12章乘法公式和因式分解练习题

合集下载

因式分解的常用方法及练习题

因式分解的常用方法及练习题

因式分解的常用方法一、提公因式法.:ma+mb+mc=m(a+b+c) 二、公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)平方差公式:(a+b)(a -b) = a 2-b 2(2) 完全平方公式:(a ±b)2= a 2±2ab+b 2(3) 立方和公式:a 3+b 3=(a+b)(a 2-ab+b 2)(4) 立方差公式:a 3-b 3=(a -b)(a 2+ab+b 2) (5)完全立方公式:(a±b)³=a ³±3a ²b +3ab ²±b ³ 下面再补充两个常用的公式: (6)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(7)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca); 三、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式:))(()(2q x p x pq x q p x ++=+++进行分解。

特点:(1)二次项系数是1; (2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。

例5、分解因式:652++x x 672+-x x练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习6、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b += 分解结果:c bx ax ++2=))((2211c x a c x a ++例7、分解因式:101132+-x x练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例8、分解因式:221288b ab a --分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。

乘法公式和因式分解练习题资料

乘法公式和因式分解练习题资料

乘法公式和因式分解练习题乘法公式和因式分解练习题一、选择题1.已知2264b Nab a +-是一个完全平方式,则N 等于 ( )A 、8B 、±8C 、±16D 、±322.如果22)()(y x M y x +=+-,那么M 等于 ( )A 、 2xyB 、-2xyC 、4xyD 、-4xy3.下列可以用平方差公式计算的是( )A 、(x -y) (x + y)B 、(x -y) (y -x)C 、(x -y)(-y + x)D 、(x -y)(-x + y)4.下列各式中,运算结果是22169b a -的是( )A 、)43)(43(b a b a --+-B 、)34)(34(a b a b --+-C 、)34)(34(a b a b -+D 、)83)(23(b a b a -+5、下列各式中,能运用平方差分式分解因式的是( )A 、21x +-B 、22y x +C 、42--xD 、()22b a ---6、若m x x +-82是完全平方式, 则m 的值为( )A 、4B 、8C 、16D 、327.计算(x +2)2的结果为x 2+□x +4,则“□”中的数为( )A .-2B .2C .-4 D.4 8、把多项式1222+--y x xy 分解因式的结果是( )A .)1)(1(+-+-x y y x B.)1)(1(---+x y y xC.)1)(1+--+y x y xD..)1)(1(--+-y x y x8.已知x 2+16x +k 是完全平方式,则常数k 等于( )A .64B .48C .32D .169.若949)7(22+-=-bx x a x ,则b a +之值为何?A .18B .24C .39D . 4510.已知8)(2=-n m ,2)(2=+n m ,则=+22n m ( )A .10B .6C .5D .311.把多项式a 2-4a 分解因式,结果正确的是( )A .a (a -4)B .(a +2)(a -2)C .a (a +2) (a -2)D .(a -2)2-412.化简)23(4)325x x -+-(的结果为( )A .32-xB .92+xC .38-xD .318-x13.下列计算正确的是A.()222x y x y +=+ B .()2222x y x xy y -=--C .()()22222x y x y x y +-=-D .()2222x y x xy y -+=-+14.下列各因式分解正确的是( )A.)2)(2()2(22+-=-+-x x xB.22)1(12-=-+x x xC.22)12(144-=+-x x xD.)2)(2(42-+=-x x x x x15.下列分解因式正确的是( )A .)(23a 1-a a a -+=+B .2a-4b+2=2(a-2b )C .()222-a 4-a =D .()221-a 1a 2-a =+16.下列各式能用完全平方式进行分解因式的是( )A .x 2 +1 B.x 2+2x -1 C.x 2+x +1 D.x 2+4x +417.下面的多项式中,能因式分解的是( )A .m 2+nB .m 2﹣m+1C .m 2﹣nD .m 2﹣2m+118. a 4b -6a 3b +9a 2b 分解因式的正确结果是A .a 2b (a 2-6a +9)B .a 2b (a +3) (a -3)C .b (a 2-3)2D .a 2b (a -3)26. 4. 19.分解因式(x -1)2 -2(x -1)+1的结果是 ( )A .(x -1)(x -2)B . x 2C .(x +1)2D . (x -2)220.已知a - b =1,则代数式2a -2b -3的值是A .-1B .1C .-5D .521.将代数式262++x x 化成q p x ++2)(的形式为( )A. 11)3(2+-xB. 7)3(2-+xC. 11)3(2-+xD. 4)2(2++x22.计算222(a+b)(a b)+a a b -等于( )A .4aB .6aC .22a bD .22a b -23.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .m +3B .m +6C .2m +3D .2m +624.图(1)是一个长为2m ,宽为2n (m>n)的长方形,用剪刀 沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A.2mnB.(m+n)2C.(m-n)2 D .m 2 -n 2二、填空题1.若2a -b =5,则多项式6a 一3b 的值是 .2.整式A 与m 2﹣2mn+n 2的和是(m+n )2,则A= .3.(x +1)(x -1)(1+x )=4.已知x + y =—5 ,xy =6 ,则x 2 + y 2=_______.m +3 m3m n 图 图5.二次三项式29x kx -+是一个完全平方式,则k 的值是 .6.将4个数a 、b 、c 、d 排成两行、两列,两边各加一条竖线记成a b c d,定义a c b d =ad -bc ,上述等式就叫做二阶行列式.若 1 181 1x x x x +-=-+,则x = . 7.写出一个在实数范围内能用平方差公式分解因式的多项式: .8.分解因式:25x x - =________ .9.分解因式:=-822x ___________________10.分解因式:ab 3-4ab = .11.分解因式:a -6ab +9ab 2= .12.分解因式:=+-22363n mn m _______ .13.分解因式:22331212x y xy y ++=14.若2m n -=,5m n +=,则22m n -的值为 .15.若622=-n m ,且2m n -=,则=+n m .16.有足够多的长方形和正方形的卡片,如下图.3a 2a 1如果选取1号、2号、3号卡片分别为1张、4张、4张,可拼成一个正方形(不重叠无缝隙)那么这个正方形的边长是三、解答题1.化简:)2()12+-+x x x ( 2.化简:1)1()1(2-++-a a a3.先化简,再求值:(x+3)(x-3)-x (x-2),其中x=4.4. 先化简,再求值:22b +(a +b )(a -b )-(a -)2b ,其中a =-3,b =12.5.先化简,再求值:()()()x x x -+++2232,其中2-=x6.已知y x A +=2,y x B -=2,计算22B A -7.先化简,再求值:()222a b b --,其中2,3a b =-=8、已知x + y = a , xy = b ,求(x -y) 2 , x 2 + y 2 , x 2-xy + y 2的值9.当7x =-时,求代数式(2x +5)(x +1)-(x -3)(x +1)的值.10.观察下列算式:① 1 × 3 - 22 = 3 - 4 = -1 ② 2 × 4 - 32 = 8 - 9 = -1③ 3 × 5 - 42 = 15 - 16 = -1 ④……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.。

第12章《整式的乘除》单元测试(含答案解析)

第12章《整式的乘除》单元测试(含答案解析)

<第12章整式的乘除>一、选择题1.假设3×9m×27m =321 ,那么m的值为 ( )A.3 B.4 C.5 D.62.要使多项式 (x2 +px +2 ) (x﹣q )不含关于x的二次项 ,那么p与q的关系是 ( ) A.相等 B.互为相反数C.互为倒数 D.乘积为﹣13.假设|x +y +1|与 (x﹣y﹣2 )2互为相反数 ,那么 (3x﹣y )3的值为 ( )A.1 B.9 C.﹣9 D.274.假设x2﹣kxy +9y2是一个两数和 (差 )的平方公式 ,那么k的值为 ( )A.3 B.6 C.±6 D.±815.多项式 (17x2﹣3x +4 )﹣ (ax2 +bx +c )能被5x整除 ,且商式为2x +1 ,那么a﹣b +c = ( )A.12 B.13 C.14 D.196.以下运算正确的选项是 ( )A.a +b =ab B.a2•a3 =a5C.a2 +2ab﹣b2 = (a﹣b )2D.3a﹣2a =17.假设a4 +b4 +a2b2 =5 ,ab =2 ,那么a2 +b2的值是 ( )A.﹣2 B.3 C.±3 D.28.以下因式分解中 ,正确的选项是 ( )A.x2y2﹣z2 =x2 (y +z ) (y﹣z ) B.﹣x2y +4xy﹣5y =﹣y (x2 +4x +5 )C. (x +2 )2﹣9 = (x +5 ) (x﹣1 ) D.9﹣12a +4a2 =﹣ (3﹣2a )29.设一个正方形的边长为1cm ,假设边长增加2cm ,那么新正方形的面积增加了 ( )A.6cm2B.5cm2C.8cm2D.7cm210.在边长为a的正方形中挖去一个边长为b的小正方形 (a>b ) (如图甲 ) ,把余下的局部拼成一个矩形 (如图乙 ) ,根据两个图形中阴影局部的面积相等 ,可以验证 ( )A. (a +b )2 =a2 +2ab +b2B. (a﹣b )2 =a2﹣2ab +b2C.a2﹣b2 = (a +b ) (a﹣b ) D. (a +2b ) (a﹣b ) =a2 +ab﹣2b2二、填空题11.假设把代数式x2﹣2x﹣3化为 (x﹣m )2 +k的形式 ,其中m ,k为常数 ,那么m +k = .12.现在有一种运算:a※b =n ,可以使: (a +c )※b =n +c ,a※ (b +c ) =n﹣2c ,如果1※1 =2 ,那么2021※2021 =.13.如果x +y =﹣4 ,x﹣y =8 ,那么代数式x2﹣y2的值是.14.假设 (x﹣m )2 =x2 +x +a ,那么m = .15.假设x3 =﹣8a9b6 ,那么x .16.计算: (3m﹣n +p ) (3m +n﹣p ) = .17.阅读以下文字与例题将一个多项式分组后 ,可提公因式或运用公式继续分解的方法是分组分解法.例如: (1 )am +an +bm +bn = (am +bm ) + (an +bn )=m (a +b ) +n (a +b )= (a +b ) (m +n )(2 )x2﹣y2﹣2y﹣1 =x2﹣ (y2 +2y +1 )=x2﹣ (y +1 )2= (x +y +1 ) (x﹣y﹣1 )试用上述方法分解因式a2 +2ab +ac +bc +b2 = .18.观察 ,分析 ,猜想:1×2×3×4 +1 =52;2×3×4×5 +1 =112;3×4×5×6 +1 =192;4×5×6×7 +1 =292;n (n +1 ) (n +2 ) (n +3 ) +1 = . (n为整数 )三、解答题 (共46分 )19.通过对代数式的适当变形 ,求出代数式的值.(1 )假设x +y =4 ,xy =3 ,求 (x﹣y )2 ,x2y +xy2的值.(2 )假设x = ,y = ,求x2﹣xy +y2的值.(3 )假设x2﹣5x =3 ,求 (x﹣1 ) (2x﹣1 )﹣ (x +1 )2 +1的值.(4 )假设m2 +m﹣1 =0 ,求m3 +2m2 +2021的值.20.2a =5 ,2b =3 ,求2a +b +3的值.21.利用因式分解计算:1﹣22 +32﹣42 +52﹣62 +… +992﹣1002 +1012.22.先化简 ,再求值:x (x﹣2 )﹣ (x +1 ) (x﹣1 ) ,其中x =10.23.利用分解因式说明: (n +5 )2﹣ (n﹣1 )2能被12整除.24.观察以下等式:1× =1﹣ ,2× =2﹣ ,3× =3﹣,…(1 )猜想并写出第n个等式;(2 )证明你写出的等式的正确性.<第12章整式的乘除>参考答案与试题解析一、选择题1.假设3×9m×27m =321 ,那么m的值为 ( )A.3 B.4 C.5 D.6【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先逆用幂的乘方的性质转化为以3为底数的幂相乘 ,再利用同底数幂的乘法的性质计算后根据指数相等列出方程求解即可.【解答】解:3•9m•27m =3•32m•33m =31 +2m +3m =321 ,∴1 +2m +3m =21 ,解得m =4.应选B.【点评】此题考查了幂的乘方的性质的逆用 ,同底数幂的乘法 ,转化为同底数幂的乘法 ,理清指数的变化是解题的关键.2.要使多项式 (x2 +px +2 ) (x﹣q )不含关于x的二次项 ,那么p与q的关系是 ( ) A.相等 B.互为相反数C.互为倒数 D.乘积为﹣1【考点】多项式乘多项式.【分析】把式子展开 ,找到所有x2项的所有系数 ,令其为0 ,可求出p、q的关系.【解答】解:∵ (x2 +px +2 ) (x﹣q ) =x3﹣qx2 +px2﹣pqx +2x﹣2q =﹣2q + (2﹣pq )x + (p﹣q )x2 +x3.又∵结果中不含x2的项 ,∴p﹣q =0 ,解得p =q.应选A.【点评】此题主要考查了多项式乘多项式的运算 ,注意当要求多项式中不含有哪一项时 ,应让这一项的系数为0.3.假设|x +y +1|与 (x﹣y﹣2 )2互为相反数 ,那么 (3x﹣y )3的值为 ( )A.1 B.9 C.﹣9 D.27【考点】解二元一次方程组;非负数的性质:绝||对值;非负数的性质:偶次方.【专题】方程思想.【分析】先根据相反数的定义列出等式|x +y +1| + (x﹣y﹣2 )2 =0 ,再由非负数的性质求得x、y的值 ,然后将其代入所求的代数式 (3x﹣y )3并求值.【解答】解:∵|x +y +1|与 (x﹣y﹣2 )2互为相反数 ,∴|x +y +1| + (x﹣y﹣2 )2 =0 ,∴ ,解得 , ,∴ (3x﹣y )3 = (3× + )3 =27.应选D.【点评】此题主要考查了二元一次方程组的解法、非负数的性质﹣﹣绝||对值、非负数的性质﹣﹣偶次方.解题的关键是利用互为相反数的性质列出方程 ,再由非负数是性质列出二元一次方程组.4.假设x2﹣kxy +9y2是一个两数和 (差 )的平方公式 ,那么k的值为 ( )A.3 B.6 C.±6 D.±81【考点】完全平方式.【专题】计算题.【分析】利用完全平方公式的结构判断即可确定出k的值.【解答】解:∵x2﹣kxy +9y2是一个两数和 (差 )的平方公式 ,∴﹣k =±6 ,那么k =±6.应选C.【点评】此题考查了完全平方式 ,熟练掌握完全平方公式是解此题的关键.5.多项式 (17x2﹣3x +4 )﹣ (ax2 +bx +c )能被5x整除 ,且商式为2x +1 ,那么a﹣b +c = ( )A.12 B.13 C.14 D.19【考点】整式的除法.【专题】计算题.【分析】根据商乘以除数等于被除数列出关系式 ,整理后利用多项式相等的条件确定出a ,b ,c的值 ,即可求出a﹣b +c的值.【解答】解:依题意 ,得 (17x2﹣3x +4 )﹣ (ax2 +bx +c ) =5x (2x +1 ) ,∴ (17﹣a )x2 + (﹣3﹣b )x + (4﹣c ) =10x2 +5x ,∴17﹣a =10 ,﹣3﹣b =5 ,4﹣c =0 ,解得:a =7 ,b =﹣8 ,c =4 ,那么a﹣b +c =7 +8 +4 =19.应选D.【点评】此题考查了整式的除法 ,熟练掌握运算法那么是解此题的关键.6.以下运算正确的选项是 ( )A.a +b =ab B.a2•a3 =a5C.a2 +2ab﹣b2 = (a﹣b )2D.3a﹣2a =1【考点】同底数幂的乘法;合并同类项.【专题】存在型.【分析】分别根据合并同类项、同底数幂的乘法及完全平方公式对各选项进行解答即可.【解答】解:A、a与b不是同类项 ,不能合并 ,故本选项错误;B、由同底数幂的乘法法那么可知 ,a2•a3 =a5 ,故本选项正确;C、a2 +2ab﹣b2不符合完全平方公式 ,故本选项错误;D、由合并同类项的法那么可知 ,3a﹣2a =a ,故本选项错误.应选B.【点评】此题考查的是合并同类项、同底数幂的乘法及完全平方公式 ,熟知以上知识是解答此题的关键.7.假设a4 +b4 +a2b2 =5 ,ab =2 ,那么a2 +b2的值是 ( )A.﹣2 B.3 C.±3 D.2【考点】因式分解 -运用公式法.【分析】利用完全平方公式分解因式进而求出即可.【解答】解:由题意得 (a2 +b2 )2 =5 +a2b2 ,因为ab =2 ,所以a2 +b2 = =3.应选:B.【点评】此题主要考查了公式法分解因式 ,熟练利用完全平方公式是解题关键.8.以下因式分解中 ,正确的选项是 ( )A.x2y2﹣z2 =x2 (y +z ) (y﹣z ) B.﹣x2y +4xy﹣5y =﹣y (x2 +4x +5 )C. (x +2 )2﹣9 = (x +5 ) (x﹣1 ) D.9﹣12a +4a2 =﹣ (3﹣2a )2【考点】提公因式法与公式法的综合运用.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的定义 ,利用排除法求解.【解答】解:A、用平方差公式 ,应为x2y2﹣z2 = (xy +z ) (xy﹣z ) ,故本选项错误;B、提公因式法 ,符号不对 ,应为﹣x2y +4xy﹣5y =﹣y (x2﹣4x +5 ) ,故本选项错误;C、用平方差公式 , (x +2 )2﹣9 = (x +2 +3 ) (x +2﹣3 ) = (x +5 ) (x﹣1 ) ,正确;D、完全平方公式 ,不用提取负号 ,应为9﹣12a +4a2 = (3﹣2a )2 ,故本选项错误.应选C.【点评】此题考查了提公因式法 ,公式法分解因式 ,熟练掌握公式的结构特征是解题的关键.9.设一个正方形的边长为1cm ,假设边长增加2cm ,那么新正方形的面积增加了 ( )A.6cm2B.5cm2C.8cm2D.7cm2【考点】完全平方公式.【专题】计算题.【分析】根据题意列出算式 ,计算即可得到结果.【解答】解:根据题意得: (1 +2 )2﹣12 =9﹣1 =8 ,即新正方形的面积增加了8cm2 ,应选C.【点评】此题考查了完全平方公式 ,熟练掌握完全平方公式是解此题的关键.10.在边长为a的正方形中挖去一个边长为b的小正方形 (a>b ) (如图甲 ) ,把余下的局部拼成一个矩形 (如图乙 ) ,根据两个图形中阴影局部的面积相等 ,可以验证 ( )A. (a +b )2 =a2 +2ab +b2B. (a﹣b )2 =a2﹣2ab +b2C.a2﹣b2 = (a +b ) (a﹣b ) D. (a +2b ) (a﹣b ) =a2 +ab﹣2b2【考点】平方差公式的几何背景.【分析】第|一个图形中阴影局部的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积 ,等于a2﹣b2;第二个图形阴影局部是一个长是 (a +b ) ,宽是 (a﹣b )的长方形 ,面积是 (a +b ) (a﹣b );这两个图形的阴影局部的面积相等.【解答】解:∵图甲中阴影局部的面积 =a2﹣b2 ,图乙中阴影局部的面积 = (a +b ) (a﹣b ) , 而两个图形中阴影局部的面积相等 ,∴阴影局部的面积 =a2﹣b2 = (a +b ) (a﹣b ).应选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差 ,这个公式就叫做平方差公式.二、填空题11.假设把代数式x2﹣2x﹣3化为 (x﹣m )2 +k的形式 ,其中m ,k为常数 ,那么m +k = .【考点】完全平方公式.【专题】配方法.【分析】根据完全平方公式的结构 ,按照要求x2﹣2x﹣3 =x2﹣2x +1﹣4 = (x﹣1 )2﹣4 ,可知m =1.k =﹣4 ,那么m +k =﹣3.【解答】解:∵x2﹣2x﹣3 =x2﹣2x +1﹣4 = (x﹣1 )2﹣4 ,∴m =1 ,k =﹣4 ,∴m +k =﹣3.故答案为:﹣3.【点评】此题主要考查完全平方公式的变形 ,熟记公式结构是解题的关键.完全平方公式: (a±b )2 =a2±2ab +b2.12.现在有一种运算:a※b =n ,可以使: (a +c )※b =n +c ,a※ (b +c ) =n﹣2c ,如果1※1 =2 ,那么2021※2021 =.【考点】整式的除法.【专题】新定义.【分析】先设出2021※2021 =m ,再根据新运算进行计算 ,求出m的值即可.【解答】解:设2021※2021 =m ,由得 , (1 +2021 )※1 =2 +2021 ,2021※ (2021﹣2021 ) =m +2×2021 ,那么2 +2021 =m +2×2021 ,解得,m =2021※2021 = (2 +2021 )﹣2021×2 =﹣2021.故答案为:﹣2021.【点评】此题主要考查了有理数的混合运算 ,在解题时要注意按照两者的转换公式进行计算即可.13.如果x +y =﹣4 ,x﹣y =8 ,那么代数式x2﹣y2的值是.【考点】平方差公式.【专题】计算题.【分析】由题目可发现x2﹣y2 = (x +y ) (x﹣y ) ,然后用整体代入法进行求解.【解答】解:∵x +y =﹣4 ,x﹣y =8 ,∴x2﹣y2 = (x +y ) (x﹣y ) = (﹣4 )×8 =﹣32.故答案为:﹣32.【点评】此题考查了平方差公式 ,由题设中代数式x +y ,x﹣y的值 ,将代数式适当变形 ,然后利用 "整体代入法〞求代数式的值.14.假设 (x﹣m )2 =x2 +x +a ,那么m = .【考点】完全平方公式.【专题】计算题.【分析】等式左边利用完全平方公式展开 ,利用多项式相等的条件确定出m的值即可.【解答】解:∵ (x﹣m )2 =x2 +x +a =x2﹣2mx +m2 ,∴﹣2m =1 ,a =m2 ,那么m =﹣ ,a =.故答案为:﹣【点评】此题考查了完全平方公式 ,熟练掌握完全平方公式是解此题的关键.15.假设x3 =﹣8a9b6 ,那么x .【考点】幂的乘方与积的乘方.【分析】根据幂的乘方与积的乘方法那么进行解答即可.【解答】解:∵x3 =﹣8a9b6 ,∴x3 = (﹣2a3b2 )3 ,∴x =﹣2a3b2.故答案为: =﹣2a3b2.【点评】此题考查的是幂的乘方与积的乘方法那么 ,先根据题意得出x3 = (﹣2a3b2 )3是解答此题的关键.16.计算: (3m﹣n +p ) (3m +n﹣p ) = .【考点】平方差公式;完全平方公式.【专题】计算题.【分析】原式利用平方差公式化简 ,再利用完全平方公式计算即可得到结果.【解答】解:原式 =9m2﹣ (n﹣p )2 =9m2﹣n2 +2np﹣p2.故答案为:9m2﹣n2 +2np﹣p2【点评】此题考查了平方差公式 ,以及完全平方公式 ,熟练掌握公式是解此题的关键.17.阅读以下文字与例题将一个多项式分组后 ,可提公因式或运用公式继续分解的方法是分组分解法.例如: (1 )am +an +bm +bn = (am +bm ) + (an +bn )=m (a +b ) +n (a +b )= (a +b ) (m +n )(2 )x2﹣y2﹣2y﹣1 =x2﹣ (y2 +2y +1 )=x2﹣ (y +1 )2= (x +y +1 ) (x﹣y﹣1 )试用上述方法分解因式a2 +2ab +ac +bc +b2 = .【考点】因式分解 -分组分解法.【专题】压轴题;阅读型.【分析】首||先进行合理分组 ,然后运用提公因式法和公式法进行因式分解.【解答】解:原式 = (a2 +2ab +b2 ) + (ac +bc )= (a +b )2 +c (a +b )= (a +b ) (a +b +c ).故答案为 (a +b ) (a +b +c ).【点评】此题考查了因式分解法 ,要能够熟练运用分组分解法、提公因式法和完全平方公式.18.观察 ,分析 ,猜想:1×2×3×4 +1 =52;2×3×4×5 +1 =112;3×4×5×6 +1 =192;4×5×6×7 +1 =292;n (n +1 ) (n +2 ) (n +3 ) +1 = . (n为整数 )【考点】规律型:数字的变化类.【分析】观察以下各式:1×2×3×4 +1 =52 = (12 +3×1 +1 )2;2×3×4×5 +1 =112 = (22 +3×2 +1 )2;3×4×5×6 +1 =192 = (32 +3×3 +1 )2 ,4×5×6×7 +1 =292 = (42 +3×4 +1 )2 ,得出规律:n (n +1 ) (n +2 ) (n +3 ) +1 = (n2 +3×n +1 )2 , (n≥1 ).【解答】解:∵1×2×3×4 +1 =[ (1×4 ) +1]2 =52 ,2×3×4×5 +1 =[ (2×5 ) +1]2 =112 ,3×4×5×6 +1 =[ (3×6 ) +1]2 =192 ,4×5×6×7 +1 =[ (4×7 ) +1]2 =292 ,∴n (n +1 ) (n +2 ) (n +3 ) +1 = (n2 +3×n +1 )2.故答案为:n (n +1 ) (n +2 ) (n +3 ) +1 = (n2 +3×n +1 )2.【点评】此题考查了数字的变化规律 ,解答此题的关键是发现规律为n (n +1 ) (n +2 ) (n +3 ) +1 = (n2 +3n +1 )2 (n≥1 ) ,一定要通过观察 ,分析、归纳并发现其中的规律.三、解答题 (共46分 )19.通过对代数式的适当变形 ,求出代数式的值.(1 )假设x +y =4 ,xy =3 ,求 (x﹣y )2 ,x2y +xy2的值.(2 )假设x = ,y = ,求x2﹣xy +y2的值.(3 )假设x2﹣5x =3 ,求 (x﹣1 ) (2x﹣1 )﹣ (x +1 )2 +1的值.(4 )假设m2 +m﹣1 =0 ,求m3 +2m2 +2021的值.【考点】整式的混合运算 -化简求值.【分析】 (1 )将 (x﹣y )2通过配方法转化成 (x +y )2 ,x2y +xy2因式分解即可;(2 )利用配方法转化成 = (x +y )2﹣3xy即可;(3 )根据整式的乘法把式子展开即可;(4 )先把m2 +m﹣1 =0 ,变形为m2 =1﹣m.把m3 +2m2 +2021变形为m2(m +2 ) +2021 = (1﹣m ) (m +2 ) +2021即可;【解答】解: (1 ) (x﹣y )2 =x2﹣2xy +y2 =x2 +2xy +y2﹣4xy = (x +y )2﹣4xy42﹣4×3 =4 , x2y +xy2 =xy (x +y ) =3×4 =12 ,(2 )x2﹣xy +y2 = (x +y )2﹣3xy = ( + +﹣ )2﹣3 ( + ) (﹣ ) = (2 )2﹣3×2 =28﹣6 =22(3 ) (x﹣1 ) (2x﹣1 )﹣ (x +1 )2 +1 =2x2﹣3x +1﹣ (x2 +2x +1 ) +1 =x2﹣5x +1 =3 +1 =44 )由m2 +m﹣1 =0 ,得m2 =1﹣m.把m3 +2m2 +2021 =m2(m +2 ) +2021 = (1﹣m ) (m +2 ) +2021 =m﹣1﹣m +2 +2021【点评】此题考查了学生的应用能力 ,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.20.2a =5 ,2b =3 ,求2a +b +3的值.【考点】同底数幂的乘法.【分析】直接利用同底数幂的乘法运算法那么求出即可.【解答】解:2a +b +3 =2a•2b•23 =5×3×8 =120.【点评】此题主要考查了同底数幂的乘法运算 ,熟练掌握运算法那么是解题关键.21.利用因式分解计算:1﹣22 +32﹣42 +52﹣62 +… +992﹣1002 +1012.【考点】因式分解的应用.【分析】先把原式变形为1 +32﹣22 +52﹣42 +… +1012﹣1002,再因式分解得1 + (3 +2 ) + (5 +4 ) +… + (101 +100 ) ,然后进行计算即可.【解答】解:1﹣22 +32﹣42 +52﹣62 +… +992﹣1002 +1012=1 +32﹣22 +52﹣42 +… +1012﹣1002=1 + (3 +2 ) (3﹣2 ) + (5 +4 ) (5﹣4 ) +… + (101 +100 ) (101﹣100 )=1 + (3 +2 ) + (5 +4 ) +… + (101 +100 )==5151.【点评】此题考查了因式分解的应用 ,用到的知识点是平方差公式 ,关键是对要求的式子进行变形 ,注意总结规律 ,得出结果.22.先化简 ,再求值:x (x﹣2 )﹣ (x +1 ) (x﹣1 ) ,其中x =10.【考点】整式的混合运算 -化简求值.【专题】计算题.【分析】按单项式乘以单项式法那么和平方差公式化简 ,然后把给定的值代入求值.【解答】解:原式 =x2﹣2x﹣x2 +1 =﹣2x +1 ,当x =10时 ,原式 =﹣2×10 +1 =﹣19.【点评】考查的是整式的混合运算 ,主要考查了公式法、单项式与多项式相乘以及合并同类项的知识点.23.利用分解因式说明: (n +5 )2﹣ (n﹣1 )2能被12整除.【考点】因式分解的应用.【分析】将原式因式分解 ,结果能被12整除即可.【解答】解:因为 (n +5 )2﹣ (n﹣1 )2 =n2 +10n +25﹣ (n2﹣2n +1 ) =12 (n +2 ) ,所以 (n +5 )2﹣ (n﹣1 )2能被12整除.【点评】考查了因式分解的应用 ,解决此题的关键是用因式分解法把所给式子整理为含有12的因数相乘的形式.24.观察以下等式:1× =1﹣ ,2× =2﹣ ,3× =3﹣,…(1 )猜想并写出第n个等式;(2 )证明你写出的等式的正确性.【考点】规律型:数字的变化类.【专题】证明题;探究型.【分析】 (1 )等号左边第|一个因数为整数 ,与第二个因数的分子相同 ,第二个因数的分母比分子多1;等号右边为等号左边的第|一个数式﹣第二个因数 ,即n× =n﹣;(2 )把左边进行整式乘法 ,右边进行通分.【解答】解: (1 )猜想:n× =n﹣;(2 )证:右边 = = =左边 ,即n× =n﹣.【点评】主要考查:等式找规律 ,难点是怎样证明 ,不是验证.此题隐含着逆向思维及数学归纳法的思想.。

2022-2023学年华东师大版八年级数学上册《第12章整式的乘除》同步练习题(附答案)

2022-2023学年华东师大版八年级数学上册《第12章整式的乘除》同步练习题(附答案)

2022-2023学年华东师大版八年级数学上册《第12章整式的乘除》同步练习题(附答案)一.选择题1.利用乘法公式计算正确的是()A.(4x﹣3)2=8x2+12x﹣9B.(2m+5)(2m﹣5)=4m2﹣5C.(a+b)(a+b)=a2+b2D.(4x+1)2=16x2+8x+12.下列多项式能直接用完全平方公式进行因式分解的是()A.4x2﹣4x+1B.x2+2x﹣1C.x2+xy+2y2D.9+x2﹣4x3.已知关于x的二次三项式2x2+bx+a分解因式的结果是(x+1)(2x﹣3),则代数式a b的值为()A.﹣3B.﹣1C.﹣D.4.已知a,b满足(3﹣9b)(a+b)+9ab=4a﹣a2,且a≠3b,则关于a与b的数量关系,下列说法中正确的是()①a2﹣a=9b2﹣3b;②(a﹣3b)2=a﹣3b;③a﹣3b=1;④a+3b=1.A.①②B.②③C.①④D.③④5.用4个长为a,宽为b的长方形拼成如图所示的大正方形,则用这个图形可以验证的恒等式是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2﹣(a﹣b)2=4ab6.下列各式能用完全平方公式进行分解因式的是()A.x2+1B.x2+2x﹣1C.x2+3x+9D.7.下列运算正确的是()A.(a+b)2=a2+b2B.(﹣)﹣2=C.4a6+2a2=2a3D.(﹣3x3)2=9x68.计算(1﹣3x)(3x+1)的结果为()A.1﹣9x2B.9x2﹣1C.﹣1+6x﹣9x2D.1﹣6x+9x29.下列运算正确的是()A.2a2b•3a3b2=6a6b2B.(a2)3=a5C.a3b3=(ab)6D.(a+2b)(a﹣2b)=a2﹣4b210.下列运算正确的是()A.a2•a3=a6B.(2a)3=2a3C.(a2)3=a6D.(a+1)2=a2+2a二.填空题11.若xy=﹣3,x+y=5,则2x2y+2xy2=.12.计算:2021×512﹣2021×492的结果是.13.杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列.在我国南宋数学家杨超所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律,观察下列各式及其展开式:请你猜想(a+b)9展开式的第三项的系数是.14.若多项式4x2+kx+25是完全平方式,则k的值是.15.已知(m﹣n)2=16,(m+n)2=24,m2+n2=.16.若a﹣b=5,a2+b2=13,则ab=.三.解答题17.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和等数”.例如:4563,x=4+5=9,y=6+3=9,因为x =y,所以4563是“和等数”.(1)请判断3975、5648是否是“和等数”;(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的所有满足条件的“和等数”.18.发现与探索(1)根据小明的解答将下式因式分解:a2﹣12a+20.小明的解答:a2﹣6a+5=a2﹣6a+9﹣9+5=(a﹣3)2﹣4=(a﹣5)(a﹣1).(2)根据小丽的思考解决下列问题:小丽的思考:代数式(a﹣3)2+4无论a取何值,(a﹣3)2≥0,则(a﹣3)2+4≥4,所以(a﹣3)2+4有最小值为4.请仿照小丽的思考解释代数式﹣(a+1)2+8的最大值为8.19.如图1所示的正方形,我们可以利用两种不同的方法计算它的面积,从而得到完全平方公式:(a+b)2=a2+2ab+b2.请你结合以上知识,解答下列问题:(1)写出图2所示的长方形所表示的数学等式.(2)根据图3得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=38,求代数式a2+b2+c2的值.(3)小华同学用图4中x张边长为a的正方形纸片,y张边长为b的正方形纸片,z张边长分别为a,b的长方形纸片拼出一个面积为(2a+3b)(6a+5b)的长方形,求代数式x+y+z的值.20.利用因式分解计算:(1)9002﹣894×906;(2)2.68×15.7﹣31.4+15.7×1.32.21.数学课上,在计算(x+a)(x+b)时,琪琪把b看成6,得到的结果是x2+8x+12,莹莹把a看成7,得到的结果是x2+12x+35.根据以上提供的信息:(1)请直接写出a、b的值.(2)请你写出原算式并计算正确的结果.22.材料1:对于一个四位自然数M,如果M满足各数位上的数字均不为0,它的百位上的数字比千位上的数字大1,个位上的数字比十位上的数字大1,则称M为“满天星数”.对于一个“满天星数”M,同时将M的个位数字交换到十位、十位数字交换到百位、百位数字交换到个位,得到一个新的四位数N,规定:F(M)=.例如:M=2378,因为3﹣2=1,8﹣7=1,所以2378是“满天星数”;将M的个位数字8交换到十位,将十位数字7交换到百位,将百位数字3交换到个位,得到N=2783,F (2378)==﹣45.材料2:对于任意四位自然数=1000a+100b+10c+d(a、b、c、d是整数且1≤a≤9,0≤b,c,d≤9),规定:G()=c•d﹣a•b.根据以上材料,解决下列问题:(1)请判断2467、3489是不是“满天星数”,请说明理由;如果是,请求出对应的F(M)的值;(2)已知P、Q是“满天星数”,其中P的千位数字为m(m是整数且1≤m≤7),个位数字为7;Q的百位数字为5,十位数字为s(s是整数且2≤s≤8).若G(P)+G(Q)能被11整除且s>m,求F(P)的值.23.我们知道,图形是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙的解决一些图形问题.比如:用图1所示的正方形与长方形纸片,可以拼成一个图2所示的正方形.请你解决下列问题:(1)利用不同的代数式表示:图2中阴影部分的面积S,写出你从中获得的等式,并加以证明;(2)已知(2022﹣m)(2019﹣m)=3505,请用(1)中的结论,求(2022﹣m)2+(2019﹣m)2的值.24.阅读材料:利用公式法,可以将一些形如ax2+bx+c(a≠0)的多项式变形为a(x+m)2+n的形式,我们把这样的变形方法叫做多项式ax2+bx+c(a≠0)的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如x2+4x﹣5=x2+4x+()2﹣()2﹣5=(x+2)2﹣9=(x+2+3)(x+2﹣3)=(x+5)(x﹣1).根据以上材料,解答下列问题.(1)分解因式:x2+2x﹣8;(2)求多项式x2+4x﹣3的最小值;(3)已知a,b,c是△ABC的三边长,且满足a2+b2+c2+50=6a+8b+10c,求△ABC的周长.25.如果一个自然数M能分解成A×B,其中A和B都是两位数,且A与B的十位数字之和为10,个位数字之和为9,则称M为“十全九美数”,把M分解成A×B的过程称为“全美分解”,例如:∵2838=43×66,4+6=10,3+6=9,∴2838是“十全九美数“;∵391=23×17,2+1≠10,∴391不是“十全九美数”.(1)判断2100和168是否是“十全九美数”?并说明理由;(2)若自然数M是“十全九美数“,“全美分解”为A×B,将A的十位数字与个位数字的差,与B的十位数字与个位数字的和求和记为S(M);将A的十位数字与个位数字的和,与B的十位数字与个位数字的差求差记为T(M).当能被5整除时,求出所有满足条件的自然数M.参考答案一.选择题1.解:A.(4x﹣3)2=16x2﹣24x+9,故本选项不合题意;B.(2m+5)(2m﹣5)=4m2﹣25,故本选项不合题意;C.(a+b)(a+b)=a2+2ab+b2,故本选项不合题意;D.(4x+1)2=16x2+8x+1,故本选项符合题意;故选:D.2.解:A、4x2﹣4x+1=(2x﹣1)2,故A符合题意;B、x2+2x+1=(x+1)2,故B不符合题意;C、x2+xy+y2=(x+y)2,故C不符合题意;D、9+x2﹣6x=(x﹣3)2,故D不符合题意;故选:A.3.解:由题意得:2x2+bx+a=(x+1)(2x﹣3),2x2+bx+a=2x2﹣3x+2x﹣3,2x2+bx+a=2x2﹣x﹣3,∴b=﹣1,a=﹣3,∴a b=(﹣3)﹣1=﹣,故选:C.4.解:∵(3﹣9b)(a+b)+9ab=4a﹣a2,∴3a+3b﹣9ab﹣9b2+9ab=4a﹣a2a2﹣a=9b2﹣3ba2﹣9b2=a﹣3b(a+3b)(a﹣3b)=a﹣3b,∵a≠3b,∴a﹣3b≠0,∴a+3b=1.故选:C.5.解:∵此题阴影部分面积可表示为:(a+b)2﹣(a﹣b)2和4ab,∴可得等式(a+b)2﹣(a﹣b)2=4ab,故选:D.6.解:A.x2+1,不能用完全平方公式进行分解因式,故A不符合题意;B.x2+2x﹣1,不能用完全平方公式进行分解因式,故B不符合题意;C.x2+3x+9,不能用完全平方公式进行分解因式,故C不符合题意;D.x2﹣x+=(x﹣)2,故D符合题意;故选:D.7.解:A、原式=a2+2ab+b2,∴不符合题意;B、原式=4,∴不符合题意;C、原式=4a6+2a2,∴不符合题意;D、原式=9x6,∴符合题意;故选:D.8.解:原式=1﹣(3x)2=1﹣9x2;故选:A.9.解:A、原始=6a5b3,∴不符合题意;B、原始=a6,∴不符合题意;C、原始=(ab)3,∴不符合题意;D、原始=a2﹣4b2,∴符合题意;故选:D.10.解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、(2a)3=8a3,原计算错误,故此选项不符合题意;C、(a2)3=a6,原计算正确,故此选项符合题意;D、(a+1)2=a2+2a+1,原计算错误,故此选项不符合题意;故选:C.二.填空题11.解:2x2y+2xy2=2xy(x+y).∵xy=﹣3,x+y=5.∴原式=2×(﹣3)×5,=﹣30.12.解:2021×512﹣2021×492=2021×(512﹣492)=2021×(51+49)×(51﹣49)=2021×100×2=404200,故答案为:404200.13.解:依据规律可得到:(a+n)9的展开式的系数是杨辉三角第10行的数,第3行第三个数为1,第4行第三个数为3=1+2,第5行第三个数为6=1+2+3,…第10行第三个数为:1+2+3+…+8==36.故答案为:36.14.解:∵4x2+kx+25是一个完全平方式,∴4x2+kx+25=(2x)2+kx+52=(2x±5)2,∵(2x±5)2=4x2±20x+25,∴kx=±20x,解得k=±20.故答案为:±20.15.解:∵(m+n)2=24,(m﹣n)2=16,∴m2+2mn+n2=24①,m2﹣2mn+n2=16②,①+②得:2(m2+n2)=40,∴m2+n2=20.故答案为:20.16.解:将a﹣b=5两边平方得:(a﹣b)2=a2+b2﹣2ab=25,把a2+b2=13代入得:13﹣2ab=25,解得:ab=﹣6.故答案为:﹣6.三.解答题17.解:(1)3975是“和等数”;5648不是“和等数”;理由如下:3975,x=3+9=12;y=7+5=12,∵x=y,∴3975是“和等数”;∴5648,x=5+6=11;y=4+8=12,∵x≠y,∴5648不是“和等数”.(2)设这个“和等数”千位、百位、十位、个位上数字分别为a、b、c、d,根据题意得:d=2a,a+b=c+d,b+c=12,∴2c+a=12,即a=2,4,6,8,d=4,8,12(舍去),16(舍去),①当a=2,d=4时,2(c+1)=12,可知c+1=6且a+b=c+d,∴c=5,b=7,②当a=4,d=8时,2(c+2)=12,可知c+2=6且a+b=c+d,∴c=4,b=8,综上所述,这个数为2754和4848.18.解:(1)a2﹣12a+20=a2﹣12a+36﹣36+20=(a﹣6)2﹣42=(a﹣10)(a﹣2).(2)无论a取何值时,﹣(a+1)2≤0,则﹣(a+1)2+8≤8,所以﹣(a+1)2+8的最大值为8.19.(1)拼成的大矩形面积之和=(a+b)(a+2b),各个小图形面积之和=a2+3ab+2b2,∴图2所表示的数学等式是(a+b)(a+2b)=a2+3ab+2b2.故答案为:(a+b)(a+2b)=a2+3ab+2b2.(2)图(3)中大正方形的面积=(a+b+c)2,各个小图形面积之和=a2+b2+c2+2ab+2ac+2bc,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.∵a+b+c=10,ab+ac+bc=38.∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=102,即a2+b2+c2+2(ab+ac+bc)=100,∴a2+b2+c2=100﹣2×38=24.(3)大长方形的面积为(2a+3b)(6a+5b)=12a2+10ab+18ab+15b2=12a2+28ab+15b2,小图形的面积分别为a2,b2,ab,∴x=12,y=15,z=28.∴x+y+z=12+15+28=55.20.(1)9002﹣894×906=9002﹣(900﹣6)(900+6)=9002﹣(9002﹣62)=9002﹣9002+62=36.(2)2.68×15.7﹣31.4+15.7×1.32=15.7×(2.68+1.32)﹣31.4=15.7×4﹣31.4=31.4×2﹣31.4=31.4.21.解:(1)a=2,b=5;(2)(x+a)(x+b)=(x+2)(x+5)=x2+5x+2x+10=x2+7x+10.22.解:(1)2467不是“满天星数”,3489是“满天星数”,理由如下:∵2467的百位数字为4,千位数字为2,∴4﹣2=2≠1,∴2467不是“满天星数”.∵3489的千位数字为3,百位数字为4,十位数字为8,个位数字为9,∴4﹣3=1,9﹣8=1,∴M=3489是“满天星数”,∴N=3894,∴F(3489)==﹣45.(2)由题意可得:P=,Q=,则P=1000m+100(m+1)+60+7=1100m+167,Q=4000+500+10s+s+1=4501+11s.∴G(P)=6×7﹣m(m+1)=42﹣m2﹣m,G(Q)=s(s+1)﹣20=s2+s﹣20,∴G(P)+G(Q)=42﹣m2﹣m+s2+s﹣20=s2+s﹣m2﹣m+22.∵G(P)+G(Q)能被11整除且s>m,∴只要s2+s﹣m2﹣m=(s+m)(s﹣m)+s﹣m=(s﹣m)(s+m+1)能被11整除.∵2≤s≤8,1≤m≤7,s、m均为整数,s>m,∴4≤s+m+1≤16,∴s+m+1=11即s+m=10.∴.∴P=2367或3467或4567.∴F(2367)=,F(3467)==﹣23,F(4567)==﹣12.23.解:(1)图②中,S阴影=a2+b2,还可以表示为:S阴影=(a+b)2﹣2ab.∴a2+b2=(a+b)2﹣2ab.(2)设a=2022﹣m,b=2019﹣m,则ab=3505,a﹣b=3.∴(2022﹣m)2+(2019﹣m)2=a2+b2=(a﹣b)2+2ab=9+7010=7019.24.解:(1)x2+2x﹣8=x2+2x+1﹣1﹣8=(x+1)2﹣9=(x+1﹣3)(x+1+3)=(x﹣2)(x+4);(2),∵(x+2)2≥0,∴(x+2)2﹣7≥﹣7,∴多项式x2+4x﹣3的最小值为﹣7;(3)∵a2+b2+c2+50=6a+8b+10c,∴a2+b2+c2+50﹣6a﹣8b﹣10c=0,a2﹣6a+9+b2﹣8b+16+c2﹣10c+25﹣9﹣16﹣25+50=0,(a﹣3)2+(b﹣4)2+(c﹣5)2=0,∴a﹣3=0,b﹣4=0,c﹣5=0,∴a=3,b=4,c=5,∴△ABC的周长=3+4+5=12.25.解:(1)2100是“十全九美数”,168不是“十全九美数”,理由如下:∵2100=25×84,2+8=10,5+4=9,∴2100是“十全九美数”;∵168=14×12,l+l≠10,∴168不是“十全九美数“;(2)设A的十位数字为m,个位数字为n,则A=10m+n,∵M是“十全九美数”,M=A×B,∴B的十位数字为10﹣m,个位数字为9﹣n,则B=10(10﹣m)+9﹣n=109﹣10m﹣n,由题知:S(M)=m﹣n+10﹣m+9﹣n=19﹣2n,T(M)=m+n﹣[10﹣m﹣(9﹣n)]=2m﹣1,根据题意,令==5k(k为整数),由题意知:1≤m≤9,0≤n≤9,且都为整数,∴1≤19﹣2n≤19,1≤2m﹣1≤17,当k=l时,=5,∴或或,解得或(舍去)或;∴M=A×B=17×92=1564或M=A×B=22×87=1914;当k=2时,=10,∴,解得(舍去);当k=3时,=15,∴,解得;∴M=A×B=12×97=1164,综上,满足“十全九美数”条件的M有:1564或1914或1164.。

2021-2022学年最新青岛版七年级数学下册第12章乘法公式与因式分解专题攻克试题(无超纲)

2021-2022学年最新青岛版七年级数学下册第12章乘法公式与因式分解专题攻克试题(无超纲)

七年级数学下册第12章乘法公式与因式分解专题攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式因式分解正确的是( )A .()2211x x +=+B .()()311x x x x x -=+-C .()()21343x x x x ++=++D .()22121x x x x ++=++2、分解因式2a 2(x -y )+2b 2(y -x )的结果是( )A .(2a 2+2b 2) (x -y )B .(2a 2-2b 2) (x -y )C .2(a 2-b 2) (x -y )D .2(a -b )(a +b )(x -y ) 3、化简()()2332m n m m n +-+结果正确的是( )A .226m n +B .2212m n +C .22612m n mn +-D .2266m mn n ++ 4、下列由左至右的变形中,属于因式分解的是( )A .x 2-4x +3=x (x -4)+3B .x 2-4+3x =(x +2)(x -2)+3xC .x 2-4=(x +2)(x -2)D .(x +2)(x -2)=x 2-45、把代数式x 2﹣4x +4分解因式,下列结果中正确的是( )A .(x ﹣2)2B .(x +2)2C .x (x ﹣4)+4D .(x ﹣2)(x +2)6、下列因式分解正确的是( )A .2ab 2﹣4ab =2a (b 2﹣2b )B .a 2+b 2=(a +b )(a ﹣b )C .x 2+2xy ﹣4y 2=(x ﹣y )2D .﹣my 2+4my ﹣4m =﹣m (2﹣y )27、224﹣1可以被60和70之间某两个数整除,这两个数是( )A .64,63B .61,65C .61,67D .63,658、下列分解因式正确的是( )A .()2244x x x x -+=-+B .()2x xy x x x y ++=+C .()()()2x x y y x y x y ---=-D .()()24422x x x x -+=+-9、若()3b a +( )229b a =-,则括号内应填的代数式是( )A .3a b --B .3a b +C .3b a -+D .3b a - 10、已知22()()2022a b c b a c +=+=,且a b ,则abc 的值为( )A .2022B .-2022C .4044D .-4044 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图1,将一个长为2a ,宽为2b 的长方形沿图中虚线剪开分成四个完全相同的小长方形,然后将这四个完全相同的小长方形拼成一个正方形(如图2),设图2中的大正方形面积为1S ,小正方形面积为2S ,则12S S -的结果是________(用含a ,b 的式子表示).2、分解因式:224abc a b +=_______.3、计算:2222202120202021202020214040-++⨯=_____. 4、若a ,b 都是有理数,且满足a 2+b 2+5=4a ﹣2b ,则(a +b )2021=_____.5、已知,实数a 满足(1)1a a +=,则2120211a a ++=+_______. 三、解答题(5小题,每小题10分,共计50分)1、若一个正整数a 可以表示为a =(b +1)(b -2),其中b 为大于2的正整数,则称a 为“十字数”,b 为a 的“十字点”.例如28=(6+1)×(6-2)=7×4.(1)“十字点”为7的“十字数”为 ;130的“十字点”为 ;(2)若b 是a 的“十字点”,且a 能被(b -1)整除,其中b 为大于2的正整数,求a .2、阅读下列材料:一般地,没有公因式的多项式,当项数为四项或四项以上时,经常把这些项分成若干组,然后各组运用提取公因式法或公式法分别进行分解,之后各组之间再运用提取公因式法或公式法进行分解,这种因式分解的方法叫做分组分解法.如:因式分解:am +bm +an +bn=(am +bm )+(an +bn )=m (a +b )+n (a +b )=(a +b )(m +n ).(1)利用分组分解法分解因式:①3m ﹣3y +am ﹣ay ;②a 2x +a 2y +b 2x +b 2y .(2)因式分解:a 2+2ab +b 2﹣1= (直接写出结果).3、先化简,再求值:()()25121x x x +-+-(),其中15x =-. 4、分解因式:2x 3﹣8x 2+8x .5、计算:2(3)(6)x x x ----参考答案-一、单选题1、B【解析】【分析】根据因式分解的定义(把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解)及完全平方公式依次进行判断即可得.【详解】解:A 、不能进行因式分解,错误;B 、选项正确,是因式分解;C 、选项是整式的乘法,不是因式分解,不符合题意;D 、()22211x x x ++=+,选项因式分解错误;故选:B .【点睛】题目主要考查因式分解的定义及方法,深刻理解因式分解的定义是解题关键.2、D【解析】【分析】根据提公因式法和平方差公式分解因式.【详解】解:2a 2(x -y )+2b 2(y -x )=2a 2(x -y )-2b 2(x -y )=(2a 2-2b 2)(x -y )=2(a 2-b 2)(x -y )=2(a -b )(a +b )(x -y ).故选:D .【点睛】此题考查了分解因式,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式及十字相乘法)是解题的关键.3、A【解析】【分析】根据完全平方公式及单项式乘多项式运算法则计算即可.【详解】()()22222233296366m n m m n m mn n m mn m n +-+=++--=+故选:A【点睛】本题考查整式的乘法运算,熟记完全平方公式及单项式乘多项式运算法则时解题额关键.4、C【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A、不属于因式分解,故本选项不符合题意;B、不属于因式分解,故本选项不符合题意;C、属于因式分解,故本选项符合题意;D、不属于因式分解,故本选项不符合题意;故选:C.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5、A【解析】【分析】首末两项能写成两个数的平方的形式,中间项是这两个数的积的2倍,所以能用完全平方公式分解因式.【详解】解:代数式x2-4x+4=(x-2)2.故选:A.【点睛】本题考查了公式法分解因式,熟练掌握运算法则和完全平方公式的结构特点是解题的关键.6、D【解析】【分析】将各式计算得到结果,即可作出判断.【详解】解:A. 2ab 2﹣4ab =2ab (b ﹣2),分解不完整,故错误;B .a 2+b 2不能分解因式,而(a +b )(a ﹣b )=a2−b2,故错误;C .x 2+2xy ﹣4y 2不能分解因式,而(x −y )2=x 2−2xy +y 2,故错误;D .﹣my 2+4my ﹣4m =﹣m (2﹣y )2,故正确.故选:D .【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.7、D【解析】【分析】利用平方差因式分解即可求解.【详解】解:241212126621(21)(21)(21)(21)(21)-=+-=++-,∵66216521=63+=-,,∴224﹣1可以被60和70之间某两个数整除,这两个数是63,65,故选:D .【点睛】本题考查了平方差公式,解题关键是熟练运用平方差公式进行计算.8、C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可,注意分解要彻底.【详解】解:A 、244x x x x ,故A 选项错误; B 、21x xy x x x y ,故B 选项错误;C 、()()()2x x y y x y x y ---=-,故C 选项正确;D 、2244(2)x x x -+=-,故D 选项错误;故选:C .【点睛】本题考查了提公因式法,公式法分解因式,注意因式分解的步骤:先提公因式,再用公式法分解,熟练掌握因式分解的方法是解题关键.9、D【解析】【分析】9b 2-a 2 可以看作(3b )2-a 2,利用平方差公式,可得出答案.【详解】解:∵(3b +a )(3b -a )=9b 2-a 2,即(3b +a )(3b -a )=(3b )2-a 2,∴括号内应填的代数式是3b-a.故选:D.【点睛】本题考查平方差公式的特征,熟记平方差公式(a+b)(a-b)=a2-b2,是解决此题的关键.10、B【解析】【分析】将a2(b+c)=b2(a+c),a≠b,变形后可得ab+ca+bc=0,进而可得结果.【详解】解:a2(b+c)=b2(a+c),a2b+a2c=b2a+b2c,a2b+a2c-(b2a+b2c)=0,a2b+a2c-b2a-b2c=0,ab(a-b)+c(a2-b2)=0,ab(a-b)+c(a+b)(a-b)=0,(a-b)(ab+ca+bc)=0,∵a≠b,∴ab+ca+bc=0,∵b2(a+c)=b(ab+bc)=b(-ac)=-abc=2022,∴abc=-2022.故选:B【点睛】本题考查了单项式乘多项式以及因式分解,解决本题的关键是掌握平方差公式以及提公因式法因式分解.二、填空题1、4ab【解析】【分析】组合后多出来的面积就是中间小正方形的面积,用大正方形减小正方形的得到原来长方形面积.【详解】∵1S 为图2大正方形的面积;2S 为小正方形面积,∴12S S -为图1长方形面积∴12S S -=2a ×2b =4ab故答案为:4ab【点睛】本题考查列代数式在求正方形面积中的应用,找到两者之差是图1长方形面积是关键.2、2ab (c +2a )【解析】【分析】提公因式2ab ,进行因式分解即可.【详解】解:224abc a b +=2ab (c +2a )故答案为:2ab (c +2a )【点睛】本题考查了提公因式法分解因式,掌握因式分解的方法是解题的关键.3、14041【解析】【分析】把分子利用平方差公式分解,分母利用完全平方公式分解,约分计算即可得到结果.【详解】 解:原式=2(20212020)(20212020)(20212020)+⨯-+ =120212020+ =14041. 故答案为:14041. 【点睛】本题考查了用因式分解进行计算,解题关键是熟练运用公式法进行因式分解.4、1【解析】【分析】首先利用完全平方公式得出a ,b 的值,进而得出答案.【详解】解:∵a 2+b 2+5=4a ﹣2b ,∴2244210a a b b -++++= ,∴(a ﹣2)2+(b +1)2=0,∴a =2,b =﹣1,∴(a +b )2021=(2﹣1)2021=1.故答案为:1【点睛】本题主要考查了完全平方公式的应用,熟练掌握()2222a ab b a b ++=+ ,()2222a ab b a b -+=-是解题的关键.5、2022【解析】【分析】由(1)1a a +=得21a a =-,对2120211a a +++化简,将2a 用1a -多次等量替换,计算求解即可. 【详解】解:∵(1)1a a +=∴21a a =-2120211a a +++ 1120211a a =-+++ ()()11120211a a a -⨯++=++2220211a a -=++ ()2120211a a --=++ 120211a a +=++ 2022=故答案为:2022.【点睛】本题考查了平方差,代数式求值.解题的关键在于2a的等量替换.三、解答题1、 (1)40,12(2)4【解析】【分析】(1)根据定义解答即可;(2)根据b是a的十字点,写出a的表达式,因为a能被(b-1)整除,所以对表达式进行变形,得到(b-1)能整除2,求出b的值,进而得到a的值.(1)十字点为7的十字数a=(7+1)(7﹣2)=8×5=40,∵130=(12+1)(12﹣2)=13×10,∴130的十字点为12.故答案为:40,12;(2)∵b是a的十字点,∴a=(b+1)(b﹣2)(b>2且为正整数),∴a=(b﹣1+2)(b﹣1﹣1)=(b﹣1)2+(b﹣1)﹣2,∵a能被(b﹣1)整除,∴(b﹣1)能整除2,∴b﹣1=1或b﹣1=2,∵b>2,∴b=3,∴a=(3+1)(3﹣2)=4.【点睛】本题考查了因式分解的应用,有一定的技巧性,解题的关键是看懂定义,根据题中的条件进行变形.2、(1)①(m−y)(3+a);②(x+y)(a2+b2)(2)(a+b+1)(a+b−1)【解析】【分析】(1)①直接将前两项和后两项组合,提取公因式,进而分解因式即可;②直接将前两项和后两项组合,提取公因式,进而分解因式即可;(2)将前三项利用完全平方公式分解因式,再利用平方差公式分解因式得出答案.(1)解:①原式=(3m−3y)+(am−ay)=3(m−y)+a(m−y)=(m−y)(3+a);②原式=(a2x+a2y)+(b2x+b2y)=a2(x+y)+b2(x+y)=(x+y)(a2+b2);(2)a2+2ab+b2−1=(a+b)2−1=(a +b +1)(a +b −1).故答案为:(a +b +1)(a +b −1).【点睛】此题主要考查了分组分解法以及提取公因式法、公式法分解因式,正确分组再运用公式法分解因式是解题关键.3、5x 2-4,195-【解析】【分析】利用多项式乘多项式以及乘法公式对原式进行化简,再代入x 的值求原式的值.【详解】解:()()25121x x x +-+-() =x 2+5x -x -5+4x 2-4x +1=5x 2-4, 当15x =-时,原式=5×2119455⎛⎫--=- ⎪⎝⎭. 【点睛】本题考查了整式的化简求值,解题的关键是掌握乘法公式的运用.4、2x (x ﹣2)2【解析】【分析】先提取公因式2x ,在根据完全平方公式进行分解即可求得答案.【详解】原式22(44)x x x =-+22(2)x x =-,故答案为:22(2)x x -.【点睛】本题考查了提公因式法,公式法分解因式,注意分解因式的步骤,注意分解要彻底.5、9【解析】【分析】首先根据完全平方公式及单项式乘以多项式法则运算,再根据去括号法则去括号,最后合并同类项,即可求得【详解】解:2(3)(6)x x x ---2269(6)x x x x =-+--22696x x x x =-+-+9=【点睛】本题考查了完全平方公式,单项式乘以多项式法则,注意去括号时符号的变化。

因式分解专项练习题(含答案)

因式分解专项练习题(含答案)

整式的乘除与因式分解全章复习与巩固要点一、幂的运算1. 同底数幂的乘法:(为正整数);同底数幂相乘,底数不变,指数相加.2. 幂的乘方:(为正整数);幂的乘方,底数不变,指数相乘.3. 积的乘方:(为正整数);积的乘方,等于各因数乘方的积.4 .同底数幂的除法:(≠0, 为正整数,并且).同底数幂相除,底数不变,指数相减.5. 零指数幂:即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁要点二、整式的乘法和除法1. 单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2. 单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即(都是单项式).3. 多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:.4. 单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式要点三、乘法公式1. 平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:;两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍要点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。

2022秋八年级数学上册第12章整式的乘除12.5因式分解2公式法__平方差公式课件新版华东师大版

2022秋八年级数学上册第12章整式的乘除12.5因式分解2公式法__平方差公式课件新版华东师大版

答案显示
a2-b2=_(_a_+__b_)_(a_-__b_)_,即两个数的平方差,等于这 两个数的和与这两个数的差的积.
1.【2020·金华】下列多项式中,能运用平方差公式分 解因式的是( C )
A.a2+b2 B.2a-b2 C.a2-b2 D.-a2-b2
2.【中考·济宁】多项式4a-a3分解因式的结果是( B ) A.a(4-a2) B.a(2-a)(2+a) C.a(a-2)(a+2) D.a(2-a)2
(3)因式分解与整式乘法有互逆关系,请你利用a2-b2=(a+ b)(a-b)简算:
①999.92-0.12;
解:999.92-0.12 =(999.9-0.1)×(999.9+0.1) =999.8×1 000 =99962 =356-3316×356+3316 =-1138×1 =-1138.
任意两个奇数的平方差是8的倍数.
(3)说明这个规律的正确性.
解:设m、n为两个整数,两个奇数可分别表示为2m+1和 2n+1,则(2m+1)2-(2n+1)2=4(m-n)(m+n+1).①当 m、n同是奇数或同是偶数时,m-n一定为偶数,所以4(m -n)一定是8的倍数;②当m、n一奇一偶时,m+n+1一 定为偶数,所以4(m+n+1)一定是8的倍数.综上所述, 任意两个奇数的平方差是8的倍数.
【点拨】设较小的偶数为2n,则较大的偶数为2n+2, 则(2n+2)2-(2n)2=(2n+2+2n)(2n+2-2n)=2(4n+2) =4(2n+1). ∴能被4整除,故选C.
15.【中考·宜昌】小强是一位密码编译爱好者,在他的
密码手册中,有这样一条信息:a-b、x-y、x+y、
a+b、x2-y2、a2-b2分别对应下列六个字:昌、爱

乘法公式与因式分解

乘法公式与因式分解

、选择题(每题3分,共36分)下列各式中可以运用平方差公式计算的是 A. (-a+4c ) (a-4c ) B. (x-2y ) (2x+y )1 1'(—x+y )27、从边长为a 的正方形中去掉一个边长为b 的小正方形,如图,然后将剩余部分剪后拼成一 个矩形,上述操作所能验证的等式是 ()A. a 2 b 2 (a b)(a b)B. (a b)2 a 2 2ab b 2C. (a b)2 a 2 2ab b 2 2D . a ab a(a b)8、下列分解因式正确的是( )A. x 3 x x(x 2 1)B.m m 6 (m 3)(m2)C. (a 4)(a 4) a 216D. 2 2x y (x y)(x y)9、若a 为整数,则a 2 a 疋能被( )整除 A . 2 B . 3C . 4D . 510、无论x,y 取何值,x 2+y 2-2x+12y+40的值都是()A 、正数B 、负数C 、零D 、非负数11、 下列判断两角相等的叙述中,错误的是()A 、对顶角相等B 、两条直线被第三条直线所截,内错角相等C 、两直线平行,同位角相等D 、•••/仁/2,, / 2=Z 3AZ 仁/ 3 12、 下列计算中,正确的是()2?5 1022?3-122,2A 、2 2 =2B 、a+a=aC 、a a = aD 、(a+b ) =a +b七年级数学乘法公式与因式分解、241、 C. (-3a-1 ) (1-3a) D. ( - — x-y 22、 3、 2若4x +12xy+m 是一个完全平方式,则 B..3y 2 C . 9y 2 D(-a-b )的结果是2 2B . -a -bC A..y 2 计算(a+b ) A 2、2A . a -b4、设(3m+2n A . 12mn5、若 x 2-kxy+9y A. 3 Bm 的值为 .36y 22.a -2ab+b -a (-2ab-b2 2=(3m-2n ) +P,则P 的值是 B . 24mn C . 6mn D2是一个完全平方式,则k 值为.6 C . ± 6 D . ± 812 248mn6、当n 是整数时,2n 1 2n 1是A 2的倍数 B、4的倍数 C 、6的倍数 D t*第T题團、8的倍数13.下列可以用平方差公式计算的是 ( )A 、(x — y) (x + y)B 、(x — y) (y — x)C 、(x — y)(— y + x)D 、(x — y)(— x + y) 14若(7/ 5y)( ) 49x 4 25?,括号内应填代数式 ()A 、7/ 5yB 、7/5yC 、7/5yD 、7x 2 5y15、下列式子由左到右的变形中,属于因式分解的是( )A 、(x 2y)2 x 2 4xy 4y 2B 、x 2 2y 4 (x 1)2 3C 、3x 2 2x 1 (3x 1)(x 1)D 、m(a b c) ma mb me二、填空(每小题3分,共24分)1 2 1 211、计算(- a+3b ) - (一 a-3b )= .3312、 分解因式:4 a 2 9b 2 = __________________ .13、 如果(2a + 2b + 1) (2a + 2b —1)=63,那么 a + b 的值为 _____________ .214、 多项式4x +1加上一个单项式后能成为一个整式的完全平方, ?请你写出符合条件的这个 单项式是 ___________ .15、 若 x y 5,xy 6 贝卩 x 2y xy 2 = ___________ , 2x 2 2y 2 = __________ 。

因式分解乘法公式计算专题练习

因式分解乘法公式计算专题练习

因式分解乘法公式计算专题练习一、板块一、灵活运用公式计算1、)2)(2(a b b a ---2、)3)(9)(3(22y x y x y x ++-3、2222))(()(b a b a b a -++ 4、 2222)21()41()21(++-x x x5、)3)(3()221)(221(--+-++-x x x x 6、)2)(2(2)3)(3(3x y y x y x y x -+--+7、1)12)(12()12)(12)(12(643242++++++ 8、1)16)(16)(16)(16)(16)(16)(16(5643216842++++++++9、)453)(534(y z x z x y -+-+ 10、)32)(32(---+y x y x11、1297989910022222-++-+- 12、)10011)(9911()411)(311)(211(22222-----13、20172)1(201820162017-+⨯- 14、22)14.3(1)21(2016201420152015-+---+⨯--π15、766.0468.2766.0234.122⨯++ 16、97.006.297.003.122⨯++ 17、2296.092.104.204.2+⨯+18、 20172016)125.0()8(⨯- 19、298 20、2103 21、)9)(3)(3(22a x a x a x -+-22、解方程:41)8)(12()52)(3(=-+--+x x x x板块二、公式变形之---四大金刚ab b a b a b a ,,,22+-+1、若5,7==+ab b a ,求22b a +及2)(b a -的值。

2、若,4)(2=-b a 21=ab ,则2)(b a +=_____ 3、若;__________,5)(,9)(22==-=+xy y x y x 则4、已知._________,2)(,8)(2222=+=+=-n m n m n m 则 5、已知2,3-==+ab b a ,求22b a +的值。

12.5 因式分解(第2课时 运用两数和乘以这两数的差公式因式分解)

12.5 因式分解(第2课时 运用两数和乘以这两数的差公式因式分解)
5652 4352
利用因式分解计算
巩固
4. 计算:
(65 1 )2 (34 1 )2
2
2
探究 根据数的开方知识填空:
4 ( )2
3 ( )2
结论:
a ( a )2 (a 0)
范例 例4 在实数范围内因式分解:
(1)x2 3
(2) 5 4a2
巩固 5.在实数范围内因式分解:
4
范例 例2 因式分解:
(1)16(x y)2 9(x y)2 (2) 4 (2m n)2
25
把括号看作一个整体
巩固 4. 把下列各式因式分解:
(1)(a b)2 c2 (2)( x p)2 (x q)2 (3)( x y)2 (z m)2
范例 例3 简便计算:
作业
2.已知 a b 3, a2 b2 12, 求 a b 的值。
范例 例1 因式分解:
(1)x2 4 (2) 4n2 9m2
先确定a2和b2
巩固
2.下列多项式能否用两数和乘以这两数 的差的公式因式分解?
x2 y2
x2 y2
x2 y2
x2 y2
a2和b2的符号相反
ቤተ መጻሕፍቲ ባይዱ
巩固 3. 因式分解:
(1) 9 4x2 (2)x2 y2 1 z2
探究
Ⅰ.怎样将多项式 a 2 b2 进行因式分
解?
(a b)(a b) a2 b2
整式乘法
a2 b2 (a b)(a b)
因式分解
归纳
因式分解方法
公式法分解因式:
两数的平方差,等于这两数的和 与这两数差的积。

青岛版2020七年级数学下册第12章乘法公式与因式分解自主学习基础达标测试题2(附答案)

青岛版2020七年级数学下册第12章乘法公式与因式分解自主学习基础达标测试题2(附答案)
2
正方形修建花坛,其余的地方种植草坪. (1)用代数式表示草坪的面积; (2)先对上述代数式进行因式分解再计算当 a=15,b=2.5 时草坪的面积.
27.已知 m n 3, mn 4 .
(1)求 3 m3 n 的值;(2)求 m4 n4 的值.
28.如图,边长为 a,b 的矩形,它的周长为 14,面积为 10,求下列各式的值: (1)a2b+ab2;(2)a2+b2+ab.
2
22.计算:
(1)
22



30


1 4
1

(2) a a2 a3 2a3 2 a9 a3
(3)


x

1

x

2

2x Biblioteka x1 2

(4) 2m nn 2m m n2
23.给出三个多项式: 1 y2 y 1, 1 y2 2 y 1, 1 y2 y 1,请你选择其中两个进行
故答案为:3.
【点睛】
本题考查了完全平方公式的变形应用,根据题目的特点,正确利用完全平方公式的变形是解
决问题的关键.
13.5 或-3 【解析】 【分析】 这里首末两项是 x 和 2 的平方,那么中间项为加上或减去 x 和 2 的乘积的 2 倍也就是
k 1 x ,由此求得 k 的数值即可.
【详解】
7.已知 a b 3, ab 2 ,则 a b 的值是( )
A. 1
B.1
C.
D.以上选项都不对
8.下列运算正确的是( )
A. (x y)2 x2 y2
B. (x2 )3 x5

数学整式乘法公式因式分解之提取公因式法习题

数学整式乘法公式因式分解之提取公因式法习题

6a3 10a2 2a
x 32 (3x 9)
例题四,
(1)22007+3×22006-5×22006
用简便方法计算 (2)2013+20132-20142
小小数学家
今年是2013年,这儿有一道与2013有关的计算题。 已知x2+x+1=0,x+x2+x3+…+x2011+x2012+x2013的值。 聪明的同学,你能得到这个计算结果吗?
2,若a2 b2 10,ab 3, 求a b ______
a-b=_____
3,若m n 3, mn 10,则m n _________
练习:m+n=-5,mn=6,则m-n=___
把一个多项式化成几个整式的乘积的形式,像这样的 式子变形叫做这个多项式的因式分解(factorization),
整式乘法之 平方差公式,完全平方公式 因式分解之提取公因式
习题课
平方差公式:
(a+b)(a-b)= a2-b2
两个数的和与这两个数的差的积,等于这两个 数的平方差.
完全平方公式. (a+b)2=a2+2ab+b2,
(a-b) 2 = a2-2ab +b2.
即两数和(或差)的平方,等于它们的
平方和,加(或减)它们的积的2倍.
也叫做把这个多项式分解因式.
因式分解Biblioteka x2-1(x+1)(x-1)
整式乘法
因式分解和整式乘法是互为逆运算
例题三:把下列各式提公因式法分解因式:
8a2b3 6ab3c
-2b2(b-c) +6bc(b-c)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12乘法公式和因式分解练习题
一、选择题
1.已知2264b Nab a +-是一个完全平方式,则N 等于 ( )
A 、8
B 、±8
C 、±16
D 、±32
2.如果22)()(y x M y x +=+-,那么M 等于 ( )
A 、 2xy
B 、-2xy
C 、4xy
D 、-4xy
3.下列可以用平方差公式计算的是( )
A 、(x -y) (x + y)
B 、(x -y) (y -x)
C 、(x -y)(-y + x)
D 、(x -y)(-x + y)
4.下列各式中,运算结果是22169b a -的是( )
A 、)43)(43(b a b a --+-
B 、)34)(34(a b a b --+-
C 、)34)(34(a b a b -+
D 、)83)(23(b a b a -+
5、下列各式中,能运用平方差分式分解因式的是( )
A 、21x +-
B 、22y x +
C 、42--x
D 、()22b a ---
6、若m x x +-82是完全平方式, 则m 的值为( )
A 、4
B 、8
C 、16
D 、32
7.计算(x +2)2的结果为x 2+□x +4,则“□”中的数为( )
A .-2
B .2
C .-4
D .4 8、把多项式1222+--y x xy 分解因式的结果是( )
A .)1)(1(+-+-x y y x B.)1)(1(---+x y y x
C.)1)(1+--+y x y x
D..)1)(1(--+-y x y x
8.已知x 2+16x +k 是完全平方式,则常数k 等于( )
A .64
B .48
C .32
D .16
9.若949)7(22+-=-bx x a x ,则b a +之值为何?
A .18
B .24
C .39
D . 45
10.已知8)(2=-n m ,2)(2=+n m ,则=+22n m ( )
A .10
B .6
C .5
D .3
11.把多项式a 2-4a 分解因式,结果正确的是( )
A .a (a -4)
B .(a +2)(a -2)
C .a (a +2) (a -2)
D .(a -2)2-4
A .32-x
B .92+x
C .38-x
D .318-x
13.下列计算正确的是
A.()222x y x y +=+
B .()2
222x y x xy y -=-- C .()()22222x y x y x y +-=-
D .()2222x y x xy y -+=-+ 14.下列各因式分解正确的是( )
A.)2)(2()2(22+-=-+-x x x
B.22)1(12-=-+x x x
C.22)12(144-=+-x x x
D.)2)(2(42-+=-x x x x x
15.下列分解因式正确的是( ) A .)(23a 1-a a a -+=+
B .2a-4b+2=2(a-2b )
C .()222-a 4-a =
D .()221-a 1a 2-a =+ 16.下列各式能用完全平方式进行分解因式的是( )
A .x 2 +1
B .x 2+2x -1
C .x 2+x +1
D .x 2+4x +4
17.下面的多项式中,能因式分解的是( )
A .m 2+n
B .m 2﹣m+1
C .m 2﹣n
D .m 2﹣2m+1
18. a 4b -6a 3b +9a 2b 分解因式的正确结果是
A .a 2b (a 2-6a +9)
B .a 2b (a +3) (a -3)
C .b (a 2-3)2
D .a 2b (a -3)26. 4. 19.分解因式(x -1)2 -2(x -1)+1的结果是 ( )
A .(x -1)(x -2)
B . x 2
C .(x +1)2
D . (x -2)2
20.已知a -b =1,则代数式2a -2b -3的值是
A .-1
B .1
C .-5
D .5 21.将代数式262++x x 化成q p x ++2)(的形式为( )
A. 11)3(2+-x
B. 7)3(2-+x
C. 11)3(2-+x
D. 4)2(2++x
22.计算222(a+b)(a b)+a a b -等于( )
A .4a
B .6a
C .22a b
D .22
a b - 23.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )
A .m +3
B .m +6
C .2m +3
D .2m +6
24.图(1)是一个长为2m ,宽为2n (m>n)的长方形,用剪刀 沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )
A.2mn
B.(m+n)2
C.(m-n)2 D .m 2 -n 2
二、填空题
1.若2a -b =5,则多项式6a 一3b 的值是 .
2.整式A 与m 2﹣2mn+n 2的和是(m+n )2,则A= .
3.(x +1)(x -1)(1+x )=
4.已知x + y =—5 ,xy =6 ,则x 2 + y 2=_______.
5.二次三项式29x kx -+是一个完全平方式,则k 的值是 .
6.将4个数a 、b 、c 、d 排成两行、两列,两边各加一条竖线记成a b c d
,定义a c b d =a d -bc ,上述等式就叫做二阶行列式.若 1 181 1
x x x x +-=-+,则x = . 7.写出一个在实数范围内能用平方差公式分解因式的多项式: .
8.分解因式:25x x - =________ .
9.分解因式:=-822x ___________________
10.分解因式:ab 3-4ab = .
11.分解因式:a -6ab +9ab 2= .
12.分解因式:=+-2
2363n mn m _______ .
13.分解因式:22331212x y xy y ++=
14.若2m n -=,5m n +=,则22m n -的值为 .
15.若622=-n m ,且2m n -=,则=+n m .
16.有足够多的长方形和正方形的卡片,如下图. 3a b 2b a 1
如果选取1号、2号、3号卡片分别为1张、4张、4张,可拼成一个正方形(不重叠无缝隙)那么这个正方形的边长是
三、解答题
1.化简:
)2()12+-+x x x ( 2.化简:1)1()1(2
-++-a a a
3.先化简,再求值:(x+3)(x-3)-x (x-2),其中x=
4.
4. 先化简,再求值:22b +(a +b )(a -b )-(a -)2b ,其中a =-3,b =12.
5.先化简,再求值:()()()x x x -+++2232
,其中2-=x
6.已知y x A +=2,y x B -=2,计算2
2B A -
7.先化简,再求值:()222a b b --,其中2,3a b =-=
8、已知x + y = a , xy = b ,求(x-y) 2 , x 2 + y 2 , x 2-xy + y 2的值
x=-时,求代数式(2x+5)(x+1)-(x-3)(x+1)的值.
9.当7
10.观察下列算式:
① 1 × 3 - 22 = 3 - 4 = -1 ② 2 × 4 - 32 = 8 - 9 = -1
③ 3 × 5 - 42 = 15 - 16 = -1 ④
……
(1)请你按以上规律写出第4个算式;
(2)把这个规律用含字母的式子表示出来;
(3)你认为(2)中所写出的式子一定成立吗?并说明理由.。

相关文档
最新文档