由此可得当 x≤π时,f(x)=π没有实数根.
所以有 x≤-y,故选 B.
规律总结
函数与方程思想在不等式问题中的应用要点
1.在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,然后利 用函数的最值解决问题.
2.要注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函 数关系,使问题更明朗化.一般地,已知范围的量为变量,而待求范围的量为参数.
1.已知函数 f(x)=1x-cosx,则方程 f(x)=π所有根的和为( C )
2
4
A.0
B.π 4
C.π 2
D.3π 2
[解析] ∵f(x)=1x-cosx,∴f ′(x)=1+sinx.
2
2
当 x∈(-π,7π)时, 66
∵sinx>-1,∴f ′(x)=1+sinx>0,
高中数学七大数学基本思想方法

高中数学七大数学基本思想方法(一)第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用。
(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础。
考把函数与方程思想作为七种重要思想方法重点来考查。
第二:数形结合思想(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系,形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化。
第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法。
(2)从具体出发,选取适当的分类。
(3)划分只是手段,分类研究才是目的。
(4)有分有合,先分后合,是分类整合思想的本质属性。
(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性。
第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决题化归为已解决问题。
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法。
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化。
第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识。
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论。
(3)由特殊到一般,再由一般到特殊的反复认识过程。
(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程。
(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题方向。
第六:有限与无限的思想(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路。
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向。
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用。
函数与方程思想

3 a 2 + 5 a= 1 , b 0 — 3 b + 5 b= 5 ,贝 0 a+ 6=
、 v / 2 + 1 ) ; 对 于第三题 . 利 用 函数 与
方程 的思想 . 把 二次 方程的根 的 问
f ( x ) 看 做 二元 方 程 y - f ( x ) : 0 , 函数 与
E ■ ■ - 辩 L U N F u x l 岱 A ^ M 窒 i — j 霹 , 》 强 大 重 要 思 想
,
F . 克莱因( F . Kl e i n ) 有一句 名言 : “ 一 般受教育者在数学课上应该学会的重要事情 是用变量和 函
数来思考 . ” 函数思想 , 就是用变量和函数来思考 问题 , 就是通过建立 函数关 系或构造 函数 , 再利用 函
表示 的图 形是 ( )
3 2 + 5 X = ( X 一 1 ) + 2 ( 一 1 ) + 3 , 则有 n ) =
1 , f ( b ) = 5 .Y . - g ( t ) : + 2 z 在R上是 单
调 递 增 的奇 函数 , 且 譬( 0 —1 ) : 一 2,
( 1 ) 由a > 0及 l < 2< 2 < 4, 可 得
同 学们 可 能 会 先进 行 一 些式 子 的 变 形, 然 后 发 现 其后 的运 算较 为 复 杂 ,
于 是 便 无 从 下 手 了 .如 果 我 们 用 函
{ g ( 2 ) < 0 , 即f 4 a + 2 一 < 0 , 所以
数的图象和性质去分析 问题 、 转化 问题 , 从而使问题获得解决 . 方程的思想 , 是分析数学 问题 中变量 间的等量关系 , 从而建立 方程 或方程组 , 通过解方程或 方程组 , 或者运用方 程的性质去分析 、 转化 问 题, 使 问题获得解决.函数与方程是两个不同的概念 , 但 它们之间又有着密切的联系 .函数与方程 的 思想方法 , 几乎渗透到中学数学的各个领域 , 在 解题 中有着广泛的运用 .
函数与方程思想

函数与方程思想[思想方法解读] 1.函数与方程思想的含义(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的思想方法.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的思想方法.2.函数与方程思想在解题中的应用(1)函数与不等式的相互转化,对函数y =f (x ),当y >0时,就化为不等式f (x )>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n 项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)解析几何中的许多问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论.(4)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决,建立空间直角坐标系后,立体几何与函数的关系更加密切.体验高考1.(2015·湖南)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a ,若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是________. 答案 (-∞,0)∪(1,+∞) 解析 函数g (x )有两个零点, 即方程f (x )-b =0有两个不等实根, 则函数y =f (x )和y =b 的图象有两个公共点. ①若a <0,则当x ≤a 时,f (x )=x 3,函数单调递增; 当x >a 时,f (x )=x 2,函数先单调递减后单调递增,f (x )的图象如图(1)实线部分所示,其与直线y =b 可能有两个公共点. ②若0≤a ≤1,则a 3≤a 2,函数f (x )在R 上单调递增,f (x )的图象如图(2)实线部分所示,其与直线y =b 至多有一个公共点. ③若a >1,则a 3>a 2,函数f (x )在R 上不单调,f (x )的图象如图(3)实线部分所示,其与直线y =b 可能有两个公共点. 综上,a <0或a >1.2.(2015·安徽)设x 3+ax +b =0,其中a ,b 均为实数,下列条件中,使得该三次方程仅有一个实根的是________(写出所有正确条件的编号). ①a =-3,b =-3;②a =-3,b =2;③a =-3,b >2; ④a =0,b =2;⑤a =1,b =2. 答案 ①③④⑤解析 令f (x )=x 3+ax +b ,f ′(x )=3x 2+a ,当a ≥0时,f ′(x )≥0,f (x )单调递增,必有一个实根,④⑤正确;当a <0时,由于选项当中a =-3,∴只考虑a =-3这一种情况,f ′(x )=3x 2-3=3(x +1)(x -1),∴f (x )极大=f (-1)=-1+3+b =b +2,f (x )极小=f (1)=1-3+b =b -2,要有一根,f (x )极大<0或f (x )极小>0,∴b <-2或b >2,①③正确,②错误.所有正确条件为①③④⑤.3.(2016·课标全国甲)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则 i =1m(x i +y i )等于( )A.0B.mC.2mD.4m答案 B解析 方法一 特殊函数法,根据f (-x )=2-f (x )可设函数f (x )=x +1,由y =x +1x,解得两个点的坐标为⎩⎪⎨⎪⎧x 1=-1,y 1=0⎩⎪⎨⎪⎧x 2=1,y 2=2此时m =2,所以∑i =1m (x i +y i )=m ,故选B. 方法二 由题设得12(f (x )+f (-x ))=1,点(x ,f (x ))与点(-x ,f (-x ))关于点(0,1)对称,则y=f (x )的图象关于点(0,1)对称.又y =x +1x =1+1x,x ≠0的图象也关于点(0,1)对称.则交点(x 1,y 1),(x 2,y 2),…,(x m ,y m )成对,且关于点(0,1)对称. 则∑i =1m(x i ,y i )=∑i =1mx i +∑i =1my i =0+m2×2=m ,故选B.高考必会题型题型一 利用函数与方程思想解决图象交点或方程根等问题例1 (2016·天津)已知函数f (x )=⎩⎪⎨⎪⎧x 2+(4a -3)x +3a ,x <0,log a (x +1)+1,x ≥0(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2-x 恰有两个不相等的实数解,则a 的取值范围是( ) A.⎝⎛⎦⎤0,23 B.⎣⎡⎦⎤23,34 C.⎣⎡⎦⎤13,23∪⎩⎨⎧⎭⎬⎫34 D.⎣⎡⎭⎫13,23∪⎩⎨⎧⎭⎬⎫34答案 C解析 由y =log a (x +1)+1在[0,+∞)上递减,得0<a <1. 又由f (x )在R 上单调递减,则⎩⎪⎨⎪⎧02+(4a -3)·0+3a ≥f (0)=1,3-4a 2≥0⇒13≤a ≤34.如图所示,在同一坐标系中作出函数y =|f (x )|和y =2-x 的图象.由图象可知,在[0,+∞)上,|f (x )|=2-x 有且仅有一个解. 故在(-∞,0)上,|f (x )|=2-x 同样有且仅有一个解.当3a >2,即a >23时,由x 2+(4a -3)x +3a =2-x (其中x <0),得x 2+(4a -2)x +3a -2=0(其中x <0),则Δ=(4a -2)2-4(3a -2)=0, 解得a =34或a =1(舍去);当1≤3a ≤2,即13≤a ≤23时,由图象可知,符合条件.综上所述,a ∈⎣⎡⎦⎤13,23∪⎩⎨⎧⎭⎬⎫34.故选C.点评 函数图象的交点、函数零点、方程的根三者之间可互相转化,解题的宗旨就是函数与方程的思想.方程的根可转化为函数零点、函数图象的交点,反之函数零点、函数图象的交点个数问题也可转化为方程根的问题.变式训练1 已知定义在R 上的函数f (x )满足:f (x )=⎩⎪⎨⎪⎧x 2+2,x ∈[0,1),2-x 2,x ∈[-1,0),且f (x +2)=f (x ),g (x )=2x +5x +2,则方程f (x )=g (x )在区间[-5,1]上的所有实根之和为( )A.-5B.-6C.-7D.-8 答案 C解析 g (x )=2x +5x +2=2(x +2)+1x +2=2+1x +2,由题意知函数f (x )的周期为2,则函数f (x ),g (x )在区间[-5,1]上的图象如图所示:由图象知f (x )、g (x )有三个交点,故方程f (x )=g (x )在x ∈[-5,1]上有三个根x A 、x B 、x C ,x B =-3,x A +x C2=-2,x A +x C =-4,∴x A +x B +x C =-7.题型二 函数与方程思想在不等式中的应用例2 定义域为R 的可导函数y =f (x )的导函数为f ′(x ),满足f (x )>f ′(x ),且f (0)=1,则不等式f (x )ex <1的解集为( )A.(-∞,0)B.(0,+∞)C.(-∞,2)D.(2,+∞) 答案 B解析 构造函数g (x )=f (x )e x ,则g ′(x )=e x ·f ′(x )-e x ·f (x )(e x )2=f ′(x )-f (x )e x .由题意得g ′(x )<0恒成立,所以函数g (x )=f (x )e x 在R 上单调递减.又g (0)=f (0)e 0=1,所以f (x )e x <1,即g (x )<1,所以x >0,所以不等式的解集为(0,+∞).故选B. 点评 不等式恒成立问题的处理方法在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题.同时要注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更明朗化.一般地,已知存在范围的量为变量,而待求范围的量为参数.变式训练2 已知f (x )=log 2x ,x ∈[2,16],对于函数f (x )值域内的任意实数m ,则使x 2+mx +4>2m +4x 恒成立的实数x 的取值范围为( ) A.(-∞,-2]B.[2,+∞)C.(-∞,-2]∪[2,+∞)D.(-∞,-2)∪(2,+∞)答案 D解析 ∵x ∈[2,16],∴f (x )=log 2x ∈[1,4], 即m ∈[1,4].不等式x 2+mx +4>2m +4x 恒成立, 即为m (x -2)+(x -2)2>0恒成立, 设g (m )=(x -2)m +(x -2)2, 则此函数在[1,4]上恒大于0,所以⎩⎪⎨⎪⎧ g (1)>0,g (4)>0,即⎩⎪⎨⎪⎧x -2+(x -2)2>0,4(x -2)+(x -2)2>0,解得x <-2或x >2.题型三 函数与方程思想在数列中的应用例3 已知数列{a n }是首项为2,各项均为正数的等差数列,a 2,a 3,a 4+1成等比数列,设b n =1S n +1+1S n +2+…+1S 2n (其中S n 是数列{a n }的前n 项和),若对任意n ∈N *,不等式b n ≤k 恒成立,求实数k 的最小值. 解 因为a 1=2,a 23=a 2·(a 4+1), 又因为{a n }是正项等差数列,故d ≥0, 所以(2+2d )2=(2+d )(3+3d ), 得d =2或d =-1(舍去), 所以数列{a n }的通项公式a n =2n . 因为S n =n (n +1),b n =1S n +1+1S n +2+…+1S 2n=1(n +1)(n +2)+1(n +2)(n +3)+…+12n (2n +1)=1n +1-1n +2+1n +2-1n +3+…+12n -12n +1=1n +1-12n +1=n 2n 2+3n +1=12n +1n+3.令f (x )=2x +1x(x ≥1),则f ′(x )=2-1x 2,当x ≥1时,f ′(x )>0恒成立,所以f (x )在[1,+∞)上是增函数, 故当x =1时,f (x )min =f (1)=3, 即当n =1时,(b n )max =16,要使对任意的正整数n ,不等式b n ≤k 恒成立, 则须使k ≥(b n )max =16,所以实数k 的最小值为16.点评 数列问题函数(方程)化法数列问题函数(方程)化法与形式结构函数(方程)化法类似,但要注意数列问题中n 的取值范围为正整数,涉及的函数具有离散性特点,其一般解题步骤为: 第一步:分析数列式子的结构特征.第二步:根据结构特征构造“特征”函数(方程),转化问题形式.第三步:研究函数性质.结合解决问题的需要,研究函数(方程)的相关性质,主要涉及函数单调性与最值、值域问题的研究.第四步:回归问题.结合对函数(方程)相关性质的研究,回归问题.变式训练3 设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A.S n 的最大值是S 8B.S n 的最小值是S 8C.S n 的最大值是S 7D.S n 的最小值是S 7答案 D解析 由条件得S n n <S n +1n +1,即n (a 1+a n )2n <(n +1)(a 1+a n +1)2(n +1),所以a n <a n +1,所以等差数列{a n }为递增数列.又a 8a 7<-1,所以a 8>0,a 7<0,即数列{a n }前7项均小于0,第8项大于零,所以S n 的最小值为S 7,故选D.题型四 函数与方程思想在解析几何中的应用例4 椭圆C 的中心为坐标原点O ,焦点在y 轴上,短轴长为2,离心率为22,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP →=3PB →. (1)求椭圆C 的方程; (2)求m 的取值范围.解 (1)设椭圆C 的方程为y 2a 2+x 2b 2=1 (a >b >0),设c >0,c 2=a 2-b 2,由题意,知2b =2,c a =22,所以a =1,b =c =22.故椭圆C 的方程为y 2+x 212=1,即y 2+2x 2=1. (2)①当直线l 的斜率不存在时,也满足AP →=3PB →,此时m =±12.②当直线l 的斜率存在时,设直线l 的方程为y =kx +m (k ≠0),l 与椭圆C 的交点坐标为A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,2x 2+y 2=1,得(k 2+2)x 2+2kmx +(m 2-1)=0, Δ=(2km )2-4(k 2+2)(m 2-1)=4(k 2-2m 2+2)>0,(*) x 1+x 2=-2km k 2+2,x 1x 2=m 2-1k 2+2.因为AP →=3PB →,所以-x 1=3x 2,所以⎩⎪⎨⎪⎧x 1+x 2=-2x 2,x 1x 2=-3x 22.则3(x 1+x 2)2+4x 1x 2=0, 即3·⎝ ⎛⎭⎪⎫-2km k 2+22+4·m 2-1k 2+2=0, 整理得4k 2m 2+2m 2-k 2-2=0, 即k 2(4m 2-1)+2m 2-2=0, 当m 2=14时,上式不成立;当m 2≠14时,k 2=2-2m 24m 2-1, 由(*)式,得k 2>2m 2-2,又k ≠0, 所以k 2=2-2m 24m 2-1>0,解得-1<m <-12或12<m <1,综上,所求m 的取值范围为⎝⎛⎦⎤-1,-12∪⎣⎡⎭⎫12,1. 点评 利用判别式法研究圆锥曲线中的范围问题的步骤 第一步:联立方程. 第二步:求解判别式Δ.第三步:代换.利用题设条件和圆锥曲线的几何性质,得到所求目标参数和判别式不等式中的参数的一个等量关系,将其代换.第四步:下结论.将上述等量代换式代入Δ>0或Δ≥0中,即可求出目标参数的取值范围. 第五步:回顾反思.在研究直线与圆锥曲线的位置关系问题时,无论题目中有没有涉及求参数的取值范围,都不能忽视了判别式对某些量的制约,这是求解这类问题的关键环节. 变式训练4 已知点F 1(-c ,0),F 2(c ,0)为椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,点P 为椭圆上一点,且PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是____________. 答案 ⎣⎡⎦⎤33,22解析 设P (x ,y ),则PF 1→·PF 2→=(-c -x ,-y )·(c -x ,-y ) =x 2-c 2+y 2=c 2,①将y 2=b 2-b 2a 2x 2代入①式解得 x 2=(2c 2-b 2)a 2c 2=(3c 2-a 2)a 2c 2, 又x 2∈[0,a 2],∴2c 2≤a 2≤3c 2, ∴e =c a ∈⎣⎡⎦⎤33,22.高考题型精练1.关于x 的方程3x =a 2+2a ,在(-∞,1]上有解,则实数a 的取值范围是( ) A.[-2,-1)∪(0,1] B.[-3,-2)∪[0,1] C.[-3,-2)∪(0,1] D.[-2,-1)∪[0,1]答案 C解析 当x ∈(-∞,1]时,3x ∈(0,3],要使3x =a 2+2a 有解,a 2+2a 的值域必须为(0,3], 即0<a 2+2a ≤3,解不等式可得-3≤a <-2或0<a ≤1,故选C.2.设函数f (x )=e x (x 3-3x +3)-a e x -x ,若不等式f (x )≤0有解,则实数a 的最小值为( ) A.2e -1 B.2-2e C.1+2e 2 D.1-1e 答案 D解析 因为f (x )≤0有解,所以f (x )=e x (x 3-3x +3)-a e x -x ≤0,a ≥x 3-3x +3-xe x =F (x ),F ′(x )=3x 2-3+x -1e x =(x -1)(3x +3+e -x ),令G (x )=3x +3+e -x ,G ′(x )=3-e -x ,3-e -x =0, x =-ln 3,G (x )最小值G (-ln 3)=6-3ln 3>0, F (x )在(-∞,1)上递减,在(1,+∞)上递增, F (x )的最小值为F (1)=1-1e ,所以a ≥1-1e ,故选D.3.已知f (x )=x 2-4x +4,f 1(x )=f (x ),f 2(x )=f (f 1(x )),…,f n (x )=f (f n -1(x )),函数y =f n (x )的零点个数记为a n ,则a n 等于( ) A.2n B.2n -1 C.2n +1 D.2n 或2n -1 答案 B解析 f 1(x )=x 2-4x +4=(x -2)2,有1个零点2,由f 2(x )=0可得f 1(x )=2,则x =2+2或x =2-2,即y =f 2(x )有2个零点,由f 3(x )=0可得f 2(x )=2-2或2+2,则(x -2)2=2-2或(x -2)2=2+2,即y =f 3(x )有4个零点,以此类推可知,y =f n (x )的零点个数a n =2n -1.故选B.4.已知函数f (x )=ln x -14x +34x -1,g (x )=-x 2+2bx -4,若对任意x 1∈(0,2),x 2∈[1,2],不等式f (x 1)≥g (x 2)恒成立,则实数b 的取值范围为____________. 答案 ⎝⎛⎦⎤-∞,142解析 问题等价于f (x )min ≥g (x )max . f (x )=ln x -14x +34x-1,所以f ′(x )=1x -14-34x 2=4x -x 2-34x 2,令f ′(x )>0得x 2-4x +3<0,解得1<x <3,故函数f (x )的单调递增区间是(1,3),单调递减区间是(0,1)和(3,+∞),故在区间(0,2)上,x =1是函数的极小值点,这个极小值点是唯一的,故也是最小值点,所以f (x )min =f (1)=-12.由于函数g (x )=-x 2+2bx -4,x ∈[1,2].当b <1时,g (x )max =g (1)=2b -5; 当1≤b ≤2时;g (x )max =g (b )=b 2-4; 当b >2时,g (x )max =g (2)=4b -8. 故问题等价于⎩⎪⎨⎪⎧ b <1,-12≥2b -5或⎩⎪⎨⎪⎧ 1≤b ≤2,-12≥b 2-4或⎩⎪⎨⎪⎧b >2,-12≥4b -8. 解第一个不等式组得b <1,解第二个不等式组得1≤b ≤142,第三个不等式组无解. 综上所述,b 的取值范围是⎝⎛⎦⎤-∞,142. 5.满足条件AB =2,AC =2BC 的三角形ABC 的面积的最大值是________. 答案 2 2解析 可设BC =x ,则AC =2x , 根据面积公式得S △ABC =x 1-cos 2B , 由余弦定理计算得cos B =4-x 24x ,代入上式得S △ABC =x 1-(4-x 24x)2=128-(x 2-12)216.由⎩⎨⎧2x +x >2,x +2>2x ,得22-2<x <22+2.故当x =23时,S △ABC 有最大值2 2.6.已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________. 答案 [1,+∞)解析 以AB 为直径的圆的方程为x 2+(y -a )2=a ,由⎩⎪⎨⎪⎧y =x 2,x 2+(y -a )2=a , 得y 2+(1-2a )y +a 2-a =0.即(y -a )[y -(a -1)]=0,则由题意得⎩⎪⎨⎪⎧a >0,a -1≥0,解得a ≥1.7.设函数f (x )=ln x +ax -1(a 为常数).(1)若曲线y =f (x )在点(2,f (2))处的切线与x 轴平行,求实数a 的值; (2)若函数f (x )在(e ,+∞)内有极值,求实数a 的取值范围. 解 (1)函数f (x )的定义域为(0,1)∪(1,+∞),由f (x )=ln x +a x -1得f ′(x )=1x -a (x -1)2, 由于曲线y =f (x )在点(2,f (2))处的切线与x 轴平行,所以f ′(2)=0,即12-a (2-1)2=0, 所以a =12. (2)因为f ′(x )=1x -a (x -1)2=x 2-(2+a )x +1x (x -1)2, 若函数f (x )在(e ,+∞)内有极值,则函数y =f ′(x )在(e ,+∞)内有异号零点, 令φ(x )=x 2-(2+a )x +1.设x 2-(2+a )x +1=(x -α)(x -β),可知αβ=1, 不妨设β>α,则α∈(0,1),β∈(1,+∞), 若函数y =f ′(x )在(e ,+∞)内有异号零点, 即y =φ(x )在(e ,+∞)内有异号零点,所以β>e ,又φ(0)=1>0,所以φ(e)=e 2-(2+a )e +1<0,解得a >e +1e-2, 所以实数a 的取值范围是(e +1e-2,+∞). 8.已知f (x )=e x -ax -1.(1)求f (x )的单调增区间;(2)若f (x )在定义域R 内单调递增,求a 的取值范围. 解 (1)∵f (x )=e x -ax -1(x ∈R ),∴f ′(x )=e x -a .令f ′(x )≥0,得e x ≥a ,当a ≤0时,f ′(x )>0在R 上恒成立;当a >0时,有x ≥ln a .综上,当a ≤0时,f (x )的单调增区间为(-∞,+∞); 当a >0时,f (x )的单调增区间为(ln a ,+∞).(2)由(1)知f ′(x )=e x -a .∵f (x )在R 上单调递增,∴f ′(x )=e x -a ≥0恒成立,即a ≤e x 在R 上恒成立.∵当x ∈R 时,e x >0,∴a ≤0,即a 的取值范围是(-∞,0].9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程;(2)当△AMN 的面积为103时,求k 的值. 解 (1)由题意得⎩⎪⎨⎪⎧ a =2,c a =22,a 2=b 2+c 2,解得b = 2.所以椭圆C 的方程为x 24+y 22=1. (2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0. 设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2. 所以|MN |=(x 2-x 1)2+(y 2-y 1)2=(1+k 2)[(x 1+x 2)2-4x 1x 2] =2(1+k 2)(4+6k 2)1+2k 2. 又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k 2, 所以△AMN 的面积为S =12|MN |·d =|k |4+6k 21+2k 2. 由|k |4+6k 21+2k 2=103,解得k =±1. 所以k 的值为1或-1.10.已知等比数列{a n }满足2a 1+a 3=3a 2,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式.(2)若b n =a n +log 21a n,S n =b 1+b 2+…+b n ,求使S n -2n +1+47<0成立的正整数n 的最小值. 解 (1)设等比数列{a n }的首项为a 1,公比为q ,依题意,有⎩⎪⎨⎪⎧ 2a 1+a 3=3a 2,a 2+a 4=2(a 3+2), 即⎩⎪⎨⎪⎧a 1(2+q 2)=3a 1q , ①a 1(q +q 3)=2a 1q 2+4. ② 由①得q 2-3q +2=0,解得q =1或q =2.当q =1时,不合题意.舍去;当q =2时,代入②得a 1=2,所以a n =2×2n -1=2n .(2)b n =a n +log 21a n=2n +log 212n =2n -n . 所以S n =2-1+22-2+23-3+…+2n -n =(2+22+23+…+2n )-(1+2+3+…+n ) =2(1-2n )1-2-n (1+n )2=2n +1-2-12n -12n 2. 因为S n -2n +1+47<0,所以2n +1-2-12n -12n 2-2n +1+47<0, 即n 2+n -90>0,解得n >9或n <-10.因为n ∈N *,故使S n -2n +1+47<0成立的正整数n 的最小值为10.。
函数与方程的思想

函数与方程的思想1、专题概述函数思想,就是通过建立函数关系式或构造函数,运用函数的概念和性质等知识去分析、转化和解决问题。
这种思想方法在于揭示问题的数量关系的特征,重在对问题的变量的动态研究。
方程的思想,就是分析变量间的等量关系,通过构造方程,从而建立方程〔组〕或方程与不等式的混合组,或运用方程的性质去分析、转化问题,使问题得以解决。
方程的思想与函数的思想是密切相关的,方程0)(=x f 的解,就是函数)(x f y =的图像与x 轴的交点的横坐标,函数式)(x f y =也可以看作二元方程0)(=-x f y ;函数与不等式也可以相互转化,对于函数)(x f y =,当0>y 时,就化为不等式0)(>x f ,借助于函数的图像与性质可以解决不等式的有关问题,而研究函数的性态,也离不开不等式。
这种函数与方程、不等式之间的关系表达了“联系和变化〞的辩证唯物主义观点,应注意函数思想与方程思想是相辅相成的。
利用函数思想方法解决问题,要求我们必须深刻理解掌握初等图像与性质,以及函数与反函数、最值或值域、图像的变换、函数图像的交点个数,这是必备的基础。
因此,在解题中要善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。
运用函数思想解题具体表现在:〔1〕遇到变量,构造函数关系,利用函数沟通知识间的联系;〔2〕有关的不等式恒成立、方程根的个数及其一元二次方程根的分布、最值、值域之类的问题转化为函数问题;〔3〕含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系,使问题得以解决;〔4〕等差、等比数列中,通项公式、前n 项和公式都可以看成关于自然数n 的函数,因此数列问题可以用函数思想解决;〔5〕解析几何中的直线与直线、直线与二次曲线的位置关系问题,需要通过方程或方程组解决;〔6〕利用函数)()()(+∈+=N n b a x f n 用赋值法或比较系数法可以解决很多有关二项式定理的问题;〔7〕通过构造函数〔或建立函数关系〕,解决实际或应用问题。
高考数学解题思想:函数与方程思想

高考数学解题思想:函数与方程思想高考数学复习是有规律有内部联系的复习过程,在所有题型中一直串联着数学思想在里面,而不是单独的进行题海战术,做会一道题,完全把握解题思维好于单独做100道题。
数学网高考频道整理高考数学包蕴的六大数学思想,大题无外乎就这几类,吃透规律事半功倍。
高考数学解题思想:函数与方程思想函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。
利用转化思想我们还可进行函数与方程间的相互转化。
例3 若曲线y=2x+1与直线y=b没有公共点,则b的取值范畴是_____ ___。
分析:本题从方程的角度动身可直截了当作出方程y=2x+1的方程y=b 的图像,观看即可得出结论,也可将“曲线y=2x+1与直线y=b没有公共点”转化为判定方程b=2x+1何时无解的问题。
解:因为函数y=2x+1的值域为(1,+∞),因此当b≤1,即-1≤b≤1时,方程b=2x+1无解,即曲线y=2x+1与直线y=b没有公共点。
例4 设函数f(x)=log2(2x+1)的反函数为y=f-1(x),若关于x的方程f-1(x) =m+f(x)在[1,2]上有解,则实数m的取值范畴是。
分析:求出函数f(x)的反函数f-1(x)=log2(2x-1),可将方程转化为m=l og2(2x-1)-log2(2x+1),因此原问题转化为求函数y=log2(2x-1)-log2(2x+1),x ∈[1,2]的值域。
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
事实上“教谕”在明清时还有学官一意,即主管县一级的教育生员。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究提高 在解决不等式恒成立问题时, 一种最重要的 思想方法就是构造适当的函数利用函数的图象和性质 解决问题.同时要注意在一个含多个变量的数学问题 中,需要确定合适的变量和参数,从而揭示函数关系, 使问题更明朗化,一般地,已知存在范围的量为变量, 而待求范围的量为参数.
题型四
函数与方程思想在解决优化问题中的应用
探究提高 研究此类含参数的三角、指数、对数等复杂 方程解的问题,通常有两种处理思路:一是分离参数构 建函数,将方程有解转化为求函数的值域;二是换元, 将复杂方程问题转化为熟悉的二次方程, 进而利用二次 方程解的分布情况构建不等式或构造函数加以解决.
1、求证3 4 5 有且仅有一解
x x x
第 1 讲 函数与方程思想
例1
已知 a,b,c∈R,a+b+c=0,a+bc-1=0,
求 a 的取值范围.
解 方法一 (方程思想):因为 b+c=-a,bc=1-a. 所以 b,c 是方程 x2+ax+1-a=0 的两根, 所以 Δ=a2-4(1-a)≥0,即 Δ=a2+4a-4≥0, 解得 a≥-2+2 2或 a≤-2-2 2.
x
4 x 4+a=-3 +3x,
4 4 x 令 f(x)=3 +3x,取 t=3 ,则 g(t)=t+ t , ∵g(t)在(0,2)上递减,在(2,+∞)上递增, 13 而 x>1,∴t>3,∴g(t)>g(3)= 3 ,
4 13 x ∴-3 +3x<- , 3
3、已知x 2 y 2, 求x 2 y 最小值
2 2
1 变式训练 3 求自然数 a 的最大值,使不等式 n+1 1 1 + +„+ >a-7 对一切自然数 n 都成立. n+2 3n+1
1 1 1 解 令 f(n)= + +„+ (n∈N). n+1 n+2 3n+1 对任意的 n∈N, 1 1 1 1 f(n+1)-f(n)= + + - 3n+2 3n+3 3n+4 n+1 2 = >0, 3(n+1)(3n+2)(3n+4) 所以 f(n)在 N 上是增函数. 13 又 f(1)= ,f(0)=1,对一切自然数 n,f(n)>a-7 都成立 12 的充要条件是 1>a-7, 所以 a<8,故所求自然数 a 的最大值是 7.
-1-a<0 即 1-a≥0
,∴-1<a≤1.故 a 的取值范围是(-1,1].
若关于 x 的方程 9x+(4+a)·x+4=0 有大于 1 的解, 3 则实数 a 的取值范围是( 25 A.a<- 3 13 C.a<- 3 ) B.a≤-8 D.a≤-4
• [答案] A
[解析]
由原方程得
解
四、能力提升
3.若函数f ( x) 2ax x 1恰
2
有一个零点, 求a的取值范围;
变式:
若函数f ( x) 2ax x 1在
2
(0,1)上恰有一个零点, 求a的 取值范围;
四、能力提升
2
3.若函数f ( x) 2ax 2 x 3 a, a R
在区间 -1,1 有零点, 求a的取值范围;
答案 (-∞,-1)
考题分析
【例5】
对于满足0≤p≤4的所有实数p,使不等式 x2+px>4x+p-3成立的x的取值范围是______。 【分析】按照一般思路,易把不等式当作关于x的二 次不等式来解.若变换主元,把不等式看成关于p的一 次不等式来解则简单得多.
x 0或x 1
已知二次函数f ( x ) ax bx c和一次
2、已知 tan 2 x 2 x m 0 ,
3
tan 3 y 3 3 y m 0 , 求 log2 ( 2 x 3 y 8 )的值
题型三 例3
函数与方程思想在不等式问题中的应用 已知 f(t)=log2t,t∈[ 2,8],对+4x 恒成立,求 x 的取值范围.
方法二 (看成不等式的解集)∵a,b 为正数, ∴a+b≥2 ab,又 ab=a+b+3,∴ab≥2 ab+3. 即( ab)2-2 ab-3≥0, 解得 ab≥3 或 ab≤-1(舍去),∴ab≥9. ∴ab 的取值范围是[9,+∞). 方法三 若设 ab=t,则 a+b=t-3, ∴a,b 可看成方程 x2-(t-3)x+t=0 的两个正根. Δ=(t-3)2-4t≥0 t≤1或t≥9 从而有a+b=t-3>0 ,即t>3 , t>0 ab=t>0 解得 t≥9,即 ab≥9.∴ab 的取值范围是[9,+∞).
方法二
(函数思想) 1+c 2 可令 f(c)= -c=-2+(1-c)+ , 1-c 1-c 2 当 1-c>0 时,f(c)≥-2+2 (1-c) =-2+2 2; 1-c 当 1-c<0 时, 2 f(c)≤-2-2 (c-1) =-2-2 2. c-1 所以 a 的范围是 a≥-2+2 2或 a≤-2-2 2.
4.函数与方程的思想在解题中的应用 (1)函数与不等式的相互转化,对函数 y=f(x),当 y>0 时,就化为不等式 f(x)>0,借助于函数的图象和性质可 解决有关问题,而研究函数的性质也离不开不等式. (2)数列的通项与前 n 项和是自变量为正整数的函数, 用函数的观点去处理数列问题十分重要. (3)解析几何中的许多问题,需要通过解二元方程组才 能解决.这都涉及二次方程与二次函数的有关理论. (4)立体几何中有关线段、角、面积、体积的计算,经 常需要运用列方程或建立函数表达式的方法加以解 决,建立空间直角坐标系后,立体几何与函数的关系 更加密切.
变式训练 1 若 a、b 是正数,且满足 ab=a+b+3,求 ab 的取值范围. 解 方法一 (看成函数的值域)∵ab=a+b+3, ∴a≠1, a+3 a+3 ∴b= ,而 b>0,∴ >0, a-1 a-1 即 a>1 或 a<-3,又 a>0, ∴a>1,故 a-1>0. a+3 (a-1)2+5(a-1)+4 ∴ab=a· = a-1 a-1 4 =(a-1)+ +5≥9. a-1 4 当且仅当 a-1= ,即 a=3 时取等号. a-1 4 又 a>3 时,(a-1)+ +5 是关于 a 的单调增函数. a-1 ∴ab 的取值范围是[9,+∞).
求 a 的取值范围. 思维启迪 可分离变量为 a=-cos2x+sin x,转化为确
定的相关函数的值域. 解 方法一 把方程变形为 a=-cos2x+sin x. π 2 设 f(x)=-cos x+sin x(x∈(0, ]). 2 显然当且仅当 a 属于 f(x)的值域时,a=f(x)有解. 12 5 2 ∵f(x)=-(1-sin x)+sin x=(sin x+ ) - , 2 4 π 且由 x∈(0, ]知 sin x∈(0,1]. 2 易求得 f(x)的值域为(-1,1]. 故 a 的取值范围是(-1,1].
13 25 即 4+a<- ,∴a<- . 3 3
变式训练 2 已知函数 f(x)=2cos2x+cos x-1,g(x)= cos2x+a(cos x+1)-cos x-3.若 y=f(x)与 y=g(x)的图 象在(0,π)内至少有一个公共点.试求 a 的取值范围.
y=f(x)与 y=g(x)的图象在区间(0,π)内至少有一个 y=f(x) 公共点,即 有解,即令 f(x)=g(x), y=g(x) cos2x+a(1+cos x)-cos x-3=2cos2x+cos x-1, a(1+cos x)=(cos x+1)2+1, ∵x∈(0,π),∴0<1+cos x<2, 1 ∴a=1+cos x+ ≥2. 1+cos x 1 当且仅当 1+cos x= , cos x=0 时“=”成立. 即 1+cos x ∴当 a≥2 时, y=f(x)与 y=g(x)所组成的方程组在(0, π) 内有解,即 y=f(x)与 y=g(x)的图象至少有一个公共点.
例 4 三棱锥 S—ABC, SA=x, 其余的所有棱长均为 1, 它的体积为 V. (1)求 V=f(x)的解析表达式,并求此函数的定义域; (2)当 x 为何值时,V 有最大值?并求此最大值. 思维启迪
作出底面 ABC 的垂面,把原三棱锥看作以
2.方程的思想 在解决问题时,用事先设定的未知数沟通问题中所 涉及的各量间的等量关系,建立方程或方程组,求 出未知数及各量的值,或者用方程的性质去分析、 转化问题,使问题获得解决. 3.函数的思想与方程的思想的关系 在中学数学中,很多函数的问题需要用方程的知识 和方法来支持,很多方程的问题需要用函数的知识 和方法去解决.对于函数 y=f(x),当 y=0 时,就转 化为方程 f(x)=0,也可以把函数 y=f(x)看作二元方 程 y-f(x)=0,函数与方程可相互转化.
2
函数g( x ) -bx,其中a , b, c满足a b c , a b c 0, a , b, c R (1)求证两函数的图像交于不同的两点A, B (2)求线段AB在横轴上的射影A1 B1的长的 取值范围
题型二 例2
函数与方程思想在方程问题中的应用 π 2 如果方程 cos x-sin x+a=0 在(0, ]上有解, 2
由 f(mx)+mf(x)<0 在 x∈[1,+∞)上恒成立知, mx[2m2x2-(1+m2)]<0 在 x∈[1,+∞)上恒成立. ∴m≠0. 当 m<0 时,只要 2m2x2-(1+m2)>0 恒成立, 1+m2 即 x2> , 2m2 1+m2 ∵x∈[1,+∞),∴ <1, 2m2 ∴m2>1,∴m<-1. 当 m>0 时,只要 2m2x2-(1+m2)<0 恒成立, 1+m2 即 x2< . 2m2 1+m2 ∵x∈[1,+∞),∴x2< 不恒成立. 2m2 综上,实数 m 的取值范围为(-∞,-1).