2018年海南省高考文科数学试题及答案
【高三数学试题精选】2018年海南省高考数学试题(文科)
2018年海南省高考数学试题(文科)
c 绝密*启用前
24题为选考题,考生根据要求作答。
二.填空题本大题共4小题,每小题5分。
(13)曲线=x(3lnx+1)在点(1,1)处的切线方程为________
(14)等比数列{an}的前n项和为Sn,若S3+3S2=0,则比q=_______
(15)已知向量a,b夹角为45° ,且|a|=1,|2a-b|=10,则|b|=
(16)设函数f(x)=(x+1)2+sinxx2+1的最大值为,最小值为,则+=____
三、解答题解答应写出字说明,证明过程或演算步骤。
(17)(本小题满分12分)
已知a,b,c分别为△ABc三个内角A,B,c的对边,c = 3asinc -ccsA
(1)求A
(2)若a=2,△ABc的面积为3,求b,c
18(本小题满分12分)
某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。
如果当天卖不完,剩下的玫瑰花做垃圾处理。
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润(单位元)关于当天需求量n(单位枝,n∈N)的函数解析式。
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位枝),整理得下表
日需求量n14151617181920
频数10201816151310
(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位元)的平均数;
(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的。
【试题】海南省2018届高三第二次联合考试数学文试题含Word版含解析
【关键字】试题2018届海南省高三年级第二次联合考试数学(文科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】由,知,,故选B.2. 已知复数在复平面内对应的点在第二象限,则整数的取值为()A. 0B. 1C. 2D. 3【答案】C【解析】复数在复平面内对应的点在第二象限,则,解得, 则整数.故选C.3. 设向量,,若向量与同向,则()A. 0B. -2C.D. 2【答案】D【解析】因为,,且向量与同向,所以,所以,解得,故选D.4. 等差数列的前项和为,,且,则的公差()A. 1B. 2C. 3D. 4【答案】A【解析】由等差数列性质知,则.所以.故选A.5. 某几何体的三视图如图所示,其中俯视图中的圆的半径为2,则该几何体的体积为()A. B. 296 C. D. 512【答案】C【解析】由三视图可知,该几何体是一个正方体挖去一个圆柱所得的组合体,其中正方体的棱长为8,圆柱的底面半径为2,高为6,则该几何体的体积为:.本题选择C选项.点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.6. 将函数的图象向右平移个单位长度后得到的图象,则()A. B.C. D.【答案】D【解析】由函数图像的平移性质可知,平移后函数的解析式为:.本题选择D选项.7. 设,满足约束条件,则的最小值是()A. 0B. -1C. -2D. -3【答案】C【解析】如图做出不等式对应的平面区域,由图可知,平移直线。
当直线经过点A(0,2)时,z有最小值-2.故选C.点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意前面的系数为负时,截距越大,值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.8. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层公有灯多少?”现有类似问题:一座5层塔共挂了242盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的底层公有灯()A. 162盏B. 114盏C. 112盏D. 81盏【答案】A【解析】由题意,每层塔所挂灯数,构成以为公比的等比数列,设塔底所挂灯数为,则,解得,故选A.9. 执行如图所示的程序框图,则输出的()A. 17B. 33C. 65D. 129【答案】C【解析】执行程序框图得:;,结束循环输出.故选C.10. 在平面直角坐标系中,双曲线:的一条渐近线与圆相切,则的离心率为()A. B. C. D.【答案】B【解析】双曲线的渐近线为,与圆相切的只可能是,由,得,所以,,故.故选B.点睛:本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程,得到a,c的关系式是解得的关键,对于双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,转化为a,c的齐次式,然后转化为关于ee的方程(不等式),解方程(不等式),即可得e (e 的取值范围).11. 在侦破某一起案件时,警方要从甲、乙、丙、丁四名可疑人员中查出真正的嫌疑人,现有四条明确信息:(1)此案是两人共同作案;(2)若甲参与此案,则丙一定没参与;(3)若乙参与此案,则丁一定参与;(4)若丙没参与此案,则丁也一定没参与.据此可以判断参与此案的两名嫌疑人是()A. 甲、乙B. 乙、丙C. 甲、丁D. 丙、丁【答案】D【解析】若甲乙参加此案,则不符合(3);若乙丙参加此案,则不符合(3);若甲丁参加此案,则不符合(4);当丙丁参加此案,全部符合.故选D.12. 已知为偶函数,对任意,恒成立,且当时,.设函数,则的零点的个数为()A. 6B. 7C. 8D. 9【答案】C【解析】由为偶函数,对任意,恒成立,知,所以函数的周期,又知,所以函数关于对称,当时,做出其图象.并做关于的对称图象,得到函数在一个周期上的图象,其值域为,令,得,在同一直角坐标系内作函数在上的图象,由图象可知共有8个交点,所以函数的零点的个数为8个.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡中的横线上.13. 已知函数,则__________.【答案】1【解析】根据解析式,,故填1.14. 若一个长、宽、高分别为4,3,2的长方体的每个顶点都在球的表面上,则此球的表面积为__________.【答案】【解析】因为长方体的顶点都在球上,所以长方体为球的内接长方体,其体对角线为球的直径,所以球的表面积为,故填.15. 若是函数的极值点,则实数__________.【答案】【解析】因为,且是函数的极值点,所以,解得.16. 已知是抛物线:的焦点,是上一点,直线交直线于点.若,则__________.【答案】8【解析】如图,记直线与y轴的交点为N,过点P作与M,因为,所以,所以又因为,所以,故.故答案为:8.点睛:求解解析几何中的问题,包括几何法和代数法,如几何法经常涉及圆锥曲线的定义和比较明显的平面几何的定理和性质,所以做题时要充分考虑这些定义来进行转化,比如椭圆和双曲线定义涉及两条焦半径,所以给出,就联想 ,抛物线有,就联想到准线的距离................三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 的内角,,所对的边分别为,,.已知,且.(1)求角;(2)若,且的面积为,求的周长.【答案】(1)(2)15【解析】试题分析:(1)由两角和的余弦展开可得,又,所以,可得,从而得解;(2)由正弦定理可得,由面积公式可得,解得,,由余弦定理可得,从而得周长.试题解析:解:(1)由,得.∵,∴,∴,∴.(2)∵,∴,又的面积为,∴,∴,∴,.由余弦定理得,∴.故的周长为.18. 如图,在四棱锥中,底面为平行四边形,,,且底面.(1)证明:平面;(2)若为的中点,求三棱锥的体积.【答案】(1)见解析(2)【解析】试题分析:(1)先证明,再说明,根据底面,可得,即可证出;(2)因为三棱锥的体积与三棱锥的体积相等,可转化为求三棱锥的体积,再换顶点为Q,并利用Q是中点转化为求解即可.试题解析:(1)证明:∵,∴,∵,∴.又∵底面,∴.∵,∴平面.(2)三棱锥的体积与三棱锥的体积相等,而.所以三棱锥的体积.点睛:涉及几何体,特别是棱锥的体积计算问题,一般要进行转化,变换顶点后,有时还需要利用等底等高转换,还可以利用直线上的点为中点或三等分点再进行顶点变换,从而求出几何体的体积.19. 从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如下.(1)求频率分布直方图中的值并估计这50户用户的平均用电量;(2)若将用电量在区间内的用户记为类用户,标记为低用电家庭,用电量在区间内的用户记为类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,打分情况见茎叶图:①从类用户中任意抽取1户,求其打分超过85分的概率;②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有的把握认为“满意度与用电量高低有关”?满意不满意合计类用户类用户合计附表及公式:0.050 0.010 0.0013.841 6.635 10.828,.【答案】(1),186(2)没有【解析】试题分析:(1)由矩形面积和为1,求得,再由每一个矩形的中点横坐标乘以矩形面积求和可得平均值;(2)①类用户共9人,打分超过85分的有6人,则即为所求;(2)根据数据完成列联表,利用,计算查表下结论即可.试题解析:解:(1),按用电量从低到高的六组用户数分别为6,9,15,11,6,3,所以估计平均用电量为度. (2)①类用户共9人,打分超过85分的有6人,所以从类用户中任意抽取3户,恰好有2户打分超过85分的概率为.②满意不满意合计类用户 6 9 15类用户 6 3 9合计12 12 24因为的观测值,所以没有的把握认为“满意与否与用电量高低有关”.点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.20. 在平面直角坐标系中,设动点到坐标原点的距离与到轴的距离分别为,,且,记动点的轨迹为.(1)求的方程;(2)设过点的直线与相交于,两点,当的面积为1时,求.【答案】(1)(2)【解析】【试题分析】(1)设,利用,解方程,化简可得轨迹方程.(2)设出直线的方程,联立直线方程和椭圆方程,写出韦达定理,利用弦长公式和点到直线距离公式求得三角形面积的表达式,由此求得弦的值.【试题解析】解:(1)设,则,,则,故的方程为(或).(2)依题意当轴不合题意,故设直线:,设,,将代入,得,当,即时,,,从而,从点到直线的距离,所以的面积,整理得,即(满足),所以.【点睛】本小题主要考查动点轨迹方程的求法,考查椭圆有关三角形面积有关问题的求解.求解动点的轨迹方程,一般方法有定义法和代入法,本题中,给定动点满足的方程,故设出点的坐标后,分别用表示出,化简后可得到所求轨迹方程.注意验证是否所有的点都满足.21. 已知函数,.(1)若曲线与曲线在它们的交点处的公共切线为,求,,的值;(2)当时,若,,求的取值范围.【答案】(1),,.(2)【解析】试题分析:(1)设切点的横坐标为,根据切线斜率的几何意义求出,再利用切点为公共点代入两个函数,即可求出m,n,c;(2)根据不等式化简可分离参数得对恒成立,构造函数,求其最大值即可. 试题解析:(1)设它们的公共交点的横坐标为,则.,则,①;,则,②.由②得,由①得.将,代入得,∴,.(2)由,得,即对恒成立,令,则,其中对恒成立,∴在上单调递增,在上单调递减,,∴.故的取值范围是.点睛:涉及函数型不等式恒成立的问题,可转化后分离参数,将问题等价于求新函数的最值问题,一般要使用导数为工具,将构造的函数求导后分析其极值,从而得到函数的最值,即可求出参数的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔将所选题目对应的题号右侧方框涂黑,并且在解答过程中写清每问的小题号.22. [选修4-4:坐标系与参数方程]在平面直角坐标系中,曲线:,直线:,直线:,以坐标原点为极点,轴正半轴为极轴,建立极坐标系.(1)写出曲线的参数方程以及直线,的极坐标方程;(2)若直线与曲线分别交于,两点,直线与曲线分别交于,两点,求的面积.【答案】(1)见解析(2)【解析】试题分析:(1)将曲线化为标准方程,可得参数方程(为参数),直线,为过原点的直线,所以可得极坐标方程为:,:;(2)分别把和代入,得和,由可得解.试题解析:解:(1)依题意,曲线:,故曲线的参数方程是(为参数),因为直线:,直线:,故,的极坐标方程为:,:.(2)易知曲线的极坐标方程为,把代入,得,所以,把代入,得,所以,所以.23. [选修4-5:不等式选讲]设函数.(1)若不等式的解集为,求的值;(2)在(1)的条件下,若不等式恒成立,求的取值范围.【答案】(1)(2)【解析】试题分析:(1)由条件得,进而得,解得不等式对应解集为,即可得解;(2)不等式恒成立,只需,从而得解.试题解析:解:(1)因为,所以,所以,所以.因为不等式的解集为,所以,解得.(2)由(1)得.不等式恒成立,只需,所以,即,所以的取值范围是.此文档是由网络收集并进行重新排版整理.word可编辑版本!。
2018年高考真题——文科数学(全国卷)+Word版含答案
甘肃、青海、西藏、黑龙江、吉林、辽宁、宁夏、新疆、内蒙古、陕西、重庆绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x--=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>3A .2y x =±B .3y x =±C .2y x =D .3y =7.在ABC △中,cos 2C 1BC =,5AC =,则AB = A.BCD.8.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .1-B .2-CD 1-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
(完整版)2018年高考文科数学试题及答案,推荐文档
9.某圆柱的高为 2,底面周长为 16,其三视图如右图.圆柱表面上的点 M 在 正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则 在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度为
A. 2 17 C. 3 【答案】B
B. 2 5 D.2
-3-
【难度】容易 【点评】本题在高考数学(文)提高班讲座 第十一章《立体几何》中有详细讲解,在寒假特训班、百日
水量
频数
1
5Байду номын сангаас
13
10
16
(1)在答题卡上作出使用了节水龙头 50 天的日用水量数据的频率分布直方图:
0.5 ,0.6
5
(2)估计该家庭使用节水龙头后,日用水量小于 0.35 m3 的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 365 天计算,同一组中的数据以这 组数据所在区间中点的值作代表.) 【答案】 (1)
(2)由已知可得,DC=CM=AB=3,DA= 3 2 .
又 BP DQ 2 DA ,所以 BP 2 2 . 3
作 QE⊥AC,垂足为 E,则 QE
A
1 DC . 3
由已知及(1)可得 DC⊥平面 ABC,所以 QE⊥平面 ABC,QE=1.
因此,三棱锥 Q ABP 的体积为
VQ ABP
1 QE 3
x2 4.已知椭圆 C : a2
y2 4
1
的一个焦点为
(2
,0)
,则
C
的离心率为
1 A. 3
1 B. 2
2 C. 2
22 D. 3
【答案】C 【难度】容易
【点评】本题考查椭圆的相关知识。在高一数学强化提高班下学期课程讲座 2,第三章《圆锥曲线与方程》
2018年海南高考文科数学试卷(word版)
2018年普通高等学校招生全国统一考试文科数学(海南卷)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合,则 A. B. C. D.2. A. B. C. D.3.中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. B. C. D.4.若,则 A. B. C. D.5.若某群体中的成员只用只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3B.0.4C.0.6D.0.76.函数的最小正周期为 A. B. C. D.7.下列函数中,其图像y lnx =与函数的图像关于直线1x =对称的是()A.()1y ln x =-B.()2y ln x =-C.()1y ln x =+D.()2y ln x =+ 8.直线20x y ++=分别与x 轴,y 轴交于点,A B 两点,点P 在圆上则ABP ∆面积的取值范围是( ) A.[2,6] B .[4,8]C. D.⎡⎣ 9.函数的图像大致为() A. B. C. D. 10.已知双曲线(0,0)a b >>,则点(4,0)到C 的最近线的距离为( )B.2D.11.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若ABC ∆的面积为2224a b c +-则C =( ) A.2π B.3π C.4π D.6π 12.设,,,A B C D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为D ABC -体积的最大值为()A.B.C.D.此卷只装订不密封 班级姓名准考证号考场号座位号13、已知(1,2)a =,(2,2)b =-,(1,)b λ=,若(2)c a b +,则λ=。
2018年高考文科数学试题全国二卷真题_Word版含答案
绝密★启用前2018年普通高等学校招生全国统一考试(全国二卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =I A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>3A .2y x =±B .3y x =±C .2y = D .3y = 7.在ABC △中,5cos2C =1BC =,5AC =,则AB =A.BCD.8.为计算11111123499100S =-+-++-L ,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .2B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .1 B .2C D 112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=LA .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
2018年高考文科数学全国卷3(含答案与解析)
2018年高考文科数学全国卷3(含答案与解析)2018年普通高等学校招生全国统一考试课标全国卷III数学(文科)本试卷满分150分,考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合$A=\{x|x-1\geq0\}$,$B=\{0,1,2\}$,则$AB=$A。
$\emptyset$ B。
$\{1\}$ C。
$\{1,2\}$ D。
$\{0,1,2\}$2.$(1+i)(2-i)=$A。
$-3-i$ B。
$-3+i$ C。
$3-i$ D。
$3+i$3.中国古建筑借助榫卯将木构件连接起来。
构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头。
若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是ABCD4.若$\sin\alpha=\frac{1}{3}$,则$\cos2\alpha=$A。
$\frac{8}{9}$ B。
$\frac{7}{99}$ C。
$-\frac{7}{9}$ D。
$-\frac{8}{9}$5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A。
0.3 B。
0.4 C。
0.6 D。
0.76.函数$f(x)=\frac{\tan x}{1+\tan^2x}$的最小正周期为A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{2}$ C。
$\pi$ D。
$2\pi$7.下列函数中,其图象与函数$y=\ln x$的图象关于直线$x=1$对称的是A。
$y=\ln(1-x)$ B。
$y=\ln(2-x)$ C。
$y=\ln(1+x)$ D。
$y=\ln(2+x)$成任务的时间,得到以下数据:第一组:12.15.13.14.16.18.17.14.16.15.13.12.14.15.13.16.17.14.15.13第二组:16.17.14.18.15.16.13.14.15.16.17.15.14.16.15.17.15.16.18.141)分别计算两组工人完成任务的平均时间和标准差;2)根据以上数据,判断两种生产方式哪一种更有效,并说明理由.19.(12分)已知函数f(x)在区间[0,1]上连续,且f(0)=f(1)=0.证明:对于任意正整数n。
2018年高考真题全国3卷文科数学(附答案解析)
13.
2
【解析】
【分析】
由两向量共线的坐标关系计算即可.
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求 40 名工人完成生产任务所需时间的中位数 m ,并将完成生产任务所需时间超 过 m 和不超过 m 的工人数填入下面的列联表:
超过 m
不超过 m
第一种生产方式 第二种生产方式
(3)根据(2)中的列联表,能否有 99%的把握认为两种生产方式的效率有差异?
则 P (A ∪ B=) P (A) + P (B) + P (AB=) 1
= 因为 P (A) 0= .45, P (AB) 0.15
所以 P (B) = 0.4 ,
故选 B. 点睛:本题主要考查事件的基本关系和概率的计算,属于基础题. 6.C 【解析】 【详解】
分析:将函数
f
(
x
)
=
tanx 1+ tan2
Q= SVABC
= 3 AB2 9 3 4
∴AB = 6 , Q 点 M 为三角形 ABC 的中心 ∴BM = 2 BE = 2 3
3 ∴ RtVOMB 中,有 OM = OB2 − BM 2 = 2
∴DM = OD + OM = 4 + 2 = 6
( ) ∴ VD−ABC
= 1×9 max 3
3 × 6 = 18
分析:确定函数 y = lnx 过定点(1,0)关于 x=1 对称点,代入选项验证即可。
详解:函数 y = lnx 过定点(1,0),(1,0)关于 x=1 对称的点还是(1,0),只有=y ln (2 − x )
过此点。 故选项 B 正确 点睛:本题主要考查函数的对称性和函数的图像,属于中档题。 8.A 【解析】
【数学】2018高考真题——海南卷(文)(解析版)
故选:A.
8.为计算S=1﹣ + ﹣ +…+ ﹣ ,设计了如图的程序框图,则在空白框中应填入( )
A.i=i+1B.i=i+2C.i=i+3D.i=i+4
【答案】B
【解析】模拟程序框图的运行过程知,
该程序运行后输出的是S=N﹣T=(1﹣ )+( ﹣ )+…+( ﹣ );
则A(2,0,0),E(0,2,1),D(0,0,0),C(0,2,0),
=(﹣2,2,1), =(0,﹣2,0),
设异面直线AE与CD所成角为θ,
则cosθ= = = ,sinθ= = ,
∴tanθ= .
∴异面直线AE与CD所成角的正切值为 .故选:C.
10.若f(x)=cosx﹣sinx在[0,a]是减函数,则a的最大值是( )
则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)
=f(1)+f(2)=2+0=2,
故选:C.
二、填空题:本题共4小题,每小题5分,共20分.
13.曲线y=2lnx在点(1,0)处的切线方程为.
【答案】2x﹣2
【解析】∵y=2lnx,
2018年海南省高考数学试卷(文科)(新课标II)
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.i(2+3i)=( )
A.3﹣2iB.3+2iC.﹣3﹣2iD.﹣3+2i
2018年高考文科数学试卷及详解答案
如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:Zzz6ZB2Ltk
<I)BE=EC;
<II)AD·DE=2PB2。
【解读】
<1)
<2)
(23)<本小题满分10分)选修4-4:坐标系与参数方程
【答案】 3
【解读】
<16)数列 满足 = , =2,则 =_________.
【答案】
【解读】
(7)解答题:解答应写出文字说明过程或演算步骤。
(15)<本小题满分12分)
四边形ABCD的内角A与C互补,AB=1,BC=3, CD=DA=2.
(I>求C和BD;
(II>求四边形ABCD的面积。
【答案】 (1> (2>
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
<1)已知集合A=﹛-2,0,2﹜,B=﹛ | - - ﹜,则A B=
(A> <B) <C) (D>
【答案】B
所以,市民对甲、乙部门的评分大于90的概率分别为0.1,0.16
(20)<本小题满分12分)
设F1 ,F2分别是椭圆C: <a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N。LDAYtRyKfE
<I)若直线MN的斜率为 ,求C的离心率;
2018年普通高等学校招生全国统一考试(全国新课标Ⅰ卷) 文科数学试题及详解 精编精校版(适用地区
2018年普通高等学校招生全国统一考试(全国新课标1卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}02A =,,{}21012B =--,,,,,则A B =( ) A .{}02, B .{}12, C .{}0 D .{}21012--,,,, 1. 答案:A解答:{0,2}A B ⋂=,故选A.2.设1i2i 1iz -=++,则z =( )A .0B .12C .1D 2. 答案:C 解答:∵121iz i i i-=+=+,∴1z =,∴选C3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半3。
答案:A解答:由图可得,A 选项,设建设前经济收入为x ,种植收入为0.6x .建设后经济收入则为2x ,种植收入则为0.3720.74x x ⨯=,种植收入较之前增加.4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为( )A .13B .12C D4、答案:C解答:知2c =,∴2228a b c =+=,a =2e =5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .B .12πC .D .10π5. 答案:B解答:截面面积为8,所以高h =r =22212S πππ=⋅⋅+=.6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =6. 答案:D解答:∵()f x 为奇函数,∴()()f x f x -=-,即1a =,∴3()f x x x =+,∴'(0)1f =,∴切线方程为:y x =,∴选D.7.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC +7.答案:A解答:由题可知11131[()]22244EB EA AB AD AB AB AC AB AB AC =+=-+=-++=-.8.已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为48、答案:B解答:222()2cos (1cos )23cos 1f x x x x =--+=+, ∴最小正周期为π,最大值为4.9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .B .C .3D .29. 答案:B解答:三视图还原几何体为一圆柱,如图,将侧面展开,最短路径为,M N 连线的距离,所以MN == B.10.在长方体1111ABCD A BC D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( )A .8B .C .D .10. 答案:C 解答:连接1AC 和1BC ,∵1AC 与平面11BB C C 所成角为30,∴130AC B ∠=,∴11tan 30,ABBC BC ==,∴1CC =22V =⨯⨯= C.11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=( )A .15BCD .111.答案:B解答:由22cos22cos 13αα=-=可得222225cos 1cos 6sin cos tan 1ααααα===++,化简可得tan α=;当t a n α=时,可得1a =,2b =,即a =,b =此时a b -=;当tan α=时,仍有此结果.12.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,12.答案:D解答:取12x =-,则化为1()(1)2f f <-,满足,排除,A B ; 取1x =-,则化为(0)(2)f f <-,满足,排除C ,故选D .二、填空题:本题共4小题,每小题5分,共20分。
(完整版)2018年高考全国卷1文科数学试题及含答案(2),推荐文档
+ =2018 年普通高等学校招生全国统一考试文科数学注意事项:1. 答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 A = {0 ,2}, B = {-2 ,-,1,0, 1 2},则 A B =A .{0 ,2} z = 1 -i + 2iB .{1,2} z = C . {0} D .{-2 ,-,1,0, 1 2} 2. 设A .01 + i ,则1 B .2 C .1D . 3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半x 2 y 2 1 Ca 2 4 (2 ,0) C4. 已知椭圆 : 的一个焦点为 ,则 的离心率为22 2 1 1 2 2 2 A. 3B. 2C.2D. 35. 已知圆柱的上、下底面的中心分别为O 1 , O 2 ,过直线O 1O 2 的平面截该圆柱所得的截面是面积为 8 的正方形,则该圆柱的表面积为 A .12 2πB.2πC. 8 2πD.0πf (x )= x 3 + a - 1 x 2 + ax f (x ) y = f (x ) (0 ,0)(6. 设函数 .若 为奇函数,则曲线 在点 处的切线方程为 A. y = -2xB. y = -xC. y = 2xD. y = x7. 在△ ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,则EB = 3 1 1 3 A. 4 AB - 4 AC B . 4 AB - 4 AC3 1 1 3 C .4 AB + 4 AC f x ( =) 2 cos 2 x - sin 2 x + 28. 已知函数,则D . 4AB + 4 ACA. f (x )的最小正周期为 π,最大值为 3B. f (x )的最小正周期为 π,最大值为 4C. f (x )的最小正周期为2π ,最大值为 3D.f (x )的最小正周期为2π ,最大值为 49. 某圆柱的高为 2,底面周长为 16,其三视图如右图.圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度为 A. 2 C .3 B .2 D .210. 在长方体ABCD - A 1B 1C 1D 1 中, AB = BC = 2 , AC 1 与平面 BB 1C 1C 所成的角为30︒ ,则该长方体的体积为A .8 B . 6 C .8 D .8 11. 已知角的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点A (1,a ),B (2 ,b ),且175 3cos 2= 23 ,则 a - b =1 52 5 A. 5B.5f x ( =)⎨ ⎧2-x ,x ≤ 0 C.5D .112. 设函数⎩1 ,x > 0 ,则满足 f (x + 1)< f (2x )的 x 的取值范围是 A . (-∞ ,- 1] B .(0 ,+∞) C . (-1,0) D .(-∞ ,0)二、填空题(本题共 4 小题,每小题 5 分,共 20 分) f (x )= log (x 2 + a ) f 3( =)113. 已知函数2 ,若 ,则 a = .⎧x - 2 y - 2 ≤0 ⎪x - y + 1≥ 0 x ,y ⎪⎨ y ≤ 0 z = 3x + 2 y14. 若 满足约束条件⎩ ,则 的最大值为 . 15. 直线 y = x + 1 与圆 x 2 + y 2 + 2 y - 3 = 0 交于 A ,B 两点,则 AB =.16. △ ABC 的内角 A ,B, C 的对边分别为 a ,b , c ,已知b sin C + c sin B = 4a sin B sin C , b 2 + c 2 - a 2 = 8 ,则△ ABC 的面积为.三、解答题:共 70 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>3A .2y x =±B .3y x =±C .2y = D .3y = 7.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .1 B .2C D 112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。
13.曲线2ln y x =在点(1,0)处的切线方程为__________.14.若,x y 满足约束条件250,230,50,x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤ 则z x y =+的最大值为__________.15.已知5π1tan()45α-=,则tan α=__________. 16.已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB△的面积为8,则该圆锥的体积为__________.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:60分。
17.(12分) 记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.18.(12分)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17)建立模型①:ˆ30.413.5y t =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.19.(12分)如图,在三棱锥P ABC -中,22AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.20.(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.21.(12分)已知函数()()32113f x x a x x =-++.(1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为2cos ,4sin x θy θ=⎧⎨=⎩(θ为参数),直线l 的参数方程为1cos ,2sin x t αy t α=+⎧⎨=+⎩(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.23.[选修4-5:不等式选讲](10分) 设函数()5|||2|f x x a x =-+--.(1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围.绝密★启用前2018年普通高等学校招生全国统一考试文科数学试题参考答案一、选择题1.D 2.C 3.B 4.B 5.D 6.A7.A 8.B 9.C 10.C 11.D 12.C二、填空题13.y=2x–2 14.9 15.3216.8π三、解答题17.解:(1)设{a n}的公差为d,由题意得3a1+3d=–15.由a1=–7得d=2.所以{a n}的通项公式为a n=2n–9.(2)由(1)得S n=n2–8n=(n–4)2–16.所以当n=4时,S n取得最小值,最小值为–16.18.解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.学科@网19.解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=23.连结OB.因为AB=BC=2AC,所以△ABC为等腰直角三角形,且OB⊥AC,OB=12AC=2.由222OP OB PB+=知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC=12AC=2,CM=23BC42,∠ACB=45°.所以OM 25,CH=sinOC MC ACBOM⋅⋅∠45.所以点C到平面POM 45.20.解:(1)由题意得F(1,0),l的方程为y=k(x–1)(k>0).设A(x1,y1),B(x2,y2).由2(1)4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+=,故212224k x x k ++=. 所以212244(1)(1)k AB AF BF x x k +=+=+++=.由题设知22448k k +=,解得k =–1(舍去),k =1. 因此l 的方程为y =x –1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为 2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为(x 0,y 0),则00220005(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩,解得0032x y =⎧⎨=⎩,或00116.x y =⎧⎨=-⎩, 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 21.解:(1)当a =3时,f (x )=3213333x x x ---,f ′(x )=263x x --.令f ′(x )=0解得x=3-x=3+当x ∈(–∞,3-3++∞)时,f ′(x )>0; 当x∈(3-3+ f ′(x )<0.故f (x )在(–∞,3-3++∞)单调递增,在(3-3+单调递减.(2)由于210x x ++>,所以()0f x =等价于32301x a x x -=++. 设()g x =3231x a x x -++,则g ′(x )=2222(23)(1)x x x x x ++++≥0,仅当x =0时g ′(x )=0,所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.学·科网又f (3a –1)=22111626()0366a a a -+-=---<,f (3a +1)=103>,故f (x )有一个零点.综上,f (x )只有一个零点. 22.解:(1)曲线C 的直角坐标方程为221416x y +=. 当cos 0α≠时,l 的直角坐标方程为tan 2tan y x αα=⋅+-, 当cos 0α=时,l 的直角坐标方程为1x =.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程 22(13cos )4(2cos sin )80t t ααα+++-=.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为1t ,2t ,则120t t +=.又由①得1224(2cos sin )13cos t t ααα++=-+,故2cos sin 0αα+=,于是直线l 的斜率tan 2k α==-.23.解:(1)当1a =时, 24,1,()2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥的解集为{|23}x x -≤≤. (2)()1f x ≤等价于|||2|4x a x ++-≥.而|||2||2|x a x a ++-≥+,且当2x =时等号成立.故()1f x ≤等价于|2|4a +≥. 由|2|4a +≥可得6a ≤-或2a ≥,所以a 的取值范围是(,6][2,)-∞-+∞.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。