高速计数器中瞬时脉冲问题
如何用高速输入脉冲测定瞬时流量
如何用高速输入脉冲测定瞬时流量
西门子S7-200 PLC高速计数功能除用于常见的运动控制系统转速测量之外,在流量计量方面也有着广泛的用途。
由于PLC内部没有相应的算法来计算频率,因此,测定脉冲输出信号的流量计的瞬时流量就需要在STEP 7 Micro/WIN中通过以下三部分编程来实现:(1) 定义高速计数器计数流量计输出脉冲;(2) 采用定时中断采集周期时间内高速脉冲输入;(3) 计算高速输入脉冲频率并通过流量换算公式:瞬时流量(ml/s)=脉冲频率(pulse/s)÷脉冲当量(pulse/ml)计算瞬时流量。
1 定义高速计数器
脉冲输出信号的流量计适用于单相计数,因此在主程序中定义高速计数器模式0,将HSC0 的控制字节SMB37赋值16#C8,启用高速计数器﹑更新初始值﹑设定计数方向为增计数,并使用SM0.1初始化高速计数器,如图1所示。
图1定义高速计数器
2 高速输入脉冲频率计算
为保证瞬时流量的准确性及实时性,须按照一定的时间间隔采集高速输入脉冲。
示例中采用定时中断0每隔250ms更新高速输入脉冲值HC0,并在中断程序中应用该数值运算得到高速输入脉冲频率,如图2,图3所示。
图2定时中断
图3 高速输入脉冲频率计算
为采集250ms时间间隔的脉冲值,在频率计算的同时,需要更新高速计数器。
由于只是更新初始值,因此初始化高速计数器时设定的控制字SMB37 不用再做更改,调用HSC指令即可。
3瞬时流量计算
参考流量换算公式,在中断程序中通过编程运算即可计算出瞬时流量,如图4所示。
图4 瞬时流量计算
关键词
高速输入脉冲,瞬时流量。
编码器的脉冲计数高速计数器小总结
我们一般采用高速输出信号控制步进电机和伺服电机做位置,角度和速度的控制,比如定位,要实现这个目的,我们要知道这几个条件:1、PLC高速输出需要晶体管输出,继电器属于机械动作,反应缓慢,而且易坏2、以PLC为例,高速输出口采用Y0 、Y13、高速输出指令常用的有PLSY 脉冲输出PLSR 带加减速PLSV……可变速的脉冲输出ZRN……原点回归DRVI……相对定位DRVA……绝对定位4、脉冲结束标志位M80295、D8140 D8141 为Y0总输出脉冲数6、在同一个程序里面Y0做为脉冲输出,程序可以存在一次,当需要多次使用的时候,可以采用变址V进行数据的切换,频率,脉冲在不同的动作模式中,改变数据正对上述讲解的内容:我们用一个程序来表示若我们以后可能接触步进;伺服这一块,上述内容,大家一定要熟练掌握在高速计数器与编码器配合使用之前,我们首先要知道是单向计数,还是双向计数,需要记录记录的数据,需要多少个编码器,在PLC中也需要多少个高速输入点,我们先要确认清楚;当我们了解上面的问题以后,参照上题的寄存器分配表得知我们该选择什么高速计数器如:现在需要测量升降机上升和下降的高度,那么我们需要采用双向编码器,即可加可减的,AB相编码器,PLC需要两个IO点,查表得知,X0 X1为一路采用C251高速计数器那么我们可以这样编程,如图开机即启动计数,上升时方向,C251加计数下降时方向,C2 51减计数我们要求编码器转动的数据达到多少时,就表示判断实际升降机到达的位置注意:在整个程序中没有出现X0、X1这个两个软元件是因为C251为X0、X1的内置高速计数器,他们是一一对应的,只要见到c251,X0 X1就在里面了,当然,用了C251以后,X0 、X 1不能在程序里面再当做开关量使用了接线参照下图相对11题定时器和计数器来说,本题目主要是告诉大家学习高数处理的功能PLC内部高速计时器是计数器功能的扩展,高速计数器指令与定位指令使PLC的应用范围从逻辑控制、模拟量控制扩展到了运动控制领域;特点:其最大的特点就是执行的过程中不受PLC的扫描周期影响,而是按照中断方式工作,并且立即输出;之前的题目中,我们说过内部信号计数器,它可以对编程元件X、Y、M、S、T、C信号进行计数;当X信号计数时,要求X的断开和接通一次时间应大于PLC的扫描周期,否则会出现丢步的现象,如果PLC的扫描周期为40ms,则一秒里X的信号频率最高位25HZ;这么低的速度限制了PLC的高速应用范围,如编码器,可以达到10000HZ;编码器后面会讲到我们看高速计数器,可以先参照下面表格图片出处:FX编程手册U:增计数输入;D:减计数输入;A:A相输入;B:B相输入;R:复位输入;S:启动输入;一般不同型号的PLC,可能对应高速计数器的点位控制不一样,首先满足硬件功能;然后在软件上进行实现,两者缺一不可图片出处:三菱编程手册我们现在说说高速计数器与普通计数器的区别:1、高速计数器相对于普通计数器,不受扫描周期的影响,但是,速度还是有限制的;2、多个高速计数输入口,和对应的高速计数器不是任意选择的,由上表得知,他们是一一对应的3、所有高速计数器均为停电保持型,题当前值和出点状态在停电时都会保持停电前的状态,也可以利用参数设定为非停电保持型;4、作为高速计数器的高速输入信号,建议使用电子开关信号,而不要使用机械开关触点信号,由于机械触点的振动会引起信号输入误差,从而影响到正确计数;考考大家的理解能力看了上图,再看后面的内容,我们会不会对高速计数器又一步加深理解编码器是产生脉冲反馈给PLC的检测装置,一般用来检测外围设备走的距离和速度,我们常见的检测位置的元件有:光电编码器、光栅编码器;最常用感应同步器、磁栅编码器、容栅编码器;10年前的产品电位器;30多年前的产品激光干涉仪、机器视觉系统;高精度、高成本旋转式光电编码器原理:光电编码器,是通过光电转换将输入轴上机械几何位移量转换成脉冲数字量的传感器; 光电编码器是有码盘和光电检测装置组成;码盘是在一定直径的透明圆板上等分的印制了若干个细长线,如图,经发光二极管等电子元件组成的检测装置检测脉冲输出信号,即可测量编码器输入轴的转角;通过计算单位时间编码器输出脉冲的个数就能计算出输入轴的转速;增量式编码器:增量式编码器是直接利用光电转换原理输出三组方波脉冲:A、B和脉冲相位差90度,以判断旋转方向,如下图所示;增量式编码器特点:l 构造简单,l 机械寿命长,l 抗干扰能力强,可靠性高;l 缺点是无法输出轴转动角的绝对位置;绝对式编码器:绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数;这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码;显然,码道越多,分辨率就越高,对于一个具有N位二进制分辨率的编码器,其码盘必须有N条码道;特点:1.可以直接读出角度坐标的绝对值;2.没有累积误差;3.电源切除后位置信息不会丢失;4.有10位、14位、16位等品种;。
s高速脉冲计数器及PTO和PWM
高速脉冲计数器高速计数器专用输入高速计数器使用的输入HSC0 , ,HSC1 , , ,HSC2 , , ,HSC3HSC4 , ,HSC5有些高速计数器和边缘中断的输入点赋值存在某些重叠。
同一个输入不能用于两种不同的功能;但是高速计数器当前模式未使用的任何输入均可用于其他目的。
例如,如果在模式2中使用HSC0,模式2使用和,则可用于边缘中断或用于HSC3。
如果所用的HSC0模式不使用输入,则该输入可用于HSC3或边缘中断。
与此相似,如果所选的HSC0模式不使用,则该输入可用于边缘中断;如果所选HSC4模式不使用,则该输入可用于HSC5。
请注意HSC0的所有模式均使用,HSC4的所有模式均使用,因此当使用这些计数器时,这些输入点绝不会用于其他用途。
四台计数器有三个控制位,用于配置复原和起始输入的激活状态并选择1x或4x计数模式(仅限正交计数器)。
这些控制位位于各自计数器的控制字节内,只在执行HDEF指令时才使用。
执行HDEF指令之前,必须将这些控制位设为所需的状态,否则计数器采用所选计数器模式的默认配置。
复原输入和起始输入的默认设置为现用水平高,正交计数速率为4x(或4乘以输入时钟频率)。
一旦执行了HDEF指令,就不能再改变计数器设置,除非首先将CPU设为STOP(停止)模式。
下表复位和启动输入的有效电平以及1x/4x控制位**缺省设置为:复位输入和启动输入高电平有效,正交计数率为四倍速(四倍输入时钟频率)。
定义控制字节一旦定义了计数器和计数器模式,您就可以为计数器动态参数编程。
每台高速计数器均有一个控制字节,允许完成以下作业:* 启用或禁止计数器* 控制方向(仅限模式0、1和2)或初始化所有其他模式的计数方向* 载入当前值通过执行HSC指令可激活控制字节以及相关当前值和预设值检查。
下表说明每个控制位。
每台高速计数器都有一个32位初始值和一个32位预设值,初始值和预设值均为带符号的整数值。
欲向高速计数器载入新的初始值和预设值,您必须设置包含初始值和/或预设值的控制字节及特殊内存字节。
关于高速计数和脉冲问题
关于高速计数和脉冲问题
1、高速计数器里的比较值可否在程序中更改,也就是在运行时更改。
因为机器速度不同时,需要反应的位置不同,比如机器运转较快时,提前一些进行比较并中断,执行ob40
2、编码器是a、b、z的,cpu用的是313c,a/b相接到了i0.0和i0.1,i0.4输入点设置了硬件中断,接z相,用于接收到信号后执行ob40,对计数器进行复位。
当使用24v电直接接进i0.4,可以复位计数器,但是z相接进去,却复位不了,好像是捕捉不到z相的脉冲信号
最佳答案
1、比较值可以在运行时修改,对于cpu31xc调用sfb47,使用作业号16#04来修改。
具体可以参考s7-300的技术功能手册或下载中心文档:a0499s7-300高速计数使用帮助。
2、cpu313c不支持z脉冲输入和复位功能。
如果通过直接的硬件中断捕捉不到脉冲,可以将z信号作为第二个高速计数通道的输入脉冲接入i0.3,然后将最大计数频率设为1khz,使用“oncountpulse”中断功能,并在中断中对计数器进行复位。
这样应该没有问题。
西门子200(CPU226cn)高速计数器部分调试说明(适用于飞剪系统)
编者注:此文档主要针对西门子S7-200系列中的CPU226CN的高速计数器模块,内容包括S7-200实验平台的搭建、CPU226CN高速计数器部分的解决方案和高速计数器部分的简单程序讲解。
建议:首先请简单阅读用户手册相关内容,再做此实验。
目录:1、S7-200实验平台的搭建 (2)1.1实验材料的准备 (2)1.2安装microwinv4.0 (2)1.3对实验器材进行连线安装 (3)2、CPU226CN高速计数器部分的解决方案 (4)2.1 配置通讯 (4)2.2 配置高速计数器,使用高速计数器向导 (6)2.3 完善高速计数器程序,实现高速计数功能 (10)2.4 高速计数程序的简单描述 (13)2.5 修改程序参数,实现I0.2上升沿清零 (17)3、实验小结 (18)1. S7-200实验平台的搭建进行本次实验的主要目的是要了解S7-200系列中的CPU226CN CPU的高速计数功能以及配置使用方法。
在进行实验以前首先要将实验中要用到的软件和硬件做一个详细的准备,避免在实验过程中因为缺少材料而导致实验失败。
1.1 实验材料的准备硬件:z CPU226CN模块(6ES7 216-2BD23-OX8)z S7-200系列CPU编程电缆z编程计算机(带9针串口)z24V开关电源z编码器1-2个软件:z microwinv4.01.2 安装microwinv4.0运行microwinv4.0的安装程序,正常安装。
安装过程中程序会提示选择将来要使用的通讯方式,如下图所示其默认选项为“PC/PPI cable(PPI)”,即计算机串口对PLC的PPI的通讯方式,此选项可以视实际实验时选用的通讯方式自由选择。
选择好通讯方式后完成程序安装,并重新启动计算机。
1.3 对实验器材进行连线安装西门子CPU226CN的进线电压为交流220V,在对CPU进行接线时一定要按照西门子提供的接线方法规范接线,西门子CPU226CN的接线图如下所示完成连接所有硬件的线路并检查无误后,接通电源。
高速计数及脉冲输出指令
I0.4 时钟 时钟
模式2
时钟
模式3 模式4
时钟 时钟
方向 方向
模式5
时钟
方向
模式6 模式7
增时钟 增时钟
减时钟 减时钟
I0.2
I1.0
I1.1
I1.4
I1.5
I0.5
复位
复位
•开 启
复位
复位
•开 启
复位
(2)设置控制字节
HSC0 HSC1 HSC2 SM37.0 SM47.0 SM57.0
HSC3
PTO/PWM旳多段管线功能在许多应用中非常有用,尤其在 步进电机控制中。
例如利用带有脉冲包络旳PTO控制步进电机,实现加速、匀 速和减速。包络表值包括三段:加速(1)、匀速(2)、减 速(3)。
假定需要4000个脉冲到达要求旳电机转动数,开启和结束 频率是2kHz,最大脉冲频率是10kHz。因为包络表中旳值 是用周期表达旳,而不是用频率,需要把给定旳频率值转 换成周期值。所以,开启和结束旳脉冲周期为500 μs,最 高频率旳相应周期为100μs。在输出包络旳加速部分,要 求在200个脉冲左右到达最大脉冲频率。也假定包络旳减速 部分,在400个脉冲完毕。
第十章 高速计数及脉冲输出指 令
第一节 高速计数器
一、 高速计数器
6个高速计数器(HSC0~HSC5),如表所示。这6个高速 计数器均为32位双向计数器
CPU型号
支持HSC号
最高工作频 单相
率
双相
CPU221和CPU222 HSC0、HSC3、HSC4、HSC5
4个30kHz 2个20kHz
CPU224、CPU226 HSC0~HSC5全部6种
• 要装入旳 值
6.7高速计数器与高速脉冲输出指令解析
高速计数器占用输入/输出端子情况表
高速计数器 HSC0 HSC1 使用的输入端子 I0.0, I0.1, I0.2 I0.6, I0.7, I1.0, I1.1
HSC2 HSC3 HSC4 HSC5
I1.2, I1.3, I1.4, I1.5 I0.1 I0.3, I0.4, I0.5 I0.4
各高速计数器不同的输入端有专用的功能,如:时钟脉冲输 入端、方向控制端、复位端、起动端。
图6-6
所示内部方向控制的单路加/减计数
(2)单路脉冲输入的外部方向控制加/减计数
PV=CV时产生中断 PV=CV时产生中断和方向改变产生中断 计数器允许,当前值清0,预置值=4 输入的一路脉冲 外部方向控制 1 1=加计数;0=减计数 0
5 4 3 4 3 2 1
计数器当前值
2 1
0
有一个脉冲输入端,有一个方向控制端,外部方向控制输入 信号=1时,加计数;方向输入信号=0时,减计数。
一、高速计数器基本情况
●用来累积比可编程控制器的扫描频率高得多的脉 冲输入,利用产生的中断事件完成预定的操作。
各主机的高速计数器数量及其编号
主机型号
可 用 HSC数量 HSC 编号范围
CPU221
4
CPU222
CPU224
6
CPU226
HC0,HC3,HC4,HC5
HC0-HC5
高速计数中断
高速 计数器 HSC0 当前值=预设值中断 事件号 12 优先级 10 计数方向改变中断 事件号 27 优先级 11 外部信号复位中断 事件号 28 优先级 12
二、高速计数器的工作模式
1. 高速计数器的计数方式 (1)单路脉冲输入的内部方向控制加/减计数
s7-200高速计数器使用技巧
s7-200高速计数器详细解说一、高速计数器普通计数器是通过两次扫描中输入端子的电平变化实现计数的,可以用普通的寄存器通过加1指令实现。
特点是受扫描的影响,只能用于低频脉冲计数。
高速脉冲使用PLC内部的高速计数器,各种PLC都内置高速计数器。
S7-200 CPU具有集成的、硬件高速计数器。
CPU221和CPU222可以使用4个30kHz单相高速计数器或2个20kHz的两相高速计数器,而CPU224和CPU226可以使用6个30kHz单相高速计数器或4个20kHz的两相高速计数器。
高速计数器的主要功能就是对主机实际转速反馈进行测量,这是电子调速器的一项重要功能,因为主机实际转速反馈测量的准确与否直接关系到保证主机转速稳定,保证主机运行的安全。
重点介绍了S7-200 PLC高速计数器。
在开发研制中发现,采用S7-200 PLC高速计数器可以非常准确地对电动机实际转速反馈进行测量,而且硬件实现非常简单,价格也比较低,具有很大的应用价值。
(一)概述普通计数器是通过两次扫描输入端子电平变化来进行计数的,因此其端子输入脉冲的频率必须必扫描频率低得多。
对于高速脉冲而言,这种方法会出现丢失脉冲导致计数错误。
S7-200内置了高速计数器HSC,其工作情况类似于单片机中的计数器。
起动后不受扫描周期的影响,由硬件自动计数,当满足一定条件时发出中断申请。
其最高技术频率高达30KHz。
S7-200的计数器最多可以设置12种不同的工作模式,用于实现高速运动的精确控制。
S7-200还设有高速脉冲输出,输出频率可以高达20KHz。
用于PTO(脉冲串输出,输出一个频率可调,占空比50%的脉冲。
)和PWM(脉宽调制脉冲)。
PTO用于带有位置控制功能的步进电机控制或者伺服电机驱动器控制,通过输出脉冲的个数作为位置给定值的输入,以实现定位控制功能。
通过改变脉冲的输出频率,可以改变运动的速度。
PWM用于直接驱动调速系统或运动控制系统的输出,控制主逆变回路。
高速计数和高速脉冲用法指南
-----------------------------------------------------------------------------------------------------------------------
COOLMAY系列 PLC
高速计数/高速脉冲 用法指南
数
一般
据
寄
停电保持
存
器
文件寄存器
外部调节
(D.V.Z)
特殊
变址
指 针
JUMP,CALL
输入中断
嵌套
主控用
常
十进位 K
数
十六进位 H
内容
通过储存的程序循环扫描的方式 批处理(执行 END 指令时),输入输出刷新,脉冲捕捉 逻辑梯形图和指令清单(兼容三菱软件 FXGP_WIN-C) 0.08µs 10-30µs 8000 步 EEPROM
◆使用灵活,可以按客户要求定制。
2
PLC 编程手册
-----------------------------------------------------------------------------------------------------------------------
第二部分 资源集
产品类别
A类
B类
EX2N-40A 系列文本 PLC 一体机
EX2N-30A 系列文本 PLC 一体机
EX2N-50A 系列文本 PLC 一体机
EX2N-30B/40B 系列文本 PLC 一体机
EX2N-70H(A/AS)系列触摸屏 PLC 一体机 EX2N-43H(A)系列触摸屏 PLC 一体机
S7-1200高速计数功能说明介绍
每种高速计数器有两种工作状态。
•外部复位,无启动输入。
•内部复位,无启动输入。
表1 高速计数器寻址4频率测量S7-1200 CPU除了提供计数功能外,还提供了频率测量功能,有3种不同的频率测量周期:1.0秒,0.1秒和0.01秒,频率测量周期是这样定义的:计算并返回新的频率值的时间间隔。
返回的频率值为上一个测量周期中所有测量值的平均,无论测量周期如何选择,测量出的频率值总是以Hz(每秒脉冲数)为单位。
5高速计数器指令块高速计数器指令块,需要使用指定背景数据块用于存储参数。
图1所示为高速计数器指令块图1高速计数器指令块表3所示为高速计数器指令块参数说明HSC (HW_HSC) 高速计数器硬件识别号DIR (BOOL) TRUE =使能新方向CV (BOOL) TRUE = 使能新初始值RV (BOOL) TRUE = 使能新参考值PERIODE (BOOL) TRUE = 使能新频率测量周期NEW_DIR (INT) 方向选择1=正向0=反向NEW_CV (DINT) 新初始值NEW_RV (DINT) 新参考值NEW_PERIODE (INT) 新频率测量周期表1 高速计数器指令块参数6应用举例为了便于理解如何使用高速计数功能,通过一个例子来学习组态及应用。
假设在旋转机械上有单相增量编码器作为反馈,接入到S7-1200 CPU,要求在计数25个脉冲时,计数器复位,并重新开始计数,周而复始执行此功能。
针对此应用,选择CPU 1214C,高速计数器为:HSC1。
模式为:单相计数,内部方向控制,无外部复位。
据此,脉冲输入应接入I0.0,使用HSC1的预置值中断(CV=RV)功能实现此应用。
组态步骤:•先在设备与组态中,选择CPU,单击属性,激活高速计数器,并设置相关参数。
此步骤必须实现执行,1200的高速计数器功能必须要先在硬件组态中激活,才能进行下面的步骤•添加硬件中断块,关联相对应的高速计数器所产生的预置值中断•在中断块中添加高速计数器指令块,编写修改预置值程序,设置复位计数器等参数•将程序下载,执行功能1硬件组态选中CPU如图2图2选中CPU图3所示为选择属性打开组态界面图3 选择属性打开组态界面激活高速计数功能如图4图4 激活高速计数功能计数类型,计数方向组态如图5所示图5 计数类型,计数方向1 此处计数类型分为3种,Axis of motion(运动轴),Frequency(频率测量),Counting(计数)。
s7-200高速计数器使用技巧
s7-200高速计数器详细解说一、高速计数器普通计数器是通过两次扫描中输入端子的电平变化实现计数的,可以用普通的寄存器通过加1指令实现。
特点是受扫描的影响,只能用于低频脉冲计数。
高速脉冲使用PLC内部的高速计数器,各种PLC都内置高速计数器。
S7-200 CPU具有集成的、硬件高速计数器。
CPU221和CPU222可以使用4个30kHz单相高速计数器或2个20kHz的两相高速计数器,而CPU224和CPU226可以使用6个30kHz单相高速计数器或4个20kHz的两相高速计数器。
高速计数器的主要功能就是对主机实际转速反馈进行测量,这是电子调速器的一项重要功能,因为主机实际转速反馈测量的准确与否直接关系到保证主机转速稳定,保证主机运行的安全。
重点介绍了S7-200 PLC高速计数器。
在开发研制中发现,采用S7-200 PLC高速计数器可以非常准确地对电动机实际转速反馈进行测量,而且硬件实现非常简单,价格也比较低,具有很大的应用价值。
(一)概述普通计数器是通过两次扫描输入端子电平变化来进行计数的,因此其端子输入脉冲的频率必须必扫描频率低得多。
对于高速脉冲而言,这种方法会出现丢失脉冲导致计数错误。
S7-200内置了高速计数器HSC,其工作情况类似于单片机中的计数器。
起动后不受扫描周期的影响,由硬件自动计数,当满足一定条件时发出中断申请。
其最高技术频率高达30KHz。
S7-200的计数器最多可以设置12种不同的工作模式,用于实现高速运动的精确控制。
S7-200还设有高速脉冲输出,输出频率可以高达20KHz。
用于PTO(脉冲串输出,输出一个频率可调,占空比50%的脉冲。
)和PWM(脉宽调制脉冲)。
PTO用于带有位置控制功能的步进电机控制或者伺服电机驱动器控制,通过输出脉冲的个数作为位置给定值的输入,以实现定位控制功能。
通过改变脉冲的输出频率,可以改变运动的速度。
PWM用于直接驱动调速系统或运动控制系统的输出,控制主逆变回路。
高速计数及脉冲输出指令
标准化与互操作性
为了满足不同工业控制系统之间的互 操作性和兼容性需求,未来高速计数 及脉冲输出指令的发展将更加注重标 准化和互操作性。通过制定统一的技 术标准和接口规范,促进不同厂商之 间的产品互通和集成。
感谢您的观看
THANKS
在科研领域,高速计数器用于高精度实验测量和数据分析,如光谱分析、量子计算 等。
高速计数器的分类
根据工作原理,高速计数器可分 为光电式、感应式、霍尔效应式
等多种类型。
根据计数速度,高速计数器可分 为低速、中速和高速计数器,以
满足不同应用场景的需求。
根据输入信号类型,高速计数器 可分为模拟输入和数字输入计数
随着工业自动化水平的提高,对高速计数及脉冲输出指令的精度和可靠性要求越来越高。 未来技术发展趋势将致力于提高计数的准确性和稳定性,以满足复杂工业控制系统的需求 。
智能化与集成化
随着人工智能和物联网技术的发展,高速计数及脉冲输出指令将更加智能化和集成化。通 过与传感器、执行器等设备的集成,实现更高效、智能的数据采集、处理和控制。
04
高速计数及脉冲输出指令的 应用实例
应用场景一:电机控制
总结词
高速计数及脉冲输出指令在电机控制中发挥着重要作用,能够实现精确的电机 位置和速度控制。
详细描述
通过高速计数及脉冲输出指令,控制器可以实时监测电机编码器的反馈信号, 计算电机的位置和速度,从而实现精确的电机控制。这种应用场景常见于数控 机床、机器人、包装机械等自动化设备中。
03
用户可以设置高速计数器的计数范围,以满足不同应用场景的
需求。
指令使用注意事项
在使用高速计数及脉冲输出指令时,需要确保PLC的硬件配置支持相应的脉冲输出和高速计数器功能。
高速计数器控制指令
25315
CTBL(63)
高速计数器目标值比较中断
比较表 首地址 软件 复位
00002 5000 0000 0010 0000 0002 0011 2个目标值 目标值1:5000 子程序号 目标值2:20000 子程序号
000 000 DM0000 00100 25200 SBN (92) 010 25313 @MOV #5000 HR00 RET (93)
使用高速计数器举例
登录比较表、 用INI启动
25315
高速计数器区域比较中断
比较表 更新当 启动 首地址 前值 比较
1500 0000 3000 0000 0000 7500 0000 0000 0001 0001
读出当 前值
00005
25313
CTBL (61) 25313 PRV (62) 000 000 003 000 DM0000 LR00 INI (61) 00100 25200 000 002 SBN (92) 000 HR00 子程序000 @INI (61) 000 REN (93) 000 SBN (92) 001 000 子程序001 XFER(70) # 0002 RET (93) 248 END (01) HR00
SBN (92) 000 子程序000 REN (93) SBN (92) 001 子程序001 RET (93) END (01)
执行当前值读出 指 令 PRV , 将 248、249中的当 前值读到LR00中 去。 若00100 ON且 有Z信号,则高 速计数器复位
@INI(61)
P C P1
P:端口定义(000) C:控制数据
P1 :设定值首通道
C的含义
第08章 高速计数与高速脉冲.
PWM 操作
PWM 功能提供占空比可调的脉冲,输出周期 和脉宽的增量单位为微秒( s) 或毫秒(ms) ,周 期变化范围分别为50 ~65,535 微秒或2~ 65,535 毫秒,脉宽变化范围分别为0 ~65,535 微秒或0~65,535 毫秒。当脉宽大于等于周期时 占空比为100% 即输出连续接通。当脉宽为0 时占空比为0% 即输出断开,如果周期小于2 个时间单位那么周期时间被缺省地设定为2 个 时间单位。
多段操作脉冲例子2
MOVB 3, VB500 MOVW 500, VW501
MOVW -2, VD503 MOVD 200, VD505
多段操作脉冲例子-3
多段操作脉冲例子-4
例8-2:立体货仓的步进电动机驱动控制
由控制水平、上下运动的二个步进电动机分别驱动, 如果要从A运动到B,1秒后 自动返回;
ATCH INT0, 19 ENI PLS 0 //time=10.805 s
Example:--subroutine
Network 2
LD SM0.0
MOVB 16#A0, SMB77
MOVW +440, SMW178
MOVB 3, VB440
MOVW +2000, VW441 //500Hz
MOVW -2, VW443
已知:0.1mm/P ; fmax=10000Hz; fstart≤500Hz;
方向控制信号: Q1.0 & Q1.1 =1 从 A 到 B, Q1.0 、 Q1.1 =0从 B 到A. 控制按钮: I0.0 启动, I0.1 停止.
B
6000 mm
A
C
9000 mm
Example:
Main program