圆锥曲线标准方程求法
解圆锥曲线问题多种常用方法
解圆锥曲线问题常用方法(一)【学习要点】解圆锥曲线问题常用以下方法: 1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k by ax 。
(2))0,0(12222>>=-b a by ax 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by ax(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42) (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,分析:(1)A 在抛物线外,如图,连PF ,则PF PH =共线时,距离和最小。
圆锥曲线的标准方程公式
圆锥曲线的标准方程公式
圆锥曲线的标准方程公式是数学中用于描述圆锥曲线几何性质的方程形式。
圆锥曲线包括圆、椭圆、双曲线和抛物线。
每种曲线都有其独特的标准方程形式。
1. 圆的标准方程公式:
圆的标准方程公式是(x - h)² + (y - k)² = r²,其中圆心坐标为(h, k),半径为r。
这个方程描述了平面上所有到圆心距离等于半径的点的集合。
2. 椭圆的标准方程公式:
椭圆的标准方程公式是(x²/a²) + (y²/b²) = 1,其中a和b分别代表椭圆的长轴
和短轴的半长。
这个方程描述了平面上到椭圆两个焦点的距离之和等于常数2a的
点的集合。
3. 双曲线的标准方程公式:
双曲线的标准方程公式可以分为两种形式:(x²/a²) - (y²/b²) = 1和(y²/a²) - (x²/b²) = 1,其中a和b分别代表双曲线的焦点到中心的距离和横轴/纵轴的半长。
这个方
程描述了平面上到双曲线两个焦点的距离之差等于常数2a的点的集合。
4. 抛物线的标准方程公式:
抛物线的标准方程公式可以分为两种形式:y² = 4ax和x² = 4ay,其中a为抛物线的焦点到顶点的距离。
这个方程描述了平面上到抛物线焦点的距离等于焦点到顶点距离的某个倍数的点的集合。
通过这些标准方程公式,我们可以方便地描述和理解圆锥曲线的形状和性质。
它们在几何、物理、工程等领域中都有广泛的应用。
圆锥曲线解题技巧和方法综合全
圆锥曲线的解题技巧一、常规七大题型:〔1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式〔当然在这里也要注意斜率不存在的请款讨论〕,消去四个参数。
如:〔1〕)0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(*0,y 0),则有0220=+k b y a x 。
〔2〕)0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(*0,y 0)则有02020=-k by a x 〔3〕y 2=2p*〔p>0〕与直线l 相交于A 、B 设弦AB 中点为M(*0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A 〔2,1〕的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
〔2〕焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(*,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
〔1〕求证离心率βαβαsin sin )sin(++=e ;〔2〕求|||PF PF 1323+的最值。
〔3〕直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的根本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()〔1〕求证:直线与抛物线总有两个不同交点〔2〕设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
圆锥曲线计算方法总结
考查轨迹方程的求法以及研究曲线几何特14分. 高考圆锥曲线压轴题型总结直线与圆锥曲线相交,一般采取设而不求,利用韦达定理,在这里我将这个问题分成了三 种类型,其中第一种类型的变式比较多。
而方程思想,函数思想在这里也用得多,两种思 想可以提供简单的思路,简单的说就是只需考虑未知数个数和条件个数 ,。
使用韦达定理时需注意成立的条件。
题型一:条件和结论可以直接或经过转化后可用两根之和与两根之积来处理 1. 福建 直线l :x 1,P 为平面上的动点,F(1,0)过P 作直线uuu uuu uuu umr l 的垂线,垂足为点 Q ,且QPgQF FPgFQ .(I)求动点P 的轨迹C 的方程;uur uuu(n)过点 F 的直线交轨迹 C 于A, B 两点,交直线I 于点M ,已知 MA ,AF ,uur muMB 2BF ,求i 2的值;本小题主要考查直线、抛物线、向量等基础知识, 征的基本方法,考查运算能力和综合解题能力•满分解法一:(I)(x i,o )g2. (n)设直线 x my 1(m 设 A(X 1, yj ,2 联立方程组4x, my ,消去x 得: 1,y 2 4my 4 0, ( 4m)2 12 0,故 y V 2 4m, uuur uuu uur uuu由MA 1 AF , MB 2BF 得: yy 4.2 2 2 y 1 1y 1 ,y 22y 2,整理得:11 -m mmy 12 4m2 g - 0.m 4uu uur uuu uur ujur uuu uju 解法二: (I)由 QPgQF FPgFQ 得: FQg[PQ PF) 0,uur uuu uur uuuuO 2 uur 2 (PQ PF)g(PQ PF) 0, PQ PF 0,21丄, my 22 UJ U PQUULTPF •所以点 P 的轨迹C 是抛物线,UUTuuur UULT UUT(n) 由已知MA 1AF ,MB2BF ,得由题意,轨迹 C 的方程为:y 2 4x .1g 2 0 .(全国卷I))已知椭圆的中心为坐标原点 O , OA OB 与 a 2. 点F 的直线交椭圆于A 、B 两点, (I)求椭圆的离心率;(n)设M 为椭圆上任意一点,且 2y_ uiuu OM uu u OA 焦点在x 轴上,斜率为1且过椭圆右焦 (3, 1)共线。
圆锥曲线求解方程
圆锥曲线求解方程全文共四篇示例,供读者参考第一篇示例:圆锥曲线是几何学中的一个重要概念,它包括圆、椭圆、双曲线和抛物线。
圆锥曲线经常出现在数学问题中,我们经常需要求解这些曲线的方程。
本文将介绍如何求解圆锥曲线的方程,并且以具体的实例来解释每种曲线的特点和解法。
我们来看圆的方程。
圆是一种平面上所有点到圆心的距离相等的曲线。
圆的方程一般形式为(x-a)² + (y-b)² = r²,其中(a,b)是圆心的坐标,r是圆的半径。
对于圆心坐标为(2,3),半径为4的圆,其方程为(x-2)² + (y-3)² = 4²。
第三种圆锥曲线是双曲线。
双曲线是一条开口向内或向外的曲线,其形状介于椭圆和抛物线之间。
双曲线的一般方程形式为(x-h)²/a² - (y-k)²/b² = 1或(y-k)²/b² - (x-h)²/a² = 1,其中(h,k)是双曲线的中心坐标,a和b分别是双曲线在x轴和y轴上的半轴长度。
对于中心坐标为(0,0),x轴半轴长度为3,y轴半轴长度为2的双曲线,其方程可以是x²/9 - y²/4 = 1或者y²/4 - x²/9 = 1。
最后是抛物线的方程。
抛物线是一种对称的曲线,其形状可以根据焦点的位置而有所不同。
抛物线的一般方程形式为y = ax² + bx + c或者x = ay² + by + c,其中a、b、c是常数。
对于抛物线y = 2x² + 4x + 1,其焦点的位置可以根据方程中的a、b、c来确定。
当遇到圆锥曲线的方程时,我们可以通过观察曲线的形状和特点来快速判断出曲线的类型,并且用数学方法来求解方程。
通过本文的介绍,希望读者能够更加深入地理解圆锥曲线的求解方法,并且能够灵活运用这些方法解决实际问题。
圆锥曲线公式及知识点总结
圆锥曲线公式及知识点总结圆锥曲线的统一定义:到定点的距离与到定直线的距离的商是常数e的点的轨迹。
数学里有很多公式,为了帮助大家更好的学习数学,小编特地为大家整理了圆锥曲线公式及知识点总结,希望对大家的数学学习有帮助。
圆锥曲线公式:椭圆1、中心在原点,焦点在x轴上的椭圆标准方程:其中x²/a²+y²/b²=1,其中a>b>0,c²=a²-b²2、中心在原点,焦点在y轴上的椭圆标准方程:y²/a²+x²/b²=1,其中a>b>0,c²=a²-b²参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)圆锥曲线公式:双曲线1、中心在原点,焦点在x轴上的双曲线标准方程:x²/a-y²/b²=1,其中a>0,b>0,c²=a²+b².2、中心在原点,焦点在y轴上的双曲线标准方程:y²/a²-x²/b²=1,其中a>0,b>0,c²=a²+b².参数方程:x=asecθ;y=btanθ(θ为参数)圆锥曲线公式:抛物线参数方程:x=2pt²;y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标:y=ax²+bx+c(开口方向为y轴,a≠0)x=ay²+by+c(开口方向为x轴,a≠0)离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
且当01时为双曲线。
圆锥曲线公式知识点总结圆锥曲线椭圆双曲线抛物线标准方程x²/a²+y²/b²=1(a>b>0)x²/a²-y²/b²=1(a>0,b>0)y²=2px(p>0)范围x∈[-a,a]x∈(-∞,-a]∪[a,+∞)x∈[0,+∞)y∈[-b,b]y∈Ry∈R对称性关于x轴,y轴,原点对称关于x轴,y轴,原点对称关于x轴对称顶点(a,0),(-a,0),(0,b),(0,-b)(a,0),(-a,0)(0,0)焦点(c,0),(-c,0)(c,0),(-c,0) (p/2,0)【其中c²=a²-b²】【其中c²=a²+b²】准线x=±a²/cx=±a²/cx=-p/2渐近线——————y=±(b/a)x—————离心率。
圆锥曲线(抛物线、椭圆、双曲线)标准方程推导
圆锥曲线(抛物线、椭圆、双曲线)标准方程推导几何定义是在平面中,由所有满足到一定点与到一定直线距离相等的点所组成的图形,把这个定点称为焦点(focus)、定直线称为准线(directrix)。
为了方便推导,把这一定点放在x轴正方向上,定直线垂直x 轴放在x轴负半轴上,且原点刚好在两者中间。
上面这些都仅仅是为了推导方便而已。
设曲线上的点坐标为(x,y),于是,\begin{aligned} d(F, P) &=d(P, D) \\ \sqrt{(x-a)^{2}+(y-0)^{2}} &=|x+a| \\ (x-a)^{2}+y^{2}&=(x+a)^{2} \\ x^{2}-2 a x+a^{2}+y^{2} &=x^{2}+2 ax+a^{2} \\ y^{2} &=4 a x \end{aligned}四种不同开口的标准型:二、椭圆(Ellipse)几何意义是在平面中,由所有到两个顶点距离之和为定值的点所组成的图形,把这两个定点称为焦点(foci),也是为了推导的方便,把这两个焦点对称放在x轴正负半轴上,令两段距离之和为2a,根据两点之间距离公式进行如下推导:\begin{aligned} d\left(F_{1}, P\right)+d\left(F_{2}, P\right) &=2 a \\ \sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}} &=2 a \\ \sqrt{(x+c)^{2}+y^{2}}=& 2 a-\sqrt{(x-c)^{2}+y^{2}} \\ (x+c)^{2}+y^{2}=& 4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}} \\ &+(x-c)^{2}+y^{2} \\x^{2}+2 c x+c^{2}+y^{2}=& 4 a^{2}-4 a \sqrt{(x-c)^{2}+y^{2}} \\ &+x^{2}-2 c x+c^{2}+y^{2} \\ 4 c x-4 a^{2}=&-4 a \sqrt{(x-c)^{2}+y^{2}} \\ c x-a^{2}=&-a\sqrt{(x-c)^{2}+y^{2}} \\ \left(c x-a^{2}\right)^{2}=& a^{2}\left[(x-c)^{2}+y^{2}\right] \\ c^{2} x^{2}-2a^{2} c x+a^{4}=& a^{2}\left(x^{2}-2 cx+c^{2}+y^{2}\right) \\ \left(c^{2}-a^{2}\right)x^{2}-a^{2} y^{2} &=a^{2} c^{2}-a^{4} \\ \left(a^{2}-c^{2}\right) x^{2}+a^{2} y^{2} &=a^{2}\left(a^{2}-c^{2}\right) \end{aligned}令 b^2=a^2-c^2 (根据三角形两边之和大于第三边推出c<a)所以,\begin{aligned} b^{2} x^{2}+a^{2} y^{2} &=a^{2} b^{2} \\ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} &=1\end{aligned}常见的两种椭圆标准方程,一种是横躺在x轴上,一种是“站立”着,关键就是看x和y下面哪个数值比较大,哪个大,那么长的对称轴就在哪个方向上。
2024圆锥曲线大题计算方法
2024圆锥曲线大题计算方法圆锥曲线是高中数学中的重要内容,其相关题目在各类考试中频繁出现,尤其是大题部分,对考生的计算能力提出了较高要求。
本文将针对2024年圆锥曲线大题的计算方法进行详细解析,帮助考生掌握解题技巧,提高解题效率。
一、圆锥曲线方程求解方法1.椭圆方程求解:对于椭圆题目,首先要根据题目条件列出椭圆的标准方程。
在求解过程中,注意运用以下方法:(1)画图、特值法:通过观察图形,选取特殊点或线,简化计算过程;(2)变换主元与换元法:在化简方程时,可适当变换主元或进行换元,降低计算难度;(3)整体消元法:在求解过程中,注意整体消元,避免繁琐的计算。
2.双曲线方程求解:与椭圆类似,双曲线的求解也要注意运用画图、特值法、变换主元与换元法以及整体消元法。
二、直线与圆锥曲线交点求解方法1.代入法:将直线方程代入圆锥曲线方程,求解交点坐标。
注意在代入过程中,尽量简化计算,避免繁琐的运算。
2.联立方程组法:将直线方程与圆锥曲线方程联立,构成方程组,求解交点坐标。
在求解过程中,注意运用消元法、代入法等简化计算。
三、中点问题求解方法1.定点定值问题:通过画图、特值法或高观点,找出题目中的定点或定值,从而简化计算。
2.调和线束的中点性质:在涉及中点问题时,可运用调和线束的中点性质,快速判断中点位置。
四、实例解析以2023-2024学年北京市朝阳区高三第一学期期末数学试卷第20题为例,题目要求求解椭圆方程,并判断点N是否为线段CM的中点。
1.椭圆方程求解:根据题目条件,列出椭圆的标准方程,并运用上述方法求解。
2.直线与椭圆交点求解:过点P(2, 1)的直线l与椭圆E交于不同的两点C、D,运用代入法或联立方程组法求解交点坐标。
3.中点判断:根据调和线束的中点性质,判断点N是否为线段CM的中点。
五、总结在解决圆锥曲线大题时,掌握以下方法有助于提高解题效率:1.熟练掌握圆锥曲线的标准方程及其性质;2.学会运用画图、特值法、变换主元与换元法、整体消元法等简化计算;3.熟悉中点问题的求解方法,特别是调和线束的中点性质;4.注重实际操作,多做题,积累解题经验。
圆锥曲线方程知识点总结
圆锥曲线方程知识点总结一、圆锥曲线的基本方程椭圆的标准方程如下:$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. (a > b > 0)$$其中椭圆的长轴为$2a$,短轴为$2b$,焦距为$\sqrt{a^2 - b^2}$,离心率为$c/a$。
双曲线的标准方程如下:$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. (a > 0, b > 0)$$其中双曲线的两个分支的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$。
抛物线的标准方程如下:$$x^2 = 4ay. (a > 0)$$其中抛物线的焦点为$(0, a)$,顶点为$(0, 0)$。
二、圆锥曲线的参数方程圆锥曲线还可以用参数方程表示。
以椭圆为例,其参数方程为:$$\begin{cases}x = a \cos \theta, \\y = b \sin \theta. \\\end{cases}$$其中$\theta$的取值范围为$[0, 2\pi]$。
双曲线和抛物线的参数方程也可以类似地表示。
三、圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程表示。
以椭圆为例,其极坐标方程为:$$r = \frac{ab}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}}.$$其中$r$为极径,$\theta$为极角。
双曲线和抛物线的极坐标方程也可以类似地表示。
四、圆锥曲线的性质1. 圆锥曲线关于坐标轴的对称性:- 椭圆关于$x$轴和$y$轴都对称;- 双曲线关于$x$轴和$y$轴都对称;- 抛物线关于$y$轴对称。
2. 圆锥曲线的焦点、直径、离心率等:- 椭圆的焦点到中心的距离为$c = \sqrt{a^2 - b^2}$,离心率为$e = c/a$;- 双曲线的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$,离心率为$e = c/a$;- 抛物线的焦点到中心的距离为$c = a$,离心率为$e = 1$。
圆锥曲线口算20个公式
圆锥曲线口算20个公式当提到圆锥曲线时,我们通常指的是椭圆、双曲线和抛物线这三种曲线。
下面是这些曲线的一些常见公式:1. 椭圆的标准方程,(x^2/a^2) + (y^2/b^2) = 1。
其中,a和b分别是椭圆的半长轴和半短轴。
2. 椭圆的离心率,e = √(1 (b^2/a^2))。
其中,e是椭圆的离心率。
3. 椭圆的焦点坐标,(±ae, 0)。
4. 椭圆的直径,d = 2a.5. 椭圆的面积,A = πab.6. 椭圆的周长,C = 4aE(e),其中E(e)是椭圆的第二椭圆积分。
7. 双曲线的标准方程,(x^2/a^2) (y^2/b^2) = 1。
其中,a和b分别是双曲线的半长轴和半短轴。
8. 双曲线的离心率,e = √(1 + (b^2/a^2))。
其中,e是双曲线的离心率。
9. 双曲线的焦点坐标,(±ae, 0)。
10. 双曲线的渐近线方程,y = ±(b/a)x.11. 双曲线的面积,A = πab.12. 双曲线的周长,C = 4aE(e),其中E(e)是双曲线的第二椭圆积分。
13. 抛物线的标准方程,y = ax^2 + bx + c.其中,a、b和c是抛物线的系数。
14. 抛物线的焦点坐标,(0, 1/(4a))。
15. 抛物线的顶点坐标,(-b/(2a), -D/(4a)),其中D=b^2-4ac。
16. 抛物线的对称轴方程,x = -b/(2a)。
17. 抛物线的焦距,f = 1/(4|a|)。
18. 抛物线的面积,A = (2|a|^3)/(3|a|)。
19. 抛物线的切线方程,y = mx + (a + b)x + c,其中m是切线的斜率。
20. 抛物线的法线方程,y = -1/mx + (a b)x + c,其中m是法线的斜率。
这些公式可以帮助我们理解和计算圆锥曲线的性质和特征。
请注意,这些公式是基于标准形式的圆锥曲线,实际上还有其他形式和参数化的表示方法。
比较好用的圆锥曲线三级公式
比较好用的圆锥曲线三级公式比较好用的圆锥曲线三级公式圆锥曲线公式:椭圆1、中心在原点,焦点在x轴上的椭圆标准方程:其中x²/a²+y²/b²=1,其中a>b>0,c²=a²-b²2、中心在原点,焦点在y轴上的椭圆标准方程:y²/a²+x²/b²=1,其中a>b>0,c²=a²-b²参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)圆锥曲线公式:双曲线1、中心在原点,焦点在x轴上的双曲线标准方程:x²/a-y²/b²=1,其中a>0,b>0,c²=a²+b².2、中心在原点,焦点在y轴上的双曲线标准方程:y²/a²-x²/b ²=1,其中a>0,b>0,c²=a²+b².参数方程:x=asecθ;y=btanθ(θ为参数)圆锥曲线公式:抛物线参数方程:x=2pt²;y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标:y=ax²+bx+c(开口方向为y轴,a≠0)x=ay²+by+c(开口方向为x轴,a≠0)离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
且当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
圆锥曲线公式知识点总结圆锥曲线椭圆双曲线抛物线标准方程 x²/a²+y²/b²=1(a>b>0) x²/a²-y²/b²=1(a>0,b>0) y²=2px(p>0)范围 x∈[-a,a] x∈(-∞,-a]∪[a,+∞) x∈[0,+∞)y∈[-b,b] y∈R y∈R对称性关于x轴,y轴,原点对称关于x轴,y轴,原点对称关于x轴对称顶点 (a,0),(-a,0),(0,b),(0,-b) (a,0),(-a,0) (0,0)焦点 (c,0),(-c,0) (c,0),(-c,0) (p/2,0)【其中c²=a²-b²】【其中c²=a²+b²】准线 x=±a²/c x=±a²/c x=-p/2渐近线—————— y=±(b/a)x —————离心率 e=c/a,e∈(0,1) e=c/a,e∈(1,+∞) e=1焦半径∣PF₁∣=a+ex ∣PF₁∣=∣ex+a∣∣PF∣=x+p/2∣PF₂∣=a-ex ∣PF₂∣=∣ex-a∣焦准距 p=b²/c p=b。
圆锥曲线基本题型总结
圆锥曲线基本题型总结Revised on November 25, 2020圆锥曲线基本题型总结:提纲:一、定义的应用:1、定义法求标准方程:2、涉及到曲线上的点到焦点距离的问题:3、焦点三角形问题:二、圆锥曲线的标准方程:1、对方程的理解2、求圆锥曲线方程(已经性质求方程)3、各种圆锥曲线系的应用:三、圆锥曲线的性质:1、已知方程求性质:2、求离心率的取值或取值范围3、涉及性质的问题:四、直线与圆锥曲线的关系:1、位置关系的判定:2、弦长公式的应用:3、弦的中点问题:4、韦达定理的应用:一、定义的应用:1.定义法求标准方程:(1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理)1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是()A.椭圆B.直线C.圆D.线段【注:2a>|F1 F2|是椭圆,2a=|F1 F2|是线段】2.设B-4,0),C4,0),且△ABC的周长等于18,则动点A的轨迹方程为)+y29=1 y≠0) +x29=1 y≠0)+y216=1 y≠0) +x29=1 y≠0) 【注:检验去点】3.已知A0,-5)、B0,5),|P A|-|PB|=2a,当a=3或5时,P点的轨迹为)A.双曲线或一条直线B.双曲线或两条直线C.双曲线一支或一条直线D.双曲线一支或一条射线【注:2a<|F1 F2|是双曲线,2a=|F1 F2|是射线,注意一支与两支的判断】4.已知两定点F1-3,0),F23,0),在满足下列条件的平面内动点P的轨迹中,是双曲线的是)A.||PF1|-|PF2||=5B.||PF1|-|PF2||=6C.||PF1|-|PF2||=7D.||PF1|-|PF2||=0 【注:2a<|F1 F2|是双曲线】5.平面内有两个定点F1-5,0)和F25,0),动点P满足|PF1|-|PF2|=6,则动点P的轨迹方程是)-y29=1x≤-4) -y216=1x≤-3)-y29=1x≥4) -y216=1x≥3) 【注:双曲线的一支】6.如图,P为圆B:x+2)2+y2=36上一动点,点A坐标为2,0),线段AP的垂直平分线交直线BP于点Q,求点Q的轨迹方程.7.已知点A(0,3)和圆O1:x2+(y+3)2=16,点M在圆O1上运动,点P在半径O1M上,且|PM|=|PA|,求动点P的轨迹方程.(2)涉及圆的相切问题中的圆锥曲线:8.已知圆A:x+3)2+y2=100,圆A内一定点B3,0),圆P过B且与圆A内切,求圆心P的轨迹方程.已知动圆M过定点B-4,0),且和定圆x-4)2+y2=16相切,则动圆圆心M的轨迹方程为)-y212=1 x>0) -y212=1 x<0)-y212=1 -x212=1 【注:由题目判断是双曲线的一支还是两支】9.若动圆P过点N-2,0),且与另一圆M:x-2)2+y2=8相外切,求动圆P的圆心的轨迹方程. 【注:双曲线的一支,注意与上题区分】10.如图,已知定圆F 1:x 2+y 2+10x +24=0,定圆F 2:x 2+y 2-10x +9=0,动圆M 与定圆F 1、F 2都外切,求动圆圆心M 的轨迹方程.11.若动圆与圆x -2)2+y 2=1相外切,又与直线x +1=0相切,则动圆圆心的轨迹是 )A.椭圆B.双曲线C.双曲线的一支D.抛物线12.已知动圆M 经过点A 3,0),且与直线l :x =-3相切,求动圆圆心M 的轨迹方程.【注:同上题做比较,说法不一样,本质相同】13.已知点A 3,2),点M 到F ⎝⎛⎭⎫12,0的距离比它到y 轴的距离大12.(M 的横坐标非负) 1)求点M 的轨迹方程; 【注:体现抛物线定义的灵活应用】2)是否存在M ,使|MA |+|MF |取得最小值若存在,求此时点M 的坐标;若不存在,请说明理由.【注:抛物线定义的应用,涉及抛物线上的点到焦点的距离转化成到准线的距离】(3)其他问题中的圆锥曲线:14.已知A ,B 两地相距2 000 m ,在A 地听到炮弹爆炸声比在B 地晚4 s ,且声速为340 m/s ,求炮弹爆炸点的轨迹方程. 【注:双曲线的一支】2.15.如图所示,在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C . 双曲线D .抛物线【注:体现抛物线定义的灵活应用】2.涉及到曲线上的点到焦点距离的问题:16.设椭圆x 2m 2+y 2m 2-1=1 (m >1)上一点P 到其左焦点的距离为3,到右焦点的距离为1,则椭圆的离心率为( )17.椭圆x 216+y 27=1的左右焦点为F 1,F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为( ) A .32 B .16 C .8 D .418.已知双曲线的方程为x 2a 2-y 2b2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m19.若双曲线x 2-4y 2=4的左、右焦点分别是F 1、F 2,过F 2的直线交右支于A 、B 两点,若|AB |=5,则△AF 1B 的周长为________.20.设F 1、F 2是椭圆x 216+y 212=1的两个焦点,P 是椭圆上一点,且P 到两个焦点的距离之差为2,则△PF 1F 2是( )A .钝角三角形B .锐角三角形C .斜三角形D .直角三角形21.椭圆x 29+y 22=1的焦点为F 1、F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大小为________.【注:椭圆上的点到焦点的距离,最小是a-c ,最大是a+c 】22.已知P 是双曲线x 264-y 236=1上一点,F 1,F 2是双曲线的两个焦点,若|PF 1|=17,则|PF 2|的值为________. 【注:注意结果的取舍,双曲线上的点到焦点的距离最小为c-a 】23.已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小O 为坐标原点). 【注:O 是两焦点的中点,注意中位线的体现】24.设F 1、F 2分别是双曲线x 25-y 24=1的左、右焦点.若点P 在双曲线上,且1PF ·2PF =0,则|1PF +2PF |等于( ) A .3 B .6 C .1 D .225.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点0,2)的距离与点P 到该抛物线准线的距离之和的最小值是 )【注:抛物线定义的应用,将抛物线上的点到焦点的距离转化成到准线的距离】26.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( ) C .2【注:抛物线定义的应用,将抛物线上的点到准线的距离转化成到焦点的距离】27.设点A 为抛物线y2=4x 上一点,点B(1,0),且|AB|=1,则A 的横坐标的值为( )A .-2B .0C .-2或0D .-2或2【注:抛物线的焦半径,即定义的应用】3.焦点三角形问题: 椭圆的焦点三角形周长2c 2a 2C PF PF C 21F PF 21+∆=++=椭圆的焦点三角形面积:推导过程:2 tan sin cos 121sin 21 cos 1 -)cos (12 (1)-(2) (2) 2a (1) COS 2-2 1b 2b PF PF S 2b PF PF 4c 4a PF PF PF PF 4c PF PF PF PF 2221F PF 22122212212212221θθθθθθθ=+==+==+⎪⎩⎪⎨⎧=+=+∆得 双曲线的焦点三角形面积: 2tan b S 2F PF 21θ=∆28.设P 为椭圆x 2100+y 264=1上一点,F 1、F 2是其焦点,若∠F 1PF 2=π3,求△F 1PF 2的面积. 【注:小题中可以直接套用公式。
圆锥曲线的标准方程推导
圆锥曲线的标准方程推导圆锥曲线是平面上各点与一个定点(称为焦点)和一个定直线(称为准线)的距离之比为定值的点的轨迹。
根据圆锥曲线的形状不同,可以分为椭圆、双曲线和抛物线三类。
本文将以直角坐标系下的圆锥曲线为例进行推导。
设圆锥的焦点为F(x₁, y₁),准线为直线l,该直线与坐标轴交于原点O,与x轴正方向的交点为A,与y轴正方向的交点为B。
设坐标系上的任意一点P(x, y),我们将推导出圆锥曲线的标准方程。
首先,假设P与焦点F的距离为r,与直线l的距离为d。
根据定义,我们可以得到以下两个关系式:1. 根据焦准定理,有:r/d = e (1)其中,e为圆锥曲线的离心率,满足0 < e < 1(对应椭圆),e = 1(对应抛物线),e > 1(对应双曲线)。
2. 根据直角三角形AOB,可得:r² = x² + y²(2)由式(1)和式(2)可得:(x² + y²) / d² = e²(3)接下来,我们将推导出不同类型圆锥曲线的标准方程。
一、椭圆:当0 < e < 1时,圆锥曲线为椭圆。
将式(2)带入式(3)中得:x² + y² = e²d²(4)由于直线l与x轴正方向相交于点A,所以直线l的方程为y = kx,其中k为直线l的斜率。
将y = kx代入式(4)中并整理得:x² + (kx)² = e²d²(5)化简式(5)得:1 + k² = e²(6)将方程(6)代入方程(5)得:x² + (kx)² = (1 + k²)d²(7)将方程(7)除以d²并整理得:(x²/d²) + (k²x²/d²) = 1 (8)令a² = 1/d²,b² = k²/d²,则方程(8)可以进一步简化为:(x²/a²) + (y²/b²) = 1 (9)方程(9)即为椭圆的标准方程。
第3章 圆锥曲线的方程
x
F2
同
点
标准方程
焦点坐标
相
同
点
P
a、b、c 的关系
焦点位置的判断
x2 y 2
1 a b 0
a 2 b2
F1 -c ,0 ,F2 c ,0
y 2 x2
1 a b 0
a 2 b2
F1 0 ,c ,F2 0 ,- c
a2-c2=b2
分母哪个大,焦点就在相应的轴上.
的基本量.
(3)代入法:动点满足的条件不便用等式列出,但动点是随着另一动点
(称之为相关点)而运动的.如果相关点所满足的条件是明显的,或是可
分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满
足的方程即可求得动点的轨迹方程.
(4)待定系数法:根据条件能确定曲线的类型,可设出方程形式,
再根据条件确定待定的系数.
关于x , y轴对称,关于原点对称
A1 ( a , 0), A2 (a , 0), B1 (0, b), B2 (0, b)
e
A1 ( b, 0), A2 (b, 0), B1 (0, a ), B2 (0, a )
c
(0 e 1)
a
双曲线的定义及标准方程
双曲线定义
图
平面内与两个定点F1,F2的距离的差的绝对
y 2 2 px( p 0)
p
F ( ,0)
2
y 2 2 px( p 0)
F (
x 2 py( p 0)
p
F (0, )
2
y
p
F (0, )
2
y
2
x 2 2 py( p 0)
圆锥曲线公式
圆锥曲线公式
圆锥曲线的公式主要有以下:1、椭圆:焦半径:a+ex(左焦点),a-ex(右焦点),x=a²/c2、双曲线:焦半径:|a+ex|(左焦点)|a-ex|(右焦点),准线x=a²/c3、抛物线(y²=2px)等。
公式
椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。
椭圆的标准方程共分两种状况:
当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(ab0);
当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(ab0);
其中a^2-c^2=b^2
推导:PF1+PF2F1F2(P为椭圆上的点F为焦点)
2.双曲线:到两个定点的距离的差的肯定值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。
即{P|||PF1|-|PF2||=2a,(2a|F1F2|)}。
双曲线的标准方程共分两种状况:
焦点在X轴上时为
x^2/a^2-y^2/b^2=1;
焦点在Y轴上时为
y^2/a^2-x^2/b^2=1;
3.抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。
y²=2px(p>0)过焦点的直线交它于A(X1,Y1),B(X2,Y2)两点。
抛物线标准方程共分四种状况:
右开口抛物线:y^2=2px;
左开口抛物线:y^2=-2px;
上开口抛物线:x^2=2py;
下开口抛物线:x^2=-2py;
[p为焦距(p0)]。
推导如何推导出圆锥曲线的标准方程
推导如何推导出圆锥曲线的标准方程圆锥曲线是数学中重要的曲线类型,在几何学和物理学等领域有广泛的应用。
推导出圆锥曲线的标准方程可以帮助我们更好地理解和研究它们的性质和特点。
本文将从圆锥体的定义开始,逐步推导出圆锥曲线的标准方程。
第一步,我们先回顾一下圆锥体的定义。
圆锥体是由一条直线L(生成直线)和一个点F(焦点)确定的,满足对于平面上的任意一点P,其到直线L的距离与到焦点F的距离之比都是常数e(离心率),即PF/PL=e。
在圆锥体中,如果生成直线L是平行于两个相互垂直的直线(参考系中的轴),则生成的曲线就是圆锥曲线。
以下我们假设焦点F的坐标为(Fx, Fy, Fz),离心率为e,生成直线L与x、y、z轴的交点坐标分别为(A, 0, 0),(0, B, 0)和(0, 0, C),其中A、B、C为正实数。
我们将推导出椭圆、双曲线和抛物线三种圆锥曲线的标准方程。
一、椭圆的标准方程推导假设点P(x, y, z)为椭圆上的一点,由椭圆的定义可得:PF^2/PL^2 = (x - Fx)^2 + (y - Fy)^2 + (z - Fz)^2 / ((x - A)^2 + y^2 +z^2) = e^2化简上式,可以得到椭圆的标准方程:((x - Fx)^2 + (y - Fy)^2 + (z - Fz)^2) / ((x - A)^2 + y^2 + z^2) = e^2将该方程用参数表示,可以得到椭圆的参数方程:x = Fx + (A - Fx)cosθ + (B - Fy)sinθy = Fy - (A - Fx)sinθ + (B - Fy)cosθz = Fz + Csinθ其中,θ为角度变量,θ的取值范围根据椭圆的形状确定。
二、双曲线的标准方程推导双曲线的定义与椭圆类似,只是离心率e>1。
通过类似的推导过程,可以得到双曲线的标准方程:((x - Fx)^2 + (y - Fy)^2 + (z - Fz)^2) / ((x - A)^2 + y^2 + z^2) = e^2其中e为双曲线的离心率。
圆锥曲线准线方程推导
圆锥曲线准线方程推导本文将会介绍圆锥曲线的准线方程的推导方法。
首先,我们需要了解什么是圆锥曲线的准线。
圆锥曲线的准线是指圆锥曲线的所有切线中,斜率为定值时的切线。
因此,圆锥曲线的准线方程可以表示为y=kx+b,其中 k 为准线的斜率,b 为准线与 y 轴的截距。
现在,我们来推导一下圆锥曲线的准线方程。
以椭圆为例,设其标准方程为 x^2/a^2 + y^2/b^2 = 1,其中 a 和 b 分别为椭圆的长半轴和短半轴。
现在,我们来推导椭圆的准线方程。
首先,我们需要求出椭圆的切线方程。
设 P(x0,y0) 为椭圆上一点,则该点处的斜率为:k = -x0 * b^2 / (y0 * a^2)因为椭圆的准线斜率为 k,所以我们可以得到以下方程:k = -x0 * b^2 / (y0 * a^2)将 y0 = kx0 + b 代入上式中,得到:k = -x0 * b^2 / ((kx0 + b) * a^2)移项整理得:k^2 * x0^2 + k * 2b * x0 + b^2 - a^2 * k^2 = 0 由于 k 是已知的,所以这是一个关于 x0 的一元二次方程。
解出 x0 后,再利用 y0 = kx0 + b 就可以求出 P 点处的切线方程 y = kx + (y0 - kx0)。
因此,我们得到了椭圆的准线方程 y = kx + (y0 - kx0),其中k 和 (y0 - kx0) 都是已知的,可以通过上述方法求出。
同样的方法也适用于其他圆锥曲线,只需要将标准方程代入即可。
通过本文的介绍,我们了解了圆锥曲线的准线方程的推导方法,这对于理解圆锥曲线的性质和应用都具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线标准方程求法
一、椭圆标准方程求法
1、定义法
【例1】已知ABC ∆的周长是18,)0,4(),0,4(B A -,求点C 的轨迹方程。
【变式】:在周长为定值的△ABC 中,已知|AB|=6,且当顶点C 位于定点P 时,cosC 有最小值为25
7.建立适当的坐标系,求顶点C 的轨迹方程.
【例2】已知椭圆C 以坐标轴为对称轴,以坐标原点为对称中心,椭圆的一个焦点为()0,1,点⎪⎪⎭⎫
⎝⎛26,23M 在椭圆上,求椭圆C 的方程;
【例3】已知圆221:(1)16F x y ++=,定点2(1,0)F .动圆M 过点F 2,且与圆F 1相内切.求点M 的轨迹C 的方程.
【例4】设j i R y x ,,,∈为直角坐标系内y x ,轴正方向的单位向量,,)2(j y i x a ++=j y i x b )2(-+=,且8||||=+b a .求点),(y x M 的轨迹C 的方程;
2、待定系数法
1.已知椭圆G 的中心在坐标原点,长轴在x
,且G 上一点到G 的两个焦点的距离之和为12,椭圆G 的方程.
2.已知椭圆1C :22
221(0)y x a b a b
+=>>的右顶点为(1,0)A ,过1C 的焦点且垂直长轴的弦长为1.求椭圆1C 的方程.
3.已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.求椭圆C 的方程.
4.设椭圆:E 22
221x y a b
+=(,0a b >>)过2)M ,(6,1)N 两点,O 为坐标原点,求椭圆E 的方程。
3、转化已知条件
【例1】已知点,A B 的坐标分别是(0,1)-,(0,1),直线,AM BM 相交于点M ,且它们的斜率之积为12-
.求点M 轨迹C 的方程;
【例2】设Q 、G 分别为ABC ∆的外心和重心,已知)0,1(-A ,)0,1(B ,AB QG //。求点C 的轨迹E
【例3】已知动点P 到直线33
4-
=x 的距离是到定点(0,3-)的距离的332倍.求动点P 的轨迹方程;
【例4】已知M (4,0)、N (1,0),若动点P 满足||6PN MP MN =⋅。
求动点P 的轨迹方程;
【例5】已知点()0,1F ,直线l :1y =-,P 为平面上的动点,过点P 作直线l 的垂线,垂
足为Q ,且QP QF FP FQ =.求动点P 的轨迹C 的方程;
二、双曲线的标准方程
1、定义法
【例1】(08重庆文21)M (-2,0)和N (2,0)是平面上的两点,动点P 满足2PM PN -=, 求点P 的轨迹方程;
变式1:平面内动点P 到定点)0,4(1-F 的距离比它到定点)0,4(2F 的距离大6,求动点P 的轨迹方程。
变式2:求与圆1)3(22=+-y x 及9)3(2
2=++y x 都外切的动圆圆心的轨迹方程
2、待定系数求 【例2】求经过点)72,3(-P 和)7,26(--Q ,焦点在y 轴上的双曲线的标准方程
变式1:求过点(2,-2)且与双曲线x 2-2y 2=2有公共渐近线的双曲线方程.
变式2:求经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程.
3、利用几何性质求双曲线的标准方程
【例3】已知双曲线22
221(0,0)x y a b a b
-=>>的一条渐近线方程是,它的一个焦点在抛物线2
24y x =的准线上,求双曲线的方程。
变式1:已知双曲线22
221(0,0)x y a b a b
-=>>的一条渐近线方程是y =, 它的一个焦点与抛物线216y x =的焦点相同,求双曲线的方程。
变式2:已知以原点O 为中心,F 为右焦点的双曲线C 的离心率e =
求双曲线C 的标准方程及其渐近线方程;
变式3:已知椭圆2222
1(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右
焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,求椭圆和双曲线的标准方程。
4:直接法求双曲线的标准方程
【例4】点,A B 的坐标分别是(5,0)-,(5,0),直线AM ,BM 相交于点M ,且它们斜率之积是49
,试求点M 的轨迹方程式,并由点M 的轨迹方程判断轨迹的形状.
巩固训练
1.根据下列条件求双曲线的标准方程
(1)实轴的长为8,虚轴的长为6,焦点在y 轴;
(2(2,4)M -,
(3)一条渐近线方程是2y x =±,且经过(1,3),
(4)渐进线方程为23
=±y x ,实轴长为6 2.已知双曲线的离心率为2,焦点是(4,0)-,(4,0),则双曲线方程为( )221412x y -= B .221124x y -= C .221106x y -= D .22
1610
x y -=
3.已知渐近线方程12
=±y x 的双曲线经过点4(,则双曲线的方程是( ) A .2214-=y x B .2214-=y x C .2214-=x y D .2
214
-=x y
4.已知双曲线22221(0,0)x y a b a b
-=>>的两条渐近线方程为3y x =±, 若顶点到渐近线的距离为1,则双曲线方程为 .
5.以坐标轴为对称轴、渐近线互相垂直、两准线间距离为2的双曲线方程是( )
(A )222=-y x (B )222=-x y
(C )422=-y x 或422=-x y (D )222=-y x 或22
2=-x y
6.已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 .
7.已知双曲线22
22:1(0,0)x y C a b a b
-->>的两个焦点为12(2,0),(2,0),F F P -点的曲线C 上,求双曲线C 的方程;
8.已知中心在原点的双曲线C 的一个焦点是()0,31-F ,
一条渐近线的方程是025=-y x ,求双曲线C 的方程;
9.与椭圆x 2+4y 2
=16有相同焦点,且过点()6,5-的椭圆方程是
10.椭圆2255x ky -=的一个焦点是(0,2),那么k 等于( )
A. 1-
B. 1
C. 5
D. 11.椭圆19
162
2=+y x 的焦距是 ,焦点坐标为 ;若CD 为过左焦点1F 的弦,则CD F 2∆的周长为
12.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围为( )
A .(0,+∞)
B .(0,2)
C .(1,+∞)
D .(0,1)
13.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件)0(921>+=+a a
a PF PF ,则点P 的轨迹是( )
A .椭圆
B .线段
C .不存在
D .椭圆或线段
14.椭圆12222=+b
y a x 和k b y a x =+22
22()0>k 具有( ) A .相同的离心率 B .相同的焦点 C .相同的顶点 D .相同的长、短轴。